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Abstract

Two-scale techniques are developed for sequences of maps {u;} C LP(Q; RM)
satisfying a linear differential constraint Aui = 0. These, together with I'-
convergence arguments and using the unfolding operator, provide a homogeniza-
tion result for energies of the type

F.(u) ::/Qf(x,f,u(x)) dr with u e LP(Q;RM), Au =0,

that generalizes current results in the case where A = curl.
MSC 2000: 49J45, 35E99

1 Introduction

In this paper we study the limiting behavior of a family of energy functionals with
periodic energy densities and underlying fields subject to differential constraints. We
give an integral representation to

ue — u in LP(Q; RM), } (11)

. . s z
F(u) := inf {hmlnf f ("177 ?uE) dz Au: =0

e—0 9}

where N, M € N, Q ¢ RY is an open, bounded set, 1 < p < +o0, u € LP(;RM),
F:OxRY xRM — [0, +00) satisfies

(HO)  f(x,-,&) is measurable for every (z,&) € Q x RM and

f(-,y,-) is continuous for a.e. y € RY;
(H1)  f(x,-,&) is Q-periodic for every (z,€) € Q x RM | with Q := (0,1)V
(H2) 0< f(z,y,&) <CA+|EP) for every (z,€) € @ x RM and a.e. y € RV,

and A is a first order partial differential operator of constant rank. Precisely, A maps
w=(ul,...,uM): Q- RMinto Au = ((Au)!, ..., (Au)l): Q — R L € N, with

ZZAZL%L I=1,....L,

i=1 m=1



and the coefficients A € R. The linear matrix valued function
N .
ARY S RPM O (AQ), =) AlLgG, 1=1,...,L,m=1,..., M,
i=1

is related to A via the Fourier transform. We assume throughout that A satisfies
Murat’s condition of constant rank (see [23]), that is,

the rank of A(¢) € RE*M js constant as a function of € € RV \ {0}. (1.2)

The study of lowersemicontinuity and relaxation of energy functionals of this type was
initiated by Dacorogna [13], followed by Fonseca and Miiller [18], and also Braides,
Fonseca and Leoni [7], among others. In the latter, the homogenization of a family of
functionals as considered in [1] was studied, with f independent of z, continuous in y
(note that in (HO) we only ask measurability), and coercive (note that no coercivity
is required here in (H2)). Therefore, this work generalizes previous results in the
variational approach of homogenization for A-free fields. We recall that important
examples that are included in this general setting are the case of divergence free
fields, in which Au = 0 if and only if divu = 0, and the case of gradients, in which
Au = 0 if and only if curlu = 0.

The main theorem of this paper is

Theorem 1.1. If (H0)-(H2) hold then for every u € LP(;RM) with Au = 0,
F(u) = / Jhom (z, u(z)) dz
Q
where, for x € Q and &€ € RM,

Fuom (@, €) = liminf inf /Q F,my, €+ v(y))dy,

n—oo vEV 4y
and V4 = {v € Lper(RY; RM) | va =0 and Av = 0}.

The proof may be found in Section 3, and the tools used here are I'-convergence, as it
was introduced by De Giorgi (see [15] and [16]), the notion of two-scale convergence
for A-free sequences, introduced in the case of gradients by Nguetseng (see [22], [24]
and [25]), further developed by Allaire and Briane (see [2] and [1]) and many other
authors (see also [19]), and extended here to the general A-free setting in Section 2.
Further, to prove the lower bound

F(u) > /thom(a:,u(:c))dx

we use the unfolding operator as proposed by Cioranescu, Damlamian and Griso (see
[11] and [12]; see also Visintin [26], [27]).

In Section 2 we develop the concept of two-scale convergence for A-free fields, and in
Theorem 2.12 we give a complete characterization of weak two-scale limits of A-free
sequences. Precisely,



Theorem 1.2. A function w € LP(; Lher(RY; RM)) is the weak two-scale limit of a
A-free sequence {u.} C LP(Q;RM) if and only if

Aywg = 0 and Ay, w; =0,

where
wo(yo) 1= / w(yo, y1) dy1 and w1 (Yo, ¥1) = w (Yo, y1) — Wo(yo)
Q
foryo € Q and y1 € Q.

Recall that in the case of gradients, two-scale limits are of the form

(y07y1> € 0 x Q = VUO(yO) + vy1v1(y07y1)7

with v; € LP(Q; Wp(Q)) (see [1], and see [28] for a generalization). In this context,
using this together with I-limit techniques, Baia and Fonseca in [4] obtained the
integral representation for the limit energy of a family of functionals

U'—>/ VUE dl’ (1.3)

just as in Theorem 1.1, under conditions (HO0), (H1), and with (H2) strengthened
with a p-coercivity condition. We remark that the result obtained in this paper now
extends that in [4] to the case in which f is not coercive. There is an extensive body of
literature on homogenization of multiple integrals of the type (1.3), and in particular
we refer to Braides and Defranceschi [6], Braides and Lukkassen [8], Lukkassen [21],
Berlyand, Cioranescu and Golovaty [5], Babadjian and Baia [3], and the references
therein.

2 Weak two-scale limits for A-free sequences

Let M, N € N, let 1 < p < o0, let Q@ C RY be open and bounded and let Q := (0,1)"
be the unit cube in RY. In the following, spaces of functions in RY which are Q-
periodic are denoted using a subscript “per”, where u : RY — RM is said to be
Q-periodic if u(z+¢) = f(x) for all ¢ € Z" and all z € RY. In particular, we use the
space

LB (RY;RMY o= {u e LF (RY;RM)| u is Q-periodic},

endowed with the norm of LP(Q,RM).

Definition 2.1 (weak two-scale convergence [24], [2]). Given a function w €
LP(Q; LBer (RMN™; RM)) and a sequence {uc}eso C LP(;RM), we say that {u.} weakly

two-scale converges to w, or u. 2w in LP(Q; RM) (with respect to the scales x and
), if
e/

e—0

/Que(:v)w d:c—>// w(yo, y1) - (Yo, Y1) dyrdyo, (2.1)

for every p € L¥ (Q; Cper(RY;RM)), where p' :=p/(p — 1).



Here and in the following, if we talk about a “sequence” with index € > 0, we under-
stand that e can be replaced with an arbitrary sequence (e)ren C (0,00) such that
er — 0 as k — oo. In particular, u. — u as € — 01 (with respect to some notion of
convergence) if and only if u., — u for every sequence (ex)reny C (0,00) with e, — 0
as k — oo.

Remark 2.2. Note that if u. =" w in LP(;RM) then ue — wp in LP(Q; RM), where
Wo(yo) = [ w(yo, y1)dyy for yo € Q.

Bounded sequences are compact with respect to two-scale weak convergence. Precisely
(see 2], [22]):

Proposition 2.3. Every bounded sequence in LP(Q;RM) has a subsequence which
weakly two-scale converges to a limit in LP(Q; LBer (RN ; RM)).

