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Abstract

Elasticity is viewed here as a starting point in the description of in-
elastic behavior. The two-scale geometry provided by structured defor-
mations and a field theory of elastic bodies undergoing disarrangements
(non-smooth geometrical changes) and dissipation are used to formulate
and illustrate a concept of ”submacroscopically stable configuration.” A
body in a submacroscopically stable equilibrium configuration resists ad-
ditional submacroscopic geometrical changes such as the occurrence of
microslips, the formation of microvoids, and the appearance of localized
distortions that, together, leave the macroscopic configuration of the body
unchanged. Submacroscopically stable configurations represent energet-
ically preferred phases for bodies in equilibrium, and a procedure is de-
scribed here for determining the submacroscopically stable equilibria of a
body. The procedure is carried out in detail here for two classes of bodies
that may undergo disarrangements and experience internal dissipation.
One class is characterized by its bi-quadratic free energy response func-
tion, and the requirement of submacroscopic stability reduces from five
to one the number of phases available to a body that is in equilibrium
under mixed boundary conditions. For a subclass of these bi-quadratic
free energy functions, the distinguished phase determined through this
procedure has the same free energy response as one derived for nematic
elastomers via statistical calculations. Boundary-value problems for the
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macroscopic deformation corresponding to a submacroscopically stable
equilibrium in a body of this class are formulated. A second class of bod-
ies, the “near-sighted fluids,” has both a prolate and a spherical phase
that may occur in equilibrium; the submacroscopically stable equilibria of
a near-sighted fluid must be stress-free, without regard to the particular
phase that appears. In all considerations in this article, the term “equilib-
rium” is synonymous with satisfaction of balance of forces and moments
in a given environment.

Keywords: C:stability and bifurcation, C:energy methods, A: phase transforma-
tion, A: microstructures
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1 Introduction

The modelling of inelastic behavior in materials typically rests on the identi-
fication of mechanisms through which a given material deviates from elastic
behavior. These mechanisms often are associated with particular changes in
the geometry of a body and with accompanying internal dissipation. In phe-
nomenological models such as elastoplasticity, viscoplasticity, and viscoelastic-
ity, the deviation from elastic behavior is modelled through the introduction of
additional variables in constitutive relations, such as plastic deformation, rates
of macroscopic deformation, or histories of deformation. Refinements of these
models that describe specific materials are obtained by linking the additional
variables directly or indirectly to submacroscopic phenomena such as crystallo-
graphic slip, formation of voids, movement of vacancies, and phase transitions.
These phenomena represent geometrical mechanisms for disrupting the under-
lying smooth distortion of a lattice or of a polymer network that, by themselves,
lead to purely elastic behavior. From this point of view, elasticity may be re-
garded as a starting point in the description of inelastic behavior.

The purposes of this paper are (1) the introduction of a notion of stability
of equilibria of bodies against the purely submacroscopic geometrical changes
associated with inelastic behavior, and (2) the illustration of this notion through
two examples. The need for a concept of “submacroscopically stable equilibria”
arises from the fact that, by itself, the condition that an elastic body satisfy
equations of balance of forces and moments in a given environment does not gen-
erally single out a preferred phase in which the body may appear. The notion
of submacroscopic stability introduced and studied here is presented in the con-
text of elastic bodies undergoing disarrangements and dissipation (Deseri and
Owen, 2003). This field theory is a generalization of dynamical, non-linear elas-
ticity that is formulated in the geometrical setting of structured deformations
(Del Piero and Owen, 1993). This setting affords a precise distinction between
classical, macroscopic changes of the geometrical configuration of a body, on
the one hand, and purely submacroscopic geometrical changes, on the other
hand. In connection with crystalline plasticity, structured deformations have
been employed to derive basic kinematical relations usually assumed in treat-
ments of multiple slip in single crystals (Deseri and Owen, 2002b) and to relate
hardening properties of single crystals to submacroscopic instabilities and to the
separation of active slip bands in crystals (Deseri and Owen, 2000, 2002a). In
this context, a single crystal in a submacroscopically stable equilibrium config-
uration would resist crystallographic slips and lattic distortions that leave the
macroscopic configuration of the crystal unchanged.

At the macroscopic and submacroscopic levels, the class of structured de-
formations is sufficiently broad to permit both smooth geometrical changes and
non-smooth geometrical changes (disarrangements) to occur. Here, as in [?],
we restrict our attention to the case where only smooth macroscopic geomet-
rical changes occur, thereby placing emphasis on the role that submacroscopic
disarrangements can play in the description of inelastic behavior. In this con-
text, a structured deformation (g,G) is a pair in which g is the macroscopic
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deformation field and G is a tensor field called the deformation without disar-
rangements. Each structured deformation (g, G) can be factored as a compo-
sition of a classical deformation, (g,∇g) that causes no disarrangements, and
a purely submacroscopic deformation, (i,K) that causes no macroscopic geo-
metrical changes. Moreover, the latter deformation allows the body to undergo
both smooth and non-smooth submacroscopic changes, such as smooth defor-
mations of a lattice and non-smooth slips or incorporation of voids. From a
different point of view the purely submacroscopic factor (i,K) in the factoriza-
tion describes the deformation that the body undergoes starting from a virgin
configuration and ending in the reference configuration, while the classical fac-
tor (g,∇g) takes the body from the reference configuration into the final, de-
formed configuration. Macroscopically, the virgin and reference configurations
are identical, because i is the identity mapping, while, when K 6= ∇i, the refer-
ence configuration differs submacroscopically from the virgin configuration and
displays the phase, or mixture of phases, associated with the body in that con-
figuration. In contrast to this, the reference and final deformed configurations
differ macroscopically, in general, while they do not differ submacroscopically,
because the classical factor (g,∇g) introduces no disarrangements in addition
to ones caused by (i,K).

The field relations derived in Deseri and Owen, 2003, for elasticity with dis-
arrangements and dissipation provide a coupling between the fields g and K and
predict the spectrum of phases that is available to a body, both in statical and
dynamical settings, once the free energy response function of the body is known.
For a given macroscopic configuration g of the body, there typically are at least
two phases K compatible with the field relations, as illustrated in the examples
presented here. Given g, the notion of stability that we study here then provides
a means of selecting among the available phases K for that configuration the
one (or, possibly, more than one) that is “energetically preferred.”

According to the field theory of Deseri and Owen, 2003, elastic bodies un-
dergoing disarrangements may and typically do experience internal dissipation
while undergoing smooth macroscopic deformations. In this broader field the-
ory, the dissipation inequality in the isothermal case is the assertion that the
stress power S ·∇g′ is no less than the rate of change ψ′ of the density ψ of free
energy and appears as a non-trivial field relation, while in classical non-linear
elasticity the dissipation inequality is identically satisfied as an equality. We
show in Section 3 that the dissipation inequality and an appropriate choice of
variables F = ∇g and ∆ = ∇g(2K− I) lead directly to an “augmented energy”
I(g, ∆) with the following properties:

1. for a given field ∆ measuring the disparity between deformations due
to and without disarrangements, the variation of the augmented energy
I(g, ∆) with respect to macroscopic configuration g vanishes if and only
if the body is in equilibrium in a given environment, i.e., if and only if the
equations of balance of forces and moments hold throughout the body in
that environment;

2. the rate of change d
dτ I(gτ ,∆τ ) of the augmented energy of the body on
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processes τ 7→ (gτ ,∆τ ) that pass smoothly through equilibrium configu-
rations (quasistatic processes) within a time-independent environment is
equal to the rate of increase

∫
B

ψ′ of the free energy of the body minus
the rate at which the body dissipates energy,

∫
B

(S · ∇g′ − ψ′).

We emphasize that “equilibrium” here, by definition, means that balance of
forces and moments holds, while, in some approaches to statics, “equilibrium”
is defined by means of a stationarity or extremality condition for an energy
functional. Consequently, the first statement tells us that the condition that a
body be in equilibrium in a given environment is characterized by a stationarity
property of the augmented energy. The second statement and the definition
of the augmented energy imply that during purely submacroscopic quasistatic
processes in a time-independent environment, the augmented energy cannot
increase and, hence, the body stores energy no more rapidly than it dissipates
energy.

These two results form the basis not only for the definition of submacro-
scopically stable equilibria that we give in Section 3 but also for the two-step
procedure that we describe in that section for determining such equilibria. In
the first step, one determines, for a given macroscopic deformation g that sat-
isfies prescribed placement boundary conditions, the disparity field(s) ∆ that
minimize the augmented energy I(g, ∆), subject to satisfaction of all of the
underlying field relations for an elastic body undergoing disarrangements and
dissipation, except for the balance of forces and the traction boundary condi-
tions. This step selects the energetically preferred phases of the body for the
given macroscopic configuration g.

