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1 Introduction

The goal of this article is the derivation of field equations that govern the
isothermal evolution of elastic constituents undergoing disarrangements and
mixing, described by means of the multiscale geometry afforded by struc-
tured deformations ([1], [2], [3]) in the broader context of “multiphase struc-
tured deformations.” The refined geometrical and kinematical setting of
multiphase structure deformations introduced here for the first time per-
mits one to distinguish in a precise fashion between

• separate elastic constituents undergoing disarrangements, i.e., N elas-
tic bodies that are not in contact and that each may undergo non-
smooth submacroscopic geometrical changes (disarrangements) such
as the formation of voids or the occurence of slips;

• intermingling elastic constituents, i.e., N elastic bodies that are split
into numerous, small, affinely deforming and non-overlapping “con-
stituent cells” in contact with cells of the same or of different con-
stituents;

• mixing elastic constituents undergoing disarrangements, i.e., N elastic
bodies that interpenetrate by occupying overlapping regions in space
and that undergo disarrangements.

The framework of multiphase structured deformations provides field equa-
tions in the first and last cases above. For separate elastic constitutents
undergoing disarrangements, each elastic constituent evolves via a time-
parameterized family of structured deformations, and appropriate field re-
lations [4] are summarized in Section 2 below. These relations generalize
those of dynamical finite elasticity, allow each constituent to store energy
via both deformations without disarrangements and deformations due to
disarrangements, and also allow each constituent to experience dissipation
during smooth dynamical processes. The capability of each constituent to
undergo disarrangments by incorporating submacroscopic voids is signifi-
cant, because the void fraction so created provides unoccupied space that
potentially can be occupied by other constituents.

The desired field relations for mixing elastic constituents then amount
to generalizations of the field relations [4] for a given, separate elastic con-
stituent c, and I show here how the appearance of other constituents in the
region occupied by constituent c causes the appearance of new terms or fac-
tors in those field relations. Multiphase structured deformations, introduced

3



in Section 3, describe precisely how elastic constituents can interpenetrate
and yet, through the presence of microvoids in each constituent, can pro-
vide enough room for the remaining constituents. The provision of room
for other constituents is captured in the Accomodation Inequality (3.2), and
the assertion that there is “enough” room is justified by the Approxima-
tion Lemma for Multiphase Structured Deformations stated in Section 4.
This result generalizes the Approximation Lemma for Structured Deforma-
tions [1] and shows that injective, piecewise affine mappings can be used
to approximate “macroscopically translational representatives” of a given
multiphase structured deformation. The injectivity of the approximating
mappings leads me to describe them as “intermingling approximations.”

The use of intermingling approximations avoids our having to consider
directly the interpenetration of different constituents, because no interpene-
tration occurs via intermingling approximations, i.e, at a given point in the
range of an intermingling approximation, exactly one constituent is present.
In Section 7 I use these intermingling approximations as well as the “in-
termingling fields” introduced in Sections 5 and 6 to identify contact forces
exerted on a given deformed constituent cell by other deformed cells. Con-
ditions are provided under which the contact forces converge to a “mixing
force on constituent c” that describes the force per unit volume that the
mixture exerts on constituent c and that enters into the equation of balance
of linear momentum for constituent c in the presence of the remaining N−1
constituents. The “mixing force on constituent c” corresponds formally to
the “momentum supply for constituent c” defined in ([5],Section 130; [6])
and to the “volume distributed force” considered in [7]. The formula (7.8)
for the mixing force shows that it arises from a difference between the “con-
stituent traction,” computed when the constituent is separate from other
constituents, and the “intermingling traction” exerted on the deforming cells
of constituent c by other constituent cells.

Sections 8 and 9 provide a study of how the presence of other constituents
requires a modification of the equation of balance of angular momentum
and of the dissipation inequality that hold for constituent c when separated
from the others. In particular, I adapt the analysis in Section 7 to obtain in
Section 8 an expression for the “mixing moments” exerted on constituent c
and to derive the equation of balance of angular momentum for constituent
c within the mixture. A corresponding discussion in Section 9 identifies the
“mixing power” expended on a given constituent and provides a dissipation
inequality for that constituent within the mixture.

The formulas for the mixing forces, mixing moments, and mixing power
permit us to determine their transformation properties under change of
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observer as well as restrictions on how they may depend upon the time-
parameterized family of multiphase structured deformations that describes
the macroscopic and submacroscopic evolution of all of the constituent.
These observations set the stage for a study of constitutive relations for
mixing forces, moments, and power to be undertaken in the future and
to be built on earlier works on constitutive relations for mixtures, e.g.,
[5],[6],[7],[8],[9].

In Section 10, I introduce a special class of mixtures in which the mix-
ing forces on a given constituent determine the mixing moments exerted on
that constituent and, together with the spatial velocity field for that con-
stituent, the mixing forces also determine the mixing power expended on
that constituent. For these mixtures, the original field relations in Section
2 require only rather simple modifications to account for the influence of
other constituents.

The point of view taken here emphasizes the treatment of each con-
stituent as an individual continuous body whose particular evolution may
be influenced by the intimate presence of other constituents. The present
treatment ignores for the most part the possibility that the constituents,
taken together, might be described as a new continuous body; thus, I em-
phasize “mixing” as opposed to “the mixture,” in the spirit of Williams’
study [7]. Nevertheless, in Section 11 a limit argument is used to obtain
“mixing averages” for stress, velocity, and density. These are fields defined
on the union of the regions occupied by the constituents and may be ap-
proximated as closely as desired by averages of stress, velocity, and density
for intermingling approximations to the underlying multiphase structured
deformations. I propose that mixing averages for stress and velocity be used
to formulate boundary conditions imposed at points occupied by more than
one constituent.

2 Field equations for separate elastic constituents

I assume that each of the N constituents of a mixture, when separated
from the others, is an elastic body undergoing disarrangements and subject
to the field equations proposed in [4]. For each c = 1, · · · , N , the motion
of the constituent c is described by means of a pair of smooth mappings
χc : Ac × [0, T ] → E and Gc : Ac × [0, T ] → LinV such that the pair
(χc(·, t), Gc(·, t)) is a structured deformation for each t ∈ [0, T ]. Here, E de-
notes three-dimensional physical space, V denotes its translation space, and
LinV denotes all linear mappings on V. The field χc is called the macro-
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scopic motion of constituent c, the tensor field Gc is called the deformation
without disarrangements of constituent c, and the definition of “structured
deformation” [1] requires that for each t ∈ [0, T ], χc(·, t) is injective and that
there is a positive number δc(t) such that

0 < δc(t) ≤ detGc(X, t) ≤ det∇χc(X, t) (2.1)

for all X ∈ Ac. (The “permanent fracture site” described in the definition of
structured deformation [1] is here taken to be the empty set and need not be
displayed when denoting the motion of a constituent. Also, the definition of
structured deformation requires that each reference region Ac be a piecewise
fit region, defined in Section 6, and necessarily is bounded and open.)

As noted in [4] and explored in depth in [1], [10], the tensor field Mc :
Ac × [0, T ] → LinV defined by

Mc(X, t) := ∇χc(X, t) −Gc(X, t) (2.2)

represents the contributions of submacroscopic disarrangements (non-smooth
geometrical changes) to the macroscopic deformation Fc := ∇χc of con-
stituent c, and Mc is called the deformation due to disarrangements for con-
stituent c. For the field theory proposed in [4], the volume density ψc(X, t)
of the Helmholtz free energy, measured per unit volume in the reference re-
gion Ac, and the Piola-Kirchhoff stress Sc(X, t) are related to the structured
deformation (χc(·, t), Gc(·, t)) of constituent c via the constitutive relations

ψc(X, t) = Ψc(Gc(X, t),Mc(X, t)) (2.3)

Sc(X, t) = DGΨc(Gc(X, t),Mc(X, t)) +DMΨc(Gc(X, t),Mc(X, t)) (2.4)

for all (X, t) ∈ Ac × [0, T ]. In the last relation, DG and DM denoted dif-
ferentiation with respect to G and M , respectively. The fact that Gc and
Mc both transform under a change of observer in the same manner as Fc

[4] yields the condition of material frame-indifference for the free energy
response

Ψc(QG,QM) = Ψc(G,M) (2.5)

for all Q,G,M ∈ LinV with Q orthogonal and with G and M satisfying
0 < detG ≤ det(G+M).

