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ABSTRACT. Short time existence, uniqueness, and regularity for a surface diffusion evolution
equation with curvature regularization are proved in the context of epitaxially strained two-
dimensional films. This is achieved by using the H~l-gradient flow structure of the evolution
law, via De Giorgi’s minimizing movements. This seems to be the first short time existence
result for a surface diffusion type geometric evolution equation in the presence of elasticity.

1. INTRODUCTION

In this paper we study the morphologic evolution of anisotropic epitaxially strained films,
driven by stress and surface mass transport. This can be viewed as the evolutionary counterpart
of the static theory developed in [10, 19, 21, 18].

We briefly recall the physical mechanism behind the evolution equation. The free interface is
allowed to evolve via surface mass transport under the influence of a chemical potential u. Mass
transport in the bulk can be neglected, as it occurs at a much faster time scale (see [30]). According
to the Einstein-Nernst relation, the surface flux of atoms is proportional to the tangential gradient
of the chemical potential, whose divergence, in turn, equals the rate at which material is removed
from or deposited on the interface, due to mass conservation. Thus, we get the volume preserving
evolution law

V=CA.p, (1.1)

where C' > 0, V denotes the normal velocity of the evolving interface I'; A, stands for the tangential
laplacian, and the chemical potential u is given by the first variation of the free-energy functional.

In the case of three-dimensional epitaxially strained films with planar symmetries, the under-
lying model becomes two-dimensional and the free energy functional is given by

Q(E(u))dz+/ g(0) dH*, (1.2)

Q Ty
where h is the function whose graph I'j, describes the evolving profile of the film, €2} is the region
occupied by the film, u is displacement of the material, which is assumed to be in (quasistatic)
elastic equilibrium at each time, and H' denotes the one-dimensional measure on I';,. Finally, g is
an anisotropic surface energy density, evaluated at the angle 6 that the outward surface normal v
forms with the z-axis. The first variation of (1.2) can be written as the sum of three contributions:
A constant Lagrange multiplier related to mass conservation, the (anisotropic) curvature of the
surface, and the elastic energy density evaluated at the displacement of the solid on the profile of
the film. Hence, (1.1) takes the form (assuming C' = 1)

V= ((go0 + 9k + QEW)) . (1.3)
where k is the curvature of T'y, (-), stands for the tangential derivative along T'j, and wu(-,t)
is the elastic equilibrium in {2, 4), i.e., the minimizer of the elastic energy under the prescribed
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periodicity and boundary conditions (see (1.7) below). The corresponding evolution without surface
diffusion, which reduces to

V= (900 + 9)k + Q(E(u)), (1.4)

has been studied by several authors under the assumption that ggy + g > 0, i.e., the equation is
parabolic (see [25] and the references therein). However, a highly anisotropic non-convex interfacial
energy may lead to the existence of certain directions 6 at which the coefficient ggp + g becomes
negative. This is a situation often present in the materials science literature. In this case, equations
(1.3) and (1.4) are backward parabolic and the corresponding initial value problem is ill-posed.

To overcome the ill-posedness of the evolution equation, a common approach found in the
literature is to regularize higher order terms, i.e, to consider in (1.2) a curvature-dependent surface
energy. This was first suggested by Herring ([26]) on physical grounds and later was adopted in
[7] and [15], in the particular case of a surface energy of the form

5
g(0,k)=g(0) + §k2 )
with € a positive constant. The evolution without surface diffusion (1.4) is then replaced by
1
V = (900 + 9)k + Q(E(v)) — e (koo + 5k3) , (1.5)

while in the context of surface diffusion, in view of (1.1), we have the volume preserving evolution
law

V = (G900 + 9k + QUE(w)) — (koo + 54°)) . (1.6)

oo

This equation was already proposed in [24] for the case without elasticity, and it was studied
numerically in [32] for the evolution of voids in elastically stressed materials (see also [31, 11]
and references therein). However, to the best of our knowledge no analytical results exist in the
literature for equations (1.3), (1.5), and (1.6). Related analytical results concerning the diffuse
interface version of such equations may be found, for instance, in [22, 23].

In this paper we prove short time existence, uniqueness, and regularity of a spatially periodic
solution to (1.6) in the context of the epitaxially strained two dimensional elastic films over a rigid
substrate. Precisely, for b > 0 we construct a local in time solution of the Cauchy problem

195 = (900 + 9k + QUE(W) — (koo + 1)), in Rx [0, T,
divCE(u) =0 in Qp,

CE(u)[v)] =0 on I'y, u(z,0,t) = eo(z,0), (L.7)
h(-,t) and Vu(-,t) are b-periodic
h(-,0) = hyg

where eq is a nonzero constant that reflects the mismatch between the crystalline lattices of the film
and the substrate and, we recall, h : R x [0,7p] — (0, 400) denotes the one-dimensional function
describing the profile T';, of the film,

[ |on)2 d gh
Ji=\/14+|=— ko= —— —22——
+‘8$ ’ 8x< /1+|gh|2>,

Q(E(u)) = £CE(u) : E(u), and hg € HZ,(R) is a b-periodic function.

As observed by Cahn and Taylor in [12], this motion can be regarded as the H ~!-gradient

flow for the total energy

G = [ QEw))d=+ /

5 5 (g(e) + ng) i
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where Qp, := {(z,y) : 0 <2 <b,0 <y < h(x)}, Ty is the graph of h over the periodicity interval
(0,b), and wy, is the minimizer of the elastic energy in £2;, under suitable boundary and periodicity
conditions. Therefore, it is natural to adopt De Giorgi’s minimizing movements approach (see [4]),
which consists in constructing discrete time evolutions by solving iteratively suitable minimum
incremental problems. Precisely, we start with a b-periodic initial datum hg € HZ,(R) and, given
T>0,NeN,fori=1,...,N, we define inductively h; y as the minimizer of

1
G(h) + Edz(}% hi—1,n), (1.8)

where 7 := % and d is a suitable term measuring the H ~!-distance between h and hi—1,n. We

mention here that minimizing movements have been already successfully implemented to treat
various mean curvature type flows without surface diffusion (see, e.g., [3, 13, 8]).

This paper is organized as follows. In Section 2 we set up the problem and introduce the
discrete time evolutions. In Section 3 we show that they converge to a weak solution of (1.7) in
[0, Tp] for some T > 0 (see Theorem 3.8). Precisely, a b-periodic weak solution of (1.7) is a function
h € HY(0,Ty; H;,}(R)) N L>=(0,Ty; HZ.(R)), such that h(-,t) is b-periodic for all ¢ € [0,7] and
(h,u) satisfies (1.7) in the distributional sense (see Definition 3.1). We remark that Theorem 3.8
seems to be the first (short time) existence result for a surface diffusion type geometric evolution
equation in the presence of elasticity. Moreover, also the use of minimizing movements instead
of the more classical semigroup approach appears to be new in this context. We observe that in
the case without elasticity and without curvature regularization, short time existence of a smooth
solution was proved in [17], using semigroup techniques, for the motion of immersed hypersurfaces
by surface diffusion. See also [16, 29, 9] and the work of Chen ([14]) for the Hele-Shaw equation.

A delicate point in the proof of our existence result is the choice of d in the penalization term in
(1.8) (see Remark 2.2). A rather technical obstacle is overcome in Theorem 3.4, where it is proved
that the solutions of the discrete time evolutions are equicontinuous in time with values in C1:* for
all a € (0, %)7 at least for an initial time interval [0, Tp]. This property is crucial to guarantee that
the evolving graphs do not develop vertical parts in [0,75]. However, our variational procedure
provides a global in time volume preserving evolution, which satisfies (1.7) until the vertical parts
appear (see Theorem 3.3). The main existence result is established in Theorem 3.8.

In Section 4 we prove that the constructed solution h solves the equation in a much stronger
sense. Namely, we show that h € L%(0,Tp; H (R)) and 2 € L?(0,To; L% (R)), provided that
the anisotropy v is sufficiently smooth (see Theorem 4.3). We note that this is obtained without
requiring any further regularity on the initial datum, besides H7, .(R). The presence of the elasticity
term poses some serious technical difficulties in the proof of Theorem 4.3. To understand why,
recall that by the classical elliptic theory if the profile h € C** for k € N and « € (0,1), then
the corresponding elastic equilibrium uy, is of class C* up to I';,. However, in order to prove the
desired regularity result we need to specify in a rather precise way how the constants in the elliptic
estimates depend on h. This is achieved in Theorem 4.1, whose technical proof makes an essential
use of the Airy functions associated to up,.

Finally, in Section 5 we show that weak solutions to equation (1.7) are unique and thus coincide
necessarily with the solution constructed via minimizing movements.

Future work will address other properties such as long time existence and asymptotic stability.

2. SETTING OF THE PROBLEM

In this section we introduce the precise mathematical setting needed to define the free-energy
functional and the corresponding minimum incremental problems. Our formulation is similar to
the one in [10] (see also [21]) to model the epitaxial growth of an elastic film over a rigid substrate
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in the presence of a mismatch between the lattices of the two materials. Following the physical
literature and as in [10], we work under periodicity conditions on the evolving profiles and on the
corresponding elastic displacements. Given a positive b-periodic function h : R — [0, 4+00), with
locally finite pointwise variation, we set

Qp={z=(z,y): 0<z<b,0<y < h(z)}, Qﬁ ={z=(z,y): x € R,0<y < h(z)},

Dy i={z=(z,y): 2 €[0,0),h (z) <y <h'(2)},
where
h™(z) := min{h(xz—), h(z+)} and ht(x) := max{h(z—), h(z+)},
with h(z=£) the right and left limit of h at z, respectively. We also consider the set
F# ={z=(z,y): 2 cR,h (2) <y <ht(z)}.