In the second step, a minimizing disparity field ∆ss is chosen for the given
macroscopic field g and both are substituted into the balance of forces and trac-
tion boundary condition, yielding a boundary value problem for the determina-
tion of the macroscopic configuration g as well as for the possible determination
of any parameters in the description of ∆ss that are not already determined
by g. A solution g of this boundary value problem that is both injective and
orientation-preserving provides a submacroscopically stable equilibrium config-
uration (g, ∆ss) of the body. In cases where there is exactly one preferred phase
∆ss for the given macroscopic configuration g, the boundary value problem can
be regarded as one for the non-linearly, Cauchy elastic body whose response is
obtained by restricting the response functions of the original elastic body un-
dergoing disarrangements to the energetically preferred phase ∆ss, so that the
stress and free energy can be expressed as functions of ∇g, alone.

In Sections 4 and 5 we carry out the first step of this procedure completely
for each of two choices of the free energy response function of the body. In
Section 4, the first-step minimization selects, from a portfolio of five phases
admitted by the field relations, exactly one of these phases as energetically
preferred – the spherical phase, the classical phase, or the prolate phase, de-
pending upon the value of the ratio of the two material constants that appear
as coefficients in the biquadratic expression for the free energy. In Section 5,
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the first-step minimization procedure does not select between the spherical and
prolate phases available to the body, but rather selects only stress-free config-
urations as candidates for energetically preferred submacroscopic geometrical
states. For these “near-sighted” fluids, the selection of stress-free configurations
amounts to choosing values of the volume fraction detK that minimize the free
energy ψ(detK) and make its derivative zero.

The second step in the determination of submacroscopically stable equilib-
rium is treated in Section 4.4 for bodies with the biquadratic energy introduced
at the beginning of Section 4. For each of the three phases identified in the first
step, the corresponding boundary value problem is recorded and briefly dis-
cussed. For the nearsighted elastic bodies studied in Section 5, the second step
is carried out completely, and a characterization of submacroscopically stable
equilibria is obtained.

The notion of submacroscopic stability and the associated minimization
problem analyzed here are formulated in the context of elasticity with disar-
rangements and dissipation (Deseri and Owen, 2003). However, in the context
of statistical models of nematic elastomers (Bladon et al, 1993), the appearance
of a director field d as well as the macroscopic deformation gradient ∇g in the
formula for the free energy density is treated in (Bladon et al, 1993) in a man-
ner similar to the first step in the present procedure: for a given value of the
deformation gradient, the director d is chosen in Bladon et al, 1993 so that the
free energy density is minimized. That minimization corresponds to the first-
step minimization carried out in Section 4 for the case of prolate, oblate, and
textured phases. Moreover, the competing prolate phase discussed in Section
4 provides a formula for the free energy density here that has a form close to
the energy derived in Bladon et al, 1993 from statistical considerations. In our
opinion, the concepts and procedure introduced here provide a framework that
more fully justifies treatments, such as that of the director d in Bladon et al,
1993, in which energy minimization is used to select preferred values for fields
that reflect submacroscopic geometrical changes.

It is worth emphasizing that submacroscopically stable equilibria in the
present context need not be macroscopically stable. The additional requirement
of macroscopic stability, when precisely formulated, may necessitate the consid-
eration of additional geometrical complexity beyond the selection of phases that
emerges in the present treatment of submacrosocopic stability. This possibility
is suggested in the analysis of Silhavy, 2004, and of DeSimone and Doltzmann,
2002, of relaxed energies for nematic elastomers based on the energy derived
in Bladon et al, 1993. Although the minimization in Bladon et al, 1993 that
links the director d to the macroscopic deformation gradient ∇g places a strong
constraint on the submacroscopic state of the body, the subsequent relaxation
of the resulting energy density carried out in Silhavy, 2004, and in DeSimone
and Doltzmann, 2002, provides via minimizing sequences n 7→ ∇gn additional
geometrical structure to candidates for absolutely stable configurations.
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2 Background material

2.1 Structured deformations

For present purposes, a structured deformation is a pair (g, G) with g the smooth
(i.e. continuously differentiable) deformation of a given body B and G a con-
tinuous tensor field on B called the deformation without disarrangements. G
represents the part of the macroscopic deformation gradient ∇g due to smooth,
submacroscopic geometrical changes, and the inequality

0 < m < detG(X) ≤ det∇g(X) for all x ∈ B (1)

guarantees that no interpenetration of matter occurs submacroscopically (Del
Piero and Owen, 1993). The tensor field M := ∇g−G is called the deformation
due to disarrangements, because the values M(X) of the field M can be shown to
represent a limit of averages of jumps of injective, piecewise smooth deformations
that approximate g and whose gradients approximate G (Del Piero and Owen,
1993),(Del Piero and Owen, 1995). Thus, each structured deformation (g, G)
provides an additive decomposition

∇g = G + M (2)

of the macroscopic deformation gradient that identifies the contributions to ∇g
of both smooth and non-smooth submacroscopic geometrical changes. Since G
is invertible at each point of the body, the additive decomposition of ∇g yields
a multiplicative decomposition ∇g = G(I + G−1M), with I the identity tensor
field, as well as the multiplicative relation

G = ∇g K (3)

with K := (∇g)−1G = (I + G−1M)−1. The tensor field K determines the
structured deformation (i,K), where i denotes the identity mapping on the
body. This deformation takes the body in a given “virgin configuration” and
introduces only submacroscopic geometrical changes, bringing the body into its
reference configuration from which the body can undergo the classical deforma-
tion (g,∇g). The inequality (1) tells us that the tensor field K satisfies

0 < det K ≤ 1. (4)

2.2 Field relations in statics

The field relations for a moving elastic body undergoing disarrangements and
dissipation that were introduced by Deseri and Owen, 2003, take the following
form in statics, i.e., when all fields are independent of time:

div(DGΨ + DMΨ) + bref = 0 (5)

(DGΨ)MT + (DMΨ)(G + M)T = 0 (6)

7



sk[(DGΨ)MT + (DMΨ)GT ] = 0 (7)

detG ≤ det(G + M) (8)

F := ∇g = G + M. (9)

Here, the response function (G,M) 7→ Ψ(G, M) for the given elastic body pro-
vides at each point X the Helmholtz free energy ψ(X) = Ψ(G(X),M(X)) (mea-
sured per unit volume in the reference configuration) associated with a given
structured deformation (g, G), and DGΨ and DMΨ denote the partial deriva-
tives of the free energy response function. The “consistency relation” in the
form (6) arises from an additive decomposition for the density of contact forces
into parts with and without disarrangements, as well as from the specific con-
stitutive relations that connect stresses with and without disarrangements to
the response function Ψ (Deseri and Owen, 2003). The relation (7) asserts that
the skew part of the field (DGΨ)MT +(DMΨ)GT vanishes at every point of the
body and arises from the requirement that the internal dissipation be frame-
indifferent. In addition to the additive decomposition of deformation gradient
(2) that rests on geometrical considerations alone, an additive decomposition of
the Piola-Kirchhoff stress field S results from the constitutive assumptions that
define the elastic body under consideration (Deseri and Owen, 2003),

S = DGΨ + DMΨ, (10)

and it follows that the equation (5) expresses the balance of forces on the body.
In that equation, bref denotes the body force field, measured per unit volume
in the reference configuration. Frame-indifference of the response function Ψ
and frame-indifference of the internal dissipation (7) imply (Deseri and Owen,
2003) that the Cauchy stress T ◦ g = (det∇g)−1S(∇g)T is symmetric, so that
balance of moments holds throughout the body.

The additive decomposition (2), the consistency relation (6), and the frame-
indifference relation (7) imply that the above field relations for elastostatics with
disarrangements amount to twelve scalar equations restricting the three scalar
components of g and nine components of G. We note that the constitutive
relations for the body require that the decomposition of the stress (10) hold at
each point in the body.

For the notion of equilibrium configuration defined in Section 3, the field
relations above are best recast in terms of the macroscopic deformation g and
the “disparity” ∆ := G − M , representing the excess of deformation without
disarrangements over the deformation due to disarrangements. Accordingly, we
replace the original energy response Ψ in terms of G and M by the response Ψ̂
in terms of the macroscopic deformation gradient ∇g and the disparity ∆:

Ψ̂(∇g, ∆) := Ψ(
∇g + ∆

2
,
∇g −∆

2
). (11)

The motivation for this choice of variables lies in the version of the stress relation
(10) obtained for the new variables :

S = 2DF Ψ̂(F, ∆). (12)
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Here, as in (9) we use the standard notation F for the macroscopic deformation
gradient ∇g, and we denote by DF Ψ̂ the partial derivative of Ψ̂ with respect to
F holding the disparity ∆ fixed.

