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Abstract

It is shown that for integrals of the type
I(u,v) := / f(z,u(z),v(z)) dz,
Q

with @ C RY open, bounded, and f : QxR™xR?% — [0, +-00) Carathéodory
satisfying a growth condition 0 < f(z,u,v) < C(1 + |v|’), for some
p € (1,+00), a sufficient condition for lower semicontinuity along se-
quences u, — u in measure, v, — v in LP, Av, — 0 in WP is the
Az-quasiconvexity of f(xz,u,.). Here A is a variable coefficients operator
of the form

N ) 9
A= Z A(Z) (Ji)aiml,
i=1

with A® ¢ Co ([ M>XY N W i =1,. N, satisfying the condition

N
rank (Z A(i)(:c)w) = const for z € Q and w € R™ \ {0},

i=1

and A, denotes the constant coefficients operator one obtains by freez-
ing x. Under additional regularity conditions on f it is proved that the
condition above is also necessary. A characterization of the Young mea-
sures generated by bounded sequences {v,} in LP satisfying the condition
Av,, — 0 in W~1? is obtained.

Key words A-quasiconvexity, Young measures, lower semicontinuity.
AMS subject classification.
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1 Introduction

Motivated in part by the study of equilibrium of certain advanced materials,
recently there has been extensive research on minimization and relaxation of



nonconvex multiple integrals of the type

u%/Qf(x,u(x),Vu(x),..,Vku(a:))dz, (1.1)

where Q C RY is an open, bounded domain, v : @ — R™, N,m > 1, and k € N.
One way of attacking this problem is to use the Direct Method of the Calculus
of Variations, and a key step in that direction is to identify conditions on f that
ensure lower semicontinuity for an appropriate topology. In the case where k = 1
it is known that sequential weak lower semicontinuity on WP is equivalent to
quasiconvexity of f(x,u,.) under appropriate growth and regularity conditions
on f (see [2],[10],[12]).

Recently Fonseca and Miiller [7], drawing from the theory of compensated
compactness of Murat and Tartar ([11],[16]), extended this study to the more
general setting

() = [ Joul@)o@)de. Ao =0
Q
where v : Q — R™, v : Q — R? and A is a first order linear partial differential
operator with constant coefficients and of constant rank, i.e.,

i=1 ¢ i=1

N N
N ,
Av = E A(”a%, and rank ( g A(z)wi> =const for every w e SN

where AW j =1,..,N, are M**¢ matrices. This setting includes the framework
of (1.1), and also other situations like div = 0 or Maxwell Equations. In [7] it was
shown that, under appropriate regularity and growth conditions on f, sequential
lower semicontinuity of the functional on LP(strong)x L?(weak) is equivalent to
A-quasiconvexity of f(z,u,.). We recall that a continuous function f : R? — R
is A quasiconvex if and only if

< /Q f(0 + w(x)) da

whenever w € C%_ (R, R?) fQ x)dx and Aw = 0.

per
In this paper we generalize some of the results of 7] to the case of variable
coefficients, precisely

Av —ZA() 856@

where A®) € C=(Q;M>*)NW > and rank (Zi:l AW (x)wl) =const for every

r € Q and all w e RV \ {0}.
Given zy € Q, denote by A, the partial differential operator with constant
coefficients that we obtain by freezing xy, i.e.,

8

Agv —ZA(Z (x0) oz,

i=1




The following sufficient condition for lower semicontinuity holds.

Theorem 1.1. Let Q C RY be an open, bounded set, 1 < q < +o0o, and let
FiQxR™ xR? — [0, 400 be a Caratheddory function, with 0 < f(x,u,v) <
a(z,u)(1 + |[v|?) for some locally bounded function a : Q x R™ — [0, +00) and
for allv € RY, a.e. x € Q. Suppose that f(z,u,.) is A,-quasiconver for a.e.
in Q and all w € R™. Then

liminf [ f(z,u,(2),v,(x))de > A fz,u(x),v(x)) de

n—-—+00 Q
whenever u,, — u in measure, v, — v in L1(Q;RY), Av, — 0 in W-L4(Q; RY).
For the necessary condition we have the following.