The set ), represents the reference configuration of the film over the interval (0,b) and T'j, is the
corresponding profile. We introduce the class of admissible profile functions AP, defined as

AP::{h: R — [0, 400) : h b-periodic, lower semicontinuous, Var(h;0,b) < 400, and there exists
v € H2 (R;R?) such that y(t + 1) = v(t) + (b,0), 4] = H'(Ts), and v(R) =TF}. (2.1)
Given h € AP, we denote

LD#(Qh;RQ):: {u er? (Qf;RQ) s u(z,y) = u(z+b,y) for (z,y) € Qf yE(u)|q, € LQ(Qh;RQ)} ,

loc

where E(u) := 3(Vu+ V7Tu), Vu is the distributional gradient of v and V7w is the transpose of
Vu. We work within the theory of small deformations, so that E(u) represents the strain and u is
the planar displacement. We also prescribe the Dirichlet boundary condition u(z,0) = eg(z,0) at
the interface between film and substrate, which models the case of a film growing on an infinitely
rigid substrate. This boundary condition forces the film to be strained, thus generating elastic
energy. The positive constant ey measures the mismatch between the lattices of the two materials.
Thus, we define

X = {(h,u) che AP, u: QF 5 RZ st ul-,-) — eol-,0) € LDy (Qp; R),
and u(z,0) = (epx,0) for all z € R} .
The elastic energy density @ : ngxrﬁ — [0, +00) takes the form

Q(A) = %(CA tA

with C a fourth-order tensor. We assume that Q(A) > 0 for all A € M22\ {0}.
Let v : R? — [0,+00) be a positively one-homogeneous function of class C? away from the
origin. Note that, in particular,

calel <€) < eofél  forall € € R?, (2.2)

for some ¢y, cg > 0. We are ready to introduce the energy functional. For all (h,u) € X., we set
€
Fhu) = [ QUE())dz + / (we) + S#2) art, (2.3)
Qp IS 2

where k denotes the curvature of T'y,, v is the outer unit normal to 5, and € is a (small) positive
constant.
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Remark 2.1. Note that if v is any constant speed parametrization of F# as in (2.1), then by

/Fh (w(y) + glﬁ) dH = /W) (1/1(1/) + %/ﬁ) dH

for every interval I C R of length one.

periodicity we have

2.1. The incremental minimum problem. In this subsection we introduce the incremental
minimum problems used to define the discrete time evolutions. As standing assumptions through-
out this paper, we start from an initial configuration (hg,ug) € Xe,, such that

ho € HZ([0,0]), ho >0, (2.4)
and up minimizes the elastic energy in Qp, among all v with (hg,u) € X.,. Here, and in what
follows, we denote by H. ;1(0, l) the space of all functions in Hf _(R) that are [-periodic, endowed
with the norm of H*(0,1). A similar convention will be used also for other functional spaces. Also,
Hq‘?(O7 1) stands for the dual space of Hy(0,1).

Given T'> 0, N € N, we set AT := % Fori=1,..., N we define inductively (h; n,u; n) as
the solution of the minimum problem

min{F(h,u) + ﬁ /Fh“w (/0”” (R(¢) = hi—1,n(Q)) dc)2d7-[1(x,y) : (h,u) € X,

/Ob hdx = /Ob ho dg;,/rhi_l’N /Ogc(h(() —hi—1.n(C)) dCdH (z,y) = 0} 25)

Then for x € R and (i — 1)AT <t <iAT,i=1,...,N, we define
1 .
hn(z,t) == hi—1 n(z) + E(t — (i = 1)AT) (hin (%) — hi—1,n(2)) (2.6)
and we let un(+,t) be the elastic equilibrium corresponding to hy(-,t), i.e., the minimizer of the
elastic energy in Q.4 among all u such that (hn(-,t),u) € X.,. We also denote by v; x and 7o
admissible constant speed parametrizations of F#i , and I‘#O, respectively, as in (2.1) and oriented
in such a way that ¥; ny - €1, Y0 - e1 > 0.

Remark 2.2 (Interpretation of the penalization term). We remark that the penalization term in
(2.5) coincides with the square of the H~!(T';_1,x)-norm of f := hohiin . provided b satisfies the

- )
vV 1+h22—1,N

constraint in (2.5) and h;_1 n is of class C'. Indeed, writing I instead of I';_1,n, the penalization
and the constraints on h in (2.5) reduce to

/F ( /F W dHl(w))2 dH(2) 2.7)

/chml ~0, /r/mzo,z) F(w) dH (w) dH () = 0, (2.8)

where zg = (0,h;—1,n5(0)) and I'(zg, ) is the arc of T connecting zy and z. Note that if f is a
function on I' satisfying the constraints (2.8), then (2.7) reduces to Hf||§1_1(r), once we define

and

lol20 ) = i (z0) 2 + / 2 () dH (2) (2.9)

for every ¢ € H'(T'), where, we recall, (-), stands for the tangential derivative along T'. In fact,
integrating by parts, we obtain

[fllg-1ry = sup /f@dHl: sup {—/F%dHlﬂLw(zo)/del},
T T I

ol g1 ry=1 el g1y =1
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where F(z fF(zo o /( (w) dH! (w). Setting x := ¢, and recalling (2.9), we have
2
I fI3-1r) = sup sup [ /deH1 —i—a/ fd’}-ll}
ose=t ||XHRL2(F) V1—a? r r
r xdH' =0

= ofo]

_ /F(F(z)—][Fchl) M (2 (/de ) . (2.10)

Recalling (2.8), the right-hand side of the last identity reduces to (2.7).
Note that if h is a solution to the limiting evolution (1.7), then

b b
/ h(z,t,) dzx :/ h(z,ty) da / / t)d¢dH' =0
0 0 Thiot)

for ¢, t1, and t2 (see (3.4) for the first identity, the second one is proved similarly). This observation
justifies the choice the constraints imposed in (2.5).
An alternative formulation of the incremental minimum problem would be

. h — hz 1,N .
mln{F(h,u) ZATH Tix HHl(Fil . : (h,u) € Xeo},

where the H ! (I';_1 y)-norm is defined as in (2.10) and .J;_1 x denotes the length factor of I';_1 n.
This should lead to the same limiting evolution equation, although we shall not pursue this ap-
proach here.

The remaining of this subsection is devoted to the proof of the existence of a minimizer for
the minimum incremental problem (2.5). We start with a compactness lemma.

Lemma 2.3. Let {h,} C AP be such that

sup [|vnll m2(0,15m2) < +00, (2.11)
n

where v, s a constant speed parametrization of F#ﬂ as in (2.1). Then, there exists h € AP such
that, up to a subsequence,
(i) hp — h in L*(0,b),
(ii) F#ﬂ — I’# in the Hausdorff metric;
(iii) R2 \Q#ﬂ — R2\ QF in the Hausdorff metric;
(iv) vn — v weakly in H?(0,1;R?), where v is a constant speed parametrization of F# as in
(2.1).

Proof. For simplicity we set T'7 := I‘fn. From (2.11) we have that sup,, Var(h,;0,b) < +4oc.
Hence, by the Helly theorem, and up to a (not relabeled) subsequence, we may conclude that
there exists a b-periodic function h with locally finite pointwise variation such that h, — h in
L},.(R) and pointwise everywhere. Moreover, again by (2.11), we may also assume that v, — v
weakly in H2(0,1;R?). Finally, by the Blaschke Compactness theorem (see [5, Theorem 6.1]),
and using the periodicity of T’

I'# — T'# in the Hausdorff metric. Since 4, — % uniformly and |¥,| = H'(7,([0,1])), we get

we may also assume that there exists a closed set I'# such that

n 9

that 4] = H(v([0,1])). Moreover, since v, — ~ uniformly, using the definition of Hausdorff
convergence, we conclude that v is a parametrization of I'#.
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We now show that T# = I'. Arguing as in the proof of [19, Lemma 2.5], we get that T} C T'#
and the vertical section I'# := {t € R : (z,t) € I'#} is a closed interval for all z € R. Assume
by contradiction that I'# 2 [h™ (), h* ()] and, without loss of generality, that T# = [y, yo], with
y1 < h™(z) and yo > ht(z). Let s € (0,1) such that v(s) = (z,y2). We claim that there exists
§ > 0 such that y(t) € {x} x ['# for all t € (s — 6,5 + §). Indeed, otherwise there would exist
a sequence t,, — s such that v(t,) ¢ {z} x T#. Since y(t,) = (Tn,yn) — (,92) and h is lower

2—ht (x)
2

semicontinuous, we would have z,, # = and y, — h*(z,) > ¥ for n large. This would imply

_pt
that I'# contains infinitely many vertical segments of length greater than %(I) near (z,ys),

which is in contradiction with the fact that I'# has locally finite length. Hence, writing ~(t) =
(x(t),y(t)), we have that in the interval (s —6,s+0), z(t) = x, and y(s) = y2 = max;c(s—s,s+5) Y(t)-
It follows that (s) = 0, which is impossible. This shows that I'# = I‘ﬁ and that ~ is a constant
speed parametrization of If as in (2.1).

To conclude the proof, we recall that under our assumptions there exists (see [10], [21, Theo-
rem 2.2]) a lower semicontinuous b-periodic function iz, with locally finite pointwise variation, such
that, up to a subsequence,

R2 \Q#ﬂ — R \Q?{7E in the Hausdorff metric (2.12)
Moreover (see [19, Proposition 2.2]), for all z € R
h(zx) = inf{liminf ho(xn) @y — x}
and (see [19, Lemma 2.5]) h = h almost everywhere. Define
f?f ={(z,y) ER*: z € R, h(z) <y <h(z) = ht(z)},

which is the union of the extended graph Fﬁ# = I‘# with the vertical segments of the type {x} x

[A(x), h™ (x)].
From (2.12) it follows that Fﬁ# is contained in the Hausdorff limit of F#ﬂ. Hence, by (ii)

fﬁ# C F#. Since the opposite inclusion is obvious, we conclude that the two sets coincide and, in
turn, ; = Q. This concludes the proof of the lemma. O

Using this compactness lemma, we now show that the incremental minimum problem (2.5)
admits a solution.