A simple example of a weakly two-scale convergent sequence is addressed next:

Proposition 2.4. Given u € LP(Q; Cper(RY;RM)) or u € Lper (RN ; CO(Q; RM)) (the
second variable being the periodic one), the sequence {u.} C LP(Q; RM), with u.(x) =
u(x, £), is p-equiintegrable. It weakly two-scale converges to u, and it weakly converges
in LP(Q;RM) tox € Q fQu(x,y) dy.

This result is an immediate consequence of the following lemma proved in [2] (see
Lemma 5.2 and Corollary 5.4 in [2]).

Lemma 2.5. Let g € L'(Q; Cper(RY;RM)) 01 g € LL (RN C(Q;RM)). Then {g.},
with g.(v) := g(x, Z) (the second variable being the periodic one), is a bounded, equi-
integrable sequence in L'(;RM) such that

/ge(w)dxH//g(x,y)dmdy ase — 0",
Q o

Remark 2.6. Equiintegrability of g. is not shown in [2], but it is a consequence of
the following estimates: Let E C §2 be a measurable set. In the first case, i.e., if
g € LYQ; Cper(RY; RM)) | we have

/ 9e()] da < / sup gz, )| dady.
E EyeQ

On the other hand, if g € L N.C(; RM)), then

per(

/ |ge(z)] dz < max‘g )‘ dy.

Note that since max, g |g(z,-)| € L'(Q;RM), (max, g|g(z,2)|)- is a weakly con-
vergent sequence in L' by the Riemann-Lebesgue lemma (see [17], e.g.), and thus
equiintegrable.

Here, we study those two-scale weak limits which are generated by sequences {u.}
satisfying a differential constraint Au. = 0, where A denotes a homogeneous linear



differential operator of first order mapping u = (u',...,u™) : Q@ — RM into Au =
((Aw)', ..., (Au)D) : Q — RE, with

N M

(Au)! ::ZZA%%U—m, l=1,...,L,

and the coefficients A% € R. TIts formal adjoint is denoted by .A*, which maps v =
(v1,...,v) :  — RV into A*v: Q — RM | and is defined by

N L ou,
V) = — Al 22 =1 M
Wohm -~ A2
i=1 1=1 i
If u e CHYGRM) and v € CLELRE), or u € CLo,(RY;RY) and v € CJ (RV;RE),

then integration by parts yields
/Au~v:/u-A*v or /Aumz/u-A*v,
Q Q Q Q

Below, it is understood that if we apply A to a vector field depending on multiple
variables, then the variable on which A operates is indicated as a subscript, e.g.,
Ayu(z,y) means that for the purpose of the application of A, u(x,y) is considered as
a function of y with x being a fixed parameter. The linear matrix valued function

respectively.

N
ARY S RPM (A, =) AlLgG, 1=1,...,L, m=1,..., M,
i=1

is related to A via the Fourier transform. As a consequence of constant rank condition
(1.2), the orthogonal projection P(¢) € RM*M onto the kernel of A(£) in RM is 0-
homogeneous and continuous as a function of £ € RV \ {0}. We set P(0) to be the
identity matrix in RV*Y. By the Hérmander-Mikhlin multiplier theorem, P gives
rise to a continuous projection operator P : L{;er(RN; RM) — Lger(RN; RM) onto the
kernel of A,

P(u) == F YPF(u)),
where F is the Fourier transform. It turns out that
(I — P)UHLger(RN;RM) < CllAul[yy-1p(gre) for every u € Lger(RN;RM) (2.2)

for some constant C' > 0. For more details and a proof of (2.2), the reader is referred
to [18].

Definition 2.7 (Notions of weak A-differentiability and A-free fields).
(i) If w € LP(Q;RM), then we say that Au ezists in LP if there is a function
U € LP(Q;RF) such that

/u‘A*cpdy:/U'gody for every o € CH(Q; RE).
Q Q

In this case, we define Au := U. We say that u is A-free, or Au = 0, if the
preceding equation is satisfied with U = 0.



(ii) If v € Lher(RY; RM), then we say that Av ezists in Lbe,, if there is a function
V € LBer(RY;RE) such that

/U-A*apdy:/ V-pdy for everycpECger(RN;RL).
Q Q

In this case, we define Av := V. We say that v is A-free, or Av = 0, if the
preceding equation is satisfied with V = 0.

(iil) If w € LP(Q; Lher(RY;RMY)) w = w(yo,y1) with (yo,y1) € Q x RN and j €
then we say that U exists 1n s Lper ; if there exists a
{0,1}, th y that Ay u exists in LP(Q; Lper(RY;RE)) if th i
function W; € LP(Q; Lper(RY; RE)) such that

//w-Angodmdyo://Wj'@dyldyo
QJQ QJQ

for every ¢ € CH(Q; CL (RY;RLY),

per
In this case, we define A, w := Wj.
The following extension result plays an important role in the variational theory of
A-free fields (see also [18]):

Lemma 2.8 (A-free periodic extension). Let D C Q := (0,1)Y c RY be open,
let 1 < p < oo and let A satisfy (1.2). Then for every p-equiintegrable sequence
{v,} € LP(D;RM) with v, — 0 in LP(D;RM) and Av, — 0 in W=1P(D;RE), there
exists an A-free sequence {un} C Lber(RYN; RM), p-equiintegrable in Q, such that

Uy — vy — 0 in LP(D;RM), w, — 0 in LP(Q\ D;RM), / up(x) =0,
Q
and [[un || 1og:rary < C llvnll Lo(grary for all n € N and some C' = C(A) > 0.

Proof. For every k € N choose ¢, € C(D;[0,1]) such that ¢i(z) = 1 whenever
dist (w;RN \ D) > % Clearly,

N M
Alprvn) = iAo+ > Uit AL o — 0 in WHP(Q;RM),
=1 m=1

for fixed k, since v, — 0 in LP and LP is compactly embedded in W%, Hence, we
may choose a sequence k(n) — oo such that

A(Pr(myvn) — 0 in WHP(Q; RM).
n—oo

For each n, @y nyvn can be considered as an element of LBer (RN; RM) by extending it
to RV Q-periodically. Let
Up, 1= P((Pk(n)vn)

Then i, € Lper(RY;RM) and by (2.2),

”anHLP(Q;RM) = HP(QDk(n)Un)HLp(Q;RM) <C Hsok(n)vnHLp(Q;RM) <C ||UVLHLP(D;]RM)

6



by the continuity of P on Lbe;. Also, since {|v,[P} is equiintegrable, we have

Han - UTZHLP(D;RM) < “P(Sok(n)vn) - (pk(n)UnHLp(Q;R]\J) + H(l - Spk(n))vnHLp(D;RM)

<C HA(QO]C(TL),UW»)wal,p(Q;RL) + H(l - wk(n))vnHLp(D;RJ\l) — 0,

n—oo

and

@l oioypmany = [P (Orimyvn) = uimyvall Lo pigory
<C HA(‘Pk(n)vn)HW*LP(QRL) m—

n—oo

To verify the p-equiintegrability of {@,} in @ let E C @, and observe that

/ |in|” < C/ |P(k(n)vn) — Crmyvn|” +C |[on [P
E E END

< b P

<C H‘A(‘pk(nw”)HW-l,p(Q;RL) + C/EnD |vnl

It suffices to set u,(2) := Un(2) — [, Un(y) dy. O
The following condition turns to be the characterization of weak two-scale limits of

A-free sequences (see Theorem 2.12 below).