Theorem 1.2. Let Q C RN be an open, bounded set, 1 < q < +oo, and
let f: QxR — [0,4+00) be a continuous function satisfying the g-Lipschitz
continuity condition

F@o) = (e, 0)] < a@) (14 a4+ ool ) for = el (12)

where a € L2 (). Suppose we have lower semicontinuity of the integral

liminf/ﬂf(x,vn(:c))dx2/Qf(x,v(x))dx

for sequences v, — v in LY(Q;R™), constrained by the system of PDEs in the
following sense

N
i vy, . _
Av, 2:ZA()(3:)6—% —0 in WhHI(QRY. (1.3)
i=1

Then f(x,.) is Ag-quasiconvez for all x € Q.

We could not prove the necessary condition for exact solutions of the PDE,
but only under the more restrictive condition (1.3). In the case of constant
coefficients Fonseca and Miiller [7] were able to prove the necessary condition
for sequences in the kernel of A. Using Fourier series representation they could
construct a projection P onto the kernel of A, using algebraic computations on
the symbols, and to prove the estimate (continuity of the inverse)

[lv = Poll e < CqllAvllyy-1.q- (1.4)

A major difficulty that arises when we deal with the variable coefficients setting
is that to the composition of operators does not correspond the multiplication
of symbols any more, only up to a regularizing operator. Thus in our case, using
also Fourier analysis, we were just able to prove the estimate

v = Pyollpe < Cq (A0l 10 + [[0lly—1.0) 5 (1.5)



where P, is not a projection, AP,v # 0 in general, but APyv, — 0 in W14
whenever v, — 0 in W19, We also emphasize that at least in the case ¢ = 2
there exits a continuous projection onto the kernel of A but the continuity result
(1.4) remains to be asserted, or at least the weaker estimate(1.5) with the P,
replaced by the projection P.

We also characterize the Young measures generated by bounded L? sequences
satisfying (1.3). In the case of constant coefficients similar characterization is
provided for sequences in the kernel of the operator [7], in this way generalizing
the result of the Kinderleher and Pedregal on gradients [8] [9] (in that case
A = curl). For the same reasons we detailed above we were unable to replace
(1.3) by sequences in the kernel of the operator.

Theorem 1.3. Let 1 < ¢ < 400 and let {v;},cq be a weakly measurable family
of probability measures on RY. Then there exists a g-equi-integrable sequence

{v,} in LI R?) that generates the Young measure v and satisfies Av, — 0
in W=L4(Q; RY) if and only if

i) there exists v € LI(;RY) such that Av =0 and v(x) = (v, Id) a.e x € Q;
i) [( Jga |27 dva(2) d < +o0;

iii) for a.e. x € Q and all continuous functions g that satisfy |g(v)| < C(1+|v|?)
one has (Vz, 9) > Qa,9 ((Va, 1d)).

2 Preliminaries

Here we present some notation that we will be using throughout the paper
and also some results about Pseudodifferential Operators, Young measures and
Linear Partial Differential Operators of constant coefficients and constant rank.

In the sequel 2 C R¥ is an open, bounded domain, Q := (0, 1)Y, Q(zg,r) :=
zo +r(—3, %)N The N-dimensional Lebesgue measure is £V. For a set A the

function x4 is
1 ifx e A,
Xas= 0 otherwise.

Unless different thing is indicated, which will be clear from the context, the
operator A refers to

Av = Z (x) .
i=1

with v : Q@ — R% A® € C®(Q; M) N WL for i = 1,.., N, and there exist
r positive integer such that



for x € Q and w € RV \ {0}. For 29 € Q, A, is the constant coefficients
operator with constant rank defined by

ov
8xi '

N
Aggv =Y AW ()
=1

2.1 Pseudodifferential operators

We present some results on Pseudodifferential Operators, for more details and
proofs we refer the reader to [14].

We start by introducing some notation. Given a function u : RN — C, we
denote by 9; the partial derivative with respect to x;, and by D; := —i0;, where
i is the imaginary unit. Given two functions u and v in L?(R") we set

(1, v) = /R ufajula) dr.

We denote by S the space of C°°(R¥Y) functions that are rapidly decreasing
at infinity, i.e., a function ¢ belongs to S if 29y are bounded in RY for all
pairs «, 8 of multiindices. The topology on S is defined by the norms (k € Zg )

o1l = subja i<illz®0° 0| o

We denote by S’ the set of semilinear forms u (i.e. (u,ap + B1) = a(u, @) +
B(u,?)) on S such that there exits C € R and M € Z{ verifying

((w, )l < Cllglly,  forpeS.