The field equations for constituent c, separated from the other con-
stituents, now may be written in terms of the fields χc, Fc, Gc, and Mc

([4], equations (10.1) - (10.5)):

ρc,ref χ̈c = DivSc + bc,ref (2.6)

6



DGΨcM
T
c +DMΨcF

T
c = 0 (2.7)

sk(DGΨcM
T
c +DMΨcG

T
c ) = 0 (2.8)

DGΨc · Ṁc +DMΨc · Ġc ≥ 0 (2.9)

0 < δc < detGc ≤ detFc. (2.10)

In the equation of balance of linear momentum (2.6), the stress field Sc

is given by (2.4), ρc,ref denotes the mass density of constituent c in the
reference region Ac, bc,ref denotes the body force per unit volume in the
reference region Ac, and each superposed dot there, as well as in the dis-
sipation inequality (2.9), denotes one differentiation with respect to time
t. Div in (2.6) denotes the divergence with respect to position X in the
reference region, and “sk” in (2.8) denotes the operation of taking the skew
part (A−AT )/2 of a tensor A ∈ LinV. The left-hand side of the dissipation
inequality (2.9) represents the power expended by stresses without disar-
rangements at disarrangement sites and by stresses due to disarrangements
away from disarrangement sites, and the relation (2.8) is equivalent to the
assertion that the left-hand side of (2.9) is frame-indifferent [4]. Together,
(2.8) and (2.5) imply that the Cauchy stress (detFc)

−1ScF
T
c for constituent

c is symmetric and, consequently, that the balance of angular momentum
for constituent c is satisfied [4].

The remaining field relation (2.7) was derived in [4] through the avail-
ability of both an additive and a multiplicative decomposition of the stress
tensor (detKc)Sc, where Kc = F−1

c Gc. This consistency relation is a tenso-
rial equation that restricts how the macroscopic deformation Fc = Gc +Mc

may be apportioned between deformations Gc without disarrangements and
deformations Mc due to disarrangements. Thus (2.7) obviates the need to
impose additional constitutive relations such as an evolution equation for
Gc or for Mc, as are imposed in theories of materials with internal variables
(plasticity or viscoplasticity, for example).

We note that the field relations (2.6) - (2.10) reduce to those of dynami-
cal, finite elasticity when DMΨc(G, 0) is identically zero and when the body
undergoes only classical deformations, i.e., when the field Mc vanishes [4].
The richer field theory provided by the field relations (2.6) - (2.10) allows an
elastic body to incorporate voids at a submacroscopic level and, potentially,
to accomodate other constituents of a mixture.
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3 Multiphase structured deformations

In the description below of mixing for N elastic constituents I continue to as-
sume for c = 1, . . . , N that geometrical changes experienced by constituent c
are described by means of a time-parameterized family t 7→ (χc(·, t), Gc(·, t))
of structured deformations from a reference region Ac. I follow the dis-
cussion of “mixing deformations” in [2] and define the volume fraction

ϕc(·, t) :
N
⋃

c′=1

χc′(Ac′ , t) → [0, 1] of constituent c by

ϕc(x, t) =















detGc(χc(·, t)
−1(x), t)

detFc(χc(·, t)−1(x), t)
if x ∈ χc(Ac, t)

0 otherwise,

(3.1)

where χc(·, t)
−1 denotes the inverse of the injective mapping χc(·, t). The

inequality (2.10) tells us, as expected, that the volume fraction takes values
in the interval [0, 1] and that ϕc(x, t) > 0 if and only if x ∈ χc(Ac, t). I
call 1 − ϕc the void fraction of constituent c and interpret 1 − ϕc(x, t) to
be the fraction of volume at the point x at time t that is available for
occupation by the other N − 1 constituents. Henceforth, I use the notation
N ] := {1, . . . , N}.
Definition: Let the reference regions Ac for c ∈ N ] be pairwise disjoint and
non-empty, and let t ∈ [0, T ] be given. The list

(

(χc(·, t), Gc(·, t)) | c ∈ N ]
)

is called a multiphase structured deformation if the following two conditions
hold:

(MphStd1) for every c ∈ N ], (χc(·, t), Gc(·, t)) is a structured
deformation,

(MphStd2) (Accomodation Inequality) for every x ∈
N
⋃

c=1
χc(Ac, t),

N
∑

c=1

ϕc(x, t) ≤ 1. (3.2)

The pairwise disjointness of the reference regions required in the defi-
nition means that the constituents are separated in their reference regions,
and (MphStd1) asserts that each constituent undergoes a structured defor-
mation at the given time t. The Accomodation Inequality in (MphStd2)
implies that the void fraction of each constituent is no less than the sum of
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the volume fractions of the N − 1 remaining constituents, so that each con-
stituent accomodates the others in a sense to be made precise in Theorem
4.1. (See [9] for an interpretation of (3.2) in the case of strict inequality.)

I assume from now on that at every time t ∈ [0, T ] the family
(

(χc(·, t), Gc(·, t)) | c ∈ N ]
)

is a multiphase structured deformation and say

that, at a given time t ∈ [0, T ], mixing occurs at x ∈
N
⋃

c=1
χc(Ac, t) if there

exist distinct c, c′ ∈ N ] such that x ∈ χc(Ac, t)∩ χc′(Ac′ , t). Since the refer-
ence regions Ac for c ∈ N ] are pairwise disjoint and since each macroscopic

deformation χc(·, t) is injective, mixing occurs at at least one x ∈
N
⋃

c=1
Ac if

and only if the mapping µ(·, t) :
N
⋃

c=1
Ac → E defined by

µ(X, t) := χc(X, t) if X ∈ Ac (3.3)

fails to be injective. Thus, while each constituent undergoes a motion χc

for which χc(·, t) is injective at every time t, the totality of constituents
undergoes a motion µ for which µ(·, t) may fail to be injective at certain
times, signaling the interpenetration of at least two of the constituents and,
according to this discussion, the occurence of mixing.

It is helpful to consider for each t ∈ [0, T ] two factorizations of the
multiphase structured deformation

(

(χc(·, t), Gc(·, t)) | c ∈ N ]
)

. The first
is obtained via the factorization ([1], [2]) of each constituent structured
deformation

(χc(·, t), Gc(·, t)) = (ic(·, t), Hc(·, t)) ◦std (χc(·, t), Fc(·, t)) (3.4)

in which

ic(x, t) = x and Hc(x, t) = Gc(χc(·, t)
−1(x), t)Fc(χc(·, t)

−1(x), t)−1 (3.5)

for all x ∈ χc(Ac, t). The factor (χc(·, t), Fc(·, t)) in the right-hand side
of (3.4) represents a classical deformation, since the gradient of χc(·, t) is
Fc(·, t), while the remaining factor (ic(·, t), Hc(·, t)) represents a purely sub-
macroscopic deformation that accounts for all of the disarrangements associ-
ated with the given structured deformation (χc(·, t), Gc(·, t)). The operation
“◦std” in (3.4) is the composition of structured deformations defined in [1].
Defining “constituentwise composition” ⋄ in the obvious way, we may use
the factorization (3.4) of each constituent structured deformation to obtain
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a first factorization of the original multiphase structured deformation:

(

(χc(·, t), Gc(·, t)) | c ∈ N ]
)

=
(

(ic(·, t), Hc(·, t)) | c ∈ N ]
)

⋄
(

(χc(·, t), Fc(·, t)) | c ∈ N ]
)

.

