VARIATIONAL METHODS IN THE STUDY OF IMAGING,
MICROMAGNETICS AND THIN FILMS

IRENE FONSECA

ABSTRACT. The variational formulation of problems issuing from imaging, mi-
cromagnetics, membrane theories, foams, quantum dots and other physical
applications often involve energies of different dimensionality, from bulk to
interfacial terms, multiple scales, higher order derivatives, and discontinuous
underlying fields. These present new challenges for the Calculus of Variations
as existing theories usually do not apply.

Here we will give a brief tour of the variational formulation of problems issuing
from imaging, micromagnetics and membrane theories. These, and other physical
applications, often involve energies of different dimensionality, from bulk to interfa-
cial terms, multiple scales, higher order derivatives, and discontinuous underlying
fields. They present new challenges for the Calculus of Variations as existing theo-
ries usually do not apply.

1. IMAGING

A thorough study of the Mumford and Shah model [27] may be found in the
book by Ambrosio, Fusco and Pallara [2]. The issue concerns the minimization of
the functional '

E(u,l) := /Q\r (IVul® + afu — g|?) dz + BHN 1 (QNT)

among all pairs (u,I'), where § is an open bounded subset of RY (typically a
rectangle on the plane), I' C Q0 is closed, u € C*(Q\T'), g : @ — [0, 1] represents the
(data) grey level of an image, and o, 8 are positive parameters. In what follows,
and without loss of generality, we set all parameters equal to 1.

In [15] De Giorgi and Ambrosio introduced the space SBV of special functions of
bounded variation, i.e. those functions u € BV, where BV is the space of functions
of bounded variation, such that the Cantor part of their distributional derivative
Du is null. Precisely, u € SBV(Q) if u € L'(Q), Du is a finite Radon measure and

Du = Vull |Q+ (ut —u" ), KNS (u),

~ where Vu € L! (€ RY) is the density of the Radon-Nikodym derivative of Du with
respect to the N-dimensional Lebesgue measure restricted to 2, £V |Q, S(u) is the
jump set of u with normal v, u* and u™ are the traces of u on S(u), and HV~1 is
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the N — 1-dimensional Hausdorff measure. The space SBV provides a natural set-
up for free discontinuity problems, and in [16] the analysis (existence and regularity
of solution) of the Mumford-Shah problem was carried out with the formulation

inf {/Q (VU + lu—gl*) dz + HN"HQN S(u) s u € SBV(Q)} .

Later Rudin, Osher and Fatemi proposed in [29] a variant where
/ Vaf? de + HY1(Q N S(w)
Q

is replaced by the total variation |Du|(2). This preserves edges well but the images
resulting have the staircasing effect where affine regions become piecewise constant.
In order to resolve this phenomenon, in [10] Chan, Marquina and Mulet added a
second order term and the energy becomes for u € W21(Q)

inf { /Q (1Vul + [u— gl?) de + ¢(|Vu|)|p2u|2) dz

where 9 : R — (0,+00) is a Borel function that preserves edges, in the sense that
(t) — 0 when ¢ — oo (see also [11] for the treatment of the second-order Blake &
Zisserman model in image segmentation). In [14] it is shown in one-dimension that
it is energetically impossible to approach true edges (i.e. characteristic functions)
using this model, although replacing |D?u|? by |D?u| provides good analytlcal re-
sults and a representation of the relaxed energy

F(u) := inf {lgnloréfE(un) P Up — uin Ll}

is obtained in BV, where

E(u) := inf {/n (IVu| + |u — g|*) dz + 1/)(|Vu|)|D2u]) dz

This is, therefore, a good example of a functional on a space of (possibly) discon-
tinuous fields, BV, involving higher (second) order derivatives and a competition
between bulk and interfacial energies.

2. MICROMAGNETICS

The continuum macroscopic behavior of a ferromagnetic body is modeled through
micromagnetics. There is a vast literature in the Calculus of Variations on this sub-
ject, and we refer to [3], [12], [19], among many others.