Definition 2.9 (generalized A-free fields with one microscale). We say that w €
LP(Q; LBer (RN ; RM)) is generalized A-free if

AyOU_JO =0 and Aylwl =0, (2.3)

where wo € LP(Q;RM) and w; € LP(Q; Ler(RY; RM)) are defined by
()= [ wuo )y and 1) 1= wl ) < Tole). (20

for yp € Q and y; € Q.

Proposition 2.10. Let {u.} be a bounded, A-free sequence in LP(Q; RM) which weakly
two-scale converges to a function w € LP(%; Lher(RY;RM)). Then w is generalized

A-free.
Proof. Fix ¢ € CL(Q;RM). We have

0 = lim ue(x) - A*Y(x)dx = /Q/Qw(yo,yl)-/l*w(yo)dyldyg

e—0t Jqo

= /QlUO'A*UJ(yO)dyo,

and (2.4)1, in this order. This

where we used the facts that wu. is A-free, (2.1)
= Y(yo)o(y1) for arbitrary functions

establishes (2.3);. Next, define ¢(vo,y1)



Y € CHELRY) and ¢ € CL, (RN RY). Since u. is A-free, we have that

0 = lim [ uc(z)- A" {cp <x, g)] dx

e—0t Jo
= lim | ueo) (A0 @o(2) + o) (A9 ()] da
= / / w(yo, y1) - ¥ (yo)Ay, ¢(y1) dyrdyo
QJQ
= /Q</Qw1 -A;lqﬁ(yl)dyl) ¥(yo) dyo,
where we used the fact that [, A} ¢(y1) dyr = 0. This yields (2.3)s. O

In the case of gradients (i.e., curl-free fields) and divergence-free fields, (2.3) is known
to characterize the weak two-scale limits of A-free sequences in LP (see [1| and [2]).
Precisely, weak two-scale limits of gradients of W!?(£2)-bounded functions are all
functions of the form (yo,y1) — Vy,uo(v0) + Vi, u1(yo,y1) with ug € WHP(Q), u; €
LP(€; Wpik (RN)), and weak two-scale limits of divergence free fields in LP(Q; RY) are
all functions w € LP(Q; Lper(RY; RY)) such that div,, wo = 0 and divy, w1 (yo,y1) = 0.
To prove the corresponding result for a general A satisfying (1.2), we reconstruct a
suitable A-free sequence from a given generalized A-free function.

Proposition 2.11. Let Y C RY be an open cube compactly containing 2, and suppose
that A satisfies (1.2). Then for every w € LP(Q; Lher(RY; RM)), w = w(yo,y1), such
that wi(-,yl)dyl =0 (i.e., w = w; and wy = 0) and Ay,w = 0, there exists an
A-free, p-equiintegrable sequence {uz} C LP(Y;RM) such that the restriction of u. to
Q weakly two-scale converges to w and u. — 0 weakly in LP(Y;RM).

Proof. Step 1: Suppose first that w € C1(RV; C}

per

(RN RM)). Define
ve() := / w(z+ey, L) dy, © €.
Q
Then v, € CY(Q;RM). By Hélder’s inequality, we have

n@P < [ we+ev 2
and by the volume-preserving change of variables

Se iRV x Q =RV xQ, Si(,y) = (v +ey, £ - |2)),

3

we get the bound

Vel o (mmary < 10l Lo(s. (mx@yrrry < 10l Lo (5 xirM) (2.5)
for every measurable £ C Q, with E. := {x € RV | dist (2; E) < ¢}. In particular,
{ve} is p-equiintegrable in . Next, we claim that

ve 22w in LP(Q; RM),

(2.6)
ve — 0in LP(Q;RM) and Av. — 0 strongly in W—1P(Q; RL).



To prove (2.6), we set 0.(z) = w(x,%). Clearly, {t.} C C'(RY;RM) is locally
bounded in L*°. Since A, w = 0, we have

Ade(x) — Ave(x) = /Q (.Ayow(x L) — Ayyw(z + ey, 8))dy (2.7)

and thus Av. — A¥. — 0 in LP(Q; RM), where we used the fact that Ay w is uniformly
continuous in € x RV, with Q; := {z € RY | dist (#;Q) < 1}. In addition, by
Proposition 2.4 we obtain

Av. = Ayyw (-, 2) 6H(ﬁ/.AyOw ,y1)dy; = .A/ ~y1)dyr =0 (2.8)

weakly in LP(;RM). By (2.7) and (2.8), we deduce that lim. Av. = 0 weakly in
LP(;RY), and thus strongly in W12 (€; RL) by Sobolev’s compact embedding theo-
rem. Again using the uniformly continuity of w in Q; xRY, we have that v, — @, — 0in
LP(Q;RM) and, in particular, v. 2= w and v. — 0 in LP(Q; RM) (note that wy = 0).
This completes the proof of (2.6), which now allows us to apply Lemma 2.8 to {v.}
(with D := Q and Y in place of @, if necessary translate and rescale). We thus
get an A-free, p-equiintegrable sequence {u.} € LP(Y;RM) such that v. —u. — 0
in LP(Q;RM) and u. — 0 in LP(Y \ ;RM). In particular, {u.} weakly two-scale
converges to w in € and weakly converges to zero in Y. In addition, in view of (2.5)
we obtain

||Ue||Lp(E;RM) = HUEHLP(Y\Q;]RM) + [Jue — UsHLp(EmQ;RM) + HUEHLP(EOQ;RM) (2.9)

<o:+ HWHLP(SE((ENQ)XQ);RM) ’

for every 0 < € <1 and every measurable £ C Y, where
e = [Jte|| Loy urary + llue — vell pprrry — 0 as e — 0.

Consequently, {u.} is p-equiintegrable in Y.