(3.6)

We note that the factor
(

(χc(·, t), Fc(·, t)) | c ∈ N ]
)

in (3.6) need not be
a multiphase structured deformation, because the volume fraction of each
constituent takes on only the values 0 and 1: wherever mixing occurs, the
sum of the volume fractions is at least two, and the Accomodation Inequality
is violated. Likewise, the factor

(

(ic(·, t), Hc(·, t)) | c ∈ N ]
)

need not be a

multiphase structured deformation, because the domains χc(Ac, t) for c ∈ N ]

of the mappings (ic(·, t), Hc(·, t)) need not be disjoint.
We now choose for each t ∈ [0, T ] and for c ∈ N ], a translation τc(·, t) :

χc(Ac, t) → E with the property that the closures of the ranges Tc(t) :=
τc(χc(Ac, t), t) for c ∈ N ] are pairwise disjoint. (Such choices are possible be-
cause, as noted earlier, each set χc(Ac, t) is bounded.) I call

(

τc(·, t) | c ∈ N ]
)

a family of separating translations for
(

(χc(·, t), Gc(·, t)) | c ∈ N ]
)

. If we
write Ic(x, t) := I for all x ∈ χc(Ac, t), then the fact that the gradient of
a translation at every point is the identity element I of LinV implies that
both (τc(·, t), Ic(·, t)) and (τc(·, t)

−1, Ic(·, t) ◦ τc(·, t)
−1) are classical defor-

mations from the regions χc(Ac, t) and Tc(t), respectively, for c ∈ N ]. The
factorization (3.4) then is equivalent to

(χc(·, t), Gc(·, t)) = (ic(·, t), Hc(·, t)) ◦std (τc(·, t)
−1, Ic(·, t) ◦ τc(·, t)

−1)
◦std (τc(·, t), Ic(·, t)) ◦std (χc(·, t), Fc(·, t))

= (τc(·, t)
−1, Hc(·, t) ◦ τc(·, t)

−1)
◦std (τc(·, t) ◦ χc(·, t), Fc(·, t)).

(3.7)

The domain of the structured deformation (τc(·, t)
−1, Hc(·, t) ◦ τc(·, t)

−1)
on the right-hand side of (3.7) is Tc(t), and for c ∈ N ] these regions are
pairwise disjoint. Moreover, the range of τc(·, t) ◦ χc(·, t) on the right-hand
side of (3.7) is Tc(t), so that the different constituents cannot undergo mixing
by means of the structured deformations (τc(·, t) ◦ χc(·, t), Fc(·, t)) for c ∈
N ] . Consequently, the factorizations (3.7) for c ∈ N ] yield the following
alternative to (3.6):

(

(χc(·, t), Gc(·, t)) | c ∈ N ]
)

=
(

(τc(·, t)
−1, Hc(·, t) ◦ τc(·, t)

−1) | c ∈ N ]
)

⋄
(

(τc(·, t) ◦ χc(·, t), Fc(·, t)) | c ∈ N ]
)

,

(3.8)
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in which both factors on the right hand side are multiphase structured de-
formations, and we have

Remark: Each multiphase structured deformation
(

(χc(·, t), Gc(·, t)) | c ∈ N ]
)

is a composition of a multiphase structured de-

formation without mixing
(

(τc(·, t) ◦ χc(·, t), Fc(·, t)) | c ∈ N ]
)

, in which each
constituent undergoes a classical deformation, and a multiphase structured
deformation

(

(τc(·, t)
−1, Hc(·, t) ◦ τc(·, t)

−1) | c ∈ N ]
)

whose volume fractions

agree with those of
(

(χc(·, t), Gc(·, t)) | c ∈ N ]
)

and in which each constitu-
tent macroscopically undergoes a translation.

These observations permit one to study the geometry of mixing in the
simpler setting in which the cth constituent at each time t macroscopically
undergoes only the translation τc(·, t)

−1. I call the multiphase structured
deformation

(

(τc(·, t)
−1, Hc(·, t) ◦ τc(·, t)

−1) | c ∈ N ]
)

in (3.8) a translational

representative of
(

(χc(·, t), Gc(·, t)) | c ∈ N ]
)

, I call the region χc(Ac, t) the
cth constituent region at time t, and I call Tc(t) := τc(χc(Ac, t), t) the trans-
lated cth constituent region at time t.

From the discussion given above the relation (3.3) and the factorization

(3.8), we may conclude that mixing occurs at some x ∈
N
⋃

c=1
τc(·, t)

−1(Tc(t))

=
N
⋃

c=1
χc(Ac, t) if and only if the piecewise translational mapping µτ (·, t) :

N
⋃

c=1
Tc(t) → E defined by

µτ (y, t) := τc(·, t)
−1(y) if y ∈ Tc(t) (3.9)

fails to be injective. In Section 4, I shall approximate µτ (·, t) by injec-
tive, piecewise affine mappings hε(·, t) that “intermingle” theN constituents
without interpenetration and whose gradients ∇hε(·, t) approximateHc(·, t)◦
τc(·, t)

−1 on the translated cth constituent region Tc(t), for all c ∈ N ].

4 Intermingling approximations

One of the principal results in the theory of structured deformations is the
Approximation Lemma [1] that establishes, for each of the purely submacro-
scopic structured deformations (ic(·, t), Hc(·, t)) in the factorization (3.6)
and for each ε > 0, the existence of an injective, piecewise affine map-
ping ac,ε(·, t) on the constituent region χc(Ac, t) such that limε→0 ac,ε(·, t) =
ic(·, t) and limε→0 ∇ac,ε(·, t) = Hc(·, t) (with convergence in the sense of
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L∞, i.e., essentially uniform convergence). Each approximation ac,ε(·, t) pro-
vides a submacroscopic view of the structured deformation (ic(·, t), Hc(·, t)) ,
in that the constituent region χc(Ac, t) is divided into a number of non-
overlapping parallelepipeds, each of which undergoes via ac,ε(·, t) an affine
deformation whose gradient is determined by Hc(·, t) and whose transla-
tional part moves the parallepiped only slightly from its original position in
χc(Ac, t). As ε tends to zero, the number of parallelepipeds increases and
the size decreases, supporting the attributive “submacroscopic.”

The conclusion of the Approximation Lemma that ac,ε(·, t) be injective
rests crucially on the inequality (2.1) or, in the present context, on the
condition

0 < δ̃c(t) < detHc(x, t) ≤ 1 (4.1)

that holds for all x ∈ χc(Ac, t). This condition amounts to the assertion that
the contribution detHc(x, t) to macroscopic volume changes by smooth sub-
macroscopic geometrical changes does not exceed the macroscopic volume
change, det∇ic(·, t) = 1. From the definition of the volume fractions ϕc(·, t)
in (3.1) and from (3.5) we may conclude that the Accomodation Inequal-
ity (3.2) generalizes (4.1) from the case of a single constituent undergoing
structured deformations to the case of N constituents undergoing multi-
phase structured deformations. In a future article I provide a proof of the
following extension of the Approximation Lemma to multiphase structured
deformations:
Theorem: (Approximation Lemma for Multiphase Structured Deforma-
tions) Let t ∈ [0, T ] and let a translational representative
(

(τc(·, t)
−1, Hc(·, t) ◦ τc(·, t)

−1) | c ∈ N ]
)

of the multiphase structured defor-

mation
(

(χc(·, t), Gc(·, t)) | c ∈ N ]
)

be given. For each ε > 0 there exists

a cover of the disjoint union
N
⋃

c=1
Tc(t) by a collection Pε(t) of mutually con-

gruent, non-overlapping closed parallelepipeds P whose diameters tend to

zero as ε tends to zero, and an injective mapping hε(·, t) :
⋃

P∈Pε(t)

N
⋃

c=1
(Tc(t)∩

IntP ) → E such that

1. for each P ∈ Pε(t) there is exacly one c ∈ N ] satisfying Tc(t)∩ IntP 6=
∅; moreover,

hε(Tc(t) ∩ IntP, t) ⊂ χc(Ac, t); (4.2)

2. for each P ∈ Pε(t) and for the unique c ∈ N ] satisfying Tc(t)∩IntP 6=
∅, the restriction hε(·, t) |Tc(t)∩IntP is an affine deformation;
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3. for each P ∈ Pε(t) and for the unique c ∈ N ] satisfying Tc(t)∩ IntP 6=
∅,

∥

∥(hε(·, t) − τc(·, t)
−1) |Tc(t)∩IntP

∥

∥

L∞(Tc(t)∩IntP )
< ε, (4.3)

∥

∥(∇hε(·, t) −Hc(·, t) ◦ τc(·, t)
−1) |Tc(t)∩IntP

∥

∥

L∞(Tc(t)∩IntP )
< ε. (4.4)