For a function u € S, the Fourier transform 4 (or Fu) of u, is defined by the
formula

(M) ::/ u(z)e = da.
RN
The inverse Fourier transform is given by

1 .
W /]RN u(z)e® da.

Given s € R we denote by L*P(RY) the image of LP(RY) under the linear
mapping

Flu(\) =

Jou=F"((1+ \)\|2)_%}'u) .

If u € LSP(RY) then there exits a unique @ € LP(RY) with u = J*u. The space
L*P(RY) is a Banach space with norm

ullpe.p = Il -



The spaces L*P, with p = 2, coincide with H*(RY) for any s € R, and for
p € (1,+00) and s € Z they coincide with W*?(R™). We have the duality
relation

’

[L3P(RN)] = L™*7 (RY),

where p’ = %.

For more details about the spaces L*P we refer the reader to [1].

Let ¢ € R and let b(z, \) be a C* complex-valued function on RY x RY. We
say that b is a symbol of order-q, and we write b € S9, if there exist constants

Cap such that

a—18]
2

0205b(z, | < Cap(1+10F) 7, (2.1)
for (z,A) € RN xRN, o, B € ZY. We have S7 C S' for ¢ < [, and define

S0 1= U, S1.
Given a symbol b € S? we say that b ~ Zj bj, with j € Z*, if b; € S977 and

b—> bjeSTH
Jj<k

We define below two operations on symbols, the compound, b#c, and the
adjoint, b*.

Theorem 2.1. Let b€ S9 and ¢ € S'. Then the oscillatory integrals

b (z,N) = /B(x —y, A —n)e” W dydn,

(2m)™

b#tc(xz, ) = (2;)1\[ /b(x7 A —n)e(z —y, \)e ¥ dy dn

define symbols b* € S9 and b#c € ST with the following asymptotic expansions
1 - 1
*

Remark 2.2. For any b € S we have

(b*)* =b.

ol

For t € R, denote by Tt the symbol T¢()\) = <1 + |)\|2) . We then have
D () =

ii) rhigtrte = phittz



We associate a pseudo-differential operator B (or b(z, D)) to the symbol
b(x,\) € S? via the formula

1

By(z) := W

[ Henpient o e SEY),

The function By € S(RY) and the application is continuous from S to S (see
Theorem 3.1. in [14]).

The adjoint symbol is associated with the adjoint operator, it is the tool to
extend the domain of a pseudodifferential operator to S/, and the compound
symbol is associated with composition, as the theorem below shows.

Theorem 2.3. For any b, c € S and ¢ , b € S one has
i) (0*(z,D)p,¥) = (¢, b(z, D)¥),
ii) (b#c(z, D)p, ) = (b(z, D)c(x, D)p,1p).

Remark 2.4. Given b = b(x,\) € S? and ¢ = c¢()\) € S, the symbol corre-
spondent to the composition b(x, D)c(D) is the multiplication of the symbols,
i.e.,

b#tc(x, A) = bz, A)e(N).

However, the general case where the symbol ¢ also depend on x, is more com-
plicated. In that case, according to Theorems 2.1 and 2.3, all one can say is
that

b#tc(x, A) = bz, N)e(z, A) + symbol of order g +1—1

The domain of a pseudodifferential can be extended to Sl, in the way we
show below.

Definition 2.5. Given a b € S*°, we call pseudodifferential operator of symbol
b, the operator b(z,D) : S — S defined by

(b(z, D)u, @) = (u,b*(x, D)g),  for ueS,peS
If b € S7 then b(x, D) is said to have order q.

In particular we can define the action of a pseudodifferential operator on
Sobolev spaces, and the continuity result below holds.

Theorem 2.6. Let b € S1. Then for every s € R there exists a constant Cs
such that b(x, D)u € H*™1 for all uw € H®, with

[b(z, Dyull oo < Csl|ull o

For p # 2 a similar result holds if we replace the Sobolev spaces by the
spaces L*P. In order to prove this we need the following result, due to Coifman
and Meyer ([5]).