Theorem 2.4. For everyi =1,..., N, the minimum problem (2.5) admits a solution (h; n,u; n) €
X

Proof. Let (hp,un) € X¢, be a minimizing sequence for (2.5) and let v, be an admissible constant
speed parametrization of Ifn. Then,

supd Pl ) + 557 [ o [ 0@ = hiam@) ) ar e < v a13)

Since by (2.5) and by (2.13) the functions h,, are bounded in BV (0,b), we have

sup || || Lo (0,5) < C'. (2.14)

Moreover, again by (2.13) and by (2.2), we have that

1
sup/ (|f'yn|2 + |'yn|2) dt < +o00.
n Jo
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This, together with (2.14), yields (2.11). Thus we are in a position to apply Lemma 2.3 to conclude
that there exists h € AP such that, for a not relabeled subsequence, (i)—(iv) of that lemma hold.
In particular, using (i) and (iv), we have that

/F (#) + 5K) s’ < limint /F (6) + 512) ar (2.15)

(] @ = sy ac) arer =t [ ([ (ha(©) = ica(0) ) aret

and
/Fh,i
(2.16)

Finally, since sup,, fQ} |Fun|?dz < +o00, reasoning as in [19, Proposition 2.2], from (iii) and

1, 1,

Korn’s inequality we conclude that there exists u € H, lloc(Q#;RQ) such that (h,u) € X,, and, up
to a subsequence, u,, — u weakly in H lloC(Q#; R?). Therefore, we have that
Q(E(u))dz < liminf Q(E(uy,))dz,
Qp, " Qi
which, together with (2.15) and (2.16), allows us to conclude that (h,u) is a minimizer. O

3. EXISTENCE OF THE EVOLUTION

In this section we show that solutions of the discrete time evolution problems defined in the
previous section (see (2.6)) converge to a function h = h(z,t) such that I'y(. ;) is a suitable weak
solution (see Definition 3.1 below) of the following geometric evolution equation,

1
V = ((go0 + 9k + Q(B() = & (ko + 5K)) (3.1)
provided that the initial configuration (hg,ug) € X, satisfies (2.4). Here V denotes the outer
normal velocity of I'y(.¢), k is its curvature, Q(E(u)) is the trace of Q(E(u(-,t))) on I'y(. 4, with
u(-,t) the elastic equilibrium in Q. ). Moreover, g : [0,27] — (0, 4+00) is defined as
9(0) = 1(cos b, sinh) (3.2)
and is evaluated at arg(v(-,t)), where v(-,t) is the outer normal to T'y(. 4.

As in Section 2, fix T, N, and define hy as in (2.6). Throughout this section we will assume
that the initial profile hg belongs to H;(o, b) and is strictly positive. A function f € L?(T,) will
be identified with the functional:

b
pe Hy0.0) ~ (f.0) = [ fods.
0
We now introduce a suitable notion of weak solution of equation (3.1).
Definition 3.1. We say that h € H'(0, T; Hq;l((), b)) N L>(0, To; HZ(0,b)) is a weak solution of
(3.1) in [0, Tp] if:
(i) for almost every t € [0, Tp] the fuilction h(-,t) € AP N H(0,b);
(ii) (900 + 9)k + Q(E(w)) — (koo + §k3) € L*(0, To; H#(O, b)), where Q(E(u)) is the trace of
Q(E(u(-,t))) on Iy 4y, and u(-,t) is the elastic equilibrium in Q. 4);
(iii) for almost every t € [0, Tp]
oh

O = (g0 + 9k + QUEMW) ~ (koo + 3K)) i HZ(0,D).

Note that in context of the Definition 3.1, J = \/1+ h2, (:); = 5(-)z, and the outer normal

. o . 1 Oh
velocity V' coincides with 5 3.



MOTION OF ELASTIC THIN FILMS 9

Remark 3.2. Concerning the definition above we observe that
(i) from Lemmas 6.6 and 6.7 it follows that

2 (Baz,) o+ (al-he),

1 [ -
(999+g)k_5(k00+§k3) :5( )acw J7

J5

), S )]

x

and so

(ii) Another immediate consequence of the above definition is that the evolution is volume pre-
serving, that is, fob (x,t)dx = fo ho(z) dz for all ¢ € [0,Tp]. Indeed, for all ¢1, t3 € [0,Tp] and for
pE Hq}ié(O7 b) we have

b ta
/ [h(z,t2) — h(z,t1)]p(z) do = / (= @) dt
0 t1 at

:/t2<‘]((goe+g)k+@( ) ~ (koo + 55°)) o) di

/t/ (900 + 9)k + Q(E(u ))—e(kw+%k3))a<p’dxdt. (3.4)

Choosing ¢ = 1 we conclude that

b b
/ h(z,ty) dx = / h(z,t1)dx .
0 0

The remaining part of this section is devoted to showing that the functions hy constructed
in Section 2 converge to a weak solution of (3.1). We start by proving that the functions hy are
uniformly bounded in H*((0,T); H;l((), b)). Precisely, we have

Theorem 3.3. For all N,i=1,...,N, and T we have

/ / ahN (€, 1) d() dzdt < 2F (ho, uo) , (3.5)
F(hi,N, uin) < F(ho,uo) , (3.6)

and
sup Vi, N || 2 (0,1;82) < +00. (3.7)

/L’

Moreover, up to a subsequence,
hy — h in C**([0,T); L*(0,b)) for all v € (0,3), hn — h weakly in H' (0, T; H,'(0,b)), (3.8)
for some function h such that h(-,t) € AP for every t € [0,T].

Proof. By the minimality of (h; n,u; n) we have that

F(hi7N,ui7N) + 1 /F (/(i (hl,N(C) — hi—LN(C)) dC)Z dHl S F(hi—l,N; Ui—l,N) (39)

2AT
foralli=1,...,N. Hence,

1 b T 9
AT : — hi < F(h : —F(hy nous ).
2AT /0 (/0 (hl’N(C) hl*llN(C)) dC) dr < F(h’L*lJ\“ ulfl,N) F(hz,Nv Uz,N)
Summing over ¢ = 1,..., N, we obtain

é%‘lT /Ob (/Ox(hi,N(C) — hi—1,5(C)) dC)de < F(ho,uo),
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from which we deduce the estimate (3.5) (see (2.6)).
Moreover, by iterating (3.9) we obtain (3.6) and, in particular, recalling (2.2)

1
H' (T, ) < ;F(ho,uo)~
1

Hence,
sup |Dhn (-, 1)](0,0) < C (3.10)
Nt
for some positive constant C' > 0. By (3.5) we have for to > t;
2 ahN('a t)
linCote) =Gl < [ FERO] ar

MH; dt)% <Oty —t1)7 . (3.11)

1 t2
< — 2
< (a—t) ( /tl ot

Applying Remark 6.5 to the f(z) = [ (hn(¢,t1) — hn (¢ t2)) d¢, which vanishes at 0 and b (see
(2.5)), and recalling (3.10), from (3.11) we get

N[

”hN('vt?) - hN('7t1)||L2 < C(|D(hN(at2) - hN(vtl))|(0ab)> HhN('7t2) - hN(th)”}%-[fl
< Cltz — )7 . (3.12)

By the Ascoli-Arzela theorem (see e.g. [6, Proposition 3.3.1]) we find a subsequence (not relabeled)
and a function h such that

hy — h in C%*(0,T; L*(0,b)) for all « € (0, %)

Finally, observe that from (3.6) we have (3.7). Hence, since for every t € [0,7] we may find a
sequence (i, N,,) such that h;, n, — h(-,t) in L?*(0,b), by Lemma 2.3 we conclude that h(-,t) €
AP. The weak convergence of hy to h in H(0,T; H?,?(O7 b)) follows from (3.5). This concludes
the proof of the theorem. O

In the following, hx and h will denote the subsequence and the function provided by Theo-
rem 3.3, respectively. The next result shows that the convergence of hy to h can be significantly
improved for short time.

Theorem 3.4. There exist Ty € (0,T] and C > 0 depending only (ho,ug) such that:
(i) hny — h in C%P([0,Tp]; C1([0,b])) for every e € (0,1), and B € (0, (1 — 2a)/16);
(ii) sup [[An(t)|Em200) < C;
t€[0,To)
(iii) sup ||Vun(:,1)
t€[0,To)
(iv) E(un(-,hn)) — E(u(-,h)) in C%P([0, Tp); C**([0,8])) for every a € (0,3), and 0 < B <
(1 —2c)/16, where u(-,t) is the elastic equilibrium in Q. 4).
In particular, h(-,t) — hg in C1([0,b]) ast — 07 and hx, h > Cy > 0 for some positive constant
Cy, provided that N is sufficiently large and Ty is small enough.

_ <y
HCO‘%(QhN(.,t)) — C}

Proof. We claim that for every n € (0,1) there exists d, > 0 such that if % < dy, then

Oéifgfgl lvi,n = v0(- + 7))l L2(0,) <, (3.13)

where, we recall, vy, v;, ;v are admissible constant speed parametrization of F#O, Fﬁ v respectively,

such that 7o - e1, J5,5 - e1 > 0. Indeed, if not there exist ny > 0 and i,,, IV,, such that % < % and

OSiITlfSl 1Vin, N, — 70+ 7)llL2(0,1) = M0 (3.14)
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for all n € N. Since h;, n, = hn,(, Z"T) (see (2.6)), by Theorem 3.3 we have that h;
converge in L2(0,b) to hg. Recalling (3.7)7 by Lemma 2.3 we have that, up to a further (not
relabeled) subsequence, v;, N, — 71 weakly in H; (0,1;R?), where v; is an admissible constant

in,N

speed parametrization of Ffo. Hence, v1 = vo(- + 70) for some 0 < 79 < 1. We deduce that

Vi, = Y0(- + T0) || 20,1) = O,
which is in contradiction with (3.14). This proves the claim.
Let 7 n € [0,1] be such that
Ivi.n = 20( + 7822 0,) <7

for % < 4,. We now apply Theorem 6.4 to f :=v; y — Yo(- + 7i,~), to obtain

3 1
93,5 = Yo(- + 7, M) |Lee SCl[FHi,n — Fo (- + 7i,n) | L2 llviw — v0( + 7iow) [l 2
1
+ Cllviy —70( +7,3)l[2 < COnt,
where the last inequality follows from (3.7) and (3.13), provided that & < §,,.
Since 7o(s) = (wo(s),yo(s)) is a constant speed parametrization of a C! graph, we have
that @o(s) > ¢o for some ¢y > 0. Therefore if n is sufficiently small, and writing v; n(s) =

(2 N(8),yi,n(s)), we have that 4; y(s) > €. This fact implies in particular that h; n € C*([0,b])
and

/ /
hi N ho

/ 2 B 2
\/1 +(hin) \/1 + (ho) L°<(0,b)

where w(n) — 0 asn — 0T. Let

<w(n), (3.15)

hy ()
+ (hh(@))?