We note that the first item in the Approximation Lemma amounts to the
condition that the common diameter of the parallelpipeds P ∈ Pε(t) can be
made small enough that the interior IntP meets exactly one of the pairwise
disjoint, translated constituent regions T1(t), . . . , TN (t). Consequently, the
entire collection Pε(t) is partitioned into disjoint collections

Pε,c(t) := {P ∈ Pε(t) | Tc(t) ∩ IntP 6= ∅} , (4.5)

and, for each c ∈ N ] and P ∈ Pε,c(t), I call the non-empty set Tc(t) ∩ IntP
a (constituent) c-cell for hε(·, t). The first two items then tell us that each
c-cell Tc(t)∩ IntP undergoes an affine deformation, and its image hε(Tc(t)∩
IntP, t) is included in the constituent region χc(Ac, t). Moreover, because
hε(·, t) is injective, for each c, c′ ∈ N ] and for each P ∈ Pε,c(t) and P ′

∈ Pε,c′(t),

(c 6= c′) or (P 6= P ′) ⇒ hε(Tc(t)∩ IntP, t)∩hε(Tc′(t)∩ IntP
′, t) = ∅. (4.6)

This condition tells us that the images of constituent cells of different con-
stituents have no points in common, and the images of distinct constituent
cells for the same constituent have no points in common. Hence, the map-
ping hε(·, t) causes constituent cells to intermingle without interpenetra-
tion, and the inequalities (4.3) and (4.4) lead us to call hε(·, t) an intermin-
gling approximation for

(

(τc(·, t)
−1, Hc(·, t) ◦ τc(·, t)

−1) | c ∈ N ]
)

. In differ-
ent terms, (4.3) tells us that the generally non-injective, piecewise transla-
tional mapping µτ (·, t) defined via

(

τc(·, t)
−1 | c ∈ N ]

)

in (3.9) is approxi-
mated by the injective, piecewise affine mapping hε(·, t) provided by the Ap-
proximation Lemma, while (4.4) tells us that the deformations without dis-
arrangements

(

Hc(·, t) ◦ τc(·, t)
−1 | c ∈ N ]

)

are approximated by ∇hε(·, t).

5 Constituent stress, velocity and density fields

From a time-parameterized family t 7→
(

(χc(·, t), Gc(·, t)) | c ∈ N ]
)

of mul-
tiphase structured deformations that describes the mixing of N constituents,
we may recover for each c ∈ N ] the time-parameterized family
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t 7→ (χc(·, t), Gc(·, t)) of structured deformations that describes the geo-
metrical changes, including disarrangements, of the cth constituent. Next,
without regard to the other constituents, we may recover by differentiation
at each time t the velocity field χ̇c(·, t) and, from (2.4), the Piola-Kirchhoff
stress field Sc(·, t) for the cth constituent. Both of the fields χ̇c(·, t) and
Sc(·, t) have domain the reference region Ac, and we may compute from
them in the standard way their spatial versions: for each x ∈ χc(Ac, t)

vc(x, t) := χ̇c(χc(·, t)
−1(x), t) (5.1)

and

Tc(x, t) := (detFc(X, t))
−1Sc(X, t)Fc(X, t)

T |X=χc(·,t)−1(x). (5.2)

I call vc(·, t) the cth constituent velocity field at time t and Tc(·, t) the cth

constituent stress field at time t (or the cth Cauchy stress field at time t).
By means of the local form of mass conservation for the cth constituent,
we also may obtain the defining formula for the cth constituent density field
ρc(·, t): for each x ∈ χc(Ac, t),

ρc(x, t) := (detFc(X, t))
−1ρc,ref (X) |X=χc(·,t)−1(x). (5.3)

The relations (5.1) - (5.3) and (2.4) imply that these three cth constituent
fields are determined by the time-parameterized family t 7→ (χc(·, t), Gc(·, t))
of structured deformations for constituent c and by the reference density
ρc,ref , alone. Corresponding to the assumed smoothness of χc and Gc at the
beginning of Section 2, I assume also that the constituent fields vc, Tc and
ρc are smooth functions on the trajectory of the cth constituent.

We note for future reference that the balance of linear momentum (2.6)
for constituent c, when separated from the other constituents, takes the
standard spatial form in terms of the constituent fields:

ρcv̇c = divTc + b, (5.4)

where the given spatial body force b (measured per unit volume in the region
N
⋃

c=1
χc(Ac, t)) and the referential body force bc,ref in (2.6) are related by the

formula
b(x, t) = (detFc(X, t))

−1bc,ref (X) |X=χc(·,t)−1(x). (5.5)

(Because b is specified as part of the environment, this field does not depend
upon the particular constituent being considered, and (5.5) may be viewed
as a definition of the referential body force field bc,ref in terms of b and the
given macroscopic deformation Fc of constituent c.)
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6 Intermingling stress, velocity and density fields

In this section I associate with each intermingling approximation a stress
field, a velocity field, and a density field that will permit in the sequel (i)
the identification of the forces and moments experienced by each constituent
due to the presence of the others and (ii) the derivation of balance laws for
each constituent in the presence of the others. Let t ∈ [0, T ] , ε > 0, and

an intermingling approximation hε(·, t) :
⋃

P∈Pε (t)

N
⋃

c=1
(Tc(t) ∩ IntP ) → E for

the translational representative
(

(τc(·, t)
−1, Hc(·, t) ◦ τc(·, t)

−1) | c ∈ N ]
)

be
given. From the discussion in Section 4, we may represent the range of
hε(·, t) as the disjoint union of affinely deformed constituent cells:

Rng hε(·, t) =
N
∪

c=1
∪

P∈Pε,c (t)
hε(Tc(t) ∩ IntP, t). (6.1)

By (4.2) in the Approximation Theorem in Section 4, each deformed c-cell
hε(Tc(t)∩IntP, t) is included in the constituent region χc(Ac, t), so that the
constituent fields Tc, vc, and ρc are defined on hε(Tc(t)∩IntP, t). To exploit
this fact, we let x ∈ Rng hε(·, t) be given, and note that there is exactly one
c ∈ N ] and P ∈ Pε,c (t) such that x ∈ hε(Tc(t) ∩ IntP, t). We may then
define

Tε(x, t) := Tc(x, t), vε(x, t) := vc(x, t), ρε(x, t) := ρc(x, t). (6.2)

If x ∈ (ExtRng hε(·, t))∩
N
⋃

c=1
χc(Ac, t), with ExtRng hε(·, t) the exterior of

Rng hε(·, t), then I define

Tε(x, t) := 0, vε(x, t) := 0, ρε(x, t) := 0. (6.3)

Relations (6.2) and (6.3) define the intermingling stress, velocity, and den-
sity fields Tε(·, t), vε(·, t), and ρε(·, t) as tensor, vector, and scalar fields,

respectively, with common domain
N
⋃

c=1
χc(Ac, t) \Bdy Rng hε(·, t).

The detailed definition of structured deformations and property (PF1)

in [1] assure that
N
⋃

c=1
χc(Ac, t) and Rng hε(·, t) are piecewise fit regions, i.e,

that each is a finite union of bounded, regularly open sets of finite perimeter
whose boundaries have zero volume. For a given c ∈ N ] the smoothness
of the constituent fields Tc(·, t), vc(·, t), and ρc(·, t) assure ([10], Section 3)
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that at area-almost every point x of the essential boundary Eby Rng hε(·, t)
each of the intermingling fields Tε(·, t), vε(·, t), and ρε(·, t) has two traces,
corresponding to the two opposite unit normal vectors at x. Moreover, each
of these points x of the essential boundary Eby Rng hε(·, t) corresponds
to a point of contact of exactly two deformed constituent cells (from the
same constituent or from different constituents) or corresponds to a point
of contact of a deformed constituent cell and the set (ExtRng hε(·, t)) ∩
N
⋃

c=1
χc(Ac, t), which contains no deformed constituent cells. In Section 7, the

traces of intermingling fields at such points enter into the identification of the
forces exerted on a given constituent by the others and into the derivation
of the equation of balance of linear momentum for that constituent in the
prescence of the others.