Theorem 2.7. Let b € S° and p € (1,+00). Then b(z, D)u € LP(RY) for all
u € LP(RY), and

||b(x7D)(p||Lp S CH@HLP? VQO € LP(RN)’

Theorem 2.8. Let b € S?. Then for every s € R there exists a constant C
such that b(z, D)u € L*~9P for all w € L*P, with

|b(z, D)ul

po-ar < Csllul

Lsp-

Proof. The proof is similar to the proof of Theorem 2.6 presented in [14].
Let b € S?. We first prove that

Hb*(:mD)‘PHL*s,p S C||SDHLq75,p7 for ® € ’S
Note that & C L*P and

el e = [17° (D)l Lo

We have
16" (2, D)l —en =[I77°0" (2, D)ol s
= [|7=(D)b*(z, D)T =1 *(D)7"~* (D)l | s
< (D)¢lle = Cllgllpa—sn-
Let uw € L*P. We now prove that

|(b(x, D)u, )| < Cu|

penll®llpmeens VP ES.

Indeed,
|(b(x, D)u, )| = [(u, b"(z, D))
= |(u, 75 (D)7 (D)b" (z, D))
= |(7*(D)u, 7 (D)b"(x, D))
< lullpep 16*(z, D)l .
< Cflul

Ls:p ||<P||Lq—s,p’ ’
thus b(z, D)u € L*~%P and

[|b(x, D)ul

po-ar < Cllul

Le:p-
O
In what follows we are interested in pseudodifferential operators associated
with matrix-valued symbols. Given a matrix B(z,\) := [bjk(x,/\)]j’zzl, we
say that B(z,)\) € (99)"" if bjk(xz,\) € S9for j =1,..,s, k =1,..,t. Given
ue S (RV;RY) we define Bu € S’ (RV;R%) by

t
(Bu)j = ijk(m,D)uk, j=1.,s.
k=1



It is easy to check that all the results we presented above for scalar-valued
symbols still hold for matrix-valued symbols.

We now derive some estimates that are useful to prove the necessary condi-
tion.

We denote by A(x, \) the symbol associated with the operator A, i.e.

N
Az, A) = AD ()N,
=1

and by P(x,\) the projection onto Ker(A(x, \)). Define Q(x, \) by the implicit
equation
Q(z, N A(z, A) := L, — P(x; \). (2.2)

The function Q(z, A) is positively homogeneous of degree -1 in A and using (1.4)
we get that Q(z, \) € C°(Q x RN \ {0}; M™*4). Define

Qn(l', )‘) = W(x)Q(% A)X(l)“)7

where x : [0,400) — R is a C°-function for which we can find numbers r, R,
0 <7 < R < 400, such that x(|A]) = 0 for [A| < r and x(JA]) =1 for |A| > R,
and n € C>®(Q;[0,1]), n = 1 on €, for some open set Q@ CC Q . It is easy to
check that

—1-18]
2

0207Qu(@ N < Cap(1+ A7) 7,

for z € RY and A € RY. Thus @,(z, \) is a symbol of order -1 and we denote
by @, the corresponding pseudo-differential operator.
We denote by A, (z,\) the symbol

N
Ay ) = 3 (@) AD @),

i=1

and by A, the corresponding operator.
By Remark 2.4., the compound operator @),.4, has order 0 and symbol

n(z)Q(x, \)x(|A])A,(z,A) + symbol of order -1,
or, using (2.2),
()1, — n*(2)P(z,\)x(JA|) + symbol of order -1.

We denote by P, the operator correspondent to the order 0 symbol n?(z)P(z, \)x(|A]),
thus
u— Pyu = QpAu+ Ku,

for w € LP(Q) with compact support in Q, where K is a pseudo-differential
operator of order -1. Using Theorem 2.8, we get the estimates

lu— Pyl o < CllAul g1+ Cllul 1. (2.3)



and
AP ullyy -1 < Cllullyy -1, (2.4)

where we have used the fact that AP, is an operator of order 0, because of the
relation
A(z,\)P(z,\) = 0.

2.2 Young measures

We present here some results about Young measures, for more details and proofs
we refer the reader to [16], [4], [13].