According to Brown [8], equilibrium states of a body subject to an external
magnetic field h, correspond to (local) minimizers of the energy

E>PY(m) = €“|Vm|2+-—1—<p(m) dz— | he -mdzx+ —1—]h|2dac
‘ Q ef Q Rre €7

where we set all physical constants equal to 1, o, 3,7 > 0, Q C R3 is the region
occupied by the body, the magnetization m : R® — R3 is set to be identically equal
to zero outside  and it has constant magnitude mg, the saturation magnetization
that is a function of temperature and of the material properties, so that for a.e.x €
R3

Im(z)| = msxa(z).
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Here we set ms = 1. The induced magnetic field h : R® — R3 is related to m
through Maxwell’s equations for magnetostatics

{ div(m+h) =0 inD'(R®),

(2.1) curlh =0 in D'(R3),

where the equations hold in the sense of distributions. The various terms in the
energy compete to lower it in different- ways. The exchange energy [, *|Vm/|? dz
penalizes spatial changes of m and leads the body to prefer large regions of uniform
magnetization (magnetic domains) separated by thin transition layers, the domain
walls. The anisotropy term fQ ;:%cp(m) dz induces m to align with the preferred
crystallographic directions (easy axes), i.e. the zeros of the nonnegative density ¢
(a finite set of unit vectors on the sphere), the external field energy [, he - mdz
favors the alignment of m with h., and the field energy vanishes only when the
magnetization is divergence free.

James and Kinderlehrer [23] studied the case of large ferromagnetic bodies where
the interfacial, or exchange energy, is dominated by the other bulk terms, thus it is
discarded, and 8 = v = 1, therefore reducing the energy to

1 1
F(m) :=/Q&_—ﬁap(m)dmc—/nhe~md91c+/]Rs é—;|h|2dw.

In [17] and [30] the asymptotic behavior as € — 0 of { E1-%°} was investigated.

i Currently, in collaboration with G. Bouchitté, G. Leoni and V. Millot we are
identifying the I-limit of { EL1} (see [13]) where, we recall,

E.(m):= /Q (ele|2 + %cp(m)) dz ——/Qhe -mdz + /mﬂ élth dz.

Note that in view of (2.1) m is a gradient up to a divergence-free field, and thus the
energy above has the flavor of a multiscale energy involving second order derivatives.

For recent work on similar questions for several regimes of «, 3 and v and for
Q C R?, we refer to [1], [28].

3. THIN FILMS

Following [7], we consider a thin 3D (elastic) domain represented by
€
Qe) == {(xl,wz,zg) (z1,22) € wand |z3]| < §f5(x1,:v2)} ,

where w is a bounded domain of R? and f.(z;,22) determines the e-dependent
profile x3 = *f(x1,22), € > 0. Define Q:=w x (—-4,1), T :=0w x (-3, 1), and
T. := 0w x (—1¢, Le).

The elastic energy density in Q(e) is W(e)(1, 22, z3; ), and the thin body may
be subject to a body load with density F'(¢)(z1,z2,23) (and possibly surface loads
as well on the 5% := w x {z3 = £¢/2f.(z1,72)} ). In order to reach equilibrium,
the deformation u(e) seeks to minimize

w — W(e)(z1, z2, z3; Dw) dx — / F(e) -wdzx
(e) Q(e)

among all kinematically admissible fields w.
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As it is usual, we reformulate this problem on a fixed domain through a change
of variables,

Qe {(z1, 22, 23) : (21, 22,€23) € Qe)},
Ue (21, T2, 3) u(g)(x1, T2, x3),
W5($1,$2,$3; ) W(E)(xlyx2?€x3; ')7

F€($1,$2,w3) = F(s)(wl,wg,swg),

i

so, equivalently, u. seeks to minimize

vV We ($1,$2,$3;D1U‘D20|1D3v> dxr — F.-vdzx
Q. € Q.
among all kinematically admissible fields v on €2, where (£1]£2|€3), with & € R3,
1=1,2,3, stands for the 3 x 3 matrix with columns &1, &3, £3.

Under appropriate growth conditions, minimizers of E. — if they exist — will
LP-converge to minimizers of that I'(LP)-limit, and thus a characterization of the
latter will provide the asymptotic effective energy for equilibria states of 2.

