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Abstract

Two-scale techniques are developed for sequences of maps {uk} ⊂ Lp(Ω; RM )
satisfying a linear di�erential constraint Auk = 0. These, together with Γ-
convergence arguments and using the unfolding operator, provide a homogeniza-

tion result for energies of the type

Fε(u) :=
∫

Ω

f
(
x, x

ε , u(x)
)
dx with u ∈ Lp(Ω; RM ), Au = 0,

that generalizes current results in the case where A = curl.
MSC 2000: 49J45, 35E99

1 Introduction

In this paper we study the limiting behavior of a family of energy functionals with
periodic energy densities and underlying �elds subject to di�erential constraints. We
give an integral representation to

F(u) := inf
{

lim inf
ε→0

∫
Ω
f
(
x,
x

ε
, uε

)
dx

∣∣∣∣ uε ⇀ u in Lp(Ω; RM ),
Auε = 0

}
, (1.1)

where N,M ∈ N, Ω ⊂ RN is an open, bounded set, 1 < p < +∞, u ∈ Lp(Ω; RM ),
f : Ω× RN × RM → [0,+∞) satis�es

(H0) f(x, ·, ξ) is measurable for every (x, ξ) ∈ Ω× RM and
f(·, y, ·) is continuous for a.e. y ∈ RN ;

(H1) f(x, ·, ξ) is Q-periodic for every (x, ξ) ∈ Ω× RM , with Q := (0, 1)N ;
(H2) 0 ≤ f(x, y, ξ) ≤ C(1 + |ξ|p) for every (x, ξ) ∈ Ω× RM and a.e. y ∈ RN ,

and A is a �rst order partial di�erential operator of constant rank. Precisely, A maps
u = (u1, . . . , uM ) : Ω→ RM into Au = ((Au)1, . . . , (Au)L) : Ω→ RL, L ∈ N, with

(Au)l :=
N∑
i=1

M∑
m=1

Alim
∂um

∂xi
, l = 1, . . . , L,

1



and the coe�cients Alim ∈ R. The linear matrix valued function

A : RN → RL×M , (A(ξ))lm :=
N∑
i=1

Alimξi, l = 1, . . . , L, m = 1, . . . ,M,

is related to A via the Fourier transform. We assume throughout that A satis�es
Murat's condition of constant rank (see [23]), that is,

the rank of A(ξ) ∈ RL×M is constant as a function of ξ ∈ RN \ {0}. (1.2)

The study of lowersemicontinuity and relaxation of energy functionals of this type was
initiated by Dacorogna [13], followed by Fonseca and Müller [18], and also Braides,
Fonseca and Leoni [7], among others. In the latter, the homogenization of a family of
functionals as considered in [1] was studied, with f independent of x, continuous in y
(note that in (H0) we only ask measurability), and coercive (note that no coercivity
is required here in (H2)). Therefore, this work generalizes previous results in the
variational approach of homogenization for A-free �elds. We recall that important
examples that are included in this general setting are the case of divergence free
�elds, in which Au = 0 if and only if div u = 0, and the case of gradients, in which
Au = 0 if and only if curlu = 0.

The main theorem of this paper is

Theorem 1.1. If (H0)-(H2) hold then for every u ∈ Lp(Ω; RM ) with Au = 0,

F(u) =
∫

Ω
fhom(x, u(x)) dx

where, for x ∈ Ω and ξ ∈ RM ,

fhom(x, ξ) := lim inf
n→∞

inf
v∈VA

∫
Q
f(x, ny, ξ + v(y))dy,

and VA :=
{
v ∈ Lpper(RN ; RM )

∣∣ ∫
Q v = 0 and Av = 0

}
.

The proof may be found in Section 3, and the tools used here are Γ-convergence, as it
was introduced by De Giorgi (see [15] and [16]), the notion of two-scale convergence
for A-free sequences, introduced in the case of gradients by Nguetseng (see [22], [24]
and [25]), further developed by Allaire and Briane (see [2] and [1]) and many other
authors (see also [19]), and extended here to the general A-free setting in Section 2.
Further, to prove the lower bound

F(u) ≥
∫

Ω
fhom(x, u(x)) dx

we use the unfolding operator as proposed by Cioranescu, Damlamian and Griso (see
[11] and [12]; see also Visintin [26], [27]).

In Section 2 we develop the concept of two-scale convergence for A-free �elds, and in
Theorem 2.12 we give a complete characterization of weak two-scale limits of A-free
sequences. Precisely,
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Theorem 1.2. A function w ∈ Lp(Ω;Lpper(RN ; RM )) is the weak two-scale limit of a

A-free sequence {uε} ⊂ Lp(Ω; RM ) if and only if

Ay0w̄0 = 0 and Ay1w̄1 = 0,

where

w̄0(y0) :=
∫
Q
w(y0, y1) dy1 and w̄1(y0, y1) := w(y0, y1)− w̄0(y0)

for y0 ∈ Ω and y1 ∈ Q.

Recall that in the case of gradients, two-scale limits are of the form

(y0, y1) ∈ Ω×Q 7→ ∇v0(y0) +∇y1v1(y0, y1),

with v1 ∈ Lp(Ω;W 1,p
per(Q)) (see [1], and see [28] for a generalization). In this context,

using this together with Γ-limit techniques, Baia and Fonseca in [4] obtained the
integral representation for the limit energy of a family of functionals

v 7→
∫

Ω
f
(
x,
x

ε
,∇vε

)
dx (1.3)

just as in Theorem 1.1, under conditions (H0), (H1), and with (H2) strengthened
with a p-coercivity condition. We remark that the result obtained in this paper now
extends that in [4] to the case in which f is not coercive. There is an extensive body of
literature on homogenization of multiple integrals of the type (1.3), and in particular
we refer to Braides and Defranceschi [6], Braides and Lukkassen [8], Lukkassen [21],
Berlyand, Cioranescu and Golovaty [5], Babadjian and Baía [3], and the references
therein.

2 Weak two-scale limits for A-free sequences

Let M,N ∈ N, let 1 < p <∞, let Ω ⊂ RN be open and bounded and let Q := (0, 1)N

be the unit cube in RN . In the following, spaces of functions in RN which are Q-
periodic are denoted using a subscript �per�, where u : RN → RM is said to be
Q-periodic if u(x+ ζ) = f(x) for all ζ ∈ ZN and all x ∈ RN . In particular, we use the
space

Lpper(RN ; RM ) :=
{
u ∈ Lploc(R

N ; RM )
∣∣ u is Q-periodic

}
,

endowed with the norm of Lp(Q,RM ).

De�nition 2.1 (weak two-scale convergence [24], [2]). Given a function w ∈
Lp(Ω;Lpper(RNn; RM )) and a sequence {uε}ε>0 ⊂ Lp(Ω; RM ), we say that {uε} weakly
two-scale converges to w, or uε

2−s
⇀ w in Lp(Ω; RM ) (with respect to the scales x and

x
ε ), if ∫

Ω
uε(x) · ϕ

(
x,
x

ε

)
dx −→

ε→0

∫
Ω

∫
Q
w(y0, y1) · ϕ(y0, y1) dy1dy0, (2.1)

for every ϕ ∈ Lp′(Ω;Cper(RN ; RM )), where p′ := p/(p− 1).

3



Here and in the following, if we talk about a �sequence� with index ε > 0, we under-
stand that ε can be replaced with an arbitrary sequence (εk)k∈N ⊂ (0,∞) such that
εk → 0 as k → ∞. In particular, uε → u as ε → 0+ (with respect to some notion of
convergence) if and only if uεk → u for every sequence (εk)k∈N ⊂ (0,∞) with εk → 0
as k →∞.

Remark 2.2. Note that if uε
2−s
⇀ w in Lp(Ω; RM ) then uε ⇀ w̄0 in Lp(Ω; RM ), where

w̄0(y0) :=
∫
Qw(y0, y1)dy1 for y0 ∈ Ω.

Bounded sequences are compact with respect to two-scale weak convergence. Precisely
(see [2], [22]):

Proposition 2.3. Every bounded sequence in Lp(Ω; RM ) has a subsequence which

weakly two-scale converges to a limit in Lp(Ω;Lpper(RN ; RM )).

A simple example of a weakly two-scale convergent sequence is addressed next:

Proposition 2.4. Given u ∈ Lp(Ω;Cper(RN ; RM )) or u ∈ Lpper(RN ;C(Ω; RM )) (the

second variable being the periodic one), the sequence {uε} ⊂ Lp(Ω; RM ), with uε(x) :=
u(x, xε ), is p-equiintegrable. It weakly two-scale converges to u, and it weakly converges
in Lp(Ω; RM ) to x ∈ Ω 7→

∫
Q u(x, y) dy.

This result is an immediate consequence of the following lemma proved in [2] (see
Lemma 5.2 and Corollary 5.4 in [2]).