Theorem 2.9. Let E C RN be a measurable set of finite measure and let
{z,} be a sequence of measurable functions, z, : E — R?. Then there erists a

subsequence {z,, } and a weak™ measurable map v : E — M(RY) such that the
following hold:

i) vy >0, |||y <1 forae € E;
ii) One has i) ||vz||\y = 1 for a.e. © € E if and only if

i N > = 0; .
M@gycqwmﬁm 0; (2.5)

iii) if K C R? is a compact subset and dist(z,,, K) — 0 in measure then
suppv, C K for a.e. x € E;

iv) if i’) holds then in iii) one may replace ’if” by ’if and only if’;

v) if f:Q xR? — R is a Carathéodory integrand, bounded from below, then

liminf/gf(x,znk(w))dxz/Qf(x)dx

k—-+oco

where
F@)i= 0 @) = [ S (o)
Rd
vi) if i’) holds and if f is as in v), then
lkig_iirrg/gf(x,znk(x))dx:/Qf(a:)dx<+oo

if and only if {f (., 2n, (.))} is equi-integrable. In this case

FCzn, () = in LY(Q).

10



The map v : E — M(R?) is called the Young measure generated by the
sequence {z,, }. The Young measure v is said to be homogeneous if there is
vy € M(R?) such that v, = vy for a.e. = € E.

Remark 2.10. Condition (2.5) holds if for some p > 0

sup/ |z |F dz < 400
neNJE

Proposition 2.11. If {v,} generates a Young measure v and if w, — w in
measure then {v, + w,} generates the ’translated’ Young measure

1730 = Fw(z)ljw

where
(Tap, ) = (p, (. + a))

fora € RY, o € Co(RY). In particular, if w, — 0 in measure then {v, + w,}
generates the Young measure v.

Proposition 2.12. If {v,} generates a Young measure v and u, — u a.e. in
Q then the pair {(un,v,)} generates the Young measure p defined by

Pz 2= Ou(z) @ Vg, a.e. T €D

2.3 Operators with constant coefficients

In this subsection we present some results about operators of the form

o Ov
Av ::ZA()axi,

with
N .
rank (Z A(’)wZ-) = const,
i=1

for all w € RV \ {0}. For more details and proofs we refer the reader to [7].

We recall that for this kind of operators there exists a continuous projection
T: L9(Tn;RY) — LI(Tn;R?), where 1 < ¢ < +oo and L?(Ty;R?) denotes the
space of functions v : RN — R? Q—periodic, v € L(Q). The operator T has
the following properties

Lemma 2.13. i) A(Tv) =0;
ii) [[v—Tv||L. < Cyl|Av||yy-1.4 for everyv € LI(Ty; RY) such that fQ vdx = 0;
iii) if {vn} is g-equi-integrable then {Tv,} is also q-equi-integrable.

The result below is due to Fonseca and Miiller ([7]).

11



Theorem 2.14. Let 1 < g < 400, and let v = {v}, ., be a weakly measurable
family of probability measures on R®. There exists a g-equi-integrable sequence
{v,} in LY(Q;RY) that generates the Young measure v and satisfies Av, = 0 in
Q if and only if the following three conditions hold:

i) there exists v € L1(;RY) such that Av =0 and

v(x) = (Vg Id) a.e. x €

/ (Ve |21%) dae
Q

iii) for a.e. x € Q and all continuous functions g that satisfy |g(v)| < C (1 + |v]?)
for some C > 0 and all v € RY one has

Ve, 9) = Qag((ve, Id)),

i)

where for v € R?

Qag(v) :=inf {/Q fv+w@))de:we LY (Ty;RY) N Ker.A} )

3 The sufficient condition

We now prove Theorem 1.1.

Proof. By extracting a subsequence we can assume

L:= limimf/Q fz,un(z), v, (x)) de = lim/Q fzyun(z),v,(x)) da.

By extracting another subsequence we can assume that the pair {(u,,v,)} gen-
erates a Young measure {fi; = Oy(z) ® Va}zecq, Where {V;}zcq is the Young
measure associated to v,,. We have

L> /Q/]Rmed f(ﬂcﬂ%f) dﬂz(nag) = /Q - f(x,u(a:),g) de(ﬁ)

Now we truncante the sequence v, to get g—equi-integrability. As v, is a
bounded sequence in L¢ we have

/(1/1., |2|7) dz < +o0.
Q

Consider the following family of truncation functions

(2) = z if |z| <k
T Y ks i |2 >k

2]

12



and we have
limlim/ |Tk(vn)|qu:lim/<u$,|7'k(.)|q>dx:/<V1,\z|q>dx.
E-onJo k- Ja Q

We can then find a sequence 0y, := 7 (vy,,) such that

[0k = tmllge — 0, lim / o[ dx = / (v [2|%) d,
k—+o00 Jo Q

for 1 < s < p. The sequence vy also generates the Young measure v, it is
g—equi-integrable and
Adp — 0 in Wb,