Step 2: We use a mollification and a diagonalization argument to reduce the general
case to the previous step. For every y; € RY extend w(-,y1) by zero outside €,
whence Ay, w = 0 in RY x RY and fQ w(-,y1)dy; = 0 in RY. Standard mollification
of w = w(yo,y1) by convolution (twice, first in y; and then in yg) yields a sequence
{w;} C C>(RY; ngr(RN RM)) such that ||wj”Lp(RN;Lp(Q;RM)) < HwHLP(Q;LP(Q;RM))a
wj — w in LP, and each w; satisfies satisfies

Ajwi =0 in RY xRY and /wj(-,yl)dyl =0 in RY,
Q

since both properties are invariant under convolution in y1. As to the latter, note that
for arbitrary z € RY, fQ ,Z24+y1)dyr = fQ -, y1)dy1 = 0, since w is Q-periodic in

Y1
By Step 1, for each j there exists an A-free sequence {u;c} C LP(Y;RM) such that

Ugje = wj in Lp(Q;RM) and uj. — 0 in LP(Y;RM)



as € — 0T. Moreover, by (2.9),

||uj,€||Lp(E;RM) < 0jet ||wj||LP(SE((EQQ)><Q);RM) (2.10)

for every measurable £ C Y, with an error term satisfying oj. — 0 as ¢ — 07 for
fixed j. Further,

ijHLP(SE((EHQ)XQ);RM) < lwj — wHLP(RNxQ;]RM) + ”wHLP(SE((EﬂQ)XQ);RM) . (2.11)

Since the spaces of test functions for weak two-scale convergence and weak convergence
in LP ie., LPI(Q;Cper(RN;RM)) and LP (Q; RM), repectively, are both separable, a
diagonalizing argument yields an integer valued function € — j(g) such that j(g) — oo,
the sequence {u.}, with u. := u;(.) ., weakly two-scale converges to w in {2 and weakly

converges to zero in Y, and o). — 0 as e — 0". In particular, (2.10) and (2.11)

imply that u is p-equiintegrable on Y. O
We conclude that A-free weak two scale limits are characterized as follows.

Theorem 2.12. Let 1 < p < oo, let Q@ C RY be open and bounded, and suppose that
A satisfies (1.2). Then w € LP(Q; Lper(RY; RM)) is the weak two-scale limit of some
bounded, A-free sequence {u.}y C LP(Q;RM) if and only if w is generalized A-free.

Proof. By Proposition 2.10, if w is the weak two-scale limit of an A-free sequence
then w is generalized A-free. Conversely, given a generalized A-free w, we apply
Proposition 2.11 to w; (using the notation of Definition 2.9). This yields an A-free,
bounded sequence {u.} weakly two-scale converging to w;. Hence, u. := wo + e
weakly two-scale converges to w = wgy + w; . O

3 A-free homogenization with one microscale

Let © ¢ RY be open and bounded, let 1 < p < oo and ¢ € (0,1], and consider the
functional

F.(u) ::/Qf(a:,:;,u(x» dx for uw e Uy I:{UELP(Q;RM” Au =0},

where f : Q x RY x RM — R satisfies the conditions (H0)—(H2) listed in the intro-
duction.

Our main result is the following:
Theorem 3.1. If A satisfies (1.2) and (HO)-(H2) hold, then
Fhom(u) :=I' = lim__o+ F¢(u),
the I'-limit in the sense of De Giorgi with respect to weak convergence in LP, exists

for every u € Uy. Moreover,

n—oo  weWy

Fhom(u) = liminf  inf / / f(z,ny,u(z) + w(z,y)) dydz,
QJQ
where Wy = {w € LP(Q; Lo (RY; RM)) | wi(-,y)dy =0, Ayw =0}.

10



We recall that the I'(LP-weak)-limit of F; exists at u if

I' — liminf F.(u) := inf {liminf F.(u:) |{uc} C U4, ue = uin LP(Q; RM) },
I' — limsup Fi(u) := inf {limsup Fz(uc) |{uc} C U, ue = uin LP(; RM)}

coincide (see [14]). The corollary below provides an integral representation for Fjop,.

Corollary 3.2. Under the asssumptions of Theorem 3.1, if u € Uy then

Fhom /fhom x, ’LL

where for x € Q and € € RM,

Foom(,€) = liminf inf / F@,ny, €+ v(y))dy

n—oo veVa Jg
and V= {v € Lper(RN;RM) | va =0 and Av = 0}.

Remark 3.3. Forn € N, u € Uy, w € Wy, v € V4 and € € RY define
F(n,u,w) // f(z,ny,u(z) + w(z,y)) dydx,
Fn,n. )= [ g o)y

Then for every k,n € N we have that

f Fk < f F f U d 3.1
wlerll/VA (nuw)_wler%A (n,u,w) for every u € Uy, an (3.1)
inf f(kn,z,&0) < inf f(n,2,&v) for every (z,€) € Q x RM. (3.2)
VEV 4 vEV 4

Indeed, if w € W4 then w(x,y) := w(z, ky) € Wy, and (H1) together with the pe-
riodicity of w(z,-) and a change of variables yield F(kn,u,®) = F(n u,w). Sim-
ilarly, if v € V4 then v(y) := v(ky) € V4 and f(k‘n,x,f, v) = f(n x,&v). In
particular, n — inf,ecpw, F(n!,u, w) is decreasing, F(n!,u, w) < F(n,u, w) and so
limy, infy,ew F(n!,u,w) exists. Therefore,

lim inf F(n!,u,w) > liminf inf F(n,u,w) = Fhom(u)

n—00 weWy neN  weWy
> inf inf F(n,u,w)> inf inf F(nl,u,w)= lim inf F(n! u,w).
neNweW 4 neNweW 4 n—oo weW 4

We conclude that

Fhom(u) = inf inf F(n,u,w)= lim inf EF(n!u,w)
neENweW 4 n—0o0 weW 4

and, similarly,
from(x,€) = inf inf f(n,z,¢v) = lim inf f(n!,z,¢v),

neNveY 4 n—ooveVy

The following lemma is an important ingredient in the proof of Theorem 3.1.
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Lemma 3.4 (A-free decomposition lemma [18]). Suppose that A satisfies (1.2), let
D C RN be open and bounded, let 1 < p < oo and let {u,} C LP(D;RM) be a bounded
sequence of A-free functions. Then there evists a subsequence {uyy)} of {un} and a
bounded, A-free, p-equiintegrable sequence {v,} C LP(D;RM), such that Up(n)—Vn — 0
in L1 for every q € [1,p).

The proof of Theorem 3.1 is divided into establishing the upper and the lower bounds
for I' — lim F,. We will use the following two technical results. For their proofs, the
reader is referred to Appendix B.

Proposition 3.5. Let f satisfy (H0)-(H2), let ' CC Q be open, let e, — 0T as
n — oo, let {gn} C L®(Q,RYN) be such that ||gn — id|| ;o — 0, and let {v,}, {wn} C
LP(Q;RM) be bounded sequences.

(i) If {vn},{wn} are p-equiintegrable and ||v, — wy|| o (qrary — 0 then

lim A [f(x,%,vdx)) — f(:z:,é_ﬁ

n—oo n

,wn(:p))} dx =0

and
lim {f(gn(x), ;, vn(x)> — f(a:, ;,wn(x)ﬂ dx = 0.

n—oo Q/ n n

(11) If {wy} is p-equiintegrable and v, — w, — 0 in measure then

lim inf/ﬂf(:c, ;,vn(m)) dx > lim inf/ﬂf(a:, ;,wn(x)> dx.

n—oo n n—oo n

Proposition 3.6. Let [ satisfy (HO)-(H2), let Q' CC Q be open, let {g,} C
L2(Q x Q,RY), and let {v,n| v,n €N}, {wy,| v,n € N} C LP(Q x Q;RM) be
p-equiintegrable sets.

