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Abstract

The flashing rachet is the simplest example of diffusion mediated transport as well as the
suggested mechanism for a class of protein motors. Here we briefly explain these concepts and
give an entropy based argument for existence and uniqueness of a model problem. We also
examine the features of the system that lead to transport

1 Introduction

Diffusion mediated transport is implicated in the operation of many molecular level systems.
These include some liquid crystal and lipid bilayer systems, and, especially, the motor proteins
responsible for eukaryotic cellular traffic. All of these systems are extremely complex and involve
subtle interactions on varying scales. In an earlier life, we were interested in the design of
microstructure, typically in order to optimize the duty cycle of an actuator. In such devices,
like shape memory or magnetostrictive, energy transduction is very close to equilibrium in order
to minimize the energy budget - TV remotes are good examples. The chemical/mechanical
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transduction in motor proteins is, by contrast, quite distant from equilibrium. These systems
function in a dynamically metastable range.

The flashing rachet is, perhaps, the simplest and most transparent example of this phe-
nomenon. It consists of apparently competing processes: a transport, which attracts mass to
specific sites, and diffusion, which spreads mass, in alternation. To give a simple and generalized
formulation of this, consider this variation of the Fokker-Planck Equation:

ρt = (σρx + ψxρ)x, (x, t) ∈ Ω× (0,∞),
σρx + ψxρ = 0, (x, t) ∈ ∂Ω× (0,∞),
ρ(x, 0) = ρ0(x), x ∈ Ω, where
ρ0 = 0 and

∫
Ω
ρ0dx = 1

(1)

where σ > 0, the potential ψ = ψ(x, t) is a periodic function of t and Ω = (0, 1). Notice that if
ρ(x, 0) = ρ0 > 0 then ρ(x, t) > 0 for all t > 0. Also if

∫
Ω
ρ0 = 1 then

∫
Ω
ρ(x, t) dx = 1. Thus (1)

in general can be thought of an evolution equation for probability density ρ.

The simplest example is given by

ψ(x, t) =
{
ψ(x) if 0 5 t 5 Ttr
0 if Ttr 5 t 5 Tdiff + Ttr = T,

(2)

which constitutes flashing between a diffusion with drift ψ′(x) and a diffusion. Of course, there
is no stationary state for this type of equation, but there may be a periodic state. The problem
is interesting because the periodic state is not simply some convex combination of Gibbs states,
but represents a redistribution of the mass to one side of the interval Ω. Here our attention will
focus on the existence, uniqueness, and stability of the periodic solution by employing entropy
methods. We also discuss the approximation of the periodic state in terms of a (discrete) Markov
Chain using Monge-Kantorovich mass transport ideas.

2 Existence and stability

We outline a simple existence and stability result. Uniqueness is a consequence of the stability.
Let us assume that

• ψ bounded and periodic of period T in Ω and ψ ∈ C1(Ω× [0, T ]) .
• Then there is a unique nonnegative T -periodic probability density ρ = ρ] which solves (1).

The proof is an exercise in the use of the Schauder Fixed Point Theorem employing the free
energy, a convex functional, to define the convex set. Set

E(ρ) = σ

∫
Ω

ρ log
ρ

ρψ
dx, ρψ(x, t) =

1∫
Ω
e−ψ(ξ,t)/σdξ

e−ψ(x,t)/σ,

for ρ ∈ H1(Ω), ρ = 0,
∫

Ω

ρdx = 1

Assume that ρ(x, t) is a solution of the Fokker-Planck Equation (1). Then

d

dt
E(ρ) = −σ2

∫
Ω

ρ | ∂
∂x
log

ρ

ρψ
|2dx−

∫
Ω

∂

∂t
ψ ρ dx (3)

According to the log-Sobolev Inequality, for a constant Cψ which depends on ψ and σ,∫
Ω

ρ log
ρ

ρψ
dx 5 Cψ

∫
Ω

ρ | ∂
∂x
log

ρ

ρψ
|2dx

Hence, since ψt is bounded and ρ is a probability density for each t,

d

dt
E(ρ) 5 −CψE(ρ) + Kψ (4)
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and

E(ρ)|t=T 5 E(ρ)|t=0 e
−CψT +Kψ(1− e−CψT ) (5)