Lemma 2.5. Let g ∈ L1(Ω;Cper(RN ; RM )) or g ∈ L1
per(RN ;C(Ω; RM )). Then {gε},

with gε(x) := g(x, xε ) (the second variable being the periodic one), is a bounded, equi-

integrable sequence in L1(Ω; RM ) such that∫
Ω
gε(x) dx→

∫
Ω

∫
Q
g(x, y) dxdy as ε→ 0+.

Remark 2.6. Equiintegrability of gε is not shown in [2], but it is a consequence of
the following estimates: Let E ⊂ Ω be a measurable set. In the �rst case, i.e., if
g ∈ L1(Ω;Cper(RN ; RM )), we have∫

E
|gε(x)| dx ≤

∫
E

sup
y∈Q
|g(x, y)| dxdy.

On the other hand, if g ∈ L1
per(RN ;C(Ω; RM )), then∫

E
|gε(x)| dx ≤

∫
E

max
x∈Ω

∣∣g(x, yε )
∣∣ dy.

Note that since maxx∈Ω |g(x, ·)| ∈ L1(Q; RM ), (maxx∈Ω |g(x, ·ε)|)ε is a weakly con-
vergent sequence in L1 by the Riemann-Lebesgue lemma (see [17], e.g.), and thus
equiintegrable.

Here, we study those two-scale weak limits which are generated by sequences {uε}
satisfying a di�erential constraint Auε = 0, where A denotes a homogeneous linear
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di�erential operator of �rst order mapping u = (u1, . . . , uM ) : Ω → RM into Au =
((Au)1, . . . , (Au)L) : Ω→ RL, with

(Au)l :=
N∑
i=1

M∑
m=1

Alim
∂um

∂xi
, l = 1, . . . , L,

and the coe�cients Alim ∈ R. Its formal adjoint is denoted by A∗, which maps v =
(v1, . . . , vL) : Ω→ RL into A∗v : Ω→ RM , and is de�ned by

(A∗v)m := −
N∑
i=1

L∑
l=1

Alim
∂vl
∂xi

, m = 1, . . . ,M.

If u ∈ C1
c (Ω; RM ) and v ∈ C1

c (Ω; RL), or u ∈ C1
per(RN ; RM ) and v ∈ C1

per(RN ; RL),
then integration by parts yields∫

Ω
Au · v =

∫
Ω
u · A∗v or

∫
Q
Au · v =

∫
Q
u · A∗v,

respectively.

Below, it is understood that if we apply A to a vector �eld depending on multiple
variables, then the variable on which A operates is indicated as a subscript, e.g.,
Ayu(x, y) means that for the purpose of the application of A, u(x, y) is considered as
a function of y with x being a �xed parameter. The linear matrix valued function

A : RN → RL×M , (A(ξ))lm :=
N∑
i=1

Alimξi, l = 1, . . . , L, m = 1, . . . ,M,

is related to A via the Fourier transform. As a consequence of constant rank condition
(1.2), the orthogonal projection P(ξ) ∈ RM×M onto the kernel of A(ξ) in RM is 0-
homogeneous and continuous as a function of ξ ∈ RN \ {0}. We set P(0) to be the
identity matrix in RN×N . By the Hörmander-Mikhlin multiplier theorem, P gives
rise to a continuous projection operator P : Lpper(RN ; RM )→ Lpper(RN ; RM ) onto the
kernel of A,

P(u) := F−1(PF(u)),

where F is the Fourier transform. It turns out that

‖(I − P)u‖Lpper(RN ;RM ) ≤ C ‖Au‖W−1,p(Q;RL) for every u ∈ Lpper(RN ; RM ) (2.2)

for some constant C > 0. For more details and a proof of (2.2), the reader is referred
to [18].

De�nition 2.7 (Notions of weak A-di�erentiability and A-free �elds).

(i) If u ∈ Lp(Ω; RM ), then we say that Au exists in Lp if there is a function
U ∈ Lp(Ω; RL) such that∫

Ω
u · A∗ϕdy =

∫
Ω
U · ϕdy for every ϕ ∈ C1

c (Ω; RL).

In this case, we de�ne Au := U . We say that u is A-free, or Au = 0, if the
preceding equation is satis�ed with U = 0.
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(ii) If v ∈ Lpper(RN ; RM ), then we say that Av exists in Lpper, if there is a function
V ∈ Lpper(RN ; RL) such that∫

Q
v · A∗ϕdy =

∫
Q
V · ϕdy for every ϕ ∈ C1

per(RN ; RL).

In this case, we de�ne Av := V . We say that v is A-free, or Av = 0, if the
preceding equation is satis�ed with V = 0.

(iii) If w ∈ Lp(Ω;Lpper(RN ; RM )), w = w(y0, y1) with (y0, y1) ∈ Ω × RN and j ∈
{0, 1}, then we say that Ayju exists in Lp(Ω;Lpper(RN ; RL)) if there exists a
function Wj ∈ Lp(Ω;Lpper(RN ; RL)) such that∫

Ω

∫
Q
w · A∗yjϕdy1dy0 =

∫
Ω

∫
Q
Wj · ϕdy1dy0

for every ϕ ∈ C1
c (Ω;C1

per(RN ; RL)),

In this case, we de�ne Ayjw := Wj .

The following extension result plays an important role in the variational theory of
A-free �elds (see also [18]):

Lemma 2.8 (A-free periodic extension). Let D ⊂ Q := (0, 1)N ⊂ RN be open,

let 1 < p < ∞ and let A satisfy (1.2). Then for every p-equiintegrable sequence

{vn} ⊂ Lp(D; RM ) with vn ⇀ 0 in Lp(D; RM ) and Avn → 0 in W−1,p(D; RL), there
exists an A-free sequence {un} ⊂ Lpper(RN ; RM ), p-equiintegrable in Q, such that

un − vn → 0 in Lp(D; RM ), un → 0 in Lp(Q \D; RM ),
∫
Q
un(x) = 0,

and ‖un‖Lp(Q;RM ) ≤ C ‖vn‖Lp(d;RM ) for all n ∈ N and some C = C(A) > 0.

Proof. For every k ∈ N choose ϕk ∈ C∞c (D; [0, 1]) such that ϕk(x) = 1 whenever
dist

(
x; RN \D

)
≥ 1

k . Clearly,

A(ϕkvn) = ϕkAvn +
N∑
i=1

M∑
m=1

vmn A
li
m∂iϕk −→n→∞ 0 in W−1,p(Q; RM ),

for �xed k, since vn ⇀ 0 in Lp and Lp is compactly embedded in W−1,p. Hence, we
may choose a sequence k(n)→∞ such that

A(ϕk(n)vn) −→
n→∞

0 in W−1,p(Q; RM ).

For each n, ϕk(n)vn can be considered as an element of Lpper(RN ; RM ) by extending it

to RN Q-periodically. Let
ũn := P(ϕk(n)vn).

Then ũn ∈ Lpper(RN ; RM ), and by (2.2),

‖ũn‖Lp(Q;RM ) =
∥∥P(ϕk(n)vn)

∥∥
Lp(Q;RM )

≤ C
∥∥ϕk(n)vn

∥∥
Lp(Q;RM )

≤ C ‖vn‖Lp(D;RM )
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by the continuity of P on Lpper. Also, since {|vn|p} is equiintegrable, we have

‖ũn − vn‖Lp(D;RM ) ≤
∥∥P(ϕk(n)vn)− ϕk(n)vn

∥∥
Lp(Q;RM )

+
∥∥(1− ϕk(n))vn

∥∥
Lp(D;RM )

≤ C
∥∥A(ϕk(n)vn)

∥∥
W−1,p(Q;RL)

+
∥∥(1− ϕk(n))vn

∥∥
Lp(D;RM )

−→
n→∞

0,

and

‖ũn‖Lp(Q\D;RM ) =
∥∥P(ϕk(n)vn)− ϕk(n)vn

∥∥
Lp(Q\D;RM )

≤ C
∥∥A(ϕk(n)vn)

∥∥
W−1,p(Q;RL)

−→
n→∞

0.

To verify the p-equiintegrability of {ũn} in Q let E ⊂ Q, and observe that∫
E
|ũn|p ≤ C

∫
E

∣∣P(ϕk(n)vn)− ϕk(n)vn
∣∣p + C

∫
E∩D
|vn|p

≤ C
∥∥A(ϕk(n)vn)

∥∥p
W−1,p(Q;RL)

+ C

∫
E∩D
|vn|p .

It su�ces to set un(x) := ũn(x)−
∫
Q ũn(y) dy.

The following condition turns to be the characterization of weak two-scale limits of
A-free sequences (see Theorem 2.12 below).