(1) If sup,en ||von — wl,,nHLp(Q,;RM) — 0 and g,(z,y) — x — 0 uniformly in (z,y) €
Q' xQ as v — oo, then

/’/Q [f(gy(l’),ny,vym(l‘,y)) - f(xvnvau,n<xay))} dydx ngo 0,

uniformly in n € N.

(i) If [[vyn — wu,n||Lp(Q,;RM) — 0 as n — oo for every v then

///Q [f(x,ny,vl,’n(x,y» — f<x,ny,w,,7n(:ﬁ,y))} dydzx — 0,

for every v € N.

Proposition 3.7 (upper bound). Assume that (H0)-(H2) hold. Then for every n €
N, every 6 > 0, every u € Uy, and every w € Wy, there exists a sequence {uz} C Uy
such that ue — u in LP(Q;RM) as ¢ — 07, and

lim [ f(z, % u)de < / / f(z,ny,u(z) + w(x,y)) dydx + 0. (3.3)
Q QJQ

e—0t
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Proof. Step 1: Assume first that u € C(Q;RM) and w € Lhe:(RY; C(Q; RM)) N W4
(we write w(z,y) with y being the periodic variable). For fixed n € N,

g(z,y) = f(z,ny,u(z) +w(z,y)), z € Q, yeRY (the periodic variable),

is a function in Lll)er( N.C(Q;RM)). Moreover, the sequence {g.} C L'(Q), with
ge(x) = g(w, n—s), is bounded in L', and by Lemma 2.5, with v.(z) := w(w £), we

'€
have

/Qf(x,e,u( )—&-Ug(x))dx:/ r) dz . // z,y) dydz. (3.4)

In particular, (3.3) holds with equality for § = 0 and u.(z) := u(z) +v.(z). Note that
{v:} is a p-equiintegrable sequence and, by Proposition 2.4, v, — fQ w(-,y)dy = 0
weakly in LP. In addition, still by Proposition 2.4,

Av. = Ayow< nE ot / Ayow(-,y1)dyr = A / Sy1)dyr =0

in LP(Q;RY), and hence Av. — 0 in W=P(Q;R”). Due to (a rescaled version of)
Lemma, 2.8, there exists an A-free, p-equiintegrable sequence {0.} C LP(Q; RM) such
that

Te — v = e —w(-,;) 0 in LP(Q;RM),
ne’/ e—0t

In particular, 9. — 0 in LP(Q;RM). By Proposition 3.5 (i) we have

lim /f x) + Ue(z))dr = lim /f x) + ve(x))dx

e—0t e—0t

and this, together with (3.4), concludes the proof.

Step 2: The case of a general u € Uy and w € W4 follows by density and diagonal-
ization arguments. More precisely, we extend w to R by setting w(yo,y1) := 0 for
yo € RV \ Q. Mollifying in yo results in a function @ which, in particular, belongs to
LEer(RY; C(;RM)) N Wy and is close to w in the topology of LP(Q; LP(RN; RM)).
Note that by (HO) and (H2), the right hand side of (3.3) is continuous in w. Similarly,
u € Uy can be replaced by a @ € C(;RM) close to u in LP (which in general does
not satisfy Au = 0 anymore, but this is irrelevant here). O

Proposition 3.8 (lower bound 1). Assume that (H0)-(H2) hold. Then for every
sequence e, — 07, every u € Uy and every sequence {un} C Ug with u, — 0 in
LP(;RM)), there exist a family of functions V = {v,,, | v,n € N} CUx such that

V' is p-equiintegrable, v,, — 0 weakly in L for every v € N, and
oo

3.5
lim inf/ flz, 2 u+ uy) dz > sup lim inf/ f(m, vne, u + vym) dx. (3.5)
Q

n—oo veN n—oo

13



Proof. Fix v € N. In the following, we repeatedly extract subsequences of n (with
all sequences depending on v) without further mentioning and without relabeling n.
In particular, we may always assume that a limes inferior in n is a limit. For our
definition of v, , below, we set v, ,, := 0 if n does not match a value attained by the
final (v-dependent) subsequence of n.

By Lemma 3.4, there exists a p-equiintegrable sequence {u,} C U4 such that 4, —
U, — 0 in LI(Q;RM) for ¢ < p and, in particular, @, — 0 in LP. By Proposition 3.5
(ii), we have that

nh_)ngo f( T, 2 u+up)de > nh_)nolo f( T, 2= u+ Uy )dz. (3.6)
If /;:%n = % is a sequence of integers (strictly increasing after selecting a suitable

subsequence of n), then we define vl,k =u, if k = l%un, vk = 0 otherwise. If this
is not the case, then for n € N, let L J denote the largest integer smaller than —1-

VeEn
and let

Opn = usnt J [0,1], whence k,,, := Hyjné € Np and 6,,, = 1 as n — oo.
(3.7)

Choose an open cube Y C R¥ which compactly contains €. By (a rescaled version
of) Lemma 2.8 applied to the sequence {a,}, we can find an A-free, bounded, p-
equiintegrable sequence {u,} C LP(Y;RM) such that i, — @, — 0 in LP(Q;RM) and
U, — 0 in LP(Y \ Q; RM). Using Proposition 3.5 (i) and (3.7) we obtain

lim f( 7U+ﬂn)d$= lim f(z T, = L u+ up)de

n—oo n—oo 0

= lim f (z,

n—oo

(3.8)
U )d.

For any fixed Q' CC Q, 6,90 C Qif n is large enough (depending on v). Since f > 0,
a change of variables yields that

lim [ f(, vkyng—z,u(z) + n(z))dz

n—oo 0

> lim inf/ f(z, Vkl,7nﬁ$, u(z) + tn(z))dx
On¥ (3.9)
= lim inf(6), DN / f(0unz, vy 2, u(0ynx) + Uy (6y2))da
Q/

n—oo

= lim inf/ f(x, vkynz,u(x) + ﬁn(ﬁymx))dx,

n—oo

where we used Proposition 3.5 (i) and, by (3.6), the facts that 6,,, — 1 and u(0,, ") —
win LP(Y;RM). In view of (3.6)—(3.9), we conclude that

lim f( , Up )dz > lim inf/ f(m, vkynx,u(x) + ﬁn(0V7nx))de’.

n—oo n—oo
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Letting Q' approach Q such that [\ Q| — 0, using (H2) and the equiintegrability of
{]tn|"}, we infer that

lim [ f(x, 2%, uy,)dz > lim inf/ [z, vkypz, u(@) + vy, (@) dz,
n—oo /o n n—oo 9 ’

with vy, . (2) = Up(Oyne) for x € Q, v € N and n > ng(v), where ng(v) is chosen
large enough such that 6, , > % and 6,,Q2 C Y for every n > ng(v). In particular,
{vu k. | ¥ €N, n >mng(v)} is p-equiintegrable on Q, just like {#, } is p-equiintegrable
on Y. Moreover, vy, € Uyq and vy, ,, — 0 weakly in LP as n — oo. O