This means that the mapping

T : H1(Ω) → H1(Ω)
T (ρ0)(x) = ρ(x, T )

with ρ(x, t) the solution of (1) with initial value ρ0 maps the set

K = {ρ ∈ H1(Ω) : E(ρ) 5
Kψ

Cψ
} ∩ {probability densities} (6)

into itself. T is compact by regularity theory for parabolic equations, elementary in the H1

case. Hence we obtain a fixed point ρ] of T , which is a periodic solution of (1).
We now address the stability and uniqueness of the periodic solution. We establish a decay

rate for the relative entropy of two solutions of the Fokker-Planck Equation. The familiar
Csiszar-Kullback Inequality or the less familiar Talagrand Inequality may then be applied. For
the moment, let ρ1 and ρ2 be two solutions of (1). Their relative entropy at time t is

E(t) = E(ρ1|ρ2) =
∫

Ω

ρ1 log
ρ1

ρ2
dx =

∫
Ω

f logfρ2 dx, f =
ρ1

ρ2
. (7)

Now compute

d

dt
E(t) =

d

dt

∫
Ω

f logfρ2 dx

=
∫

Ω

{(logf + 1)(
∂ρ1

∂t
− ρ1

ρ2

∂ρ2

∂t
) + flogf

∂ρ2

∂t
}dx

=
∫

Ω

logf
∂ρ1

∂t
dx−

∫
Ω

f
∂ρ2

∂t
dx

We then have that

∫
Ω

logf
∂ρ1

∂t
dx =

∫
Ω

logf
∂

∂x
(σ
∂ρ1

∂x
+ ψxρ1)dx

= − 1
σ

∫
Ω

fx
f

( ρ1

ρψ x

)
ρψdx

and

−
∫

Ω

f
∂ρ2

∂t
dx = −

∫
Ω

f
∂

∂x
(σ
∂ρ2

∂x
+ ψxρ2)dx

=
1
σ

∫
Ω

fx
( ρ2

ρψ x

)
ρψdx

Combining these gives that

d

dt
E(t) = − 1

σ

∫
Ω

fx
f

( ρ1

ρψ

)
x
− f

( ρ2

ρψ x

)
ρψdx

= − 1
σ

∫
Ω

1
f
f2
x ρ2dx = − 1

σ

∫
Ω

| ∂
∂x
log

ρ1

ρ2
|2 ρ1dx
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Figure 1: Two unit Dirac masses located in well basins at x = 1/8 and x = 5/8 diffuse. At the end of the
diffusion period, more mass has moved to the left well from the right well than vice versa. In the ensuing
transport step, more mass is collected to the well at x = 1/8 than to x = 5/8.

Now again from the log-Sobolev Inequality,

d

dt
E(t) 5 −CE(t)

where C depends on ρ2. Hence,

E(t) 5 E(0)e−Ct/σ, t > 0

At this point it is convenient to let ρ2 = ρ], the periodic solution just found. Then∫
Ω

|ρ1 − ρ]|dx 5 const. e−Ct/2σ and d(ρ1, ρ
]) 5 const. e−Ct/2σ (8)

by Csizsar-Kullback and Talagrand, respectively, where d(·, ·) is the Wasserstein distance. This
shows both the stability and uniqueness of the periodic solution. As mentioned before, the
extension to piecewise smooth in time potentials ψ(x, t) like (2) is achieved by concatenating
the estimates, e.g., by first solving a Fokker-Planck Equation and then a diffusion equation.

3 The mechanism of transport

The basic mechanism of transport may be explained with a simple picture. For this, consider
(2) where ψ(x) is periodic in x of period 1/N and between maxima has an asymmetrically
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located (and unique) minimum. For example, in Figure 1, two Dirac masses located in well
basins asymmetric in their period intervals diffuse for a time Tdiff . Owing to the asymmetry
alone, more mass moves to the left than to the right. In the ensuing transport step, more mass
is collected in the left well than in the right one. When iterated, significant transport can result.
This is misleading, however. It is important to know what to do with the mass when it arrives in
the left-most well. In other words, boundary conditions are also extremely important. Periodic
boundary conditions, for example, do not lead to transport in the flashing rachet. Our analysis
of this Brownian motor renders the figure with boundary conditions rigorous by approximating
the periodic solution ρ] with a Markov chain defined on convex combinations of Dirac masses.