By taking 7 in (3.15) so small that M + w(n) < 1, we obtain

M := max <1.

z€[0,b]

hi N
—_—_— <M+wn) <1,
14+ (R )2
ix) Lo (0,b)
for &L < 6, =: Ty. Hence, ||h1 N||Lm o) S < C and, in turn, by (3.7) we get that
1Pl 2 0.y < ©

for 2L < Ty and for some C > 0. From this estimate, recalling (2.6), assertion (ii) of the statement
follows.

To prove assertion (i), we start by observing that by Theorem 6.4, the property (ii) just proved,
and (3.12) we have

HahN %LTN("M)H CH i2||hN(-7t2)—hN(~7t1)Hi2

< Clta — t] s (3.16)

0? hN 0?hy
(-t2) — W('»tl)

for all t1, to € [0,T5]. Notice that from property (ii) we have

h (-t : 3.17
N,tsel%(l)),TU] I, )HCL%([O,bD < Foo ( )
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Take a € (0, 3) and observe that,

Ohn Ohn

Ohpn
Ox (ot2) = Ox

< (t2) — W(ﬂﬁ)

(1) ’ahN

2a Ohpn Ohn 12«
1 [[%Sbc( Oz (t2) = Oz (-’tl)ﬂ ’

2

where | - |g denotes the 8-Holder seminorm. From this inequality, (3.16), and (3.17) assertion (i)
follows.

Standard elliptic estimates (see [21, Proprosition 8.9]) ensure that if hy(-,t) € C(]0,b])
for some « € (0,1), then Vuy(-,t) can be estimated in C%*(Q,(.+)) with a constant depending
only on the C1:®mnorm of hy(:,t). Hence, assertion (iii) follows from (3.17). Assertion (iv) is an
immediate consequence of (i) and Lemma 6.10. O

In what follows J; y stands for

Jini=4/1+ (h/i,N)2 .

s

Theorem 3.5. Let Ty and hy be as in Theorem 3.4. Then there exists C > 0 such that
To 47
/ /’a Nxt * dwdt < C (3.18)

for N € N.
Proof. For every N, i=1,..., N, the Euler-Lagrange equation satisfied by h; x is

% 5¢ (h! ’
/ |: Ay c ( 7N) ;N(p ww( Z,N’ 1)(p/i| dx +/ (Qi,N - Hi,N><pd‘r =0 <319)
0

¥
Tyt T2 Uy

for every ¢ € HZ(0,b) such that fob @dx =0 and thFLN Jy ¢ d¢dH =0, where

Hila) = [ ( / " () = b () dr) T (Q)dc,

Qi.n(z) == Q(E(uin(x, hin(x)))) -

(3.20)

We start by showing that h; v € H;;(O, b) and that its fourth derivative, hEWN), is continuous
and thus periodic. To see this, note that (3.19) implies that

b
/ fing" dz =0
0

for all ¢ € C2(0,b) with fob pdr =0 and frhv Jy ¢ d¢dH' =0, where

hi N 5e (Y n)? T
fin(z) ;:gﬁ; +/ 5 J7 Wi+ a(—hi . 1 dr—i—/ / [Qi,n — H; n] dCdr (3.21)
N 0 0o Jo

is an L2-function. Hence, by Lemma 6.8 we get that

x o ]
f,i,N(SC) =a;N / / / Ji—l,N drdxidxs + Ci7N:ZT2 + di,Nx + e N (322)
0 0

for some constants a; n, ¢; N, d; N, and e; . Using (3.21) and (3.22), we may conclude that
hin € WL1(0,b). By a bootstrap argument, using again (3.21), (3.22), standard elliptic estimates,
and the fact ¢ € C?(R?\ {0}), we get that h; v € H*(0,b) and hElVN) is continuous in (0, b).
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It remains to prove periodicity. To this purpose, note that, given any a € R, for every
t=1,...,N, h; ny is also a minimizer of the functional

/a+b/ QE dydx+/aa+b(w(u)+;k2>de

+ %AlT/aer(/Ow(h(O - hz’—l,N(C)) d() v d

among all (h,u) € X, such that h € HZ(0,b), fo hdz = fob hodw, and [p. INCGEE
i—1,N

hi—1,n(¢)) d¢dH' = 0. This is a consequence of the translation invariance of the energy, which in

turn follows from the b-periodicity of h, hi—1 n, and @ — [ (h — h;—1,n) d( (see (2.5)). Writing

the Euler-Lagrange equation satisfied by h; n in the interval (a,a + b), we get

/a+b Eh;/,N " 5‘5 (h )2 / /

5 7 i, N
']i,N 2 ‘]z N

a-+b
(K e dot [ @y - Hiw)pdz =0, (323)
where we have used the fact that

%[ﬁ /a+b (/Oz(hi,N(C) +ne(¢) — hi—1,n(¢)) dC) i1 Ndac}

atb N — Ric1N
:/ /g@d(/ ng Jii,ndx
+b

a a a+b
= tila+y) [ pdc—tinta) [ pdc— [ ey ds
0 0 a

n=0

a b
=(H;n(a+b)— Hin(a))/O pdC —/ wH; ndx

a-+b
= —/ wH; ndx.

Observe that the second equality follows by integrating by parts, while the last two follow from
the fact that f:+b pd¢ = 0 and the periodicity of H; y, respectively.

Now arguing as before in any interval of the form (a, a+b) and using equation (3.23), we deduce
that h; y € H}}

oe(R) and h(N) is continuous. Hence, since h;  is b-periodic, h; v € H4 (O b) and

hil‘;\; is b-periodic too.
Differentiating (3.22), we obtain

szN(f) = ai,N/O JicindC+2¢ N .

By (3.21), the b-periodicity of h; n, its derivatives up to order 4, Q; n, and H; n, we conclude that
fi'n is b-periodic and so a; y = 0.
Differentiating twice (3.21), we obtain

nin )" (5 (E? /
© <JZ5 > * (2 }7 N (=l N, 1)) +Qin — Hin =2¢in. (3.24)
i, N i\ IN
Integrating both sides of the above equality in (0,b) and using periodicity, we deduce

b
QbCin :/ (Qi»N 7H1'7N) dx .
0
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From (3.24), using Theorem 3.4 and Young inequality to estimate hg) N Ji.n, and Q; N, we
have

b b
| niREar <0 [l I P + B do
0

<C/ |hi'N |3d1:+C’/ |h”N\6da:+C/ (1+H?y)dx (3.25)

Using Theorem 6.4 to estimate ||k} y||rs and [|h]"y[[1s, we obtain from (3.25)
IRERNE < CURL N Ea IR + Cll lF AR 2 + € / (1+ HEy)

b
< QIR + C, / (14 H2y) dz,

where in the last inequality we used Theorem 3.4-(ii). Choosing 7 sufficiently small and summing
over all ¢ such that z% < Tp, and recalling (3.5), we finally conclude that

To 4 To
/ /‘atht da:dt<C/ /1+HN)dxdt<C (3.26)

thus proving (3.18). O

Remark 3.6. Denote by hy the piecewise interpolation function

N
=Y Xisir, oy (Ohin ().
=1

The argument used in the proof of Theorem 3.5 allows us to write in place of (3.26) the following

inequality
To / a4hN
/ ‘ (z, t dwdt <(C.

Note also that property (i) in Theorem 3.4 implies that hy — h in L>(0,Tp; C1([0,b])) for all
a € (0,3).

As a consequence of estimate (3.18) we get that the discrete time evolutions hy converge to
h in a much stronger sense.

Corollary 3.7. Let Ty > 0 be as in Theorem 3.4. Then
hy hy = b in L5 (0,To; C3(10,5))) 0 LS (0, To; €3 ([0, b])).

Proof. Fix N > M. By applying Theorem 6.4, we get that

Hath B 83hM( t)H
Ox3 X 0x3 7 L= (0,h)
Ohi O has 2 O (p_ Ohar P i
o [0 gy~ Dt ) 19y = Do )
(/ 3334 Ozt (@ > (/ Oz (z,8)] da
Raising both sides to the power 12, integrating with respect to time, and recalling (3.18) we have
that
T010%hy ha ¥ o1 0hy Oh
1) — ot dt < C t) — . dt .
/0 Ox3 (+?) Ox3 (+2) L(0b) /0 Oz 2z ) Ox ¢, L>°(0,b)
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The conclusion then follows from property (i) in Theorem 3.4. This proves the convergence of hy
to h in L%(O,TO;C’il([O,bD). The convergence of hy to h in L5 (0, Tp; C’;gl([(),b])) is obtained
similarly by observing that from Theorem 6.4

Hazh]v 82]7,]\/[ HaShN 63hM

1
2
Ox2 (s Ox2 (1 HLoc(oz;) Ox3 (1 Ox3

()= 22 (1)

5 H@hN
Lo0(0,b)

("t)

L5°(0,b)

for almost every t. Finally, the corresponding convergence for hy are proved analogously in view
of Remark 3.6. O

The next theorem establishes the existence of a weak solution to (3.1) for all kg € Hi (0,b)
strictly positive.

Theorem 3.8. Let Ty be as in Theorem 3.4. Then equation (3.1) admits a weak solution in
[0, To] in the sense of Definition 3.1 with initial datum hg. Moreover, if v € C3(R?\ {0}) then
h(-,t) € H%(0,b) for almost every t € [0, T)].