De�nition 2.9 (generalized A-free �elds with one microscale). We say that w ∈
Lp(Ω;Lpper(RN ; RM )) is generalized A-free if

Ay0w̄0 = 0 and Ay1w̄1 = 0, (2.3)

where w̄0 ∈ Lp(Ω; RM ) and w̄1 ∈ Lp(Ω;Lpper(RN ; RM )) are de�ned by

w̄0(y0) :=
∫
Q
w(y0, y1)dy1 and w̄1(y0, y1) := w(y0, y1)− w̄0(y0), (2.4)

for y0 ∈ Ω and y1 ∈ Q.

Proposition 2.10. Let {uε} be a bounded, A-free sequence in Lp(Ω; RM ) which weakly
two-scale converges to a function w ∈ Lp(Ω;Lpper(RN ; RM )). Then w is generalized

A-free.

Proof. Fix ψ ∈ C1
c (Ω; RM ). We have

0 = lim
ε→0+

∫
Ω
uε(x) · A∗ψ(x) dx =

∫
Ω

∫
Q
w(y0, y1) · A∗ψ(y0) dy1dy0

=
∫

Ω
w̄0 · A∗ψ(y0) dy0,

where we used the facts that uε is A-free, (2.1) and (2.4)1, in this order. This
establishes (2.3)1. Next, de�ne ϕ(y0, y1) := ψ(y0)φ(y1) for arbitrary functions
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ψ ∈ C1
c (Ω; RN ) and φ ∈ C1

per(RN ; RL). Since uε is A-free, we have that

0 = lim
ε→0+

∫
Ω
uε(x) · εA∗

[
ϕ
(
x,
x

ε

)]
dx

= lim
ε→0+

∫
Ω
uε(x) ·

[
ε(A∗ψ)(x)φ

(x
ε

)
+ ψ(x)(A∗φ)

(x
ε

)]
dx

=
∫

Ω

∫
Q
w(y0, y1) · ψ(y0)A∗y1φ(y1) dy1dy0

=
∫

Ω

(∫
Q
w̄1 · A∗y1φ(y1) dy1

)
ψ(y0) dy0,

where we used the fact that
∫
QA

∗
y1φ(y1) dy1 = 0. This yields (2.3)2.

In the case of gradients (i.e., curl-free �elds) and divergence-free �elds, (2.3) is known
to characterize the weak two-scale limits of A-free sequences in Lp (see [1] and [2]).
Precisely, weak two-scale limits of gradients of W 1,p(Ω)-bounded functions are all
functions of the form (y0, y1) 7→ ∇y0u0(y0) +∇y1u1(y0, y1) with u0 ∈ W 1,p(Ω), u1 ∈
Lp(Ω;W 1,p

per(RN )), and weak two-scale limits of divergence free �elds in Lp(Ω; RN ) are
all functions w ∈ Lp(Ω;Lpper(RN ; RN )) such that divy0 w̄0 = 0 and divy1 w̄1(y0, y1) = 0.
To prove the corresponding result for a general A satisfying (1.2), we reconstruct a
suitable A-free sequence from a given generalized A-free function.

Proposition 2.11. Let Y ⊂ RN be an open cube compactly containing Ω, and suppose
that A satis�es (1.2). Then for every w ∈ Lp(Ω;Lpper(RN ; RM )), w = w(y0, y1), such
that

∫
Qw(·, y1) dy1 = 0 (i.e., w = w̄1 and w̄0 = 0) and Ay1w = 0, there exists an

A-free, p-equiintegrable sequence {uε} ⊂ Lp(Y ; RM ) such that the restriction of uε to
Ω weakly two-scale converges to w and uε ⇀ 0 weakly in Lp(Y ; RM ).

Proof. Step 1: Suppose �rst that w ∈ C1(RN ;C1
per(RN ; RM )). De�ne

vε(x) :=
∫
Q
w
(
x+ εy, xε

)
dy, x ∈ Ω.

Then vε ∈ C1(Ω; RM ). By Hölder's inequality, we have

|vε(x)|p ≤
∫
Q

∣∣w(x+ εy, xε
)∣∣p dy,

and by the volume-preserving change of variables

Sε : RN ×Q→ RN ×Q, Sε(x, y) := (x+ εy, xε −
⌊
x
ε

⌋
),

we get the bound

‖vε‖Lp(E;RM ) ≤ ‖w‖Lp(Sε(E×Q);RM ) ≤ ‖w‖Lp(Eε×Q;RM ) (2.5)

for every measurable E ⊂ Ω, with Eε := {x ∈ RN | dist (x;E) < ε}. In particular,
{vε} is p-equiintegrable in Ω. Next, we claim that

vε
2−s
⇀ w in Lp(Ω; RM ),

vε ⇀ 0 in Lp(Ω; RM ) and Avε → 0 strongly in W−1,p(Ω; RL).
(2.6)
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To prove (2.6), we set ṽε(x) := w(x, xε ). Clearly, {ṽε} ⊂ C1(RN ; RM ) is locally
bounded in L∞. Since Ay1w = 0, we have

Aṽε(x)−Avε(x) =
∫
Q

(
Ay0w

(
x, xε

)
−Ay0w

(
x+ εy, xε

))
dy (2.7)

and thus Avε−Aṽε → 0 in Lp(Ω; RM ), where we used the fact that Ay0w is uniformly
continuous in Ω1 × RN , with Ω1 := {x ∈ RN | dist (x; Ω) < 1}. In addition, by
Proposition 2.4 we obtain

Aṽε = Ay0w
(
·, ·ε
)
⇀

ε→0+

∫
Q
Ay0w(·, y1)dy1 = A

∫
Q
w(·, y1)dy1 = 0 (2.8)

weakly in Lp(Ω; RM ). By (2.7) and (2.8), we deduce that limεAvε = 0 weakly in
Lp(Ω; RL), and thus strongly in W−1,p(Ω; RL) by Sobolev's compact embedding theo-
rem. Again using the uniformly continuity of w in Ω1×RN , we have that vε−ṽε → 0 in

Lp(Ω; RM ) and, in particular, vε
2−s
⇀ w and vε ⇀ 0 in Lp(Ω; RM ) (note that w̄0 = 0).

This completes the proof of (2.6), which now allows us to apply Lemma 2.8 to {vε}
(with D := Ω and Y in place of Q, if necessary translate and rescale). We thus
get an A-free, p-equiintegrable sequence {uε} ⊂ Lp(Y ; RM ) such that vε − uε → 0
in Lp(Ω; RM ) and uε → 0 in Lp(Y \ Ω; RM ). In particular, {uε} weakly two-scale
converges to w in Ω and weakly converges to zero in Y . In addition, in view of (2.5)
we obtain

‖uε‖Lp(E;RM ) ≤ ‖uε‖Lp(Y \Ω;RM ) + ‖uε − vε‖Lp(E∩Ω;RM ) + ‖vε‖Lp(E∩Ω;RM )

≤ σε + ‖w‖Lp(Sε((E∩Ω)×Q);RM ) ,
(2.9)

for every 0 < ε ≤ 1 and every measurable E ⊂ Y , where

σε := ‖uε‖Lp(Y \Ω;RM ) + ‖uε − vε‖Lp(Ω;RM ) → 0 as ε→ 0+.

Consequently, {uε} is p-equiintegrable in Y .
Step 2: We use a molli�cation and a diagonalization argument to reduce the general

case to the previous step. For every y1 ∈ RN extend w(·, y1) by zero outside Ω,
whence Ay1w = 0 in RN × RN and

∫
Qw(·, y1)dy1 = 0 in RN . Standard molli�cation

of w = w(y0, y1) by convolution (twice, �rst in y1 and then in y0) yields a sequence
{wj} ⊂ C∞c (RN ;C∞per(RN ; RM )) such that ‖wj‖Lp(RN ;Lp(Q;RM )) ≤ ‖w‖Lp(Ω;Lp(Q;RM )),
wj → w in Lp, and each wj satis�es satis�es

Ay1wj = 0 in RN × RN and

∫
Q
wj(·, y1)dy1 = 0 in RN ,

since both properties are invariant under convolution in y1. As to the latter, note that
for arbitrary z ∈ RN ,

∫
Qw(·, z+ y1)dy1 =

∫
Qw(·, y1)dy1 = 0, since w is Q-periodic in

y1.

By Step 1, for each j there exists an A-free sequence {uj,ε} ⊂ Lp(Y ; RM ) such that

uj,ε
2−s
⇀ wj in Lp(Ω; RM ) and uj,ε ⇀ 0 in Lp(Y ; RM )

9



as ε→ 0+. Moreover, by (2.9),

‖uj,ε‖Lp(E;RM ) ≤ σj,ε + ‖wj‖Lp(Sε((E∩Ω)×Q);RM ) (2.10)

for every measurable E ⊂ Y , with an error term satisfying σj,ε → 0 as ε → 0+ for
�xed j. Further,

‖wj‖Lp(Sε((E∩Ω)×Q);RM ) ≤ ‖wj − w‖Lp(RN×Q;RM ) + ‖w‖Lp(Sε((E∩Ω)×Q);RM ) . (2.11)

Since the spaces of test functions for weak two-scale convergence and weak convergence
in Lp, i.e., Lp

′
(Ω;Cper(RN ; RM )) and Lp

′
(Ω; RM ), repectively, are both separable, a

diagonalizing argument yields an integer valued function ε 7→ j(ε) such that j(ε)→∞,
the sequence {uε}, with uε := uj(ε),ε, weakly two-scale converges to w in Ω and weakly
converges to zero in Y , and σj(ε),ε → 0 as ε → 0+. In particular, (2.10) and (2.11)
imply that uε is p-equiintegrable on Y .