3 Submacroscopic stability

3.1 Equilibrium structured configurations

The field equations (5)-(7), and the inequality (8) take the following forms in
terms of the macroscopic deformation g, the disparity ∆ = G − M , and the
corresponding free energy response function Ψ̂ defined in (11):

div(2DF Ψ̂) + bref = 0 (13)

(3DF Ψ̂−D∆Ψ̂)(∇g)T − (DF Ψ̂ + D∆Ψ̂)∆T = 0 (14)

sk[(DF Ψ̂)(∇g)T − (D∆Ψ̂)∆T ] = 0 (15)

det (∇g + ∆) ≤ 8 det∇g. (16)

Here, the partial derivatives DF Ψ̂ and D∆Ψ̂ are evaluated at the pair (∇g, ∆).
We note also that the stress relation (10) takes the simpler form (12) when the
free energy is taken to be a function of ∇g and ∆.

For a bounded region B with Lipschitz boundary, we write the boundary ∂B
as the union of two non-overlapping surfaces ∂pB and ∂tB, and we suppose given
a macroscopic deformation field gp on ∂pB and traction field st on ∂tB, with gp

an injective, point-valued mapping. An equilibrium (structured) configuration
for B in the environment bref , gp, st is a structured deformation (g, ∆) that
satisfies the relations (13)-(16) as well as the (mixed) boundary conditions

g(X) = gp(X) for all X ∈ ∂pB (17)

2DF Ψ̂(∇g(X),∆(X))N(X) = st(X) for all X ∈ ∂tB. (18)

Here, N(X) denotes the outward normal to the boundary at the point X ∈ ∂tB.
The constitutive relations of the given body imply the stress relation (12), so
that the boundary condition (18) expresses the requirement that the tractions on
∂tB associated with the equilibrium configuration (g, ∆) through (12) coincide
with the specified traction field st on ∂tB.

The principal features of this definition lie on the one hand in the formal
similarity of the present equilibrium equation (13) and the corresponding equi-
librium equation

divDΨ + bref = 0

in the elastostatics of hyperelastic materials: in both equations the stress ap-
pears as a derivative of a scalar response function with respect to deformation
gradient. On the other hand, an equilibrium configuration in the present setting
is subject to satisfaction of the consistency relation (14), the frame-indifference
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condition (15), and the inequality (16) that restrict the macroscopic deforma-
tion gradient F and the disparity ∆; in the statics of hyperelastic bodies, these
conditions are satisfied identically (Deseri and Owen, 2003) and place no re-
strictions on the macroscopic deformation.

We note for later use the following relations that are immediate consequences
of the additive decomposition (2) and the definitions of the disparity ∆ and the
field K:

G =
1
2
(F + ∆), M =

1
2
(F −∆), (19)

∆ = 2G− F = F (2K − I). (20)

3.2 The augmented energy

Let an environment gp, st, and bref as above, and a point o in space be given.
We define the augmented energy of the body in the structured deformation
(g, ∆) by the formula

I(g, ∆) :=
∫

B

(2Ψ̂(∇g, ∆)− bref · go)−
∫

∂tB

st · go (21)

where for each X ∈ B, go(X) := g(X) − o is the position vector of the point
g(X). (Usually, one writes in place of go(X) the displacement u(X) := g(X)−
X; this has the effect of adding a number to the energy that depends only
upon the environment and not upon the deformation (g, ∆).) The number
I(g, ∆) equals the sum of the “enthalpy” (cf., Truesdell and Noll, 1992, Section
88)

∫
B

(Ψ̂(∇g, ∆) − bref · go) − ∫
∂Bt

st · go and the total Helmholtz free energy∫
B

Ψ̂(∇g, ∆) of the body in the given environment. The reason that we include
the contribution of the Helmholtz free energy twice in defining I(g, ∆) is the
presence of the factor of two on the right-hand side of the stress relation (12).

We now consider an equilibrium structured configuration (g, ∆) of B in the
given environment as well as a smooth vector field w on B that vanishes on ∂pB.
The variation of the augmented energy I with respect to macroscopic deforma-
tion for the vector field w is, by definition, the number d

dηI(g+ηw, ∆) |η=0. We
shall calculate this number under the following provisional assumptions on the
referential fields bref and st: at each point X in B the dependence of bref (X)
on g(X) is smooth and its derivative Dgbref satisfies

(Dgbref )T go = 0; (22)

moreover, at each point X in ∂tB the dependence of st(X) on g(X) is smooth
and its derivative Dgst satisfies

(Dgst)T go = 0. (23)

The conditions (22) and (23) admit, among others, the body force field ob-
tained from the standard approximation of the earth’s gravitational field at its
surface and the surface traction field corresponding to null tractions on ∂tB or,
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more generally, tractions associated with dead loads. Relations (22) and (23)
permit us to calculate the variation of the augmented energy with respect to
macroscopic deformation as follows:

d

dη
I(g + ηw, ∆) |η=0=

∫

B

(2DF Ψ̂(∇g, ∆) · ∇w − bref · w)−
∫

∂tB

st · w. (24)

We add and subtract div(2DF Ψ̂(∇g, ∆)) ·w to the volume integral and use the
product rule

div(ST w) = divS · w + S · ∇w, (25)

the Divergence Theorem, and the fact that w vanishes on ∂pB to rewrite the
variation as

d

dη
I(g + ηw, ∆) | η=0 = −

∫

B

(div(2DF Ψ̂(∇g, ∆)) + bref ) · w

+
∫

∂tB

(2DF Ψ̂(∇g, ∆)N − st) · w. (26)

Because (g,4) is an equilibrium structured configuration, we conclude from
(26), (13) and (18) that, for a given environment gp, st, and bref and disparity
field ∆, the variation d

dηI(g + ηw, ∆) |η=0 is zero for every smooth vector field
w vanishing on ∂pB. Conversely, it is easy to show that if (g, ∆) is a structured
deformation for which g satisfies (17) and if the variation in (26) is zero for
every smooth w that vanishes on ∂pB, then (g, ∆) is an equilibrium structured
configuration for B in the given environment.

We emphasize that the disparity ∆ is not to be varied when computing the
variation of the energy in (26). If one allowed also for variations in ∆, then, in
general, the augmented energy would no longer have a stationary value at an
equilibrium structured configuration (g, ∆). It also is important to note that
an equilibrium configuration (g, ∆) not only renders zero the variation of the
augmented energy at (g, ∆) but also satisfies the relations (14)-(16). However,
the perturbed configurations (g + ηw, ∆) employed in calculating the variation
of the augmented energy need not satisfy (14)-(16).

We may write the defining formula (21) in the convenient, abbreviated form

I =
∫

B

(2ψ − b · go)−
∫

∂tB

st · go (27)

and note from this expression that the augmented energy I depends upon the
given environment and equilibrium structured configuration. The equilibrium
structured configuration in turn is determined by the macroscopic deformation
field g and any one of the following fields: the disparity ∆ = G −M , the de-
formation without disarrangements G, the deformation due to disarrangements
M , or the field K = (∇g)−1G that determines the purely submacroscopic defor-
mation (i,K) from the virgin configuration to the reference configuration. The
variety of choices for the companion field to g provides considerable flexibility
in the study of “submacroscopically stable equilibria” that follows.
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3.3 Submacroscopically stable equilibria

We wish to investigate the possibility that an equilibrium structured configura-
tion of a body can be stable with respect to purely submacroscopic geometrical
changes. To this end, we suppose now that at each time τ in an interval I there
is specified an equilibrium structured configuration (gτ , ∆τ ) for the body in a
given, time-independent environment (bref , st, gp), so that the relations (13)-
(16) and the boundary conditions (17), (18) are satisfied for every time τ . We
then call the function τ 7→ (gτ , ∆τ ) a quasi-static (structured) process for the
body in the time-independent environment (bref , st, gp). The formula (27) then
determines the augmented energy as a function of time τ 7→ I(τ) and, upon
differentiation, yields the formulae for its time derivative τ 7→ I ′(τ):