Proof. Define
- ~ . T T
Hy(z,t) = Hin(z), Qn(2,t):=Qin(z), Jy(z,t):=Jin(x) if(i— DN St<iw,
where H; n and @); v have been introduced in (3.20). Fix ¢t € (0,T) and a sequence (ji, N,,) such
that {=T" — t. Fix also x € C2°(0,b) and ¢; v, = (Ji_’inn )/. Define also ¢, (z,t) := @i N, (2) if
(i— 1) <t< zN Inserting ¢; n, in (3.19) and summing up the resulting equations from ¢ =1
to ¢ = jn, we get

Crr (e b ()2 = o - ) ]
/0 /0 [8%(@71)%30 - gﬁ(hNn)r(Q@n)r — d’gc(*(hNn)r, 1)(@7},)%] dxdr

t b
+/ / (QNn—gNn)@ndxdTZO.
0 JO

Integrating by parts the first term in the integral, we obtain

/ot /ob{ 5¢ (hy, )2

Waer) (o), - % 52 (e )2 (P)a = o=, ) 1)(P)s] ddr

t b
+/ / (QangNn)gandl’dT:O.
0 0

To pass to the limit in this equation we recall the following facts:

(i) by Corollary 3.7 we have that (M) — (h”)x in L5 (0, Tp; L>=(0,b));
N

T Js
ii) by (3. ~ converges weakly in , o , to the unique function such that
by (3.8) H kl L20THj#Ob h i f ion H h th
H(0,t) = H(b,t) =0 and
H oh
(79”)36 S i HZ'(0,0) (3.27)

for almost every ¢. Indeed, from (3.20) we have that

and (3.27) easily follows by (3.8) and property (i) in Theorem 3.4.

(iii) by property (iv) of Theorem 3.4 we have that Qn — Q(E(u(,h(,T)))) =: Q(-,7) in
L°(0,Ty; CH([0,0])) for all a € (0, )

(iv) by Corollary 3.7 (#n)s — o in L5 (0, Ty; L°(0,b)), where ¢(z,t) := (

-1
for t € [ T, T)

Ji—1,n N N
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Therefore, passing to the limit in n, we get

/ / has _525(h§‘;)2hz_qu(—hml)}(pmdxdT—&-/ot/Ob(Q—H)gpdgch:0. (3.28)

From (3.28) it follows that for every ¢ € (0,7p) \ Ny, with £1(N,) =0,

/Ob [—5(65) _ % (hﬁ)zhm — Yu(—ha 1) | do + /Ob(Q — H)pde =0. (3.29)

Letting x vary in a countable dense subset of C°(0,b) we conclude that for almost every ¢ € [0, Tp]
equation (3.29) holds for all x € C$°(0,b) and thus

/Ob {—&t(}f;;)m _ 5?5 (h;i)th — (g, 1)}77’ dz + /Ob(Q — H)ndz =0 (3.30)

for all n € C2([0,b]) such that fobnd:c =0and [ [y nd¢dH' = 0.
We claim that from (3.30) it follows that h(-,t) € C([0,b]) and

(), 5 ), b+ om0 e

for suitable time-dependent functions a = a(t) and 8 = f(t). Here, o(z,t) := [ J(z,7)dr. To
prove the claim note that since by Theorem 3.5 h € L?(0, Tp; H;; (0,0)), (3. 30) can be written as

b
/ fndr =0 for all n as above,
0

where

f@y=e(fn) 2 (M) b (), + Q- 1.

By Lemma 6.8, (3.31) follows. Note that from (3.31), recalling that ¢ € C?(R?\ {0}), we obtain

that h(-,t) € C*(0,b). Now using equation (3.23) in any interval of the form (a,a +b) and arguing

as before, we deduce that h(-,t) € C*(R). In particular, h(-,t) € C%([0,b]). In turn, the left-hand

side of (3.31) is b-periodic, and since H is also b-periodic we conclude that o must be zero. Note

that since h(-,t) € C’:&([O, b)), by elliptic regularity we have that u(-,t) € C*(Qy(. +; R?). Therefore,

since H(-,t) € Hj(0,b), from equation (3.31) we deduce that h(-,t) € H(0,b) if v € C*(R*\{0}).
Integrating (3.31) with respect to x and recalling that o = 0, we get that

b
5= 5 | (@Gt) - Hew0) ds.
0
Therefore, since H € L*(0, To; Hy(0,0)) we deduce that
h(l?flj
( J5 >m
thus proving condition (ii) in Definition 3.1, thanks to part (i) of Remark 3.2.

Finally, in view of part (i) of Remark 3.2, condition (iii) in Definition 3.1 follows by combining
(3.27) with (3.31), recalling that o = 0.

2
(hffh ) + (Yo(—he, 1)), + Q € L?(0, To; Hy(0,b))

O
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4. REGULARITY

In this section we show that if 1 is of class C* away from the origin and hg € H;;(O, b), ho > 0,
then the solution constructed in the previous section satisfies (3.1) in a stronger sense, precisley,
h € L?(0,Tp; H%(O,b)) N HY(0,To; L*(0,b)).

Next we need a delicate and crucial elliptic estimate on the the trace of the E(u) on I'y, where
u is the elastic equilibrium in €.

Theorem 4.1. Let (h,u) € X, be such that h € H3(0,b), h > co > 0, and u is the correspond-
ing elastic equilibrium. Then, there exists a constant C depending only on ||h||g2(0.), co, and
| E(w)| o= (q,) such that the following estimates hold:

b
/ \DE(u)2 dH! < C/ (1+ 6V da (4.1)
Ty 0
and ,
/ |D?E(u)|? dH! +/ | Do (E(u))|* dH* < 0/ (1+ |hY)?) dx, (4.2)
IS Tn 0
where D, denotes the tangential derivative along T'y,.

Proof. We split the proof into several steps.
Step 1. (Airy Functions) Since h € HJ,(0,b), by elliptic regularity we have that u € 047%(§§).
We now introduce the Airy function w associated to u, which satisfies

( Wyp Wy ) _ ( ((CE(u))22 —(CE(u))12 >
*(CE(“))H (CE(U))H '

It is well known that w is biharmonic (see for instance [20, Ch. 12]). Note that we can choose w
to satisfy the additional conditions

(4.3)

Wry  Wyy

w=0 and Vw=0  onT¥. (4.4)

Indeed, since CE(u)[v] = 0 on I‘f, it follows from (4.3) that D,(Vw) = 0. Hence, by a subtracting

a suitable affine function, if necessary, we may impose that (4.4) holds. Moreover, from the
1

regularity of u we have that w € O3 (Q#)
Step 2. (Straightening the boundary) We denote by Qf the image of Qﬁ under the diffeomorphism
@y (z,y) := (z,y — h(x)). Note that CIDh(Fﬁ) = {y = 0}. Set v(z,y) = w(x,y + h(z)) for all
(z,y) € Qf Note that, since
vy = Wy + Wwy, vy =w,,

and

Vg = Wag + 20 Way + WP Wy + h'wy ,  Vpy = Way + DWWy, vy = wyy, (4.5)
from the assumptions on h and v we conclude that

|[Dv| < C  and |D*v| < C(1+ |n")) (4.6)

for some constant C' > 0 depending only on ||h||ze and | E(u)||ge. Since w(z,y) = v(z,y — h(z))
and A%w = 0, a lengthy but straightforward calculation shows that v satisfies the 4-th order elliptic
equation L(v) = f in Qﬁ where

[ = 60 vgy — 1200 gy + (24 6R2) R vyyy + AR vy — (3R + 4B R vy + B0, (4.7)
and

L(0) = Vpare — 4 Vspmy + (24 60 vnayy — (40 + 40 ) vgyyy + (1412 vyyy - (4.8)



18 I. FONSECA, N. FUSCO, G. LEONI, M. MORINI

Moreover, v satisfies the boundary conditions (see (4.4))

v=0 and Vv=0  on{y=0}

Set S := [0,b] x {0}, fix two bounded open sets U’ and V' such that S C U’ CcC V', with
V'n Dy, ({y = O}) =, and denote U := U’ N Q# and V :=V'nN Q#. From well-known elliptic
estimates (see [2]) we have that

/ |D4v\2dz§0/ (1o + 1) dz. (4.9)
U 1%

Step 3. (Estimate of D*v) From (4.8) and (4.9), recalling (4.6) and using Young’s inequality, we
get

/U DYl ds < C/v[l T R RIDof? + (B + K7) | D2f? + 12| D30[?] d
<C, /Ob(l + RS+ B4 B2 4 RO dr 4 n/v |D3v|3 dz
<G, /Ob(l + RS+ B3 4 RV ?) do + n/v |D3v|3 dz. (4.10)
We now use Theorem 6.4 to estimate
/Ob(h"6 +1") dx < C(Ilh(”)llmHh”Hiz + IIh(iV)Hézllh"lli) < C/Ob(l +[p)2) de (4.11)

for a suitable constant C' > 0 depending only on ||h”||r2. Using Theorem 6.4 and (4.6), we have

/ |D3v|® dz < C/ |D4v|2dz(/ |D2v|2d,z)§ + </ |D2U|2dz)§
14 \%4 \% \%4
b % b %
go/ |D4v\2dz(/ (1+h") da) +O(/ (1+ 1) da) gc/(1+|D4v|2) dz
14 0 0 14

for some constant C' > 0 depending only || E(u)| L~ and ||| 2. Inserting this estimate in (4.10),
recalling (4.11), and taking n sufficiently small, we conclude that

b
/ |D*|? dz < C/ (1+ V)2 d:z:+C/ |DY|? dz . (4.12)
U 0 V\U

Step 4.(Estimate of D%v) Differentiating equation (4.7) with respect to x, since v, = 0 and
Vv, =0 on {y = 0}, as before from elliptic regularity we have