Proposition 3.9 (lower bound 2). Assume that (H0)-(H2) hold. Then for every
u € Uy, and every family {v,,, | v,n € N} C Uy satisfying (3.5),

lim inf lim inf/ f(m, vnx,u + Ul,m) dx
Q

V—00 n—oo

> liminf inf //f(:v,ny,u(:z:)+w(:c,y))dydx.
QJQ

n—0o0 weWy

The proof of this Proposition uses a strategy similar to that in Lemma 2.9 in [10],
although we work under slightly weaker assumptions on f, strongly relying on the
p-equiintegrability of {v,,}. In particular, we use the so-called unfolding operator T
([11], [10]; see also [12], [26]): For 6 > 0, Ty : L'(;RM) — LY(Q; Ly (RY; RM)) is
defined by

Ts(v)(x,y) := v(é[%J +0(y—ly|)) forxeQandye RN,

where v is extended by zero outside of €2 and, as before, for t € R, [t] denotes the
largest integer less then or equal to t. To arguments in RY with N > 1, |-] is applied
component-wise. Note that

Tsv(z,y) = Tyv(6]%],y) for every 6 >0, (z,y) € Q2 x RY. (3.10)

Further properties of Ty are collected in Appendix A.

Proof of Proposition 3.9. Fix v € Uy and let {v,, | v,n € N} satisfy (3.5).
Moreover, fix ' CC Q, and for z € Z" and v € N define

Qu.=12+1Qc RN for 2 €ZV, Z, :={2€Z" | Q,.NQ # 0},

and set
I, = / f(a:, vnx,u + vl,m) dx.
Q

Note that if v is large enough such that the distance of ' to 99 is at least ‘/—VN, then

Q. C Q for every z € Z,. Since f > 0, a change of variables and the definition of
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T: yield

I, > Z f(z,vnz,u + v,p)dx

= Jau.

-y ﬁv/ 7 (320 4 9), T ()2, 9) + T (0n) (,0)) dy
2E€EZy Q
Z/ / Lch+y oy, T (u )(LVV$J,y)+T%(vV,n)( ”fJ7y)) dydx
zZE€EZy

where we used (H1) and the facts that |Q, .| = VLN and z = |vx| for z € Q, .. Thus,
using (3.10) we have that

Loz 5 [ [ (R Ty 000 0) + T )0)
€2 (3.11)
2 [, (B T ) + T ) )

if v is sufficiently large such that |Q’ \U.ez, Q,&z‘ = 0. By Proposition A.2,

U := {T% (u) + T% (Vun)

veN, n EN} U {T%(Uy,n)

VGN,nGN},

is a p-equiintegrable subset of LP(Q' x Q;RM). Moreover, as v — o0, LWCHy —
2 uniformly in (z,y) € Q x @, and T1( ) — win LP(Q' x Q;RM), the latter by

Proposition A.1. Hence, (3.11) and Proposmon 3.6 (i) imply that
Z/n >0y + / / T,ny,u + T1 (UV n)(ZL‘, y)) dydx
=0, + Z / / x,ny,u(zr) + T (vyn)(f, y)) dydzx,
2EZy VNQy,z

with an error term o, = 0,(2') which is independent of n and satisfies o, — 0 as
v — oo for fixed Q. Moreover, for fixed v and z € Z,, Uy n(y) := T1(vun)(2,y) =

(3.12)

v,,n( (z + y)), y € Q, is a p-equiintegrable, A-free sequence in LP(Q;RM) with
Uy 2m — 0 weakly in LP as n — oo. By Lemma 2.8, there exists a p-equiintegrable,
A-free sequence {wy, . n} C Lher(RY; RM) such that 6, — wy . — 0 in LP(Q; RM)
as n — oo and fQ Wy 2 n(y) dy = 0. By Proposition 3.6 (ii), we infer that

/ / z,ny, u(z) + T1 (v, n)(%vy)) dydx
QNQu, 2
_Tzn,,—k/ / z,ny, w(x) + Wy n(y ))dyda;
"NQu,z

for every z € Z,, where lim,, 7, ,, = 0. In view of (3.12), we obtain that

liminf I,,, > o, + liminf Z / / z,ny, w(x) + Wy n(y )) dydzx
QNQu, =2

n—oo n—oo

n—oo

=0, + liminf/ / z,ny,u(z) + wyn(z, y)) dydx,
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where

wl/n X y Z XQ’OQVZ wl/zn( )
ZGZU

XonQ,..(x) =1ifz € A'NQ, ., and xang, . (x) := 0 elsewhere. Clearly, w,, € Wa,

and thus, with
Ko\Q = —sup/ / f(z,ny,u(z)) dzdy,
neN Jo\o/

we have that

liminf I, ,, > Ko\ + 00 + lim mf/ / z,ny, w(x) + wypn(z,y)) dyds

n—oo n—oo

> Ko\ + 0, + liminf inf / / z,ny, uw(z) + w(z,y)) dydz.

n—00 weWy

To conclude let v — oo and then let Q" approach € such that |\ Q| — 0, using (H2)
to ensure that koo — 0 as [\ Q| — 0. O

Proof of Theorem 3.1. Given u € Uy, & — 01, {up} C Uy with v, — w in
LP(Q; RM) and setting

J(u) == liminf inf / / f(z,ny, u(z) + w(z,y)) dydz,

n—0oo weWWy

we may assume w.l.o.g. that liminf [, f(z, -, uy) do =lim [, f(z, £, uy) dz, and by
Proposition 3.8 and Proposition 3.9, it follows that

lim A f(a:, %,uk(:v)) dx > J(u).

k—o0

Therefore I' — liminf F_(u) > J(u).
Conversely, if § > 0 and ¢ — 07, and if n € N, w € Wy are such that

// F (@ ny, u(w) + w(z,y)) dydz — 6 < J(u),

then using Proposition 3.7 we find {ug} C Un, ux — u in LP(;RM) such that

klim f( d:v<// flz,ny,u(z) + w(z,y)) dyde — 6 < J(u) + 20.
Letting 6 — 0, we conclude that I' — lim sup F;(u) < J(u). O

The proof of Corollary 3.2 relies on a measurable selection criterion which is a simpli-
fied variant of Theorem III.6 in [9].