I ′ =
∫

B

(2ψ′ − b · g′)−
∫

∂Bt

st · g′

=
∫

B

(2ψ′ − b · g′)−
∫

∂tB

st · g′ −
∫

∂Bp

SN · g′ +
∫

∂Bp

SN · g′

=
∫

B

(2ψ′ − b · g′)−
∫

∂tB

SN · g′ −
∫

∂Bp

SN · g′ +
∫

∂Bp

SN · (go
p)′

=
∫

B

2ψ′ −
∫

B

b · g′ −
∫

∂B

SN · g′,

where we have used the boundary conditions (17), (18), the fact that the en-
vironment is time-independent, and the notation ′ for d

dτ in the integrands in
the expressions above. For conciseness, we have omitted the subscript τ on the
time-dependent fields in the last formula. The equilibrium equation (13) and
the Divergence Theorem yield immediately the formula

I ′ =
∫

B

(2ψ′ − S · ∇g′). (28)

If we assume further that the dissipation inequality

ψ′ ≤ S · ∇g′, (29)

holds throughout the body at every time, then the dissipation rate S · ∇g′ −ψ′

is non-negative and (28) becomes

I ′ =
∫

B

ψ′ −
∫

B

(S · ∇g′ − ψ′). (30)

We conclude that in quasi-static processes proceeding in a time-independent
environment and satisfying the dissipation inequality, the rate of change of aug-
mented energy equals the rate of storage of energy

∫
B

ψ′ minus the rate of
dissipation of energy

∫
B

(S ·∇g′−ψ′). Moreover, the dissipation inequality (29)
together with the calculations that produced (28) yield the energy inequalities

I ′ ≤
∫

B

ψ′ ≤
∫

B

S · ∇g′ =
∫

B

b · g′ +
∫

∂B

SN · g′ (31)
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i.e., under the above assumptions, the rate of change of augmented energy does
not exceed the rate of change of the free energy which, in turn, does not exceed
the power expended by the (time-independent) environment.

Let us apply these considerations in the special case in which the geometrical
changes in the body occur only at submacroscopic levels, so that the macroscopic
deformation gτ is independent of τ , i.e., g′ = 0. The rate of dissipation of
energy then is − ∫

B
ψ′, which equals minus the rate of storage of energy, and

(30) becomes I ′ = 2
∫

B
ψ′ ≤ 0. Thus, in purely submacroscopic, quasistatic

processes in a time-independent environment, the dissipation inequality implies
that

1. the augmented energy cannot increase, and, by (30),

2. the body dissipates energy at the rate − ∫
B

ψ′, the same rate at which its
free energy decreases.

Item 1 prompts us, following the methodology of Gibbs, to single out for con-
sideration those structured equilibrium configurations (g, ∆) such that purely
submacroscopic processes that start at (g, ∆) cannot decrease the augmented
energy. Accordingly, we shall seek equilibrium configurations (g, ∆) satisfying
I(g, ∆) ≤ I(g, ∆̃) for all tensor fields ∆̃ in a suitable collection Dg.

There is some freedom in the choice of the collection Dg, and it is reasonable
to require at least that the pairs (g, ∆̃) with ∆̃ in Dg are structured deformations
and, hence, satisfy the inequality (16). In order that such structured deforma-
tions (g, ∆̃) can occur in the given body, it is necessary that they also satisfy
the consistency relation (14) and the frame-indifference condition (15). In other
words, the imposition of (14) and (15) rule out competitors (g, ∆̃) that only
arise as deformations of a body composed of a different material. It remains to
decide whether or not to require that these competing structured deformations
also satisfy the equilibrium equation (13) and the traction boundary condition
(18). We choose here to make the collection Dg as large as possible, and, ac-
cordingly, we impose neither the equilibrium equation (13) nor the traction
boundary condition (18). This choice risks passing over interesting competitors
that would minimize the augmented energy over a proper subcollection of Dg

but not over the entire collection Dg. This risk is worthwhile if the collection
provides a rich variety of minimizers, and the final results should be examined
in this light.

These considerations lead us, for each macroscopic deformation g of B that
satisfies the placement boundary condition (17), to define the collection

Dg := {∆̃ : B → Lin | (g, ∆̃) satisfies (14), (15), (16)}. (32)

We may now define the central concept in this study: an equilibrium structured
configuration (g, ∆) for B in a given environment is said to be submacroscopi-
cally stable if

I(g, ∆) ≤ I(g, ∆̃) for all tensor fields ∆̃ in Dg, (33)
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with I(g, ∆) defined in (21). This terminology is motivated by the above con-
sequence of the energy inequality (31): quasistatic, purely submacroscopic pro-
cesses in a time-independent environment cannot increase the augmented en-
ergy of the body. This result suggests that submacroscopically stable equilibria
may be approached or attained in purely submacroscopic quasistatic processes
and may be exited only exceptionally during such processes, namely, when the
augmented energy remains at its minimum value as the body changes submacro-
scopically.

A different notion of submacroscopic stability was introduced by Deseri and
Owen, 2003, that reflects only the behavior of the Helmholtz free energy density
near a given pair of tensors (F, ∆) or, more precisely, near (F, G), and that does
not impose the conditions (13) - (15) on submacroscopic competitors.

When a structured deformation is described by means of the macroscopic
deformation g and one of the tensor fields G = 1

2 (∇g + ∆), M = 1
2 (∇g−∆), or

(c.f. (20))

K = (∇g)−1G =
1
2
(I + (∇g)−1∆),

then the augmented energy may be expressed as a function of g and the chosen
tensor field, and satisfaction of (33) is then equivalent to satisfaction of a cor-
responding inequality in terms of g and the chosen tensor field. For example, if
K is the chosen field, then the inequality (33) is equivalent to

I(g, K) ≤ I(g, K̃) for all tensor fields K̃ in Dg, (34)

where now Dg is the set of continuous tensor fields K satisfying the consistency
relation (14) in the equivalent form

DF Ψ(2K−T − I) + (∇g)−T DKΨ
{
K−T − 3I + KT

}
= 0, (35)

satisfying the frame-indifference relation (15) in the equivalent form

sk(DF ΨFT + F−T DKΨ(I − 2KT )FT ) = 0, (36)

and satisfying the determinant inequality (16) in the equivalent form

0 < det K ≤ 1. (37)

(See [?], relations (10.24), (10.25), and (10.27).) In the relations (35) and (36),
Ψ denotes the free energy expressed as a function of the variables F = ∇g and
K, and DF Ψ and DKΨ denote its partial derivatives. This notation permits us
to recast the definition (21) in the equivalent form

I(g, K) :=
∫

B

(2Ψ(∇g,K)− bref · go)−
∫

∂tB

st · go (38)

We mention in closing this section that the conclusions about the augmented
energy and its rate of change, stated in italics in the preceding text, do not rest
on the satisfaction of the consistency relation (14), the frame-indifference rela-
tions (15), and the inequality (16). Moreover, those conclusions do not require
the provisional assumptions (22) and (23) made in calculating the variation of
the augmented energy with respect to macroscopic deformation.
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3.4 A procedure for determining submacroscopically sta-
ble equilibria

The discussion above suggests how one can search for submacroscopically stable
equilibria. As a first step, one may ignore the requirement that a submacro-
scopically stable equilibrium configuration satisfy the balance equation (13) and
the traction boundary condition (18). Accordingly, one may fix a macroscopic
deformation g that satisfies the boundary condition (17) on ∂pB and make a
particular choice among the tensor variables ∆, G, M , and K that facilitates
the solutions of the consistency relation (14), the frame-indifference relation
(15), and the inequality (16). We assume for the sake of definiteness that the
variable K has been chosen, so that (35), (36), and (37) are used in place of
(14), (15), and (16). One then seeks to determine at least one energetically
preferred phase Kss for the body in the given macroscopic configuration g, i.e.,
one looks for a tensor field K=Kss satisfying the inequality (34) in which the
augmented energy is given by the formula (38). Such a field Kss would represent
an energetically preferred microgeometry in the reference configuration for the
body, a geometry attained via the purely submacroscopic deformation (i,Kss)
starting in the virgin configuration of the body.

The formula (38) for the augmented energy in terms of the fields g and K
shows that minimization of the augmented energy for the given macroscopic
deformation g and boundary traction field st amounts to minimizing pointwise
the integrand Ψ(∇g, K) on the right-hand side of (38) with respect to the tensor
variable K, subject to the satisfaction of (35), (36), and (37). Consequently,
the first step in determining partially relaxed equilibrium configurations reduces
to the minimization, for a fixed tensor F = ∇g, of the free energy density
K 7→ Ψ(F,K) subject to (35), (36), and (37). We refer to this as the first-step
minimization problem.