We adopt the following notation: Greek letters will run from 1 to 2 when taken
as indices. Thus coordinates will be denoted by x4, z3, and (F,|F3) stands for the
3 x 3 matrix with column elements Fy, Fy, F3 (3 vectors in R3), We will identify

wbhP(Q)n {u : a%% = O} with WhP(w) (2 := w x (-1,1)).
Here for simplicity we consider the case where no loads are present, f.(z,) =1

for all x4 € w, W(e)(z1, 2, £x3;-) = W(-), and we are led to the study the limit of
the family of scaled energies

u s E(u), = / W(Vau lvgu) dz,
Q &€
with W : R3*3® — [0, +00) a continuous function,
(3.) ZIFP —C < W(F) < O +|FP)

for some C' > 0, 1 < p < +00, and for all F € R3*3,
It turns out that (see [24], [25] and [26]) the I'(L!)-limit of

E.(u):= Ja W(Vau‘%vsu> dz ifu € WhP(w; R3),
o +oo otherwise,

is the functional
Jo(’u) = {

where W(F) := min{W (F|F3) : F3 € R}, F is a 3 x 2 matrix, and

[, QW (Vou) dz ifu € WP (w;R3),
~+00 otherwise,

QW (F) := inf {/Q’ W (F + Dap(x)) dzo : ¢ € W#OO(Q/;R.?)} ,

Next we take into account the possibility of fracture in a thin film and, accord-
ingly, we add to the formulation above a crack initiation energy. Precisely, we
consider

W (Vv) dz +/ It — v, v(K)) dH?,

QK KNS,
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where W : M3*3 — [0, +00) and 9 : (R3\ {0}) x S? — [0, +00) denote bulk and
surface energy density, respectively, K denotes an unknown crack surface, H?(K) is
the 2-dimensional Hausdorff measure of K, v(K) is the normal to the crack surface
in the reference configuration, v € WHP(Q, \ K;R3) is the deformation, defined in
the complement of the crack, and v* are the traces of u on both sides of K. The
surface energy density 9 is a fracture initiation term defined on R3 x S2. In Griffith’s
theory [22] 9 is constant; we have added a possible dependence on v(K) to account
for anisotropy, and a dependence on the jump u*t — u~ to include Barenblatt’s
approach [4]. Again, by performing a change of variables, and extending ¥ to
R3 x R3 as a homogeneous function of degree 1 in the variable v, we arrive at the
re-scaled energy

/Q\Ke W(Vau%Vgu) dz + /KmQ 19(U+ —u", v (Ke), §V3(K5)) dH2.

Just as in the case of imaging problems (see Section 1), it is well known that free
discontinuity problems formulated in terms of variable domains 2\ K, and unknown
admissible field u are very difficult to handle, and'it is more convenient to set up
the problem within the SBV (€2; R®) framework, by replacing K, by the set S(u) of
essential discontinuity points for v and interpreting Vu as an approximate gradient,
thus reducing the simultaneous variation in the crack site and in the deformation
to a variation on the discontinuous function u only. Precisely, GSBV (Q) is defined
as the space of scalar functions in L'(Q) such that for all T > 0 the truncations
ur = (=T) A (uV T) belong to SBV(}). We say that u € GSBV(Q;R™) if
every component of u is in GSBV(Q) (see [2]). Let p > 1. SBV,(£;R™) and
GSBV,(©; R™) are defined as the subspaces of functions u of SBV(£;R™) and
GSBV(£2;R™), respectively, such that

HY-Y(S(w)NQ) <4+o00  and  Vue LP(Q;M™XN).

These spaces are natural domains for the treatment of energies with bulk and
surface contributions in the case where the bulk energy density grows superlinearly
at infinity. This being said, the 3D-energy of a deformation v € GSBV,(:; R3) of
the thin film occupying . as a reference configuration is given by

W (Vo) da + / It — v, v(v)) dH?
S(v)NQe

Qe

for functions v € GSBV,(2;R3). We extend ¥ by positive 1-homogeneity as
follows:

=) 9z pg) n#0,
vt {0 ( ) if 7= 0.