Lemma 3.10. Let Z be a separable metric space, let T be a measurable space and
let T : T — 27 be a multifunction such that T'(t) C Z is nonempty and open for
everyt € T, and {t € T | z € T'(t)} is measurable for every z € Z. Then I' admils
a measurable selection, i.e., there exists a measurable function v : T — Z such that
~v(t) € T'(t) for everyt € T.
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Proof. Let Zy := {2z | k € N} be a countable dense subset of Z. Since I'(t) # 0
and it is open, T'(t) N Zy # 0 for all t € T. We define (t) := 2z if k(t) is the
smallest integer such that zj) € T'(¢), so that the function v attains values only in
the countable set Zy. Moreover,

v ) = {t |z € PO\ UZi{t | 25 € T(0)}

is measurable for every k € N, whence v is measurable. O

Proof of Corollary 3.2. Fix u € Uy. Let Vy C V4 be a countable subset which is
dense in V4 with respect to the topology of Lb. (for instance, choose a countable dense
subset in Lbe, (RY; RM), and project it onto V4 using v +— P(v) := Pv — fQ(Pv)dy).
For every n € N, by Lebesgue’s Dominated Convergence Theorem and by (H2), we
have for a.e. x € Q)

Jp(z,u(x)) := inf /f x,ny, u ))dy = inf / f(x,ny,u(z) +v(y)) dy.

VEV 4 vEVY

In particular, the functions z € Q — Jy(z,u(x)) and =z € Q +— from(z,u(x)) =
liminf, o Jp(z,u(x)) are measurable. By Theorem 3.1 and since w(z,:) € V4 if
w € Wy, we have

Fhom(u) = liminf inf / / f(z,ny, u(z) + w(z,y)) dydx

n—o0 weW

> liminf/ mf / f(z,ny,u v(y))dy)dm

n—0o0 vEV 4

2/ hmmf inf /faf ny, u v(y))dy)dm
Q

n—oo wvey A
— / Fuom(x, u(e)) de,
Q

where we used Fatou’s lemma.
To prove the converse inequality, fix 6 > 0, and for m € N set

Qs = U {z € Q| Jn(z,u(@)) < from(z, u(z)) +6}.
ne{l,...,m}

Since |2\ 5] — 0 as m — oo, there exists ns € N such that [Q\ €, ;| < ¢ for
m > ng. Consider the sets

Ls(z) == {v € VA) /Qf(:v,n(;!y,u(a:) +u(y)) dy < from(z,u(x)) + 5}

which are open in Lbe,(RY;RM) (by (H2) and Lebesgue’s Dominated Convergence
Theorem) and nonempty for x € Q,,s (by Remark 3.3, using the fact that n —
infyep, fQ z,n!y,u(z)+v(y)) dy is decreasing). In addition, {z € Q,, s | v € I's(x)}
is measurable for every v € Lber (RN, RM). We now apply Lemma 3.10 with 7 := Qpy.6
and Z := L5 (RY,RM) to find a measurable selection @ : Q,, 5 — Lher(RY; RM) of
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I's. Moreover, w € LP(2; LBe:(RY; RM)) for a suitable measurable set Qf C Q5
such that

12\ Q5 < 20 (3.13)

For a.e. z € Qf, w(x) € I's(x), and thus, since f > 0, we have
/ / sl (o) + 0(,) dyde < [ oo @) do -+ 319].
57Q &
Extending w( =0 for z € Q\ Qf, we have that w € W4 and so,

in / / £, ngly, u(z) + w(z, y)) dyda

wWEW 4

= /3/Qf(x’n5!y’“(x)"‘w(ﬂ?ay))dydx-i-/ﬂ\%/Qf(w,n(s!y,u(x))dydx
= /&2fh0m($’u($)) dz + 6 |Qf +/Q\Qg/Qf(x,n(s!y,u(x))dydm.

Letting § — 0", by (H2) and Remark 3.3 we conclude that

Fhom(u)géfhom(xau($))dx' OJ

Appendix A Properties of the unfolding operator

We recall the definition of the unfolding operator (see |11] and [10]; see also [12] and
[26]): Let © C RY be open. For v > 0 and v € LP(f2) (v extended by zero outside ),
set

T,(v)(z,y) := v(vL%J +v(y — LyJ)) forzreQandye RN,

where as before, |-] is defined as the component-wise integer part of its argument.
Note that if v has support in K CC RY then

supp Ty (v) C {a: eRY ‘dist (x; K) < vm} x RV, (A.1)
Indeed, if 'ytﬂ +7(y — |y]) € K for some y € RY, then

dist (2 K) < |2 =y 5] == LD = = [5]) = (v = Ly))| £ vdiamQ =4V'N.

Proposition A.1. Let 1 < p < co. Then for every v >0, T, : LP(?) — LP(Q x Q)
is linear. Moreover, for every v € LP(Q) (extended by zero outside (2),

1Ty ()l oaxgy < N )o@y xg) = [0l o@ny = [0l o) (A.2)

and

/ / |v(x v)(z,y)|P dydr — 0 asy— 07, (A.3)
RN
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Proof. The first equality in (A.2) is a consequence of Fubini’s theorem and a change
of variables, and the remaining assertions in (A.2) are trivial. For the proof of (A.3),
fix e > 0 and choose a sequence {v,} C C(RY) with v,, — v in LP(RY). Since T, is
linear and by (A.2), there exists m € N such that for every n > m and every v > 0,

[[vn — UHLP(RN) = || T (vn) — T’Y(”)HLP(RNxQ) < %5'

1
Hence, with Cp, := |[{z € RY | dist (z;suppvm) < VN }|? and using (A.1), for y < 1
we obtain

v — T’Y(U)HLP(RNXQ) < flvm — T’V(vm)HLP(RNxQ) + %5 (A.4)
<Cp ||'Um - T'Y(Um>||L°°(RN><Q) + %5 (A5)
=C,  sup }vm(:c) — o (7Y L%J + vy)‘ + 2e. (A.6)

z€RN | yeQ

Since vy, is uniformly continuous in RY and

|z — (7| 2] +79)| =] (£ = |£]) —y)| < vdiam(Q) = yVN,

by (A.4) we conclude that ||v — TA,(v)HL,,(RNXQ) < e for 0 < v < y(m) with some
vo(m) > 0 sufficiently small. O

Proposition A.2. Let 1 < p < oo, let B C RY be a bounded set, and let V C LP(RY)
be a p-equiintegrable set of functions with support in B. Then {T\v | v € (0,1], v €
V} c LP(RY x Q) is also p-equiintegrable.

Proof. Let 6 > 0 and choose n > 0 such that

for every measurable F' C RN with |F| < 5. Let tqg >> 1 be such that

sup [{|v(z)| > to}| < n, (A.8)
veV
and let 7 > 0 be such that
p O

Consider a measurable set E C RY x @ such that |E| < 7. For F C RY measurable
and v > 0 define

T,F = {(x,y)E]RNXQ "y{%J-F’nyF}.