In cases where solving the first step minimization problem provides a definite
function F 7→ Kss(F ), the original stress relation (12) then provides a relation
in which the stress S is a function F 7→ Sss(F ) of the deformation gradient
F=∇g; similarly, the original constitutive relation for the volume density ψ of
Helmholtz free energy in the reference configuration, as a function F 7→ Ψss(F )
of F and K, provides a relation in which ψ is a function of F . In this case, the
first step minimization problem provides a Cauchy elastic body whose response
functions for stress Sss and Helmholtz free energy density Ψss are determined
by the original response function Ψ alone. We note that, in every deformation
process of this Cauchy elastic body, the dissipation inequality must hold, because
each such process corresponds to a process of the original body undergoing
disarrangements, and the dissipation inequality is satisfied in all processes of
that body.

In the second step of the search for submacroscopically stable equilibria,
one seeks equilibrium configurations of the form (g, Kss), and one imposes,
in addition to the placement boundary condition (17) on g, the equilibrium
equation (13) as well as the boundary condition (18) in order to determine the
macroscopic deformation g, itself. In cases where Kss is a well-defined function
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of∇g, this amounts to finding an equilibrium configuration g for the non-linearly
Cauchy elastic body with stress response F 7→ Sss(F ).

In the following two sections we carry out the first step in detail for two
specific choices of free energy response function, and we briefly discuss for the
second step the resulting boundary value problem for g.

4 Example: biquadratic energy ΨKO

A fruitful setting in which to study partially relaxed configurations is a body
having the bi-quadratic free energy function

ΨKO(G,M) =
1
2
α\ |G|2 +

1
2
αd |M |2 , (39)

studied by Kirby and Owen, 2005. Here, we take the material constant α\ to be
positive and allow the remaining material constant αd to be any non-zero real
number. Because

DMΨKO(G, M)MT = αdMMT

is symmetric, the consistency relation (6) implies that (7) automatically is satis-
fied, so that the frame-indifference condition (7) need not be considered further.
Consequently, a structured deformation (g,G) determines an equilibrium con-
figuration if and only if it satisfies (5), (6), (8), and (9). The formula (39) tells
us that the equilibrium equation (5) and consistency relation (6) now take the
forms

div(α\G + αdM) + bref = 0 (40)

α\GMT + αdM(G + M)T = 0, (41)

and the stress relation (10) becomes

S = α\G + αdM. (42)

4.1 Portfolio of phases

4.1.1 Solutions of the consistency relations

The additive decomposition (9) and the definition K = F−1G permit us to
rewrite the consistency relation (41) in terms of the fields F = ∇g and K:

0 = α\(FK)(F − FK)T + αd(F − FK)FT

= α\F (K −KKT )FT + αdF (I −K)FT

= F [α\(K −KKT ) + αd(I −K)]FT

= F [(α\ − αd)K − α\KKT + αdI]FT .

The values of the field F are invertible, so that the consistency relation is equiv-
alent to the following equation that involves the field K alone:

(α\ − αd)K − α\KKT + αdI = 0. (43)
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We shall now follow [?] and obtain all the solutions K of the consistency relation
(43) that satisfy the determinant inequality (1), now expressed in terms of K:

0 < det K ≤ 1. (44)

We consider first the case α\ = αd. Because both material constants are
non-zero, the consistency relation reduces to KKT = I, and the determinant
inequality implies that the values K(X) of the field K in this case are arbitrary
proper orthogonal tensors:

K(X) ∈ Orth+ . . . textured phase at X. (45)

For the case α\ 6= αd, the consistency relation tells us that the values of the
field K are symmetric, i.e., K = KT , and (43) is then equivalent to

(K +
1
ν

I)(K − I) = K2 − (1− 1
ν

)K − 1
ν

I = 0, (46)

where
ν :=

α\
αd

∈ (−∞, 0) ∪ (0,∞). (47)

The symmetry of K and (46) tell us that at each point X of the body the
spectrum of K(X) contains only the numbers 1 and − 1

ν , and the determinant
inequality (44) implies that there are exactly four possibilities for the spectrum
of K(X): (1, 1, 1) with ν non-zero, (− 1

ν , 1, 1) with ν ≤ −1, (− 1
ν ,− 1

ν , 1) with
|ν| ≥ 1, and (− 1

ν ,− 1
ν ,− 1

ν ) with ν ≤ −1. The corresponding spectral represen-
tations of K(X) are:

K(X) = I . . . classical phase at X (ν 6= 0), (48)

K(X) = I − ν + 1
ν

e(X)⊗ e(X) . . . oblate phase at X (ν ≤ −1), (49)

K(X) = −1
ν

I +
ν + 1

ν
e(X)⊗ e(X) . . . prolate phase at X (|ν| ≥ 1), (50)

K(X) = −1
ν

I . . . spherical phase at X (ν ≤ −1). (51)

Because F and G are continuous fields, it follows that K = F−1G is continu-
ous. The requirements that K be a continuous field and satisfy the consistency
relation (43) imply for |ν| 6= 1 that K(X) must satisfy one and the same re-
lation among (45), (48) - (51) as X varies throughout B. For the case ν = 1,
the classical phase is a special case of the textured phase, and relations (45)
and (50) imply that K(X) must satisfy one and the same relation, (45) or (50),
at every X in B. Finally, when ν = −1, the four phases (48) - (51) are the
same and K(X) = I throughout B. Thus, continuity of K and satisfaction of
consistency in the case of ΨKO imply that every point of the body is in the same
phase, so that our present treatment does not cover phase mixtures. We indi-
cate in Section 6 circumstances that would entail the consideration of mixtures
of phases.
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These comments lead to the following terminology: the body is in the clas-
sical phase if K = I; the body is in the oblate phase if ν ≤ −1 and there exists
a continuous unit vector field e on the closure of B such that K is given by (49)
for all X ∈ B. We say the body is in the prolate phase if |ν| ≥ 1 and there exists
a continuous unit vector field e on the closure of B such that K is given by (50)
for all X ∈ B. The body is in the spherical phase if ν ≤ −1 and K(X) = − 1

ν I
for all X ∈ B.

4.1.2 Submacroscopic geometry of the phases

In the oblate phase when ν < −1, e(X) is a unit eigenvector of K(X) corre-
sponding to the eigenvalue − 1

ν ∈ (0, 1) while directions perpendicular to e(X)
are eigenvectors corresponding to the eigenvalue 1. Therefore, the deformation
without disarrangements corresponding to the purely submacroscopic deforma-
tion (i,K) causes shortening to occur in the direction e(X), while no change
occurs to vectors orthogonal to e(X). In other words, a small cube centered
at X with a face normal to e(X) is flattened in that direction, is unchanged in
orthogonal directions , and takes the shape of a thin plate (uniaxial shortening).
When ν = −1, the oblate phase reduces to the classical phase.

For the prolate phase, e(X) is a unit eigenvector of K(X) corresponding to
the eigenvalue 1, while vectors in directions perpendicular to e(X) are eigenvec-
tors corresponding to the eigenvalue − 1

ν . The deformation without disarrange-
ments corresponding to the purely submacroscopic deformation (i,K) causes no
change to occur in the direction e(X), whereas, for ν < −1, shortening alone oc-
curs in directions perpendicular to e(X). When ν > 1, shortening again occurs
in directions perpendicular to e(X), but now followed by a rotation of amount
π about e(X). Geometrically, a small cube centered at X with a face normal
to e(X) is unchanged in that direction, but is flattened in the directions of the
orthogonally oriented faces , and takes the shape of a thin rod (biaxial shorten-
ing). When ν = −1, the prolate phase reduces to the classical one, while, when
ν = 1, the prolate phase reduces to the textured phase.

For the spherical phase, every non-zero vector is an eigenvector of K(X)
corresponding to eigenvalue − 1

ν . When ν < −1, the deformations without
disarrangement for (i, K) cause shortening to occur in every direction, so that
a small cube is transformed into a smaller cube (triaxial shortening); when
ν = −1, the spherical phase reduces to the classical one.

The consistency relation (43) and the determinant inequality (44) thus de-
termine five phases, the phases for the elastic body with energy ΨKO or, more
briefly, the ΨKO-phases: textured, classical, oblate, prolate, and spherical . For
each phase, the structured deformation (i, K) is the purely submacroscopic de-
formation that takes the body from the virgin configuration to the reference
configuration; the classical deformation (g,∇g) then takes the body to the cur-
rent (or deformed) configuration. The Approximation Lemma (Del Piero and
Owen, 1993) shows that there is a sequence n 7→ hn of injective, piecewise affine
mappings such that limn→∞ hn = i and limn→∞∇hn = K. For example, in the
case of the spherical phase, for a given positive integer n, the mapping hn can
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be taken as one that divides the body into cubic cells of edge proportional to
n−1 and that performs a triaxial shortening on each cell individually, holding
the center of each cell fixed, and thereby reducing the volume of each cell by the
factor −ν−3 ∈ (0, 1). The mapping hn also creates voids due to the shortening
of adjacent cubic cells. In this example, the deformation without disarrange-
ments for the purely submacroscopic structured deformation (i,K) is the field
K = limn→∞∇hn = − 1

ν I, itself. The deformation due to disarrangements is
the field ∇i−K = I−K = ν+1

nu I that reflects, in the limit as n tends to infinity,
the discontinuities of each field hn across the interfaces of adjacent cubic cells.
The disarrangements described by the field ∇i−K = ν+1

r I reflect the creation
of voids that accompanies the triaxial shortening of each cubic cell under the
action of hn.