We conclude that A-free weak two scale limits are characterized as follows.

Theorem 2.12. Let 1 < p <∞, let Ω ⊂ RN be open and bounded, and suppose that

A satis�es (1.2). Then w ∈ Lp(Ω;Lpper(RN ; RM )) is the weak two-scale limit of some

bounded, A-free sequence {uε} ⊂ Lp(Ω; RM ) if and only if w is generalized A-free.

Proof. By Proposition 2.10, if w is the weak two-scale limit of an A-free sequence
then w is generalized A-free. Conversely, given a generalized A-free w, we apply
Proposition 2.11 to w̄1 (using the notation of De�nition 2.9). This yields an A-free,
bounded sequence {ũε} weakly two-scale converging to w̄1. Hence, uε := w̄0 + ũε
weakly two-scale converges to w = w̄0 + w̄1.

3 A-free homogenization with one microscale

Let Ω ⊂ RN be open and bounded, let 1 < p < ∞ and ε ∈ (0, 1], and consider the
functional

Fε(u) :=
∫

Ω
f
(
x,
x

ε
, u(x)

)
dx for u ∈ UA :=

{
u ∈ Lp(Ω; RM )

∣∣ Au = 0
}
,

where f : Ω × RN × RM → R satis�es the conditions (H0)�(H2) listed in the intro-
duction.

Our main result is the following:

Theorem 3.1. If A satis�es (1.2) and (H0)�(H2) hold, then

Fhom(u) := Γ− limε→0+Fε(u),

the Γ-limit in the sense of De Giorgi with respect to weak convergence in Lp, exists
for every u ∈ UA. Moreover,

Fhom(u) = lim inf
n→∞

inf
w∈WA

∫
Ω

∫
Q
f(x, ny, u(x) + w(x, y)) dydx,

where WA :=
{
w ∈ Lp(Ω;Lpper(RN ; RM ))

∣∣ ∫
Qw(·, y)dy = 0, Ayw = 0

}
.
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We recall that the Γ(Lp-weak)-limit of Fε exists at u if

Γ− lim inf Fε(u) := inf
{

lim inf Fε(uε)
∣∣ {uε} ⊂ UA, uε ⇀ u in Lp(Ω; RM )

}
,

Γ− lim supFε(u) := inf
{

lim supFε(uε)
∣∣ {uε} ⊂ UA, uε ⇀ u in Lp(Ω; RM )

}
coincide (see [14]). The corollary below provides an integral representation for Fhom.

Corollary 3.2. Under the asssumptions of Theorem 3.1, if u ∈ UA then

Fhom(u) =
∫

Ω
fhom(x, u(x)) dx,

where for x ∈ Ω and ξ ∈ RM ,

fhom(x, ξ) := lim inf
n→∞

inf
v∈VA

∫
Q
f(x, ny, ξ + v(y))dy

and VA := {v ∈ Lpper(RN ; RM ) |
∫
Q v = 0 and Av = 0}.

Remark 3.3. For n ∈ N, u ∈ UA, w ∈ WA, v ∈ VA and ξ ∈ RN de�ne

F̂ (n, u,w) :=
∫

Ω

∫
Q
f(x, ny, u(x) + w(x, y)) dydx,

f̂(n, x, ξ, v) :=
∫
Q
f(x, ny, ξ + v(y)) dy,

Then for every k, n ∈ N we have that

inf
w∈WA

F̂ (kn, u, w) ≤ inf
w∈WA

F̂ (n, u,w) for every u ∈ UA, and (3.1)

inf
v∈VA

f̂(kn, x, ξ, v) ≤ inf
v∈VA

f̂(n, x, ξ, v) for every (x, ξ) ∈ Ω× RM . (3.2)

Indeed, if w ∈ WA then w̄(x, y) := w(x, ky) ∈ WA, and (H1) together with the pe-
riodicity of w(x, ·) and a change of variables yield F̂ (kn, u, w̄) = F̂ (n, u,w). Sim-
ilarly, if v ∈ VA then v̄(y) := v(ky) ∈ VA and f̂(kn, x, ξ, v̄) = f̂(n, x, ξ, v). In
particular, n 7→ infw∈WA F̂ (n!, u, w) is decreasing, F̂ (n!, u, w) ≤ F̂ (n, u,w) and so
limn infw∈WA F̂ (n!, u, w) exists. Therefore,

lim
n→∞

inf
w∈WA

F̂ (n!, u, w) ≥ lim inf
n∈N

inf
w∈WA

F̂ (n, u,w) = Fhom(u)

≥ inf
n∈N

inf
w∈WA

F̂ (n, u,w) ≥ inf
n∈N

inf
w∈WA

F̂ (n!, u, w) = lim
n→∞

inf
w∈WA

F̂ (n!, u, w).

We conclude that

Fhom(u) = inf
n∈N

inf
w∈WA

F̂ (n, u,w) = lim
n→∞

inf
w∈WA

F̂ (n!, u, w)

and, similarly,

fhom(x, ξ) = inf
n∈N

inf
v∈VA

f̂(n, x, ξ, v) = lim
n→∞

inf
v∈VA

f̂(n!, x, ξ, v).

The following lemma is an important ingredient in the proof of Theorem 3.1.

11



Lemma 3.4 (A-free decomposition lemma [18]). Suppose that A satis�es (1.2), let
D ⊂ RN be open and bounded, let 1 < p <∞ and let {un} ⊂ Lp(D; RM ) be a bounded

sequence of A-free functions. Then there exists a subsequence {uk(n)} of {un} and a

bounded, A-free, p-equiintegrable sequence {vn} ⊂ Lp(D; RM ), such that uk(n)−vn → 0
in Lq for every q ∈ [1, p).

The proof of Theorem 3.1 is divided into establishing the upper and the lower bounds
for Γ − limFε. We will use the following two technical results. For their proofs, the
reader is referred to Appendix B.

Proposition 3.5. Let f satisfy (H0)�(H2), let Ω′ ⊂⊂ Ω be open, let εn → 0+ as

n → ∞, let {gn} ⊂ L∞(Ω,RN ) be such that ‖gn − id‖L∞ → 0, and let {vn}, {wn} ⊂
Lp(Ω; RM ) be bounded sequences.

(i) If {vn}, {wn} are p-equiintegrable and ‖vn − wn‖Lp(Ω;RM ) → 0 then

lim
n→∞

∫
Ω

[
f
(
x,

x

εn
, vn(x)

)
− f

(
x,

x

εn
, wn(x)

)]
dx = 0

and

lim
n→∞

∫
Ω′

[
f
(
gn(x),

x

εn
, vn(x)

)
− f

(
x,

x

εn
, wn(x)

)]
dx = 0.

(ii) If {wn} is p-equiintegrable and vn − wn → 0 in measure then

lim inf
n→∞

∫
Ω
f
(
x,

x

εn
, vn(x)

)
dx ≥ lim inf

n→∞

∫
Ω
f
(
x,

x

εn
, wn(x)

)
dx.

Proposition 3.6. Let f satisfy (H0)�(H2), let Ω′ ⊂⊂ Ω be open, let {gν} ⊂
L∞(Ω′ × Q,RN ), and let {vν,n | ν, n ∈ N}, {wν,n | ν, n ∈ N} ⊂ Lp(Ω′ × Q; RM ) be

p-equiintegrable sets.

(i) If supn∈N ‖vν,n − wν,n‖Lp(Ω′;RM ) → 0 and gν(x, y)− x→ 0 uniformly in (x, y) ∈
Ω′ ×Q as ν →∞, then∫

Ω′

∫
Q

[
f
(
gν(x), ny, vν,n(x, y)

)
− f

(
x, ny, wν,n(x, y)

)]
dydx −→

ν→∞
0,

uniformly in n ∈ N.

(ii) If ‖vν,n − wν,n‖Lp(Ω′;RM ) → 0 as n→∞ for every ν then∫
Ω′

∫
Q

[
f
(
x, ny, vν,n(x, y)

)
− f

(
x, ny, wν,n(x, y)

)]
dydx −→

n→∞
0,

for every ν ∈ N.