/ Do, 2 dz < c/ (14 [0l + £ + H72| D) de. (4.13)
U v
From (4.7), recalling (4.6) and using Young’s inequality, we get
/ (‘fr|2 + h"2|D4U|2) dz < C'/ [|h(v)|2|Dv|2 + (h//2h1u2 + ‘h(iv)|2)|Dzv|2} dz
v 1%
—I—C/ {(1+h//4 +h///2)|D3,U|2 +h//2|D4,U|2:| dz
v

b
Sn/ (|D3vl4+ID4v|%)dz+cn/ (141" 4+ 1" 4 [R5 4 [pY)}2) da. (4.14)
14 0
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Using repeatedly Theorem 6.4, we get
b . 5 z i7 z
J 0 e 1R do < (WO I E I + A7)
0

b
< C/ (1+[p™M?) da (4.15)
0
for some constant C' depending only on ||h||g2. Similarly, using Theorem 6.4 and again (4.6),
/ (|Do|* + |D4v|§) dz
v
- 5 2 8
< C(ID%0 32 ID* 32 + 1D%0llEay + D032 D0 32y + D201y )
< 0(1 + HD%H%Q(V)) .
Inserting the last estimate and (4.15) in (4.14), and recalling (4.13), we have
b
/ |D*v, |2 dz < cn/ |D5v|2dz+C’n/ (1+[pM?) dx. (4.16)
U v 0
Differentiating (4.7) with respect to y, we easily get
Hvyyyyy||2L2(U) < C/ |D4v$|2 dz+/ [h”2|D4’U|2—|— (h//4+h///2)|D3,U|2 + |h(iv)|2|D2’U‘2 dz .
U U

Estimating the second integral in the previous formula as we did for the right-hand side of (4.14)
and recalling (4.16), we have

b
/ |D5v|? dz < Cn/ |Dv|? dz + Cn/ (1+ |h(")|2) dx .
U v 0
Choosing 1 small enough, we conclude that

b
0

/ |DPv|?dz < c/ (1+ M%) d:c+0/ |D%v|?dz. (4.17)
U V\U

Step 5. (Proof of (4.1)) Let W' be an open set such that ®, *(V\U) cC W' and set W := W’ﬂQ#.
We first observe that since u € eg(+,0) + LD4(Qp;R?) solves the linear system

/ CE(u) : E(p) =0 for all ¢ € LDy(Qp;R?) s.t. (x,0) =0,
Qp

u(z,0) = eg(x,0),

then standard elliptic regularity implies that for all n € N
/ |D™u|? dz < C/ (14 uf?*)dz<C
@, (V\U) w

for some positive constant C' depending only on n and ey. Therefore, if n > 2 from (4.3) it follows
that

/ |D"w|* dz < C/ |D"tul?dz < C (4.18)
O H(V\D) N (V\U)
for some constant depending only on n and e¢g. Observe that similarly to (4.5) we have

I /2 " /
Wag = Ugz — 2W gy + R vy — B0y, Wey = Ugy — vy,  and  wyy = vy, . (4.19)
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Differentiating these inequalities with respect to z and y and using (4.3) and (4.6), we get

/ |DE(’LL)|2dH1 S C/ ‘D3w|2dH1 S C/(|D3’U|2+|D2U|2h//2+ |Dv‘2h///2) d.’L‘
Ty Ty s

b
S O/ (ll)31)|2 + |D4U|2) dz + C (1 +h//4 + h///Q) da
v 0

b
S 0/ (|D2’U|2+ |D4'U|2) dZ+C/ (1+h//4+h///2) dr
v 0

b
SC/ ‘D41}|2d2’—|—0/ (1+h//4+h,,,2) e
v 0

where we have used the trace theorem to control ||D3vl|p2(g) with [[D*v| g1 (). Estimating the
last integral as we did in Step 3 and recalling (4.12), we obtain

b
/ |DE(u)|* dH* < c/ (1+|h<iv)\2)d:c+c/ |DY|? dz. (4.20)
T 0 V\U
Concerning the last integral, we have arguing as in (4.10)

/ |D*[*dz < C/ [1+ R P|Dwl® + (K™ 4 h"?)|D*w|? + 1"?| D*w|?] dz
V\U @, N (V\U)

b
< Cn/ (1 +h//6 +h///3 + |h(iv)|2) d:v+17/ \D3w|3 dx
0 2,1 (V\D)

b
SCn/ (L+ A6+ 0"+ hV2) da + C,
0

where we used (4.18). Controlling the last integral by fob(l + |h(¥)|2) dz as we did in Step 3 (see
(4.11)), and inserting the resulting estimate in (4.20), we conclude the proof of (4.1).
Step 6. (Proof of (4.2)) Differentiating (4.19) twice and using (4.3) and (4.6), we have

/ |D*E(u)*dH* < c/ |D*w|? dH?
Ty Tn
< C/ {|D4U|2—|—h”2‘D3’U|2+ (h"4—|—h///2)|D21}|2+ ‘h(iv)|2|D1}|2} dr
S
b
SC/(|D3’U|% +‘D41}|2) d:v—i—C/ (1+h//8+h///4+|h(iv)|2) dx
S 0

b
< C/ (|D3v|% + \D4v|2) dx + C/ (1+ |h(v)|2) dx , (4.21)
s 0
where the last inequality follows from (4.15). We now estimate, using Theorem 6.9 and Theorem 6.4

8
/(\D%ﬁ +1D4?) dr < oI,
S

8
g T ID 3¢ ) + 1D ey + D7)

1 w)
5 3 5 10 5 L 5 L
< C(”D UHEZ(U)”D UHLQZ(U) + D U||L92(U)||D UHng(U)
8
+ 1Dy + ID* 0320y + 1D 201
< c/ (1+ [D*[? + |D%v[?) dz < c/ (1+|D5v|2) dz.
U U

From this inequality, (4.17), and (4.21), we have

b
/ |D?E(u)|* dH* < C/ (1+ M%) dx—l—C/ |D5v|? dz . (4.22)
'y 0 VAU
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To estimate the tangential derivative of E(u), we observe that by Theorem 6.4

1 1 1
|De B a0,y < CID20 E@I sy |EW) 1 Ear,) < CIDZ, B Eer, -

Hence, differentiating twice the identities in (4.19), recalling (4.6)2, and using Young’s inequality,
we have after some straightforward calculations,

‘DUE(U)|4 dHl < C(/ |:|D4’U|4—|—h//4|D3’U|4—|— (h/IS +h///4)|D2,U|4+ |h(iv)|4|D’U|4] dl‘)
Fh, S

gc(/ (|D3v|% +|D4v|4) d:c) +c(/ (1+h“24+|h’“|* + RG] )dx) o (4.23)
S

Using Theorem 6.4, we have
[ (e o ) do < o (IONEIRIE + NI + 150120022
0

11 b 2
< c(1+ ||h<V>||§2) < C(/ (1+ M%) dm) .
0

(4.24)
On the other hand, using Theorem 6.9 and (4.6), we can estimate
3,2 4,14 3,15 4 )
< 5
/S(\D of¥ 4 D4l ) do < O(ID% T, g+ 1Dl
4 24
< 4,05 300175 5,14 4,114 )
C(ID ol By o, + 1D % | + 105+ IDYI s
24 24
< oDl % U+wﬂu5t,ﬂw%m(w+u2n;w)

<c(1+D%) %+ D%y Y.
L29 (U) L5 (U)

Combining this estimate with (4.23) and (4.24), using Theorem 6.4, and recalling (4.6), we have

12 b
4ant < 4, 15 5,112 )2
/Fh DB dH* < C(|[D*] %y oy D2 5 (U)+c/0 (14 [1V)2) da

b
< O(ID%ul I D™l ) + 1D oy + D015, )+OA<LHMW%M
< C|ID%|%s + c/ (14 [hY?) do
0
The last estimate combined with (4.17) yields

b
/ |Dy E(u)|* dH* < 0/ (1+ \h<V>\2)d;z:+c/ |D5v|? dz . (4.25)
IVS 0

V\U
Concerning the last integral, arguing as in (4.14) and (4.15), and using (4.18), we have

/ |DPv|* dz < C/ \h(v)|2\Dw\2 + (W2h"? + |h(i")|2)\D2w|2} dz
V\U V\U)

Jrc/ [(1+h”4+h”’2)\D3w|2+h”2\D4w|2} dZJrC/ |DSwl|? dz
@, H(V\U) @, (V\U)

b
< c/ (1D%w|* + |D'w|f) dz + c/ (14 1 4 W7 4 WO 4 |RO)2) da
@, (V\U) 0

b
<c [+ Py
0
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Hence, (4.2) follows by inserting the last estimate in (4.22) and (4.25). This concludes the proof
of the theorem. 0

We now state a regularity result which applies to any weak solution to (3.1).

Theorem 4.2 (Properties of weak solutions). Let h be a weak solution of (3.1) in [0,Tp] in the
sense of Definition 3.1. Then, the following properties hold:
(i) h e CYA([0,Ty); C1([0,b])) for all o € (0, 3) and B € (0,152%);
(ii)) h € LQ(O,TO;H;;(O,Z)));
(ili) i ¢ € C3(R*\ {0}) then h € L*(0,To; H(0,0)).

Proof. Property (i) is a consequence of the fact that H'(0,T}; H_1(0 b)) N L°°(O T; HZ(0,0)) is
continuously embedded in C%#([0, T]; C1*([0,b])) for all a € (0, 3) and S € (0,
the proof of property (i) of Theorem 3.4.

Property (ii) can be proved arguing exactly as in the proof of Theorem 3.5, replacing (3.24)
by (3.31), with a = 0.

Finally, we establish (iii). To this aim, we note that if ¢» € C*(R*\ {0}) then h(-,t) € H%(0,b)
for almost every . Indeed, this can be proved as in the final part of the proof of Theorem 3.8.

To simplify the notation we use (-)’ to denote differentiation with respect to z. Differentiating
equation (3.31) with respect to x, estimating Q. by (4.1), one gets that for almost every ¢ € (0,Tp)

22 as shown in

b b
/ |h(v)|2 dr < C/ (1 + h/lS + h//4h///2 _|_h/l/4 +h/l2|h(iv)|2 + |h(iv)|2 —|—H/2)d$
0 0

b
< C/ (1 +h/l8 +hl//4 + |h(1v)|% —|—H/2)d$
0
Estimating
b
/ (h//8+h///4+ |h(iv)|§)daj
0

as in (4.15), and using Young’s inequality to estimate the products of the L?-norms of h” and ),
we arrive at

b b b
/ W) da < 77/ |h(V)|2d:r+Cn/ (1+H"?)dz.
0 0 0
By this inequality, taking 7 sufficiently small and integrating in time, property (iii) follows. O
We now come to main result of the section.