It is important to keep in mind that in the textured, oblate, and prolate
phases, K(X) can vary with X, due to the variation of the orthogonal tensor
K(X) for the textured phase or due to the variation of the unit vector e(X) for
the prolate and oblate phases; in the classical and spherical phases, K(X) does
not vary with X.

4.1.3 The augmented energy in each ΨKO-phase

In order to obtain explicit formulas for the augmented energy in each ΨKO-
phase, it is convenient to rewrite the formula (21) for the augmented energy in
the following form

IKO(g, K) =
∫

B

(2ΨKO(∇g,K)− bref · go)−
∫

∂tB

st · go (52)

where ΨKO(∇g, K) denotes the Helmholtz free energy , expressed as a function
of F = ∇g and K. The relations G = KF and M = F (I−K) when substituted
into (39) yield the formulas

ΨKO(F, K) =
α\
2

FK · FK +
αd

2
F (I −K) · F (I −K)

=
1
2
FT F · ((α\ + αd)KKT + αd(I −K −KT )

)
.

For each of the two cases α\ = αd and α\ 6= αd, the consistency relation (43)
then implies

ΨKO(F, K) =
α\
2ν2

FT F · ((ν2 − 2ν − 1)K + (2ν + 1)I
)
. (53)

When the relations G = KF and M = F (I −K) are substituted into the stress
relation (42), that relation becomes

SKO(∇g, K) = α\FK + αdF (I −K)

=
α\
ν

F ((ν − 1)K + I) . (54)
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The relations (52) and (53) then imply

IKO(g,K) +
∫

B

(bref · go − α\
2ν + 1

ν2
tr(FT F )) +

∫

∂tB

st · go

=
∫

B

ν2 − 2ν − 1
ν2

α\FT F ·K. (55)

This formula shows that, for given boundary data gp on ∂pB and st on ∂tB,
for a given body force field bref on B, and for a given macroscopic deformation
field g that agrees with gp on ∂Bp, the determination of a structured defor-
mation (g,K) satisfying (34) reduces now to the minimization of the integrand
ν2−2ν−1

ν2 α\FT F · K̃ , with F = ∇g fixed and with K̃ any one of the ΨKO-
phases of the body determined in the previous subsection . We refer to this
minimization problem as the pure-phase minimization of the augmented energy.

Of course, each candidate (g, K) for a submacroscopically stable equilib-
rium configuration must not only be a solution of the pure-phase minimization
problem but also must satisfy balance of forces (13) and the traction boundary
condition (18), which we record here in terms of the fields g and K in the case
of the free energy response ΨKO (see Deseri and Owen, 2003, (10.23), (10.28)
for the case of a general free energy response Ψ):

div
(α\

ν
∇g((ν − 1)K + I)

)
+ bref = 0 (56)

α\
ν
∇g((ν − 1)K + I)N = st on ∂tB. (57)

We shall impose the requirements (56) and (57) after we undertake the pure-
phase minimization of the augmented energy.

4.2 Pure-phase energy minimization within each
ΨKO-phase

For each ΨKO-phase of the body undergoing the macroscopic deformation g,
we now determine the structured deformations (g, K) (if any) that accomplish
the pure-phase minimization of the augmented energy, and we determine the
minimum value (if any) of the augmented energy for each phase.

4.2.1 Classical, spherical, and textured phases

According to (48), for the classical phase the identity field K = I is the only
competitor, and, by (55), the minimum augmented energy is given by

Iclass

KO (g) := IKO(g, I) =
∫

B

(α\trC − bref · go)−
∫

∂Bt

st · go (58)

where C := FT F ; the stress in (54) is given by

S
class

KO (F ) := SKO(F, I) = α\F. (59)
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For the spherical phase, the relation (51) tells us that K = − 1
ν I is the only

competitor, that the minimum augmented energy is given via (55) by

Isph

KO(g) : = IKO(g,−1
ν

I)

=
∫

B

(
ν2 + 3ν + 1

ν3
α\trC − bref · go)−

∫

∂tB

st · go, (60)

and that the stress is given by

S
sph

KO(F ) := SKO(F,−1
ν

I) =
1
ν2

α\F. (61)

In these formulas, the ratio ν does not exceed −1.
In the case of the textured phase, the ratio ν equals 1, every proper orthogonal-

valued field K is a competitor, and (55) becomes

IKO(F, K) +
∫

B

bref · go +
∫

∂tB

st · go =
∫

B

α\C · (3I − 2K). (62)

Writing the positive definite, symmetric tensor field C = FT F in its spectral
representation

∑
i ciei ⊗ ei with e1, e2, e3 orthonogonal unit vector fields, we

have

C · (3I − 2K) = 3trC − 2tr(CK)

= 3
∑

i

ci − 2
∑

i

ciKei · ei

≥ 3
∑

i

ci − 2
∑

i

ci = trC,

where we have used the fact that ci > 0 and, because K is orthogonal-valued,
Kei · ei ≤ 1. It follows that the integrand for the volume integral on the right-
hand side of (62) is minimized when K is the constant field I, so that the
minimum augmented energy for the textured phase is given by:

Itext

KO (g) : = IKO(g, I) =

=
∫

B

(α\trC − bref · go)−
∫

∂tB

st · go = Iclass

KO (F ). (63)

We note also that the stress in the textured phase (whether or not K = I) is
given by

S
text

KO (F ) := α\F = S
class

KO (F ). (64)

4.2.2 Prolate and oblate phases

According to (49), in the oblate phase we have K̃ = I − ν+1
r ẽ ⊗ ẽ (with ẽ a

continuous unit vector field on the closure of B), and the right-hand side of the
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relation (55) is given by
∫

B

ν2 − 2ν − 1
ν2

α\C · K̃

=
∫

B

ν2 − 2ν − 1
ν2

α\trC −
∫

B

P (ν)
ν3

α\Cẽ · ẽ

where P (ν) = (ν2 − 2ν − 1)(ν + 1) = ν3 − ν2 − 3ν − 1. This formula and the
relation (55) give another expression for the augmented energy in the oblate
phase

IKO(g, I− ν + 1
ν

ẽ⊗ ẽ) =
∫

B

(α\[trC−
P (ν)
ν3

Cẽ · ẽ]−bref ·go)−
∫

∂Bt

st ·go. (65)

Because ν ≤ −1 for the oblate phase, the number P (ν) is not positive. There-
fore, −P (ν)/ν3 is not positive, and the integrand for the volume integral in (65)
is minimized when the unit vector field ẽ maximizes Cẽ· ẽ, i.e., when the value of
ẽ at each point X is an eigenvector emax of C(X) = F (X)T F (X) corresponding
to the maximum eigenvalue cmax(X) of C(X). Therefore, because cmax is an
integrable function on B (Silhavy, 1997), we have

−
∫

B

P (ν)
ν3

α\Cẽ · ẽ ≥ −
∫

B

P (ν)
ν3

α\cmax, (66)

and the minimum value of the augmented energy for the case of the oblate phase
is given by

Iobl

KO(g) : = IKO(g, I − ν + 1
ν

emax ⊗ emax)

=
∫

B

(
α\(trC − P (ν)

ν3
cmax)− bref · go

)
−

∫

∂tB

st · go. (67)

At each point X of B, the unit vector emax(X) in the last formula depends
upon the macroscopic deformation gradient F (X) through the condition that
emax(X) is a principal direction of C(X) corresponding to the maximum eigen-
value of C(X), although in some cases the diad emax(X)⊗ emax(X) need not be
completely determined by F (X). It is useful to record here the expression for
the stress Sobl

KO(F,K) when K = I − ν+1
ν emax ⊗ emax:

Sobl
KO(F, I − ν + 1

ν
emax ⊗ emax) = α\F (I +

1− ν2

ν2
emax ⊗ emax). (68)

We note that the stress given in (68) need not be completely determined by
the deformation gradient F , while the volume integral on the right-hand side of
(67) is completely determined by the field F .