Proposition 3.7 (upper bound). Assume that (H0)�(H2) hold. Then for every n ∈
N, every δ > 0, every u ∈ UA, and every w ∈ WA, there exists a sequence {uε} ⊂ UA
such that uε ⇀ u in Lp(Ω; RM ) as ε→ 0+, and

lim
ε→0+

∫
Ω
f
(
x, xε , uε

)
dx ≤

∫
Ω

∫
Q
f(x, ny, u(x) + w(x, y)) dydx+ δ. (3.3)
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Proof. Step 1: Assume �rst that u ∈ C(Ω; RM ) and w ∈ Lpper(RN ;C(Ω; RM ))∩WA
(we write w(x, y) with y being the periodic variable). For �xed n ∈ N,

g(x, y) := f(x, ny, u(x) + w(x, y)), x ∈ Ω, y ∈ RN (the periodic variable),

is a function in L1
per(RN ;C(Ω; RM )). Moreover, the sequence {gε} ⊂ L1(Ω), with

gε(x) := g
(
x, xnε

)
, is bounded in L1, and by Lemma 2.5, with vε(x) := w

(
x, xε

)
, we

have ∫
Ω
f
(
x, xε , u(x) + vε(x)

)
dx =

∫
Ω
gε(x) dx −→

ε→0+

∫
Ω

∫
Q
g(x, y) dydx. (3.4)

In particular, (3.3) holds with equality for δ = 0 and uε(x) := u(x) +vε(x). Note that
{vε} is a p-equiintegrable sequence and, by Proposition 2.4, vε ⇀

∫
Qw(·, y)dy = 0

weakly in Lp. In addition, still by Proposition 2.4,

Avε = Ay0w
(
·, ·
nε

)
⇀

ε→0+

∫
Q
Ay0w(·, y1)dy1 = A

∫
Q
w(·, y1)dy1 = 0

in Lp(Ω; RL), and hence Avε → 0 in W−1,p(Ω; RL). Due to (a rescaled version of)
Lemma 2.8, there exists an A-free, p-equiintegrable sequence {ṽε} ⊂ Lp(Ω; RM ) such
that

ṽε − vε = ṽε − w
(
·, ·
nε

)
−→
ε→0+

0 in Lp(Ω; RM ).

In particular, ṽε ⇀ 0 in Lp(Ω; RM ). By Proposition 3.5 (i) we have

lim
ε→0+

∫
Ω
f(x, xε , u(x) + ṽε(x))dx = lim

ε→0+

∫
Ω
f(x, xε , u(x) + vε(x))dx

and this, together with (3.4), concludes the proof.

Step 2: The case of a general u ∈ UA and w ∈ WA follows by density and diagonal-

ization arguments. More precisely, we extend w to RN by setting w(y0, y1) := 0 for
y0 ∈ RN \ Ω. Mollifying in y0 results in a function w̃ which, in particular, belongs to
Lpper(RN ;C(Ω; RM )) ∩ WA and is close to w in the topology of Lp(Ω;Lp(RN ; RM )).
Note that by (H0) and (H2), the right hand side of (3.3) is continuous in w. Similarly,
u ∈ UA can be replaced by a ũ ∈ C(Ω; RM ) close to u in Lp (which in general does
not satisfy Au = 0 anymore, but this is irrelevant here).

Proposition 3.8 (lower bound 1). Assume that (H0)�(H2) hold. Then for every

sequence εn → 0+, every u ∈ UA and every sequence {un} ⊂ UA with un ⇀ 0 in

Lp(Ω; RM ), there exist a family of functions V = {vν,n | ν, n ∈ N} ⊂ UA such that

V is p-equiintegrable, vν,n ⇀
n→∞

0 weakly in Lp for every ν ∈ N, and

lim inf
n→∞

∫
Ω
f(x, xεn , u+ un) dx ≥ sup

ν∈N
lim inf
n→∞

∫
Ω
f
(
x, νnx, u+ vν,n

)
dx.

(3.5)
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Proof. Fix ν ∈ N. In the following, we repeatedly extract subsequences of n (with
all sequences depending on ν) without further mentioning and without relabeling n.
In particular, we may always assume that a limes inferior in n is a limit. For our
de�nition of vν,n below, we set vν,n := 0 if n does not match a value attained by the
�nal (ν-dependent) subsequence of n.

By Lemma 3.4, there exists a p-equiintegrable sequence {ũn} ⊂ UA such that ũn −
un → 0 in Lq(Ω; RM ) for q < p and, in particular, ũn ⇀ 0 in Lp. By Proposition 3.5
(ii), we have that

lim
n→∞

∫
Ω
f(x, xεn , u+ un)dx ≥ lim

n→∞

∫
Ω
f(x, xεn , u+ ũn)dx. (3.6)

If k̃ν,n := 1
νεn

is a sequence of integers (strictly increasing after selecting a suitable

subsequence of n), then we de�ne vν,k := un if k = k̃ν,n, vν,k := 0 otherwise. If this
is not the case, then for n ∈ N, let

⌊
1
νεn

⌋
denote the largest integer smaller than 1

νεn
and let

θν,n := νεn
⌊

1
νεn

⌋
∈ [0, 1], whence kν,n := θν,n

1
νεn
∈ N0 and θν,n → 1 as n→∞.

(3.7)

Choose an open cube Y ⊂ RN which compactly contains Ω. By (a rescaled version
of) Lemma 2.8 applied to the sequence {ũn}, we can �nd an A-free, bounded, p-
equiintegrable sequence {ūn} ⊂ Lp(Y ; RM ) such that ūn − ũn → 0 in Lp(Ω; RM ) and
ūn → 0 in Lp(Y \ Ω; RM ). Using Proposition 3.5 (i) and (3.7) we obtain

lim
n→∞

∫
Ω
f(x, xεn , u+ ũn)dx = lim

n→∞

∫
Ω
f(x, xεn , u+ ūn)dx

= lim
n→∞

∫
Ω
f(x, ν kν,nθν,n

x, u+ ūn)dx.
(3.8)

For any �xed Ω′ ⊂⊂ Ω, θν,nΩ′ ⊂ Ω if n is large enough (depending on ν). Since f ≥ 0,
a change of variables yields that

lim
n→∞

∫
Ω
f
(
x, νkν,n

1
θν,n

x, u(x) + ūn(x)
)
dx

≥ lim inf
n→∞

∫
θν,nΩ′

f
(
x, νkν,n

1
θν,n

x, u(x) + ūn(x)
)
dx

= lim inf
n→∞

(θν,n)N
∫

Ω′
f
(
θν,nx, νkν,nx, u(θν,nx) + ūn(θν,nx)

)
dx

= lim inf
n→∞

∫
Ω′
f
(
x, νkν,nx, u(x) + ūn(θν,nx)

)
dx,

(3.9)

where we used Proposition 3.5 (i) and, by (3.6), the facts that θν,n → 1 and u(θν,n·)→
u in Lp(Ω′; RM ). In view of (3.6)�(3.9), we conclude that

lim
n→∞

∫
Ω
f(x, xεn , un)dx ≥ lim inf

n→∞

∫
Ω′
f
(
x, νkν,nx, u(x) + ūn(θν,nx)

)
dx.
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Letting Ω′ approach Ω such that |Ω \ Ω′| → 0, using (H2) and the equiintegrability of
{|ūn|p}, we infer that

lim
n→∞

∫
Ω
f(x, xεn , un)dx ≥ lim inf

n→∞

∫
Ω
f
(
x, νkν,nx, u(x) + vν,kν,n(x)

)
dx,

with vν,kν,n(x) := ūn(θν,nx) for x ∈ Ω, ν ∈ N and n ≥ n0(ν), where n0(ν) is chosen
large enough such that θν,n ≥ 1

2 and θν,nΩ ⊂ Y for every n ≥ n0(ν). In particular,
{vν,kν,n | ν ∈ N, n ≥ n0(ν)} is p-equiintegrable on Ω, just like {ūn} is p-equiintegrable
on Y . Moreover, vν,kν,n ∈ UA and vν,kν,n ⇀ 0 weakly in Lp as n→∞.

Proposition 3.9 (lower bound 2). Assume that (H0)�(H2) hold. Then for every

u ∈ UA, and every family {vν,n | ν, n ∈ N} ⊂ UA satisfying (3.5),

lim inf
ν→∞

lim inf
n→∞

∫
Ω
f
(
x, νnx, u+ vν,n

)
dx

≥ lim inf
n→∞

inf
w∈WA

∫
Ω

∫
Q
f(x, ny, u(x) + w(x, y))dydx.

The proof of this Proposition uses a strategy similar to that in Lemma 2.9 in [10],
although we work under slightly weaker assumptions on f , strongly relying on the
p-equiintegrability of {vν,n}. In particular, we use the so-called unfolding operator Tδ
([11], [10]; see also [12], [26]): For δ > 0, Tδ : L1(Ω; RM ) → L1(Ω;L1

per(RN ; RM )) is
de�ned by

Tδ(v)(x, y) := v(δ
⌊
x
δ

⌋
+ δ(y − byc)) for x ∈ Ω and y ∈ RN ,

where v is extended by zero outside of Ω and, as before, for t ∈ R, btc denotes the
largest integer less then or equal to t. To arguments in RN with N > 1, b·c is applied
component-wise. Note that

Tδv(x, y) = Tδv
(
δ
⌊
x
δ

⌋
, y
)

for every δ > 0, (x, y) ∈ Ω× RN . (3.10)

Further properties of Tδ are collected in Appendix A.