Theorem 4.3. Let hg € H3(0,b), ho > 0, let ¢ € C*(R?\ {0}), and let Ty be as in Theo-
rem 3.4. Then the solution to (3.1) constructed in Theorem 3.8 belongs to H'(0,Ty; L?(0,b)) N
L2(0,Ty: H(0.5)).

Proof. We start by observing that (3.24) gives

hN R NRENRE R 35 hERY B n
5 7 7 9 + Yo (— zN71)
‘]i,N JiN 2Jz',N 2 Jz,N
1
+ Hz N + - gQi,N
2 1
- i, N + Hz N + - gQi,N; (426)
where we set
h; hz h;” 5 h//3 35 hz h;/?) h;/
My o= 102N LNTEN — N (kL 1) 2 (4.27)

JZN QJZN 2 JBN
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1 d

Differentianting (4.26) with respect to z, recalling (3.20), and setting ﬁ = g e Ve get
(‘lzv\; ' Jicin [Thin—hioin Ji,n
EN) = M+ P INZ LN e — N CB (s ) —— B ) -
(J;’jN) oV /0 AT 4T g CElu) g Eun)

Dividing both sides of the last identity by J;_1 y and differentiating again with respect to x, we
get

(1) \ 7147 / / /
1 h; N M; N 1hyn —hi—1N Ji.n d
9 — 9 _ 9 ) _ 9 CE i E 1/ .
[Ji—l,N <‘]15,N) } (Ji—l,N> Tz AT <5Ji—1,N (i) doi, N (1)

Expanding both sides of the above equation, we obtain

N (L Ly T S A T L S A Lo LT LS

Jondican  Jindioan Jindian Jiydicin TN Tic1N
R wh N <h§7}v - 5h;,Nh;:Nh§fx)) _ ( M ) by —hisiy
J;"LLN JE:N JZN € AT
L[ hinhin Ry Nhiq i N] ( d >
- = & & - "L : . CFE (7 :—F U
€ |:Jz‘,NJi—1,N Jf_LN (uin) do; N (uin)
Ji.N 2

2
5Ji—1,N dULN

Ji—1,n

E('LLLN) + Ji,N(C E(ui,N) :

d

s

Let us now set

N N LY R T YN XNt T . 5Ty Y M Y

i,N ‘=

J%NJi—l,N Ji7NJ¢ 1,N JZ-NJZ 1,N JZ,NJz 1,N
Wy (PR BhL R v heY
L 1,;)\/ i—1,N 15,1\/ N 7N N (4.29)
SN I N Jin

Multiplying both sides of (4.28) by hgvj\;, integrating with respect to z, and recalling that all the
Ji,n are equibounded in L*°, after three integration by parts in the second integral, we have

b h/»//Q _ h/// h/»” b . M’ /
h v1) i, N i—1,N'"%,N dr < / h(‘v1) ) i,N d
CO/ | / AT T > C ‘ i, IN |R ,N| + Ji—l,N €

+c/ (1B ] + R 1N|)|h“>|\DM<E<u,N»\dxw/ DDy (Bt )2 d

+C [ IEUIDE, (Bl

C’0 (vi) |2 /
<20
<9 / WD dz+C [ ||+ Jz X

4O [ (1D (B A 102, (Bl D)

}daz—&—C’/ W § |+ Ry |*) dae
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Observing that h} — i, yhiy > 5 (R — b} y), recalling (4.2), and using Theorem 6.4, we

get
Co (v1 1 /b (W% —hi™ N) /b My \'1?
hy'y 2 dx + — ————dr < C R; —_— d
5 / | T + 2 J, AT T < ; |Ri~N| + Trin T

b
+c/0 (U (B2 + A, ) de

b
<n / (RSN + b [P dz + Oy, / (1 + [hX [P + (A, [?) de
0

where in the last inequality we used Lemma 4.4 below. Summing up over i, we have

T 6
o/ ‘8 hN‘ dﬂjdt—i—? /(h///Q hng)da?

<3n/TO/ ‘86hN’ dedt + C, /TO/

Choosing 1 small enough and recalling (3.18), we conclude that

To b 0Chy 2
< 4.
/0 /O‘C%G’dxdt_c (4.30)

with C' > 0 independent of N. This shows that hy is bounded in L2(0,T0;Hf‘¢(0,b))7 therefore
h € L%(0,Ty; H%(O, b)).
To conclude the proof, observe that from (4.28), and arguing as above, we have

b b M/ 12
/ M‘ dx<C’/ [ da:+c/ |Ri n|? + Ui dx
o A 0 ’ Ji—1,n

b
e / (B w2 4 1By I2)| Do (Bui )| d + C / Dy, o (B(usx))| da

)

+C |DO'1 NOi, N(E(U7,7N))|2 da:
0

Using (4.30), the right-hand side of this inequality and thus we conclude that

/TO/ lahN‘ dedt < C
0

with C' > 0 independent of N. Hence, h € H'(0,Ty; L*(0,b)). O

Lemma 4.4. Let M; n and R; n be defined as in (4.27) and (4.29). Then for any n > 0

b M! /
[ e | (522)
0 Ji—1,n

Proof. Recalling Theorem 3.4-(i), we have

2 b
}dw<77/ (BSNE + 1Y) v [?) da + Cy
0

‘Ri,N|2 < C[\hif (h//Q + h;/21 N) |h(1v ( B4 4+ h;/41 N+ h///z)} . (4.31)

Moreover, a lengthy but straightforward calculation together with property (i) of Theorem 3.4
leads to the estimate

M.y Y
'(Jil,N)

< C{lhl N| h//z + |h(1V (h//%\f + h//41 N + h///2)

4 h///4 (hllav 4 h;/21 N) 4 h///2 (h//(JSv 4 h;/G1 N) (h// 4 h;/l({ N)}
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Using (4.31) and the above estimate, we get by Young’s inequality

b M /
[ lmae (722
0 Ji—1,n

By repeatedly using Theorem 6.4 and recalling property (ii) of Theorem 3.4, we get

)

2 b
}dxg/ RS E + B+ B+ R+ B | d. (4.32)
0

b
/0 (IS 1E + QU + R [P+ B + S | do < [IRSRUEIAL IS + IACR S IR e
S L o T T PR e Y e [
Sn/o (SRR + 1) ) i+ Gy

Combining the last estimate with (4.32) we obtain the thesis. O

5. UNIQUENESS

In this section we show that if 1 is of class C® away from the origin, then local weak solutions
are unique. As before, hg satisfies (2.4).

Theorem 5.1 (Uniqueness). Let ¢ € C3(R?\ {0}), and let hy, ha be two weak solutions of (3.1)
in [0,To] with initial datum ho. Then hy = hs.

Proof. To simplify the notation, throughout the proof we use (-)’ to denote differentiation with
respect to x. First we observe that by Theorem 4.2 and an approximation argument, it follows
that if h is a weak solution of (3.1), then the function ¢ — fob h'2 dz has a weak derivative, which

coincides for almost every ¢ with —2 fo %’Z,h” ) dz. Therefore, multiplying equations (3.3) for h;
and hg by hY — b and integrating by parts, we get for almost every ¢

by — by 2 d
2 ot / | " dz
AR Y A A (A YOV
= —_— T h 3 1 - d
/0 |:E<J§)) + ( J7 ) (w ( 2 )) + Q2 JQ ng T

b " 1”2 (iv) (iv) 1" HINT 17
hy " hy ' / / hy ™ —h (hy" — hY")hihy
/ [E(Jf) 3 (Gr) + (atonin) +Q1H 7 7 e

where the subscripts 4 refer to the functions h;, i = 1,2. After repeated use of Young’s inequality,
using the fact that k] is bounded, and that the function ¢ — (1 + t2)=%, m > 0, is Lipschitz
continuous, we get

b . . a b
/O|hgv)fh(1‘v)\2dz+&/o Wy — 1% da

b . .
< c/ (1RSI 4 (1512 + 2R + Rg2Ry™ 4 Y+ g® 41 |B — B2 de
0

b b
! C/o [+ B2 b B g — P de C/O (12 + 2|0y — B2 do

b
+C/ Q2 — Q1P de =L+ L+ Is+ 1y (5.1)
0
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Setting B(t) == {12 + |8 |12, using Theorem 6.4 to estimate [|h”|lso; |1} |loos 2" ]l0 with
HhEV) |2, and recalling that ||h!]|2 is bounded, we have

b
nL<ca+ B(t))/ Il — B2 da. (5.2)
0
Estimating ||hY || oo, [|2}]| 0o, With \|h§v) |l2 and using Theorem 6.4 again, we get by Young’s inequality

b _ b
Bl < [0S0 =W P de s O+ B [ g bifdo. (5.3)
0 0

By Lemma 6.10 we get

b b ) b
I < 1o = ha[Bre oy < / 0~ WP < / WY — WP dr 1, / 1y — B2 d.

From this inequality, (5.1), (5.2), and (5.3), and choosing 7 sufficiently small, we have
9 b b
a/0 |hfy — By |2 dx < C(1 + B(t))/0 |hY — | da .

Since B € LY(0,T) by Theorem 4.2-(iii), using Gronwall’s lemma we conclude that fob|h'2 -
Ry |? dz = 0 for every t. Hence, the conclusion follows. O

Remark 5.2. From Theorem 5.1 we deduce that if ¢ € C3(R? \ {0}), then the solutions of the
discrete time evolution problem constructed in Section 2 converge to the unique solution of (3.1).
If, in addition, v is of class C* away from the origin, then, in view of Theorem 4.3 we conclude
that the unique weak solution of (3.1) belongs to H'(0,T; L*(0,b)) N L*(0,T; HY(0,b)).