Changing variables and setting

U(Zq,x3) i= U(Ta,e23), (Va,V3) =V,
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clearly u € GSBV,(Q; R®) and the integral above becomes
(o 2) [ 2
+/S(v)nns 19(u+ (za’ %) v (xa’ %) ’

Va(u) (wa, %) , éua(’u) (-’c'a, :‘?)) \/ezlvalz(e'u) o) dH?

—e [ /Q W(Vau(m)‘%V;;u(w)) do

- 1
* a7 @%%@omxgwuownduﬂ.

Consider the e-scaled 3D-energies J, : L}(€;R?) — [0, +00] defined by
(3.2)
fQ W(Va’ll, €
Je(u) := if u € GSBV,(Q;R3)
400 otherwise.

%Vgu) dz + [50 19(u+ —u”, v (u), l1/3(11)) dH?

We introduce the space

V= {u € SBV,(R3): Vsu=0ae. and v3(u) =0 H*a.e.}.
Note that if u € V then Dsu = 0 in the sense of distributions, so that V can be
identified with SBV,(w;R3).

Let W : M3*3 — [0,+00) and 9 : (R®\ {0}) x R® — [0,400) be continuous
functions, W satisfies (3.1), ¥ is symmetric and positively homogeneous of degree
1 in the second variable, i.e.,

I(z,v) =¥~z —v), Wz, tv) = td¥(z,v) for all t > 0, z,v € R3,
and
1
L+ 1el) < 9(z0) < C(L+ 2]

for all F € M3%3, 2 € R3, v € S2, and for some C > 0 and 1 < p < +o0. Suppose,
in addition, that ¢ satisfies the Lipschitz condition
[9(z,v) = 9(2',v)| < L|z — 2|

for all F,F' € M3*3, 2,2/ € R3, v € 2, and for some C > 0. It was shown in [7]
that the functionals J, defined in (3.2) I'-converge with respect to the L!(£2;R3)
convergence as € — 07 to the functional Jo : L*(Q; R3) — [0, +00] given by

/ QW (V,u) dzy +/ Rod(ut —u™,ve(u)) dH ifu €V,
Jo(u) = w S(u)Nw

+00 otherwise,

where

I(z,n) = inf {I(2;n, &) : € €R}
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for z € R% and n € R?\ {0},
Ry9(2,7) := inf {/ Iut —u,v(w)dH s ue GSBV4(Q): R, z)}
S(u)NQ!

for all z € R® and 7 € S?, where Q, is a unit square on the plane, centered at zero
and with two faces orthogonal to 1, and GSBV4(Q,;R™, 2) denotes the space of
functions u € GSBV,,(Q,; R™) which are 1-periodic in the direction orthogonal to
v, with Vu = 0 a.e., and such that u(z) = £2/2 if (z,v) = £1/2.

We remark that if the sequence {E.(uc)} is bounded then not only we deduce
that {u.} will converge weakly in W1P(Q;R?) to some u € WHP(w;R3) (up to
the extraction of a subsequence and invoking some form of Poincaré-Friedrichs in-
equality), but also {1Vgu.} will converge weakly in LP(€;R®) to some Cosserat
vector b. In [6] the effective energy is obtalned keeping track of both the membrane

deformation u and the bending moment f 12 b(zq,z3) dzs: In [18] we introduced

interfacial energy as in [5], [31], while tracking down the cross-sectional behavior as
in [6] without without averaging through the cross-section. We obtained a mem-
brane whose constitutive behavior depends intrinsically upon the strength of the
vanishing interfacial energy

Although all the analytical statements above were under condition (3.1), we
note that this is incompatible with natural hypotheses in the context of nonlinear
elasticity, where ruling out interpenetration of matter leads to strain energy den-
sities W which blow-up as the determinant of the strain F' goes to zero. Clearly
this precludes a polynomial-type control from above. A thorough analysis of 3D-
2D dimension reduction under assumptions (geometric rigidity) acceptable in 3D
nonlinear elasticity was pioneered by Friesecke, James and Miiller (see [20], [21]).
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