According to (50), in the prolate phase we have K̃ = − 1
ν I + ν+1

ν ẽ⊗ ẽ (with
ẽ a continuous unit vector field on the closure of B), and the right-hand side of
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the relation (55) is given by
∫

B

ν2 − 2ν − 1
ν2

α\C · K̃ =
∫

B

ν2 − 2ν − 1
ν2

α\C · (−1
ν

I +
ν + 1

ν
ẽ⊗ ẽ)

= −
∫

B

ν2 − 2ν − 1
ν2

α\trC +
∫

B

P (ν)
ν3

α\C · ẽ⊗ ẽ

= −
∫

B

ν2 − 2ν − 1
ν2

α\trC +
∫

B

P (ν)
ν3

α\Cẽ · ẽ

where, as in the case of the oblate phase, P (ν) = (ν2 − 2ν − 1)(ν + 1) =
ν3−ν2−3ν−1. This formula and the relation (55) give the alternative expression
for the augmented energy in the prolate phase

IKO(g,−1
ν

I +
ν + 1

ν
ẽ⊗ ẽ) =

∫

B

α\(
ν2 + 3ν + 1

ν3
trC +

P (ν)
ν3

Cẽ · ẽ)

−
∫

B

bref · go −
∫

∂tB

st · go. (69)

The fraction ν3−ν2−3ν−1
ν3 = P (ν)/ν3 for |ν| ≥ 1 is positive on the intervals

−∞ < ν < −1 and 1 +
√

2 < ν and is negative on the interval 1 < ν < 1 +
√

2.
Consequently, because the eigenvalues cmin, cmid, and cmax of C are integrable
on B, the formula (69) provides the following formulas for the minimum aug-
mented energy in the prolate phase Ipro

KO(g):

Ipro

KO(g) +
∫

B

bref · go +
∫

∂tB

st · go

=





∫
B

α\
ν3 {ν3cmin + (ν2 + 3ν + 1)(cmid + cmax)} if ν /∈ [−1, 1 +

√
2]

∫
B

α\
ν3 {(ν2 + 3ν + 1)(cmin + cmid) + ν3cmax} if 1 < ν < 1 +

√
2).
(70)

The integrand on the right-hand side of this relation provides an expression that
for 1 < ν < 1 +

√
2 is reminiscent of the formula (in the notation of Silhavy,

2004, relation (91), p.43)

f(F ) =
1
2
µr

1
3 (α2

3 + α2
2 + α2

1/r) (71)

for the energy density for nematic elastomers derived from statistical models
of polymers in Bladon et al, 1993, and studied from the point of view of the
calculus of variations by DeSimone and Doltzmann, 2002, and by Silhavy, 2004,
under the constraint of macroscopic incompressibility detF = 1. In (71), µ is the
shear modulus of the material, r > 1 is the step length anisotropy parameter
that describes the average shape of molecular coils, and α2

1 ≥ α2
2 ≥ α2

3 are
the eigenvalues cmax ≥ cmid ≥ cmin of C = FT F . Therefore, the pure-phase
minimization carried out here for the energy ΨKO in the case of the prolate phase
provides a counterpart of an energy density derived via statistical methods for
a specific class of polymers.
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We note for later use that for ν > 1 +
√

2 the stress Spro
KO(F,K) for K =

− 1
ν I + ν+1

ν emin ⊗ emin is given by

Spro
KO(F,−1

ν
I +

ν + 1
ν

emin ⊗ emin) =
α\
ν2

F (I + (ν2 − 1)emin ⊗ emin). (72)

As in the case of the oblate phase, the stress in the previous formula need not be
completely determined by F , although the volume integrals in the right-hand
side of the relation (70) are completely determined by the field F .

4.3 Pure-phase energy minimization among the
ΨKO-phases

The formulas (58), (60), (63), (67), and (70) provide the minimum value of the
augmented energy for each pure phase of the body. For each non-zero value of
the ratio ν = α\

αd
we compare in this subsection the minimum values for those

phases that may be present for the given ν.
For the interval −∞ < ν ≤ −1, the classical, spherical, prolate, and oblate

phases all may be present, and comparison of (58), (60), (67), and (70) along
with the use of the inequality ν2+3ν+1

ν3 ≤ 1, that holds throughout the interval
−∞ < ν ≤ −1, permit us to conclude that the spherical phase provides the
minimum augmented energy among all phases available for −∞ < ν ≤ −1.
(Actually, the augmented energies for all phases are the same when ν = −1.)

For the intervals −1 < ν < 0 and 0 < ν < 1, the only phase that may
be present is the classical phase, so that it provides the minimum augmented
energy on these intervals.

The textured phase appears only for ν = 1, and (63) and (58) show that
the minimum augmented energy in the textured phase agrees with that for the
classical phase, and we need not consider the textured phase further in this
connection. For ν ≥ 1, the only remaining phases to be considered are the
classical and prolate phases. The formulas (58) and (70) and the properties of
P (ν)
ν3 noted in the previous subsection imply that the classical phase provides

the smaller augmented energy on 1 < ν < 1 +
√

2, while prolate phase provides
the smaller augmented energy on 1 +

√
2 < ν.

In summary, the least augmented energy is provided in the interval −∞ <
ν < −1 by the spherical phase, in the intervals −1 ≤ ν < 0 and 0 < ν ≤ 1 +

√
2

by the classical phase, and in the interval 1 +
√

2 < ν by the prolate phase.
Therefore, the pure-phase minimization problem for a body with free energy
response function ΨKO selects exactly one among the spherical, classical, and
prolate phases in each of the four intervals listed above. Submacroscopically
stable equilibria of such a body, if any do exist, must appear among these
phases.
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4.4 Boundary value problems for the determination of
submacroscopically stable equilibria

In order for a solution (g, K) of the pure-phase minimization problem to provide
a submacroscopically stable equilibrium configuration, the macroscopic defor-
mation field g and the tensor field K must satisfy the placement boundary
condition (17), as well as the equilibrium condition and the traction boundary
condition (56) and (57). In this subsection we record the resulting boundary
value problem for each of the solutions of the pure-phase minimization problem
obtained above. We note at the outset that the case of the spherical and of
the classical phase are somewhat simpler, because both K and the stress S are
completely determined by the deformation gradient F = ∇g.

For the interval −∞ < ν ≤ −1, the discussion in the previous subsection
showed that the spherical phase yields the solution of the pure-phase mini-
mization problem. Accordingly, we use the formula (61) to write down the
corresponding forms of the equilibrium equation and boundary conditions:

div(
α\
ν2
∇g) + bref = 0 (73)

(
α\
ν2
∇g)N = st on ∂tB (74)

g = gp on ∂pB. (75)

Thus, the macroscopic deformation field g that determines a submacroscopically
stable equilibrium configuration for ν ≤ −1 is a solution of a mixed boundary-
value problem for the non-homogeneous Laplace equation.

For the cases −1 < ν < 0 and 0 < ν ≤ 1 +
√

2, the discussion above shows
that the only solution of the pure-phase minimization problem is the classical
phase, i.e., K = I, and the formula (59) then yields the boundary-value problem:

div(α\∇g) + bref = 0 (76)
(α\∇g)N = st on ∂tB (77)

g = gp on ∂pB. (78)

Formally, this mixed problem for the non-homogeneous Laplace equation in the
case of the classical phase is obtained from the one in the case of the spherical
phase by replacing α\/ν2 in (73) and (74) by the larger number α\.

For the case 1 +
√

2 < ν < ∞, the solution of the pure-phase minimization
problem necessarily has K = − 1

ν I + ν+1
ν emin ⊗ emin and has stress S given by

(72). Here, for each X in B, emin(X) is a unit vector satisfying

C(X)emin(X) = cmin(X)emin(X) (79)

with cmin(X) the minimum element in the spectrum of C(X) = (∇g)T (∇g)(X).
If cmin(X) has algebraic multiplicity one, then the diad emin(X) ⊗ emin(X) is
completely determined by F (X). However, in the most general case, emin must
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be determined as a unit vector field satisfying (79) as well as the equilibrium
equation

div(
α\
ν2
∇g(I + (ν2 − 1)emin ⊗ emin)) + bref = 0 (80)

and the boundary conditions

α\
ν2
∇g(I + (ν2 − 1)emin ⊗ emin)N = st on ∂tB (81)

g = gp on ∂pB. (82)

The boundary value problem (79)-(82) for the case of the prolate phase is a non-
linear problem, unlike those for the case of the spherical and classical phases.
The form of this problem suggests that it may be fruitfully studied with tools
and results for implicit partial differential equations (Dacarogna and Marcellini,
1999).