7 Mixing forces and the balance of linear momen-

tum

Let c ∈ N ], t ∈ [0, T ], ε > 0, hε(·, t) :
N
⋃

c=1

⋃

P∈Pε,c (t)

Tc(t) ∩ IntP → E , and

P ∈ Pε,c(t) be given, and recall that hε(Tc(t)∩IntP, t) is an affinely deformed
c-cell lying in the constituent region χc(Ac, t). Moreover, hε(Tc(t)∩ IntP, t)
is disjoint from but may be in contact with the other deformed constituent
cells hε(Tc′(t) ∩ IntP ′, t) for c′ 6= c or P ′ 6= P . The defining relations
(6.2) and (6.3) tell us that the intermingling fields Tε(·, t), vε(·, t), and
ρε(·, t) agree with the constituent fields Tc(·, t), vc(·, t), and ρc(·, t) on the
deformed c-cell hε(Tc(t) ∩ IntP, t), so that the linear momentum of the
material points in hε(Tc(t) ∩ IntP, t) at time t is given by the integral
∫

hε(Tc(t)∩IntP,t) ρc(x, t)vc(x, t)dVx, and the time derivative of the linear mo-
mentum of these material points, following the motion χc of constituent
c, is

∫

hε(Tc(t)∩IntP,t) ρc(x, t)v̇c(x, t)dVx. Here, v̇c = ∂
∂t
vc + (gradvc)vc is the

material time derivative of the constituent velocity field vc. Moreover, the
total body force at time t acting on the material points in hε(Tc(t)∩IntP, t)
is the integral

∫

hε(Tc(t)∩IntP,t) b(x, t)dVx, where, as in (5.5), b is the spatial

body force field measured per unit volume: b(·, t) :
N
⋃

c=1
χc(Ac, t) → V.

In order to identify the contact force that all of the other intermingling
constituent cells exert at time t on the given deformed c-cell hε(Tc(t) ∩
IntP, t), we recall that at (area) almost every point x in the essential
boundary Eby hε(Tc(t) ∩ IntP, t) of the given deformed c-cell, the inter-
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mingling stress field Tε(·, t) has an exterior trace T +
ε (·, t) and an interior

trace T −
ε (·, t). Because Tε(x̃, t) = Tc(x̃, t) for all x̃ ∈ hε(Tc(t) ∩ IntP, t) and

Tc(·, t) is a smooth function on χc(Ac, t), it follows that T −
ε (x, t) = Tc(x, t)

for (area) almost every x ∈ Eby hε(Tc(t) ∩ IntP, t). However, the exterior
trace satisfies T +

ε (x, t) = 0 if x is a point of contact of hε(Tc(t) ∩ IntP, t)

and (ExtRng hε(·, t))∩
N
⋃

c=1
χc(Ac, t) or, T +

ε (x, t) = Tc′(x, t) , if x is a point

of contact of hε(Tc(t)∩ IntP, t) and hε(Tc′(t)∩ IntP
′, t) for some c′ ∈ N ]. In

a similar way, vε(·, t) and ρε(·, t) may be assigned at x inner traces vc(x, t)
and ρc(x, t) as well as outer traces vc′(x, t) and ρc′(x, t) or 0.

I denote by sε,c(x, t) the intermingling traction at x, i.e., the traction
exerted at x ∈ Ebyhε(Tc(t) ∩ IntP, t) by the deformed constituent cell in
contact with hε(Tc(t) ∩ IntP, t) at x. In general, the intermingling traction
arises from bilateral contacts between constituent cells, and I assume that
sε,c(x, t) is determined in a frame-indifferent manner by the inner and outer
traces of the intermingling fields vε(·, t) and Tε(·, t) at x, as well as by the
outer normal n(x) to hε(Tc(t) ∩ IntP, t) at x. Assuming that sε,c(·, t) is
integrable on Ebyhε(Tc(t) ∩ IntP, t), we may use the Gauss-Green formula
to write the contact force exerted on hε(Tc(t) ∩ IntP, t) in the form

∫

Ebyhε(Tc(t)∩IntP,t) sε,c(x, t)dAx

=
∫

Ebyhε(Tc(t)∩IntP,t)(sε,c(x, t) − Tc(x, t)n(x))dAx

+
∫

Ebyhε(Tc(t)∩IntP,t) Tc(x, t)n(x)dAx

=
∫

Ebyhε(Tc(t)∩IntP,t)(sε,c(x, t) − Tc(x, t)n(x))dAx

+
∫

hε(Tc(t)∩IntP,t) divTc(x, t)dVx.

(7.1)

I assume now for the given constituent c that all of the constituent fields
Tc′ , vc′ , ρc′ , for c′ ∈ N [, and the body force field b satisfy: for each t ∈ [0, T ]
there is a sequence m 7→ εm > 0 tending to zero such that, for all m ∈ N and
for all P ∈ Pεm ,c(t), the balance of linear momentum holds for the material
points in hεm (Tc(t) ∩ IntP, t) at time t:

∫

hεm (Tc(t)∩IntP,t) ρc(x, t)v̇c(x, t)dVx

=
∫

hεm (Tc(t)∩IntP,t) b(x, t)dVx +
∫

Ebyhεm (Tc(t)∩IntP,t) sεm,c(x, t)dAx.
(7.2)
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Using (7.1) we obtain for every m ∈ N and P ∈ Pεm ,c(t):

∫

hεm (Tc(t)∩IntP,t) (ρcv̇c − b− divTc) (x, t)dVx

=
∫

Ebyhεm (Tc(t)∩IntP,t)(sεm,c(x, t) − Tc(x, t)n(x))dAx.
(7.3)

Now let r > 0 and y0 ∈ Tc(t) be given such that the closure of the ball
B(y0, r) centered at y0 of radius r is included in Tc(t), and let m ∈ N be
given. We apply (7.3) to each deformed c-cell hεm(Tc(t)∩ IntP, t) for which
P ∈ Pεm ,c(t) satisfies B(y0, r) ∩ IntP 6= ∅, and we note that, because the
collection Pεm ,c(t) covers Tc(t), those P ∈ Pεm ,c(t) satisfying B(y0, r) ∩
IntP 6= ∅ cover B(y0, r). Summing both sides of (7.3) over such P and
using the injectivity of hεm(·, t), we obtain

∫

hεm (∪P (Tc(t)∩IntP ),t) (ρcv̇c − b− divTc) (x, t)dVx

=
∑

P

∫

Ebyhεm (Tc(t)∩IntP,t)(sεm,c(x, t) − Tc(x, t)n(x))dAx.
(7.4)

The fact that hεm is piecewise affine and injective permits us to use the
Change of Variables Formula in the volume integral on the left-hand side of
(7.4) to obtain the formula

∫

hεm (∪P (Tc(t)∩IntP ),t) (ρcv̇c − b− divTc) (x, t)dVx

=
∫

∪P (Tc(t)∩IntP ) (ρcv̇c − b− divTc) (hεm(y, t), t) det∇hεm(y, t)dVy.

(7.5)
Condition 3 in Theorem 4.1 and the fact that those P ∈ Pεm ,c(t) satisfying
B(y0, r)∩IntP 6= ∅ form a cover of B(y0, r) by parallelepipeds with common
diameter tending to zero imply that the right-hand side of (7.5) approaches
the volume integral

∫

B(y0,r)
(detHc(ρcv̇c − b− divTc)) (τc(·, t)

−1(y), t)dVy

as m tends to ∞. Recalling that τc(·, t)
−1 is a translation of Tc(t) onto

χc(Ac, t), we may apply the Change of Variables Formula to the last integral
and use both (7.4) and (7.5) to conclude that

limm→∞

∑

P

∫

Ebyhεm (Tc(t)∩IntP,t)(sεm,c(x, t) − Tc(x, t)n(x))dAx

=
∫

B(τc(·,t)−1(y0),r)
(detHc(ρcv̇c − b− divTc)) (x, t)dVx.