Proof of Proposition 3.9. Fix u ∈ UA and let {vν,n | ν, n ∈ N} satisfy (3.5).
Moreover, �x Ω′ ⊂⊂ Ω, and for z ∈ ZN and ν ∈ N de�ne

Qν,z := 1
ν z + 1

νQ ⊂ RN for z ∈ ZN , Zν := {z ∈ ZN | Qν,z ∩ Ω′ 6= ∅},

and set

Iν,n :=
∫

Ω
f
(
x, νnx, u+ vν,n

)
dx.

Note that if ν is large enough such that the distance of Ω′ to ∂Ω is at least
√
N
ν , then

Qν,z ⊂ Ω for every z ∈ Zν . Since f ≥ 0, a change of variables and the de�nition of
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T 1
ν
yield

Iν,n ≥
∑
z∈Zν

∫
Qν,z

f(x, νnx, u+ vν,n)dx

=
∑
z∈Zν

1
νN

∫
Q
f
(
z+y
ν , n(z + y), T 1

ν
(u)( zν , y) + T 1

ν
(vν,n)( zν , y)

)
dy

=
∑
z∈Zν

∫
Qν,z

∫
Q
f
(
bνxc+y

ν , ny, T 1
ν
(u)( bνxcν , y) + T 1

ν
(vν,n)( bνxcν , y)

)
dydx

where we used (H1) and the facts that |Qν,z| = 1
νN

and z = bνxc for x ∈ Qν,z. Thus,
using (3.10) we have that

Iν,n ≥
∑
z∈Zν

∫
Qν,z

∫
Q
f
(
bνxc+y

ν , ny, T 1
ν
(u)(x, y) + T 1

ν
(vν,n)(x, y)

)
dydx

≥
∫

Ω′

∫
Q
f
(
bνxc+y

ν , ny, T 1
ν
(u)(x, y) + T 1

ν
(vν,n)(x, y)

)
dydx

(3.11)

if ν is su�ciently large such that
∣∣Ω′ \⋃z∈Zν Qν,z

∣∣ = 0. By Proposition A.2,

U :=
{
T 1
ν
(u) + T 1

ν
(vν,n)

∣∣∣ ν ∈ N, n ∈ N
}
∪
{
T 1
ν
(vν,n)

∣∣∣ ν ∈ N, n ∈ N
}
,

is a p-equiintegrable subset of Lp(Ω′ × Q; RM ). Moreover, as ν → ∞, bνxc+yν →
x uniformly in (x, y) ∈ Ω × Q, and T 1

ν
(u) → u in Lp(Ω′ × Q; RM ), the latter by

Proposition A.1. Hence, (3.11) and Proposition 3.6 (i) imply that

Iν,n ≥ σν +
∫

Ω′

∫
Q
f
(
x, ny, u(x) + T 1

ν
(vν,n)(x, y)

)
dydx

= σν +
∑
z∈Zν

∫
Ω′∩Qν,z

∫
Q
f
(
x, ny, u(x) + T 1

ν
(vν,n)( zν , y)

)
dydx,

(3.12)

with an error term σν = σν(Ω′) which is independent of n and satis�es σν → 0 as
ν → ∞ for �xed Ω′. Moreover, for �xed ν and z ∈ Zν , v̂ν,z,n(y) := T 1

ν
(vν,n)( zν , y) =

vν,n
(

1
ν (z + y)

)
, y ∈ Q, is a p-equiintegrable, A-free sequence in Lp(Q; RM ) with

v̂ν,z,n ⇀ 0 weakly in Lp as n → ∞. By Lemma 2.8, there exists a p-equiintegrable,
A-free sequence {wν,z,n} ⊂ Lpper(RN ; RM ) such that v̂ν,z,n − wν,z,n → 0 in Lp(Q; RM )
as n→∞ and

∫
Qwν,z,n(y) dy = 0. By Proposition 3.6 (ii), we infer that∫

Ω′∩Qν,z

∫
Q
f
(
x, ny, u(x) + T 1

ν
(vν,n)( zν , y)

)
dydx

= τz,n,ν +
∫

Ω′∩Qν,z

∫
Q
f
(
x, ny, u(x) + wν,z,n(y)

)
dydx

for every z ∈ Zν , where limn τz,n,ν = 0. In view of (3.12), we obtain that

lim inf
n→∞

Iν,n ≥ σν + lim inf
n→∞

∑
z∈Zν

∫
Ω′∩Qν,z

∫
Q
f
(
x, ny, u(x) + wν,z,n(y)

)
dydx

= σν + lim inf
n→∞

∫
Ω′

∫
Q
f
(
x, ny, u(x) + wν,n(x, y)

)
dydx,

16



where
wν,n(x, y) :=

∑
z∈Zν

χΩ′∩Qν,z(x)wν,z,n(y),

χΩ′∩Qν,z(x) := 1 if x ∈ Ω′∩Qν,z, and χΩ′∩Qν,z(x) := 0 elsewhere. Clearly, wν,n ∈ WA,
and thus, with

κΩ\Ω′ := − sup
n∈N

∫
Ω\Ω′

∫
Q
f(x, ny, u(x)) dxdy,

we have that

lim inf
n→∞

Iν,n ≥ κΩ\Ω′ + σν + lim inf
n→∞

∫
Ω

∫
Q
f
(
x, ny, u(x) + wν,n(x, y)

)
dydx

≥ κΩ\Ω′ + σν + lim inf
n→∞

inf
w∈WA

∫
Ω

∫
Q
f
(
x, ny, u(x) + w(x, y)

)
dydx.

To conclude let ν →∞ and then let Ω′ approach Ω such that |Ω \ Ω′| → 0, using (H2)
to ensure that κΩ\Ω′ → 0 as |Ω \ Ω′| → 0.

Proof of Theorem 3.1. Given u ∈ UA, εk → 0+, {uk} ⊂ UA with uk ⇀ u in
Lp(Ω; RM ) and setting

J(u) := lim inf
n→∞

inf
w∈WA

∫
Ω

∫
Q
f(x, ny, u(x) + w(x, y)) dydx,

we may assume w.l.o.g. that lim inf
∫

Ω f
(
x, xεk , uk

)
dx = lim

∫
Ω f
(
x, xεk , uk

)
dx, and by

Proposition 3.8 and Proposition 3.9, it follows that

lim
k→∞

∫
Ω
f
(
x,

x

εk
, uk(x)

)
dx ≥ J(u).

Therefore Γ− lim inf Fε(u) ≥ J(u).

Conversely, if δ > 0 and εk → 0+, and if n ∈ N, w ∈ WA are such that∫
Ω

∫
Q
f(x, ny, u(x) + w(x, y)) dydx− δ ≤ J(u),

then using Proposition 3.7 we �nd {uk} ⊂ UA, uk ⇀ u in Lp(Ω; RM ) such that

lim
k→∞

∫
Ω
f
(
x,

x

εk
, uk(x)

)
dx ≤

∫
Ω

∫
Q
f(x, ny, u(x) + w(x, y)) dydx− δ ≤ J(u) + 2δ.

Letting δ → 0, we conclude that Γ− lim supFε(u) ≤ J(u).

The proof of Corollary 3.2 relies on a measurable selection criterion which is a simpli-
�ed variant of Theorem III.6 in [9].

Lemma 3.10. Let Z be a separable metric space, let T be a measurable space and

let Γ : T → 2Z be a multifunction such that Γ(t) ⊂ Z is nonempty and open for

every t ∈ T , and {t ∈ T | z ∈ Γ(t)} is measurable for every z ∈ Z. Then Γ admits

a measurable selection, i.e., there exists a measurable function γ : T → Z such that

γ(t) ∈ Γ(t) for every t ∈ T .
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Proof. Let Z0 := {zk | k ∈ N} be a countable dense subset of Z. Since Γ(t) 6= ∅
and it is open, Γ(t) ∩ Z0 6= ∅ for all t ∈ T . We de�ne γ(t) := zk(t) if k(t) is the
smallest integer such that zk(t) ∈ Γ(t), so that the function γ attains values only in
the countable set Z0. Moreover,

γ−1(zk) = {t | zk ∈ Γ(t)} \
⋃k−1
j=1{t | zj ∈ Γ(t)}

is measurable for every k ∈ N, whence γ is measurable.

Proof of Corollary 3.2. Fix u ∈ UA. Let V0 ⊂ VA be a countable subset which is
dense in VA with respect to the topology of Lpper (for instance, choose a countable dense
subset in Lpper(RN ; RM ), and project it onto VA using v 7→ P (v) := Pv −

∫
Q(Pv)dy).