To arrange this, suppose that, as a typical situation, ψ has maxima at x = 0, 1/N, ..., 1 and
minima at x = a1, ..., aN , (i− 1)/N < ai < i/N . For a solution ρ of (1), set

µ∗ =
N∑
i=1

µ∗i δai

µ∗i =
∫
Ii

ρ(x, t)dx, Ii = [xi−1, xi], i = 1, ..., N, 0 5 t 5 T,

In a moment, ρ will be the periodic solution ρ], but for the present, if

ρ(x, t) ≈ µ∗ (9)

then

ρ(x, t+ T ) ≈
N∑
i=1

µ∗i gσ(x, T, ai) dx

gσ(x, t, a) = Green′s Function for the Neumann Problem

with singularity a and diffusion coefficient σ.

We rewrite this as

ρ(x, t+ T ) ≈ µ

µ = µ∗P, P = (Pij), Pij =
∫
Ij

gσ(x, T, ai)dx

P is an ergodic probability matrix. Now choose ρ = ρ], the periodic solution and replace the ∗

by ] above. Then

ρ](x, 0) ≈ µ] and ρ](x, T ) ≈ µ]P (10)

but
ρ](x, 0) = ρ](x, T )

so
µ] ≈ µ]P (11)

The only way these iterates of a Markov chain can be close is if µ] , and hence ρ], is close to the
unique stationary vector µ∞ of P . Our strategy is to show that µ∞ has most of its mass on one
side of Ω. In summary, we find a Markov chain determined by the diffusion and the asymmetry
in the system which we may attempt to exploit to characterize its transport properties. To be
successful in this, the ’rachet’ parameters must be appropriately tuned. We also require separate
estimates for the transport and the diffusion phases. The precise distance between µ and ρ will
be in weak topology, namely, expressed by the Wasserstein metric d.

First consider the transport phase. Note that the Wasserstein distance between ρ(x, t) and
µ with
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Figure 2: Snapshots of the periodic solution for a potential ψ of period 1/4 on Ω at the end of the transport
phase, upper curve, and at the end of the diffusion phase, lower curve

µ =
N∑
i=1

µj δaj , µj =
∫
Ij

ρ(x, t)dx

is

d(ρ, µ)2 =
N∑
j=1

∫
Ij

(x− aj)2ρ(x, t)dx (12)

To determine the rate of decay of (12), differentiate with respect to t and employ the equation
(1). Typically this would lead to an exponential rate of decay by a Gronwall lemma. The
estimate we obtain is that

d(ρ](·, Ttr), µ]) 5 K0 ω, where (13)

ω = ω(Ttr, Tdiff , σ) =
[ log Ttr

Ttr
+min(

√
σeλTtr , 1)

]
(14)

whenever Ttr = T ∗tr, Tdiff = T ∗diff , 2π2σTdiff − λTtr > log 2

Here T ∗tr, T
∗
diff ,K0 and λ are all constants that depend only on the potential ψ and its deriva-

tives. The log Ttr/Ttr term owes to the nonconvexity of the potential ψ. The second term
min(

√
σeλTtr , 1) accounts for diffusion across the maxima of ψ, which is small when λTtr is less

than −log σ.
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During diffusion, we wish to compare the two distributions ρ(x, t) and w(x, t), the solution
of

wt = σwxx in Ω, Ttr < t < Tdiff ,

wx = 0 on ∂Ω, Ttr < t < Tdiff ,

w|t=Ttr =
N∑
i=1

µ]j δai

which may be accomplished in several ways, the most available of which simply employs the
entropy estimate we have already proved in the previous section. This requires an estimate on
w(x, Ttr + δ) for a small δ in order assess E(0). There are some additional details to check, but
in the end, we obtain a rigorous version of (10) and (11).

Finally, we address the analysis of transport as exhibited in the Markov chain P . How do
we know that the stationary vector p∞ of P has most of its mass in the left half of Ω when the
well basins ai are in the left halves of their intervals Ii? Simulations show that this is clearly
the case, cf. Figure 3 and even numerical calculation of p∞ are emphatic on this point. For the
two-well case, i.e., N = 2, we can verify this. In general, the slow decay of the Green’s function
at infinity makes estimates very difficult.

4 Conclusions
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