(7.6)
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The fact that y0 ∈ Tc(t) and r > 0 are arbitrary (subject to the constraint
B(y0, r) ⊂ Tc(t)) means that τc(·, t)

−1(y0) ∈ χc(Ac, t) and r > 0 are arbi-
trary, and the assumed smoothness of the fields appearing in the integrand
permit us to obtain the following local version of (7.6) that holds for all x
in χc(Ac, t):

(detHc(ρcv̇c − b− divTc))(x, t) = fc(x, t), (7.7)

where

fc(x, t) := lim
r→0

1
volB(x,r) lim

m→∞

∑

P

∫

Ebyhεm (Tc(t)∩IntP,t)

s∆εm,c(x
′, t)dAx′ . (7.8)

The sum on the right-hand side of (7.8) is taken over all P ∈ Pεm ,c(t)
satisfying B(τc(x, t), r) ∩ IntP 6= ∅. I call the field fc(·, t) defined in (7.8)
the (volume density of) mixing force exerted on constituent c at time t. The
integrand

s∆εm,c(x
′, t) := sεm,c(x

′, t) − Tc

(

x′, t
)

n(x′) (7.9)

in (7.8) is the excess traction on constituent c, i.e., the difference between the
intermingling traction sε,c(x

′, t) and the constituent traction Tc(x
′, t)n(x′),

so that a non-zero mixing force arises when, in the limit and on average, the
excess traction is non-zero.

We note that constituent c is not present in the region
N
⋃

c′=1

χc′(Ac′ , t)

\χc(Ac, t), and it is then reasonable to extend the mixing force field fc(·, t)

from the constituent region χc(Ac, t) to
N
⋃

c′=1

χc′(Ac′ , t) by assigning to it the

value 0 outside of the constituent region χc(Ac, t). With this extension and
the definition (3.1) of the volume fraction ϕc(·, t), the relation (7.7) becomes

(ϕc(ρcv̇c − b− divTc))(x, t) = fc(x, t), (7.10)

valid for all x ∈
N
⋃

c′=1

χc′(Ac′ , t).

We recall that relation (5.4) is the spatial version of the balance of lin-
ear momentum (2.6) for constituent c, when separated from the other con-
stituents, and relation (7.10) now provides the desired extension of (5.4) to
the case when the other N − 1 constituents are present. Accordingly, I call
(7.10) the equation of balance of linear momentum for constituent c within
the mixture. Comparing (5.4) and (7.10) permits us to conclude that the list
formed by the constituent fields Tc(·, t), vc(·, t), ρc(·, t), and the body force
field b(·, t) must now be augmented by the scalar field ϕc, the volume frac-
tion of constituent c, and the vector field fc, the mixing force on constituent
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c. The definitions (3.1) and (7.8), with due regard to the extension by zero
in the latter definition and the assumed frame-indifference of the intermin-
gling traction field sε,c, show that the volume fraction and the mixing force
are objective fields, i.e., the volume fraction is invariant under a change of
observer and the mixing force undergoes the very rotation that specifies a
given change of observer. In particular, the mixing force differs from the
body force in this regard, because the body force transforms in the same
manner as the inertial forces under a change of observer and, hence, is not
an objective field.

The assumptions on the intermingling traction sε,c in the paragraph
containing (7.1) along with the relations (7.8), (6.2), (6.3), (5.2), and (2.4)
show that the mixing force field fc(·, t) is determined by the list of fields
Fc′(·, t), Gc′(·, t), and χ̇c′(·, t) for c′ ∈ N ] and, apparently, by the sequence
m 7→ hεm(·, t) of intermingling approximations that satisfy the conditions in
Theorem 4.1 and that provide the balance equations. However, the equa-
tion of balance of linear momentum (7.10), itself, shows that fc(·, t) does
not depend upon the particular sequence of intermingling approximations
that provide the balance relations (7.2) and that satisfy the conditions in
Theorem 4.1. Finally, (7.8) (and its extension by 0) tells us that, for a given

x ∈
N
⋃

c′=1

χc′(Ac′ , t), the mixing force density fc(x, t) depends upon the fields

Fc′(·, t), Gc′(·, t), and χ̇c′(·, t) for those c′ ∈ N ] for which x ∈ χc′(Ac′ , t)
and, for each such c′, fc(x, t) depends only upon their values in an arbitrar-
ily small neighborhood of χc′(·, t)

−1(x) ∈ Ac′ .
These observations provide a basis for formulating in a systematic man-

ner constitutive equations for the mixing force on each constitutuent. Al-
though such a formulation is not undertaken in the present study, it is worth
observing that the resulting constitutive equations for the mixing force den-
sities fc(x, t), c ∈ N ], together with the balance equations (7.10) for the
constituents c ∈ N ] , yield N balance equations that replace the original N
balance equations (2.6) governing each constituent when separated from the
others. A particular instance of the new balance equations is described in
Section 10.

8 Mixing moments and the balance of angular mo-

mentum

The relations (2.5) and (2.8) are among the relations that restrict the motion
of constituent c, when separated from the others, and, as remarked in Section
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2, these two conditions imply that the law of balance of angular momentum
for constituent c is satisfied, again when separated from the others. Becase
each of (2.5) and (2.8) is a statement of frame-indifference, rather than a
balance law, I shall continue to require that these relations hold, even when
constituent c is intermingling with or mixing with the other constituents.
This permits us to maintain in this broader context the condition that the
Cauchy stress Tc be symmetric.

In the notation of Section 7, the angular momentum about a given point
xo of the material points in the region hε(Tc(t)∩IntP, t) is

∫

hε(Tc(t)∩IntP,t)(x−

xo) × ρc(x, t)vc(x, t)dVx, and the time derivative of the angular momen-
tum of these material points, following the motion χc of constituent c, is
∫

hε(Tc(t)∩IntP,t)(x−xo)×ρc(x, t)v̇c(x, t)dVx. Moreover, the moment about xo

of the body force at time t acting on the material points in hε(Tc(t)∩IntP, t)
is the integral

∫

hε(Tc(t)∩IntP,t)(x−xo)× b(x, t)dVx, where, as in (5.5), b is the

spatial body force field measured per unit volume: b(·, t) :
N
⋃

c=1
χc(Ac, t) → V.

Finally, the assumptions made in Section 7 tell us that the moment about xo

of the contact force exerted on hε(Tc(t) ∩ IntP, t) by other constituent cells
is given by the surface integral

∫

Ebyhε(Tc(t)∩IntP,t)(x−xo)×sε,c(x, t)dAx, and
a standard argument employing the symmetry of Tc and the Gauss-Green
formula permits us to rewrite the moment about xo of that contact force as

∫

Ebyhε(Tc(t)∩IntP,t)(x− xo) × (sε,c(x, t) − Tc (x, t)n(x))dAx

+
∫

hεm (Tc(t)∩IntP,t)(x− xo) × divTc(x, t)dVx

(8.1)

I assume now that the constituent fields Tc′ , vc′ , ρc′ for c′ ∈ N [, the
body force field b, and the point xo are such that for each t ∈ [0, T ] there is
a sequence m 7→ εm > 0 tending to zero such that, for all m ∈ N and for all
P ∈ Pεm ,c(t), not only that the balance of linear momentum holds for the
material points in hεm (Tc(t) ∩ IntP, t) at time t but also that the balance
of angular momentum about xo holds for those points:

∫

hεm (Tc(t)∩IntP,t)(x− xo) × (ρcv̇c − b− divTc) (x, t)dVx

=
∫

Ebyhεm (Tc(t)∩IntP,t)(x− xo) × (sεm,c(x, t) − Tc (x, t)n(x))dAx,
(8.2)

where the alternative expression (8.1) for the moment of the contact forces
has been used to obtain the terms involving Tc on both sides of this relation.
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If we use (7.10) to replace ρcv̇c − b − divTc by fc/detHc on the left-hand
side of (8.2), employ the definition (7.9) of the excess traction, and follow
the reasoning in Section 7 we obtain the following analogue of (7.6):

limm→∞

∑

P

∫

Ebyhεm (Tc(t)∩IntP,t)(x− xo) × s∆εm,c(x, t)dAx

=
∫

B(τc(·,t)−1(y0),r)
(x− xo) × fc(x, t)dVx

(8.3)

which holds for every y0 ∈ Tc(t) and for all r > 0 sufficiently small. In the
same manner as relation (7.7) followed from (7.6), we may conclude that for
every x ∈ χc(Ac, t) there holds

mc(x, t;xo) = (x− xo) × fc(x, t) (8.4)

where the vector on the left-hand side is the (volume density of) mixing
moments about xo at time t exerted on constituent c at x:

mc(x, t;xo)

:= lim
r→0

lim
m→∞

P

P

R

Ebyhεm (Tc(t)∩IntP,t)(x
′−x0)×s∆

εm,c(x
′,t)dAx′

volB(x,r) .