For every n ∈ N, by Lebesgue's Dominated Convergence Theorem and by (H2), we
have for a.e. x ∈ Ω

Jn(x, u(x)) := inf
v∈VA

∫
Q
f(x, ny, u(x) + v(y)) dy = inf

v∈V0

∫
Q
f(x, ny, u(x) + v(y)) dy.

In particular, the functions x ∈ Ω 7→ Jn(x, u(x)) and x ∈ Ω 7→ fhom(x, u(x)) =
lim infn→∞ Jn(x, u(x)) are measurable. By Theorem 3.1 and since w(x, ·) ∈ VA if
w ∈ WA, we have

Fhom(u) = lim inf
n→∞

inf
w∈WA

∫
Ω

∫
Q
f(x, ny, u(x) + w(x, y)) dydx

≥ lim inf
n→∞

∫
Ω

(
inf
v∈VA

∫
Q
f(x, ny, u(x) + v(y)) dy

)
dx

≥
∫

Ω

(
lim inf
n→∞

inf
v∈VA

∫
Q
f(x, ny, u(x) + v(y)) dy

)
dx

=
∫

Ω
fhom(x, u(x)) dx,

where we used Fatou's lemma.

To prove the converse inequality, �x δ > 0, and for m ∈ N set

Ωm,δ :=
⋃

n∈{1,...,m}

{
x ∈ Ω

∣∣ Jn(x, u(x)) < fhom(x, u(x)) + δ
}
.

Since |Ω \ Ωm,δ| → 0 as m → ∞, there exists nδ ∈ N such that |Ω \ Ωm,δ| ≤ δ for
m ≥ nδ. Consider the sets

Γδ(x) :=
{
v ∈ VA

∣∣∣ ∫
Q
f(x, nδ! y, u(x) + v(y)) dy < fhom(x, u(x)) + δ

}
which are open in Lpper(RN ; RM ) (by (H2) and Lebesgue's Dominated Convergence
Theorem) and nonempty for x ∈ Ωnδ,δ (by Remark 3.3, using the fact that n 7→
infv∈VA

∫
Q f(x, n! y, u(x)+v(y)) dy is decreasing). In addition, {x ∈ Ωnδ,δ | v ∈ Γδ(x)}

is measurable for every v ∈ Lpper(RN ,RM ). We now apply Lemma 3.10 with T := Ωnδ,δ

and Z := Lpper(RN ,RM ) to �nd a measurable selection w̄ : Ωnδ,δ → Lpper(RN ; RM ) of
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Γδ. Moreover, w̄ ∈ Lp(Ω′δ;L
p
per(RN ; RM )) for a suitable measurable set Ω′δ ⊂ Ωn0,δ

such that ∣∣Ω \ Ω′δ
∣∣ ≤ 2δ. (3.13)

For a.e. x ∈ Ω′δ, w̄(x) ∈ Γδ(x), and thus, since f ≥ 0, we have∫
Ω′δ

∫
Q
f(x, nδ! y, u(x) + w̄(x, y)) dydx ≤

∫
Ω
fhom(x, u(x)) dx+ δ |Ω| .

Extending w̄(x, ·) := 0 for x ∈ Ω \ Ω′δ, we have that w̄ ∈ WA and so,

inf
w∈WA

∫
Ω

∫
Q
f(x, nδ! y, u(x) + w(x, y)) dydx

≤
∫

Ω′δ

∫
Q
f(x, nδ! y, u(x) + w̄(x, y)) dydx+

∫
Ω\Ω′δ

∫
Q
f(x, nδ! y, u(x)) dydx

≤
∫

Ω
fhom(x, u(x)) dx+ δ |Ω|+

∫
Ω\Ω′δ

∫
Q
f(x, nδ! y, u(x)) dydx.

Letting δ → 0+, by (H2) and Remark 3.3 we conclude that

Fhom(u) ≤
∫

Ω
fhom(x, u(x)) dx.

Appendix A Properties of the unfolding operator

We recall the de�nition of the unfolding operator (see [11] and [10]; see also [12] and
[26]): Let Ω ⊂ RN be open. For γ > 0 and v ∈ Lp(Ω) (v extended by zero outside Ω),
set

Tγ(v)(x, y) := v
(
γ
⌊
x
γ

⌋
+ γ(y − byc)

)
for x ∈ Ω and y ∈ RN ,

where as before, b·c is de�ned as the component-wise integer part of its argument.
Note that if v has support in K ⊂⊂ RN then

suppTγ(v) ⊂
{
x ∈ RN

∣∣∣ dist (x;K) ≤ γ
√
N
}
× RN . (A.1)

Indeed, if γ
⌊
x
γ

⌋
+ γ(y − byc) ∈ K for some y ∈ RN , then

dist (x;K) ≤
∣∣x−γ⌊xγ ⌋−γ(y−byc)

∣∣ = γ
∣∣(x
γ −

⌊
x
γ

⌋)
−
(
y−byc

)∣∣ ≤ γ diamQ = γ
√
N.

Proposition A.1. Let 1 ≤ p < ∞. Then for every γ > 0, Tγ : Lp(Ω) → Lp(Ω ×Q)
is linear. Moreover, for every v ∈ Lp(Ω) (extended by zero outside Ω),

‖Tγ(v)‖Lp(Ω×Q) ≤ ‖Tγ(v)‖Lp(RN×Q) = ‖v‖Lp(RN ) = ‖v‖Lp(Ω) (A.2)

and ∫
RN

∫
Q
|v(x)− Tγ(v)(x, y)|p dydx→ 0 as γ → 0+. (A.3)
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Proof. The �rst equality in (A.2) is a consequence of Fubini's theorem and a change
of variables, and the remaining assertions in (A.2) are trivial. For the proof of (A.3),
�x ε > 0 and choose a sequence {vn} ⊂ C∞c (RN ) with vn → v in Lp(RN ). Since Tγ is
linear and by (A.2), there exists m ∈ N such that for every n ≥ m and every γ > 0,

‖vn − v‖Lp(RN ) = ‖Tγ(vn)− Tγ(v)‖Lp(RN×Q) <
1
3ε.

Hence, with Cm :=
∣∣{x ∈ RN

∣∣ dist (x; supp vm) ≤
√
N
}∣∣ 1p and using (A.1), for γ ≤ 1

we obtain

‖v − Tγ(v)‖Lp(RN×Q) ≤ ‖vm − Tγ(vm)‖Lp(RN×Q) + 2
3ε (A.4)

≤ Cm ‖vm − Tγ(vm)‖L∞(RN×Q) + 2
3ε (A.5)

= Cm sup
x∈RN , y∈Q

∣∣vm(x)− vm(γ
⌊
x
γ

⌋
+ γy)

∣∣+ 2
3ε. (A.6)

Since vm is uniformly continuous in RN and∣∣x− (γ
⌊
x
γ

⌋
+ γy)

∣∣ = γ
∣∣(x
γ −

⌊
x
γ

⌋)
− y)

∣∣ < γ diam(Q) = γ
√
N,

by (A.4) we conclude that ‖v − Tγ(v)‖Lp(RN×Q) < ε for 0 < γ < γ0(m) with some

γ0(m) > 0 su�ciently small.

Proposition A.2. Let 1 ≤ p <∞, let B ⊂ RN be a bounded set, and let V ⊂ Lp(RN )
be a p-equiintegrable set of functions with support in B. Then {Tγv | γ ∈ (0, 1], v ∈
V } ⊂ Lp(RN ×Q) is also p-equiintegrable.

Proof. Let δ > 0 and choose η > 0 such that

sup
v∈V

∫
F
|v|p < δ

2
. (A.7)

for every measurable F ⊂ RN with |F | < η. Let t0 >> 1 be such that

sup
v∈V
|{|v(x)| > t0}| < η, (A.8)

and let τ > 0 be such that

τtp0 <
δ

2
(A.9)

Consider a measurable set E ⊂ RN ×Q such that |E| < τ . For F ⊂ RN measurable
and γ > 0 de�ne

TγF :=
{

(x, y) ∈ RN ×Q
∣∣∣ γ ⌊xγ⌋+ γy ∈ F

}
.

Note that
Tγ(χF ) = χTγ(F ), (A.10)

and for every v ∈ V and t ≥ 0,

Tγ{|v| ≥ t} = {|Tγv| ≥ t} and Tγ{|v| > t} = {|Tγv| > t}. (A.11)
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Hence, for v ∈ V we have that∫
E
|Tγ(v)|p ≤

∫
E∩{|Tγ(v)|≤t0}

tp0 +
∫
{|Tγ(v)|>t0}

|Tγv|p

≤ τtp0 +
∫

RN×Q
χTγ{|v|>t0} |Tγ(v)|p

≤ δ

2
+
∫

RN×Q

∣∣Tγ(χ{|v|>t0}v)
∣∣p ,

where we used (A.9), (A.10) and (A.11), in this order, and the fact that Tγ(fg) =
Tγ(f)Tγ(g) for functions f ∈ L∞(Ω), g ∈ Lp(Ω; RM ). By (A.2), (A.7) and (A.8), this
implies that ∫

E
|Tγ(v)|p ≤ δ

2
+
∫

RN

∣∣χ{|v|≥t0}v∣∣p =
δ

2
+
∫
{|v|≥t0}

|v|p < δ.