Remark 5.3. Combining Corollary 3.7 and Theorem 4.3, by interpolation we conclude that whole
sequence hy constructed in (2.6) satisfies

hy —h  in L*(0,T; H5(0,b)).

6. APPENDIX

Here we collect some interpolation inequalities and other auxiliary results that are used
throughout the paper.

The next two theorems are particular cases of more general statements proved in [1]. Precisely,
from [1, Theorem 5.2] we have

Theorem 6.1. Let 2 C R™ be a bounded open set satisfying the cone condition. Let 1 < p < oo
and j, m be two integers such that 0 < j < m and m > 1. Then there exists C > 0 such that

m—j

ID? fllzeiy < CUD™ fll Zooy 1 iy + 1F o) (6.1)

for all f € W™P(Q). Moreover, if n =1, Q is an interval, and f € W, (Q), then (6.1) holds in
the stronger form

, i m—j
1D f o0y < CID™ 71 o 11y - (62)

Proof. Inequality (6.1) follows by combining inequalities (3) and (1) in [1, Theorem 5.2].
If f is periodic in the interval €, the proof of (6.2) is contained in [28]. O

Remark 6.2. If p = 1 the conclusion of the above theorem holds also for f € W™~%1(Q) such
that D™~'f € BV(Q), provided that in (6.1) we replace ||[D™f|L1(q) by the total variation
|D(D™~L£)](£2). This can be easily seen by a standard approximation argument.

The next interpolation result is essentially contained in [1, Theorem 5.8].
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Theorem 6.3. Let 2 C R™ be a bounded open set satisfying the cone condition. Let 1 < p < g < o0
ifmp>n, andlet 1 <p<qg<ooif mp>n. Then there exists C > 0 such that

1£llza() < CUD™ FIZo @ 1F Iza gy + 1 1 Lr ) (6.3)

for all f € W™P(Q), where 0 := 5~ ma- Moreover, if n =1, Q is an interval, f € W P(Q),
and either f vanishes at the boundary or fQ fdx =0, (6.3) holds in the stronger form

1£lza@) < CID™ Fll @I F 0 (e - (6.4)

Proof. Inequality (6.3) follows by combining inequality (10) in [1, Theorem 5.8] with (1) in [1,
Theorem 5.2].
If f is periodic in the interval Q and either f vanishes at the boundary or [, fdz =0, (6.4)
follows from inequality (10) [1, Theorem 5.8], observing that
Ilfllwmr ) < CID™ fll Lo »

as a straightforward application of the Poincaré inequality. O
Combining Theorems 6.1 and 6.3 we have the following theorem.

Theorem 6.4. Let Q C R™ be a bounded open set satisfying the cone condition. Let s, j, and m
be integers such that 0 < s <j<m. Let 1 <p<g<ooif(m—7p>n, andlet 1 <p<qg<oo
if (m—j)p>n . Then, there exists C > 0 such that

159 Fllagey < CUID™ FliayllD* Pty + 1D ll o) (6.5)
for all f € W™P(Q), where
1 (n no. )
0:= ———+j—s]).
m—s\p ¢

Moreover, if n = 1, Q is an interval, f € Wz’p(Q), and either f wvanishes at the boundary or
Jo fdx =0, (6.5) holds in the stronger form

1D? fllzagay < CID™ 2o 1D Fll ooy - (6.6)
Proof. Since (m — j)p > n, we may apply Theorem 6.3 to D7 f to obtain
1D fllLaga) < C(lleflle(mHDjflle(Q) + 107 fllzo ) (6.7)
where 6 = L_j (% - 7) On the other hand, by applying Theorem 6.1 to D? f, we get
1D Loy < CUD™ Py 10" Fll sty + 10" Fllzocen) - (6.9)

Inserting this inequality in the right-hand side of (6.7) we get
1D7 fllzagy < CUID™ Fll 7@l D Fll ey + ||DmeLP(Q)||DSf||LP(Q) +D fllr) . (6.9)
Since 6 < 6, a simple application of the Young inequality shows that

1D™ F11% 0 ||Dsf||Lp () < CUID™ 2o @l D* Fll ey + 1D° FllLogey) -
Therefore, inserting this inequality in (6.9) and using (6.8) again, we get

IIDJfHLa(Q) < C(I\Dmfllm(n||DSfHLp(Q + 1l fIILp @ T ID* fllLee) -

HDmeLP(Q)HD f||£np79) < C’(HDmeL,, QHD fHLP(Q) + ||Dsf||LP(Q)) .
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Hence, (6.5) follows. The proof of (6.6) is obtained in a similar (but simpler) way by combining
(6.2) and (6.4). O

Remark 6.5. Asin Remark 6.2, the conclusion of Theorem 6.4 holds for a function f € Wm=11(Q)
such that D™~! f € BV(9), provided that in (6.5) we replace | D™ f||11(q) by [D(D™ ! f)[(Q).

Nest we prove some identities, which are used in the derivation of the Euler-Lagrange equation,
for the energy functional (2.3).
Lemma 6.6. Let g be the function introduced in (3.2). Then, for every 6 € (0,27) \ {r}
_ Yge(cost,sind)

0 0
9(0) + gee(9) 20

Proof. Since v is positively one-homogeneous, we have that ¢ (z,y) = 2¢.(x, y)+y1y(z,y). There-
fore we have
9(0) + gag(0) = 1(cos 0, sin ) + 1., (cos 0, sin 0) sin® @ — 21/, (cos §, sin ) sin § cos

+ 1y (cos 0, sin ) cos? @ — 1), (cos 0, sin 6) cos @ — 1), (cos 6, sin #) sin 6

= 14 (cos 0, sin ) sin? 6 — 24/, (cos 6, sin 0) sin 6 cos O + 1), (cos 6, sin ) cos? 9.
Since 9, and 1, are positively zero-homogeneous, we have

Thoa(T,y) + Yoy (z,y) =0 and  wihgy(z,y) + yiyy(z,y) = 0. (6.10)
Inserting these identities in the formula above, we get
(g + 909)(8) = Yza(cos b, sinb) + 1, (cosd,sinf) .

Again from (6.10) we have that ¥, (cos 0, sin ) cos? § = 1), (cos 0, sin 0) sin . Therefore,

Yira(c0s 0,50 0) + 9y, (cos 0, sin ) = Y (cos 0, 5in0)

sin? @
O
Lemma 6.7. The following identity holds
1, . 5/hZ,
bno + 540 == ()., 5 (570),
for h sufficiently smooth, where J := /1 + h2.
; o _ 70
Proof. Since 5- = J 4,
haa 5(h3, k 5 (k?
(7). +3(50), = (7). +3(F1e).
k k2 5 h
= (=% =25 ) 4o ((8), 5 — k)
(-7 —250), + 50,5
1
= koo — =K.
2
O

The following lemma has been used in the proof of the existence theorem.

Lemma 6.8. Let k € NU{0}, let h € HZ(0,b), and let f € L*(0,b) be such that f[f fo®) dz =0
for all ¢ € C*(0,b) with fé’ pdr =0 and [ Jy @d¢dHY = 0. Then if k > 1

f(x)a/0$/0$k~~/0m V14 (0 (r)2dr...de,_ideg + Py(z)
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for some a € R and some polynomial Py of degree k, and if k =0

f(z) = a/ox V14 (h(r)2dr+ ag

for some ag, a € R.

Proof. Let x € C*2(0,b) and set ¢.(x) := (}‘Eg;)’, where J.(z) := /1 + h/2(z) and h. is the
standard mollification of h.
Let ¢ € C°(0,b) be such that

/Obquxzo, /Fh/oxz/)dCdlel

djs = Qe — C€w7
where ¢, 1= th foﬂ? ¢e dCdH'. Note that by construction . € C¥(0,b) and satisfies fob o dz = 0
and frh foz . dCdH' = 0. Hence,

b / b
XNED g — e | fo® da.
(
0 JE 0

If f is smooth then the previous identity is equivalent to

b/ plt1) ! b
(—1)k+2/ < > de:cs/ fl/)(k) dz ,
0 Je 0

and letting e — 0, we obtain
b (k+1)\’
/ (f 7 ) xdx =0
0

for all y € C¥*2(0,b) and the conclusion follows. The general case is obtained via a standard
approximation argument. O

and define

The following trace theorem is a particular case of [27, Theorem 15.17].

Theorem 6.9. Let Q) C Ri be a bounded Lipschitz open set and S = 00N {y=0}. If 1 <p < 2,
then for all u € WHP(Q), denoting by Tr the trace operator, we have

ITr (@)l 2, g, < Cllllwroge)

for a suitable constant C' > 0.

We conclude the appendix with the following elliptic estimate.

Lemma 6.10. Let M > 0, ¢ > 0 . Let hy, ha € AP N C’;’a([o,b]) for some a € (0,1), with
lhillcraopy < M and h; > co, and let uy and ug the corresponding elastic equilibria in Qp,, and
Qp,,, respectively. Then,

IE(u1(- hi(-) = E(uz(-, ha () lera(op) < Cllha — hallore o) (6.11)

for some constant C > 0 depending only on M, cq, and «.

Proof. Recall that by minimality

CE(uy) : E(w)dz =0, CE(ug) : E(w)dz =0
th Qh,z
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for all w € LDy(Q,,;R?) with w(z,0) = 0. Let ® : Qp, — Qp, be a diffeomorphism such that
[® — Id]|cr.a(q,,) < Cllha — hil|cra(o,p))- Then, it is easily checked that

CE(ug 0o ®™ 1) : E(w)dz = d:Vwdz
th th

with ||d||co,a(Qh1) < Cllhg — hl”c’l,a([o’b]). Setting v := u; —ug o ®~1 it follows that

CE(v) : E(w)dz = —/Q d:Vwdz. (6.12)

Qpy hy

From standard elliptic regularity (see [21, Proposition 8.9]), it follows that

Ioller e < C(Iellm @) + Idlcoag,,))

for some constant C' > 0 depending only M, ¢y, and «. Since by (6.12), using also Korn’s and
Poincaré inequality, we have [|v]|f1(q,,) < Cl/d[|co.0(g, ), the conclusion follows.
g 11
O
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