Note that
Ty (xXF) = X1y(F)s (A.10)
and for every v € V and t > 0,

Tl = 1) = {|T0] 2 ¢} and T{fo| >t} = {|Tv| > ). (A1D)
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Hence, for v € V we have that

/ T, ) < / @+ / T, of?
E En{|Ty(v)|<to} {ITy (v)|>to}

< Tt8+/RN QXT,Y{‘U‘>t0} T, (v)[P
X

1
< — + [ p
=9 /RNXQ‘ ’Y(X{|’U|>t0}v)‘ )

where we used (A.9), (A.10) and (A.11), in this order, and the fact that T, (fg) =
T, (f)T,(g) for functions f € L>=(Q), g € LP(;RM). By (A.2), (A.7) and (A.8), this
implies that

) )
Tvp§+/ X{lo vp:—i-/ vfP < 4.
Lm@rsg [l =5+ [

Appendix B Some results on uniform continuity
Below, we collect several auxiliary results on the continuity of Nemytskii operators
associated to the function f introduced in Section 3.

Proposition B.1 (Scorza-Dragoni, e.g. see [20]). Let Q C RY be open, let Sy CC €,
let So CC RM and suppose that f satisfies (H0). Then for every § > 0, there erists a
compact set K5 C Q := (0, 1)V such that |Q \ Ks| < 0 and f is uniformly continuous
on Sl X K§ X Sg,

Proposition B.2. Let 1 < p < oo, assume that (H0)—(H2) hold, let X\ € (0,1], let
Q' C Q be measurable, and let V C LP(SY; RM) be p-equiintegrable. Then the functions

FriV = DN@) FA0)(@) = f (2. 50(@)) fora e @,

are uniformly continuous, uniformly in X\. Moreover, for every compact Q" C Q and
A= LYY Q") c LMY, RY), the functions

gy AxV = LNQ), gy(a.0)@) = f(a(), T,v(2) forz e,
are uniformly continuous, uniformly in \.

Proof. Let ¢ > 0. By the p-equiintegrability of V there exists a set Q" = Q" (e) C
such that Q" ccC Q and

sup/ f(x,%,’u(ac)) de < <.
veV Janar 4

Hence, it suffices to show that

”f)\(vl) - f)\(v2)||L1(Q///) < E

5 if v — UQHLP(Q”’;]RM) <4,
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for a suitable § = d(¢) > 0 independent of v1,v2 € V and A € (0,1]. This is a special
case of the second part of the assertion.

For a proof of the second part of the assertion, let a1,a2 € A, v1,v3 € V,and A € (0, 1],
and fix € > 0. We want to show that
lgx(ar, v1) — gA(CL?vU?)HLl(Q’) <e if [lap — a?HLl(Q’;RN) + [Jv1 - v2||LP(Q’;RM) <9,

for a suitable § = d(¢) > 0 independent of ay, ag, vy, v2 and A. Due to the p-
equintegrability of V' and (H2), there exists §; = d1(¢) > 0 such that for every every
E C Q) measurable, and for alla € A, v € V,

/ ‘f(a(:z‘), E,v(@) ‘ dx < E, provided that |E| < d;. (B.1)
. )\ 9

In view of the p-equiintegrability of V', there exists R = R(e) > 0 large enough such
that

sup |{|v] > R}| < 4. (B.2)

veV

Let L > 0 be sufficiently large so that Q' C [—L, L]N. By the periodicity of f with
respect to its second variable and by Proposition B.1 applied with S7 := Q” and S5 :=
Br(0) C RM | there exists a compact set K = K(e,L) C Q and &3 = da(s, L) > 0,
such that

Q\ K| < (2L 4 2)N4y, (B.3)

and for every x1,z9 € Q”, every y € ZV + K and every &1, & € Bg(0),

|f(z1,y,6) — f(z2,y,8)| < if [y — o] + [€1 — &2 < 2. (B.4)

9|Q’|

By (B.3), with my := |%]| + 1, we have that
\NZN + K)| < |[-L, LN\ A\ZY + K)|

< )\N‘[—mA,mA]N\(ZN-i-K)‘

(B.5)
=V (2my) " @\ K|
<(2L+2V|Q\ K| < 6.
Finally, there exists § = d(¢) such that
[{lar — az| + [v1 —va| = b2} <01 if [lar — azl[f1 + [Jvr — 2| <6 (B.6)

Define
S:=[Q N XNZ" + K)] n {|vi] < R} N {|va| < R}
N {la1 — az| + |v1 — v2| < b2},

whence '\ S is a union of four sets, each of which has measure less than 81, due to
(B.2), (B.5), and (B.6), respectlvely By (B.1) and (B.4), we infer that

/, ) (:U)) — f(ag(:c),i,vg(:c))‘dm
< §E+ /g ‘f ay(x), %71)1(1‘)> — f(ag(x), %,w(z)) ’ dr < ¢
whenever |[a1 — az|[ ;1) + [[v1 = vall po () <0 O
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Proposition B.3. Let 1 < p < oo, assume that (H0)-(H2) hold, let Q = (0, DN, let
A€ (0,1], let Q' C Q be measurable, and let V C LP(Q x Q; RM) be p-equiintegrable.
Then for every Q" CC Q and A := L'(Q' x Q; Q") c LY (¥ x Q;RY), the functions

hy:AxV — LYY xQ), hy(a,v)(z,y) = f(a(a:,y), %,v(x,y))

are uniformly continuous, uniformly in \.
Proof. This is analogous to the proof of Proposition B.2. We omit the details. O

Proof of Proposition 3.5. (i) The first part of (i) follows from the uniform equi-
continuity of {g,} obtained in Proposition B.2, with a compact set Q" satisfying
QO cc Q' cc Q. For the second part use the uniform equi-continuity of {f,}
obtained in Proposition B.2 with Q' := Q.

(ii) Let € > 0. For v € LP(Q) and h > 0 consider the truncated function v :=
max{min{v, h}, —h}, whereas for v € LP(Q;RM), v’ is defined component-wise.
Since {wy,} is p-equiintegrable, so is

W= {w,:neNyU{wl :neN, h>o0},
(1]

and wp' —w, — 0in LP as h — oo, uniformly in n € N. Hence, by the first part of
(i), there exists H = H(e) > 0 such that

LplH] _ -z <
/Q f(:z:, En,wn (w)) f(x, En,wn(x)) dx < 3 (B.7)
for every n € N. Since {ULH}} and {wLH]} are p-equiintegrable and wih — 1 0 in

LP, again the first part of (i) yields

/
Finally, since f > 0 and ‘{vn #+ ULH}}’ — 0 as n — oo, we have that
x x
Bl _ 2 ]
/Qf(:c, En,vn> dz /Qf(:n, en’v" (x)) dx

T
> _ & H]
B /{vn#vLH]} f(m’ En’ o ) e n—oo 0

where we used (H2) and the p-equiintegrability of o, Combining (B.7)-(B.9), we

infer that
/Qf<l"7 %ﬂm(@) dx > /Qf(x, ﬁﬂ%(@) dr — ¢

for every n large enough. O

f(:r, E,ULHD — f(:n, ;,w,[LH](:U)>’ dez — 0. (B.8)

En n—o0

(B.9)

Proof of Proposition 3.6. Both assertions are immediate consequences of the uni-
form equi-continuity of {h)} obtained in Proposition B.3, with a compact set Q"
satisfying ' cc Q" cc Q. O
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