Appendix B Some results on uniform continuity

Below, we collect several auxiliary results on the continuity of Nemytskii operators
associated to the function f introduced in Section 3.

Proposition B.1 (Scorza-Dragoni, e.g. see [20]). Let Ω ⊂ RN be open, let S1 ⊂⊂ Ω,
let S2 ⊂⊂ RM and suppose that f satis�es (H0). Then for every δ > 0, there exists a
compact set Kδ ⊂ Q := (0, 1)N such that |Q \Kδ| < δ and f is uniformly continuous

on S1 ×Kδ × S2.

Proposition B.2. Let 1 ≤ p < ∞, assume that (H0)�(H2) hold, let λ ∈ (0, 1], let
Ω′ ⊂ Ω be measurable, and let V ⊂ Lp(Ω′; RM ) be p-equiintegrable. Then the functions

fλ : V → L1(Ω′), fλ(v)(x) := f
(
x,
x

λ
, v(x)

)
for x ∈ Ω′,

are uniformly continuous, uniformly in λ. Moreover, for every compact Ω′′ ⊂ Ω and

A := L1(Ω′; Ω′′) ⊂ L1(Ω′; RN ), the functions

gλ : A× V → L1(Ω′), gλ(a, v)(x) := f
(
a(x),

x

λ
, v(x)

)
for x ∈ Ω′,

are uniformly continuous, uniformly in λ.

Proof. Let ε > 0. By the p-equiintegrability of V there exists a set Ω′′′ = Ω′′′(ε) ⊂ Ω′

such that Ω′′′ ⊂⊂ Ω and

sup
v∈V

∫
Ω′\Ω′′′

f
(
x, xλ , v(x)

)
dx <

ε

4
.

Hence, it su�ces to show that

‖fλ(v1)− fλ(v2)‖L1(Ω′′′) <
ε

2
if ‖v1 − v2‖Lp(Ω′′′;RM ) < δ,
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for a suitable δ = δ(ε) > 0 independent of v1, v2 ∈ V and λ ∈ (0, 1]. This is a special
case of the second part of the assertion.

For a proof of the second part of the assertion, let a1, a2 ∈ A, v1, v2 ∈ V , and λ ∈ (0, 1],
and �x ε > 0. We want to show that

‖gλ(a1, v1)− gλ(a2, v2)‖L1(Ω′) < ε if ‖a1 − a2‖L1(Ω′;RN ) + ‖v1 − v2‖Lp(Ω′;RM ) < δ,

for a suitable δ = δ(ε) > 0 independent of a1, a2, v1, v2 and λ. Due to the p-
equintegrability of V and (H2), there exists δ1 = δ1(ε) > 0 such that for every every
E ⊂ Ω′ measurable, and for all a ∈ A, v ∈ V ,∫

E

∣∣∣f(a(x),
x

λ
, v(x)

)∣∣∣ dx < ε

9
, provided that |E| < δ1. (B.1)

In view of the p-equiintegrability of V , there exists R = R(ε) > 0 large enough such
that

sup
v∈V
|{|v| ≥ R}| < δ1. (B.2)

Let L > 0 be su�ciently large so that Ω′ ⊂ [−L,L]N . By the periodicity of f with
respect to its second variable and by Proposition B.1 applied with S1 := Ω′′ and S2 :=
BR(0) ⊂ RM , there exists a compact set K = K(ε, L) ⊂ Q and δ2 = δ2(ε, L) > 0,
such that

|Q \K| < (2L+ 2)−Nδ1, (B.3)

and for every x1, x2 ∈ Ω′′, every y ∈ ZN +K and every ξ1, ξ2 ∈ BR(0),

|f(x1, y, ξ1)− f(x2, y, ξ2)| < ε

9 |Ω′|
if |x1 − x2|+ |ξ1 − ξ2| < δ2. (B.4)

By (B.3), with mλ :=
⌊
L
λ

⌋
+ 1, we have that∣∣Ω′ \ λ(ZN +K)

∣∣ ≤ ∣∣[−L,L]N \ λ(ZN +K)
∣∣

≤ λN
∣∣[−mλ,mλ

]N \ (ZN +K)
∣∣

= λN
(
2mλ

)N |Q \K|
≤ (2L+ 2)N |Q \K| < δ1.

(B.5)

Finally, there exists δ = δ(ε) such that

|{|a1 − a2|+ |v1 − v2| ≥ δ2}| < δ1 if ‖a1 − a2‖L1 + ‖v1 − v2‖Lp < δ. (B.6)

De�ne

S̃ := [Ω′ ∩ λ(ZN +K)] ∩ {|v1| < R} ∩ {|v2| < R}
∩ {|a1 − a2|+ |v1 − v2| < δ2},

whence Ω′ \ S̃ is a union of four sets, each of which has measure less than δ1, due to
(B.2), (B.5), and (B.6), respectively. By (B.1) and (B.4), we infer that∫

Ω′

∣∣∣f(a1(x),
x

λ
, v1(x)

)
− f

(
a2(x),

x

λ
, v2(x)

)∣∣∣ dx
≤ 8

9
ε+

∫
S̃

∣∣∣f(a1(x),
x

λ
, v1(x)

)
− f

(
a2(x),

x

λ
, v2(x)

)∣∣∣ dx < ε

whenever ‖a1 − a2‖L1(Ω′) + ‖v1 − v2‖Lp(Ω′) < δ.
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Proposition B.3. Let 1 ≤ p <∞, assume that (H0)�(H2) hold, let Q = (0, 1)N , let
λ ∈ (0, 1], let Ω′ ⊂ Ω be measurable, and let Ṽ ⊂ Lp(Ω′ ×Q; RM ) be p-equiintegrable.
Then for every Ω′′ ⊂⊂ Ω and Ã := L1(Ω′ ×Q; Ω′′) ⊂ L1(Ω′ ×Q; RN ), the functions

hλ : Ã× Ṽ → L1(Ω′ ×Q), hλ(a, v)(x, y) := f
(
a(x, y),

y

λ
, v(x, y)

)
are uniformly continuous, uniformly in λ.

Proof. This is analogous to the proof of Proposition B.2. We omit the details.

Proof of Proposition 3.5. (i) The �rst part of (i) follows from the uniform equi-
continuity of {gλ} obtained in Proposition B.2, with a compact set Ω′′ satisfying
Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω. For the second part use the uniform equi-continuity of {fλ}
obtained in Proposition B.2 with Ω′ := Ω.

(ii) Let ε > 0. For v ∈ Lp(Ω) and h > 0 consider the truncated function v[h] :=
max{min{v, h},−h}, whereas for v ∈ Lp(Ω; RM ), v[h] is de�ned component-wise.
Since {wn} is p-equiintegrable, so is

W := {wn : n ∈ N} ∪ {w[h]
n : n ∈ N, h > 0},

and w
[h]
n − wn → 0 in Lp as h → ∞, uniformly in n ∈ N. Hence, by the �rst part of

(i), there exists H = H(ε) > 0 such that∫
Ω

∣∣∣∣f(x, xεn , w[H]
n (x)

)
− f

(
x,

x

εn
, wn(x)

)∣∣∣∣ dx < ε

3
, (B.7)

for every n ∈ N. Since {v[H]
n } and {w[H]

n } are p-equiintegrable and w[H]
n − v[H]

n → 0 in
Lp, again the �rst part of (i) yields∫

Ω

∣∣∣∣f(x, xεn , v[H]
n

)
− f

(
x,

x

εn
, w[H]

n (x)
)∣∣∣∣ dx −→n→∞ 0. (B.8)

Finally, since f ≥ 0 and
∣∣{vn 6= v

[H]
n }

∣∣→ 0 as n→∞, we have that∫
Ω
f
(
x,

x

εn
, vn

)
dx−

∫
Ω
f
(
x,

x

εn
, v[H]
n (x)

)
dx

≥ −
∫
{vn 6=v[H]

n }
f
(
x,

x

εn
, v[H]
n

)
dx −→

n→∞
0,

(B.9)

where we used (H2) and the p-equiintegrability of v
[H]
n . Combining (B.7)�(B.9), we

infer that ∫
Ω
f
(
x,

x

εn
, vn(x)

)
dx ≥

∫
Ω
f
(
x,

x

εn
, wn(x)

)
dx− ε

for every n large enough.

Proof of Proposition 3.6. Both assertions are immediate consequences of the uni-
form equi-continuity of {hλ} obtained in Proposition B.3, with a compact set Ω′′

satisfying Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω.
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