In all three cases discussed in this subsection, the macroscopic deformation
g corresponding to a submacroscopically stable equilibrium configuration must
not only be a solution of the corresponding boundary-value problem but also
must be injective and must be orientation preserving: det∇g(x) > 0 for all x
in B.

5 Example: near-sighted fluids

At the end of Section 3.3 we provided in relations (34)-(38) the basis for deter-
mining partially relaxed equilibrium configurations in the form (g,K). These
relations are appropriate for cases where the Helmholtz free energy density as-
sumes a simple form when expressed in terms of the variables F = ∇g and
K. In this section, we consider in this vein the example of a near-sighted fluid
(Deseri and Owen, 2003) for which the free energy response takes the form

Ψ(∇g, K) = ψ(detK). (83)

with ψ a smooth function on the interval (0, 1].
As was the case in the preceding example and in the general discussion in

Subsection 3.4, the first step in determining submacroscopically stable equi-
libria for the near-sighted fluid is that of solving the following minimization
problem: for a given macroscopic deformation g that satisfies the placement
boundary condition, find the tensor fields K that minimize the augmented en-
ergy (38) subject to the relations (35)-(37). For the near-sighted fluid, this
problem reduces to the pointwise minimization of the Helmholtz free energy
density ψ(detK) subject to the constraints

ψ′(detK)(K2 − 3K + I) = 0 (84)
sk

(
ψ′(detK)F−T (K−T − 2I)FT

)
= 0 (85)

0 < detK ≤ 1. (86)
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We note here that for the near-sighted fluid, the stress relation (10) becomes

S = detKψ′(detK)F−T (I − 2K−T ). (87)

To carry out the first step described above, we observe that if the Helmholtz
free energy response function ψ has a global minimum at a tensor K for which
detK ∈ (0, 1] and ψ′(detK) = 0, then the constraints (84)-(86) all are satisfied.
Moreover, the relation (87) tells us that the stress is zero. Consequently, we call
tensors K that minimize ψ, that satisfy detK ∈ (0, 1] and for which ψ′(detK) =
0 stress-free solutions of the first-step minimization problem. Of course, if K is
a stress-free solution, then any multiple of K by a tensor U with detU = 1 also
is a stress-free solution.

Solutions K of the first-step minimization problem that are not stress-free
would necessarily satisfy ψ′(detK) 6= 0, so that (84) and (85) would become

K2 − 3K + I = 0 (88)
sk

(
F−T (K−T − 2I)FT

)
= 0. (89)

It was shown by Deseri and Owen, 2003, that these two equations are equivalent
to

H2 − 3H + I = 0 (90)
skH = 0 (91)

where H := GF−1 = FKF−1, and the only solutions H of these two equations
are

Hsph := (1− γ0)I (92)
Hpro := Hsph + (1 + 2γ0)d⊗ d. (93)

Here, d is an arbitrary unit vector, and γ0 :=
√

5−1
2 is the ”golden mean.”

The tensor Hsph is said to determine the spherical phase of the near-sighted
fluid, while Hpro is said to determine the prolate phase of the fluid. (The
term ”elongated phase” was used in place of ”prolate phase” in Deseri and
Owen, 2003.) In terms of the variable K, solutions of the first-step minimization
problem that are not stress-free would be among the list

Ksph := (1− γ0)I (94)
Kpro := Ksph + (1 + 2γ0)Fd⊗ F−T d. (95)

We have detKsph = detHsph = (1− γ0)3 and detKpro = detHpro = 1− γ0, and
we may conclude that a solution K of the first-step minimization problem that
is not stress-free determines the spherical or the prolate phase of the body, has
detK = (1 − γ0)3 or detK = 1 − γ0, and satisfies ψ′(detK) 6= 0. Because both
1− γ0 and (1− γ0)3 are interior points of the domain of the smooth function ψ,
each of these numbers can deliver the minimum value of ψ only if ψ′ vanishes at
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that number. We conclude that every solution K of the first-step minimization
problem is stress-free.

The conclusions reached above for the first-step minimization problem greatly
simplify the second step of the procedure for determining submacroscopically
stable equilibria. In fact, necessary conditions for the existence of a stress-
free equilibrium configuration (g,K) are the vanishing both of the body force
field bref and the applied surface traction field st. Because the only remaining
restriction on a candidate (g, K) for a submacroscopically stable equilibrium
configuration is the placement boundary condition, we obtain the following
characterization of the submacroscopically stable equilibria of the near-sighted
elastic fluid: given the vanishing of the body force field and the applied surface
traction field, a structured deformation (g,K) is a submacroscopically stable
equilibrium configuration of the near-sighted fluid if and only if g satisfies the
placement boundary condition and, at each point X in B, detK(X) minimizes
ψ and satisfies ψ′(detK(X)) = 0. We note that, for a submacroscopically sta-
ble equilibrium configuration (g, K), if the body B is a connected set, then the
continuity of the field K on B implies that the scalar field detK is constant or
takes values throughout a non-trivial interval on which ψ′ vanishes.

6 Conclusions and outlook

The notion of a submacroscopically stable equilibrium configuration of a body
and the procedure introduced here for the determination of submacroscopically
stable equilibria provide the basis for selecting in a systematic way preferred
submacroscopic geometrical states of bodies in equilibrium. The augmented
energy underlies this methodology and provides not only a functional of g and
∆ = G − M that is stationary for fixed ∆ at equilibrium configurations but
also that cannot increase under purely submacroscopic, quasistatic processes in
time-independent environments.

These ideas were developed in Section 3 for arbitrary elastic bodies under-
going disarrangements and dissipation and were illustrated for specific bodies in
Sections 4 and 5. In particular, the bodies studied in Section 4 have biquadratic
free energy response, and their submacroscopically stable equilibria arise only
for submacroscopic geometries associated with the spherical phase, the classical
phase, or the prolate phase, depending upon the value of the ratio ν of the two
response moduli α\ and αd. For a specific range of the parameter ν, the for-
mula (70) obtained in Section 4 for the minimum Helmholtz free energy density
within the prolate phase is reminiscent of the formula (71) obtained in [?] by a
different method, one based on a bottom-up, statistical calculation. The near-
sighted fluids discussed in Section 5 possess universal spherical and universal
prolate phases (Deseri and Owen, 2003) that generally are not stress-free, but
the submacroscopically stable equilibria that are available to such fluids all are
stress-free.

Boundary-value problems for the macroscopic deformation were recorded for
all of the submacroscopically stable equilibria identified in Section 4. For those
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corresponding to the spherical and classical phases, the boundary-value prob-
lems for the macroscopic deformation are mixed, linear problems for the non-
homogeneous Laplace’s equation. For those corresponding to the prolate phase,
non-linear problems arise whose form suggests the use of techniques available
in the literature (Dacarogna and Marcellini, 1999). When the boundary-value
problem for macroscopic deformation has a classical, smooth solution g that
is injective and orientation preserving, then the structured deformation (g, ∆)
would provide a submacroscopically stable equilibrium configuration of the body
in the present sense. Alternatively, when only solutions with less smoothness
emerge, the boundary-value problem would not provide submacroscopically sta-
ble equilibria in the present sense. At the same time, the existence of solutions
with less regularity would indicate that a more general notion of submacro-
scopically stable equilibria is required, one that might admit a larger class of
macroscopic deformations that support additional geometrical structures such
as those associated with mixtures of phases.

The inclusion of mixtures of phases could also be undertaken at an earlier
point in this development by relaxing at the outset the requirement that F and
G be smooth fields, with the result that the solutions of the relations (35)-(37)
could allow the body to be in different phases at different points. However,
the possible presence of coherent phase boundaries in the body suggests that
the definition (21) of the augmented energy be modified to include a contri-
bution from the phase boundaries. Moreover, such phase boundaries would be
restricted by the condition that the traction field be continuous, a consequence
of balance of forces for the continuum.

The present theory can be further enriched in order to include internally
constrained materials. A typical macroscopic internal constraint is embodied
in the condition detF = 1, that of macroscopic incompressibility. An example
of a submacroscopic internal constraint is one characterized by the condition
detF = detG or, equivalently, detK = 1 that prevents disarrangements from
causing a change in volume. A description of such constrained materials in
the setting of elastic bodies undergoing disarrangements and dissipation (De-
seri and Owen, 2003) would require the introduction of reaction stresses that
are not constitutively determined, e.g., not arising as partial derivatives of the
free energy response function (or in any other way determined by that response
function). These reaction stresses would enter into many of the field equations
employed in the present article and, generally, would lead to a broader class of
equilibrium configurations of the body.
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