(8.5)

The sum on the right-hand side of (8.5) is taken over all P ∈ Pεm ,c(t)
satisfying B(τc(x, t), r) ∩ IntP 6= ∅.

If we extend mc(·, t;xo) from the constituent region χc(Ac, t) to
N
⋃

c′=1

χc′(Ac′ , t) as the constant field with value 0, then the corresponding

extension of the mixing force fc(·, t) made in Section 7 implies that

mc(x, t;xo) = (x− xo) × fc(x, t) for all x ∈
N
∪

c′=1
χc′(Ac′ , t). (8.6)

I call this relation the equation of balance of angular momentum for con-
stituent c within the mixture. The definitions (7.8 ) and (8.5) of the mixing
force and mixing moment densities imply that mc(x, t;xo) = mc(x, t;x) +

(x− xo) × fc(x, t) for all x ∈
N
⋃

c′=1

χc′(Ac′ , t), and we may conclude that the

balance of angular momentum ( 8.6) for constituent c within the mixture is
equivalent to

mc(x, t;x) = 0 for all x ∈
N
∪

c′=1
χc′(Ac′ , t), (8.7)
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i.e., at each point x ∈
N
⋃

c′=1

χc′(Ac′ , t) the mixing moment about the point x,

itself, exerted on constituent c must vanish.
The definition (8.5) of mc(x, t;xo) and the objectivity of the mixing

force fc under change of observer noted in Section 7 imply that the mixing
moment mc also transforms objectively. Moreover, the discussion at the end
of Section 7 on the dependence of fc(x, t) on the fields Fc′(·, t), Gc′(·, t), and
χ̇c′(·, t) with c′ ∈ N ] leads also to the conclusion that mc(x, t;xo) depends
upon these fields for those c′ ∈ N ] for which x ∈ χc′(Ac′ , t) and, for each
such c′, mc(x, t;xo) depends only upon the values of these three fields in an
arbitrarily small neighborhood of χc′(·, t)

−1(x) ∈ Ac′ .

9 Mixing power and the dissipation inequality

The relations (2.4), (2.6), and (2.9) hold when constituent c is separated
from the other constituents and imply that the power expended on each
part of the constituent region χc(Ac, t) is no less than the rate of change of
Helmholtz free energy plus the rate of change of kinetic energy of that part.
We now impose this inequality on intermingling constituents and use the
methods explained in Sections 7 and 8 to identify the “mixing power” and
an appropriate extension of (2.9). We first note that the power expended
by intermingling constituents on a deformed c-cell is
∫

hεm (Tc(t)∩IntP,t)
vc(x, t)·b(x, t)dVx+

∫

Ebyhεm (Tc(t)∩IntP,t)

vc(x, t)·sεm,c(x, t)dAx,

which may be rewritten in the form
∫

hεm (Tc(t)∩IntP,t)

(vc · (b+ divTc) + Tc · gradvc) (x, t)dVx

+
∫

Ebyhεm (Tc(t)∩IntP,t)

vc(x, t) · s
∆
εm,c(x, t)dAx,

(9.1)

while the rate of change of kinetic energy plus Helmholtz free energy of the
material points in hεm(Tc(t) ∩ IntP, t), following the motion χc, is given by

∫

hεm (Tc(t)∩IntP,t)

(

ρc(vc · v̇c + ψ̇sp,c)
)

(x, t)dVx. (9.2)

The spatial field ψsp,c is the Helmholtz free energy per unit mass, and ψ̇sp,c

is the material time derivative of ψsp,c. I assume that the power expended
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(9.1) on hεm(Tc(t) ∩ IntP, t) is no less than the volume integral in (9.2),
for all m and P as in Sections 7 and 8. The equation of balance of linear
moment (7.10) permits us to simplify the resulting inequality to read

∫

hεm (Tc(t)∩IntP ,t)

(−vc ·
fc

det Hc
+ Tc · gradvc − ρcψ̇sp,c)dV

+

∫

Ebyhεm (Tc(t)∩IntP,t)

vc · s
∆
εm,cdA ≥ 0

(9.3)

where I have omitted the variables of integration. The arguments used in
Section 7 to deduce (7.7) from (7.3) yield the inequality

(

pc − vc · fc + detHc(Tc · gradvc − ρcψ̇sp,c)
)

|(x,t)≥ 0 (9.4)

for all x ∈ χc(Ac, t), where the number

pc(x, t)

:= lim
r→0

lim inf
m→∞

∑

p

∫

Ebhyεm (Tc(t)∩IntP,t) vc(x
′, t) · s∆εm,c(x

′, t)dAx′

volB(x, r)

(9.5)

is called the mixing power expended at time t on constituent c at the point
x. The “lim inf” occurs in (9.5), rather than a double limit as in (7.8) and
(8.5), because the relation (9.3) is an inequality, rather than an equality.
Consequently, we may not infer in the present case that the double limit

exists. If we extend the mixing power to the region
N
⋃

c′=1

χc′(Ac′ , t)\χc(Ac, t)

as the zero field, then (9.4) may be written for all x ∈
N
⋃

c′=1

χc′(Ac′ , t) in the

final form
(

ϕc(Tc · gradvc − ρcψ̇sp,c) + pc − vc · fc

)

|(x,t)≥ 0. (9.6)

I call this inequality the dissipation inequality for constituent c within the
mixture and note that when the term pc − vc · fc vanishes, the inequality
(9.6) is equivalent to the dissipation inequality (2.9) for constituent c, when
separate from the other constituents. Therefore, the field pc − vc · fc is the
contribution of mixing to the total internal dissipation density of constituent
c within the mixture: ϕc(Tc · gradvc − ρcψ̇sp,c) + pc − vc · fc. The relations
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(9.5) and (7.8) permit one to write (pc − vc · fc)(x, t) in an analogous form

pc(x, t) − vc(x, t) · fc(x, t)

= lim
r→0

lim inf
m→∞

P

P

R

Ebyhεm (Tc(t)∩IntP,t)(vc(x′,t)−vc(x,t))·sεm,c (x′,t)dAx′

volB(x,r)

(9.7)

I call pc − vc · fc the reduced mixing power expended on constituent c, and
the formula (9.7) along with (8.5) - (8.7) and a routine calculation yield the
following remark.

Remark: The equation of balance of angular momentum (8.7) implies that
the reduced mixing power pc − vc · fc transforms objectively under a change
of observer. Because (2.8) and (2.5) imply that ϕc(Tc · gradvc − ρcψ̇sp,c)
transforms objectively, we conclude that the total volume density ϕc(Tc ·
gradvc−ρcψ̇sp,c)+pc−vc·fc of internal dissipation associated with constituent
c in the mixture transforms objectively.

This remark enables one to impose constitutive relations on the reduced
mixing power pc − vc · fc along the lines indicated at the end of Sections 7
and of Section 8, and a simple illustration is presented in the next section.

10 Field equations for fc-determined mixing

A specific but reasonably broad description of mixing within the present
theory arises when the (yet to be specified) constitutive relation for the
mixing force fc defined in (7.8) determines the constitutive relations both
for the mixing moment mc defined in (8.5) and for the reduced mixing power
pc − vc · fc given by (9.7) in such a way that

1. the equation of balance of angular moment (8.4) is satisfied identically
for a preassigned reference point xo:

mc(x, t;xo) = (x− xo) × fc(x, t) (10.1)

for all x ∈
N
⋃

c′=1

χc′(Ac′ , t) and

2. the reduced mixing power vanishes:

pc(x, t) − vc(x, t) · fc(x, t) = 0 (10.2)

for all x ∈
N
⋃

c′=1

χc′(Ac′ , t).
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When this is the case, I say that constituent c undergoes fc-determined
mixing, and we may now record for constituent c the resulting field relations
for all t ∈ [0, T ] and for X ∈ Ac:

(ρc,ref χ̈c −DivSc − bc,ref ) |(X,t)=
fc

ϕc
|(χc(X,t),t) (10.3)

(

DGΨcM
T
c +DMΨcF

T
c

)

|(X,t)= 0 (10.4)
(

sk(DGΨcM
T
c +DMΨcG

T
c )

)

|(X,t)= 0 (10.5)
(

DGΨc · Ṁc +DMΨc · Ġc

)

|(X,t)≥ 0 (10.6)

N
∑

c′=1

ϕc′ |(χc(X,t),t)≤ 1 (10.7)

The last relation (10.7) is the Accomodation Inequality (3.2), which implies
the inequality “≤” in (2.10), and the first relation (10.3) is the equation of
balance of linear momentum (7.7) for constituent c within the mixture. The
remaining three relations (10.4) - (10.6) are precisely the relations (2.7) -
(2.9) in Section 2 for constituent c, when separated from the mixture. Thus,
we have

Remark: When constituent c undergoes fc-determined mixing, the field
relations that govern its evolution are the relations (2.6) - (2.10) that would
govern its evolution when separated from the other constituents, except that
the balance of linear momentum (2.6) is replaced by (10.3) containing the
additional term fc/ϕc, and the inequality (2.10) is replaced by the Accomo-
dation Inequality (10.7). The definition (7.8) of fc as well as the Accomoda-
tion Inequality provide coupling between the evolution of constituent c and
the evolution of the other constituents of the mixture.

11 Mixing averages of intermingling fields; bound-

ary conditions

Let t ∈ [0, T ] and ε > 0 be given, and let λε(·, t) denote any one of the inter-
mingling fields ρε(·, t), vε(·, t), or Tε(·, t) defined in Section 6 by means of a
given intermingling approximation hε(·, t) for

(

(τc(·, t)
−1, Hc(·, t) ◦ τc(·, t)

−1)

| c ∈ N ]
)

. Further, let x0 ∈
N
⋃

c=1
χc(Ac, t) be given and put

C(x0, t) :=
{

c ∈ N ] | x0 ∈ χc(Ac, t)
}

, (11.1)
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the set of constituents present at x0 at time t. Then C(x0, t) is a non-empty
subset of N ], and ∩

c∈C(x0,t)
χc(Ac, t) is a non-empty open subset of E . Hence,

we may choose r > 0 such that the ball B(x0, r) centered at x0 of radius r
is included in

⋂

c∈C(x0,t)

χc(Ac, t), and we consider the formula

∫

hε(
S

c∈C(x0,t)

τc(B(x0,r),t) , t)

λε(x, t) dVx

=
∑

c∈C(x0,t)

∫

hε(τc(B(x0,r),t) , t)

λε(x, t) dVx

=
∑

c∈C(x0,t)

∫

τc(B(x0,r),t)

det∇hε(y, t) λε(hε(y, t), t) dVy.

(11.2)

The injectivity and piecewise affine properties of hε(·, t) provided in Theorem
4.1 and the Change of Variables Formula justify the two steps in the last
computation, and item 3 of Theorem 4.1 permits us to pass to the limit in
(11.2) and to write

lim
ε→0

∫

hε(
S

c∈C(x0,t)

τc(B(x0,r),t) , t)

λε(x, t) dVx

=
∑

c∈C(x0,t)

∫

τc(B(x0,r),t)

((detHc) λc) (τc(·, t)−1(y), t) dVy.

(11.3)

The fact that τc(·, t)
−1 is a translation permits us to employ the Change of

Variables Formula again to obtain

lim
ε→0

∫

hε(
S

c∈C(x0,t)

τc(B(x0,r),t) , t)

λε(x, t) dVx

=
∑

c∈C(x0,t)

∫

B(x0,r)

((detHc) λc) (x, t) dVx

=
∑

c∈C(x0,t)

∫

B(x0,r)

(ϕc λc) (x, t) dVx

=
∫

B(x0,r)

(
∑

c∈C(x0,t)

ϕc λc)(x, t) dVx.

(11.4)
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The same reasoning applies when λε(·, t) is replaced by the constant field 1,
so that

lim
ε→0

vol hε( ∪
c∈C(x0,t)

τc(B(x0, r), t) , t) = lim
ε→0

∫

hε(
S

c∈C(x0,t)

τc(B(x0,r),t) , t)

1 dVx

=
∫

B(x0,r)

∑

c∈C(x0,t)

ϕc(x, t) dVx. (11.5)

The last two relations tell us that

lim
ε→0

∫

hε( ∪
c∈C(x0,t)

τc(B(x0,r),t) , t) λε(x, t) dVx

vol hε(
⋃

c∈C(x0,t)

τc(B(x0, r), t) , t)

=

∫

B(x0,r) (
∑

c∈C(x0,t)

ϕc λc)(x, t) dVx

∫

B(x0,r)

∑

c∈C(x0,t)

ϕc(x, t) dVx

and, hence, that

lim
r→0

lim
ε→0

∫

hε( ∪
c∈C(x0,t)

τc(B(x0,r),t) , t)

λε(x, t) dVx

vol hε( ∪
c∈C(x0,t)

τc(B(x0, r), t) , t)

=

∑

c∈C(x0,t)

ϕc (x0, t)λc(x0, t)

∑

c∈C(x0,t)

ϕc(x0, t)
.

(11.6)

We note that the definition (3.1) of the volume fractions and (2.10)
imply that the denominator of the second fraction in (11.6) is positive and
equals

∑N
c=1 ϕc(x0, t) . For c ∈ N ]\C(x0, t) the constituent field λc(·, t)

is not defined at x0, but the volume fraction ϕc(x0, t) is then zero, and
the numerator

∑

c∈C(x0,t) ϕc (x0, t)λc(x0, t) of the second fraction may be

replaced without ambiguity by
N
∑

c=1
ϕc (x0, t)λc(x0, t). Consequently we may
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define

λ̄(x0, t) :=

N
∑

c=1
ϕc (x0, t)λc(x0, t)

N
∑

c=1
ϕc(x0, t)

= lim
r→0

lim
ε→0

∫

hε( ∪
c∈C(x0,t)

τc(B(x0,r),t) ,t)

λε(x, t) dVx

vol hε

(

∪
c∈C(x0,t)

τc(B(x0, r) , t) , t

) ,

(11.7)

and I call λ̄(x0, t) the mixing average of the intermingling field λε(·, t) at

x0. Since x0 ∈
N
⋃

c=1
χc(Ac, t) is arbitrary, the mixing average field λ̄(·, t) is

defined on the union
N
⋃

c=1
χc(Ac, t) of the constituent regions. In this man-

ner, we have obtained via (11.7) mixing average fields ρ̄(·, t), v̄(·, t), and
T̄ (·, t) for the density, velocity, and Cauchy stress as limits of volume av-
erages of the corresponding intermingling fields ρε(·, t), vε(·, t), or Tε(·, t).
Of course, the first formula in (11.7) that defines the mixing average shows
that λ̄(·, t) depends only upon the given multiphase structured deformation
(

(χc(·, t), Gc(·, t)) | c ∈ N ]
)

through the constituent fields
(

λc(·, t) | c ∈ N ]
)

and the volume fractions
(

ϕc(·, t) | c ∈ N ]
)

, while λ̄(·, t) does not depend upon the particular family
of intermingling approximations (hε(·, t) | ε > 0 ) that satisfies the condi-
tions in Theorem 4.1 and appears in the second formula in (11.7).

I propose now that mixing averages be employed in formulating bound-
ary conditions on velocity or on stress for the field relations obtained in the
previous sections. For example, requiring that the traction T̄ (x, t)n(x) asso-
ciated with the mixing average stress T̄ (·, t) have a particular value at a point

x ∈ Eby
N
⋃

c=1
χc(Ac, t) imposes (via (11.7) and through observations made in

Section 5) corresponding restrictions on the fields
(

(χc(·, ·), Gc(·, ·)) | c ∈ N ]
)

at points in the disjoint union
N
⋃

c=1
EbyAc that map into x at time t.
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