Now choose a point z¢ € Q2 such that f(zg,u(zo),.) is Ag,-quasiconvex,

. 1
lim —/ Ve, |2|T) = (Vao, |2]T)] dz = 0,
Q(zo,m)

r—0 TN
. (3.1)
im — |v(z) — v(x0)|?dz =0,
r—0 TN Q(mo,r)
and
lim /Q Waotras #) = (Vags @) dz = 0 (3.2

for a countable number of ¢ in Cy(R%). Define wy, . € L1(Q;R?) by wy, -(2) :=
Ok (2o +72). Using (3.1) and (3.2), we have

lim lim / [o (20 + 72)| dz = (vg,, |2]T),
Q

r—0 k—+4o0

N .
ZA(i)(:z:o + 7“2)—6(1}’“(9(;;jL r2)) —0 in W™ ask— +oo

i=1

lim lim (O (o +1r2) —v(x0)) ¥(2)dz =0,
r—0k—-+o0 Q

for every U € LY,

lim lim /QC(Z)(p (Ok(xo +1r2)) dz = <1/10,g0>/QC(z) dz,

r—0 k—-+4oo

for ¢ in C.(Q) and ¢ in the countable subset of Co(R?) for which (3.2) holds.
Then using an appropriate diagonalization can find a sequence wy, € L7(Q;R%)
such that

N
wrp —v(zg) in LY Z A9 (zg + 72)
i=1

Owg(z)

92, —0 in Wb (3.3)

13



and

Jim [ et ds = v, /Q n(z) dz,

for 7 and ¢ in a countable dense subset of L!(Q) and Cy(R?), respectively, and

kEIfoo/Q wi(2)| dz = (va, |2]),

thus wy generates the Young measure v, and it is q-equi-integrable.
Now we prove that

Awowk = ZA (LL'()) 9z

i=1

—0 in Wb (3.4)

%

In fact we have

N , ,
Agowi = z_: [(A(’)(xo) - A(l)(xo + rkz)) wk(z)}

82’1'
N ; N
DA ; Ow
+ 7 Z 5 (xo + rr2)wi(2) + Z AD (2o + 42) 8;
i=1 ¢ i=1 !

and all the terms go to 0 in W1, The first because of the s-equi-integrability
of wi and the continuity of the coefficients which imply

(A(i) (z0) — A9 (x0 + Tkz)) wp(z) =0 in L

the second because r, — 0 and the boundedness of wy in L?, and the third
because of (3.3).

Next we modify wy, in order to get @-periodicity. We consider an increasing
sequence of smooth cut-off functions ¢/ € C2(Q), ¢/ / 1 and we do a ap-
propriate diagonalization of ¢/wy, in order to get a new sequence @ € L9(Q),
g-equi-integrable, that still generates the homogeneous Young measure v,,,, and
verifies

Ago@r — 0 in W5,

Now we just have to project {@} into the kernel of A, i.e., we apply Lemma
2.13. to get

wp =T {ij —v(zg) — /Q(&Jk(a:) —v(x)) dx| + v(zo),

@-periodic, g-equi-integrable, W, — v(xg), Wk dy = v(xg), wi still gener-
g Q y)ay g
ates v, and Azodjk = 0. Thus

o, u(w0). dv (€) =lim | fao,ulio). u(0) dy = F o, u(ao), v(zo),
Q

Rd

14



from which we get
L> / fz,u(x),v(z)) de.
Q
O

Remark 3.1. Using a similar prove one can obtain the same result of Theorem
1.1. for systems in the divergence form with L™ coefficients

N oo (AD(2)v(x))

Av ::ZT,

i=1

and rank (Zf;l A(i)(ac)wi> =const, for a.e. x € Q and all w € RNV \ {0}, i.e., if
f(x,u,.) is Az-quasiconvez for a.e. x € Q and all u € R™ then we have lower
semicontinuity for sequences u, — u in measure, v, — v in L2, Av, — 0 in
W14, In the prove one uses the approzimate continuity of the coefficients at
a.e. x € (.

However, in this case, we were unable to prove that the sufficient condition
is also necessary.

4 The necessary condition

In this section we prove Theorem 1.2

Proof. Fix 2o in Q, ¢ € R%, and let r > 0 be such that Q(zg,2r) CC Q. Let
w € C®(RN;R™), Q-periodic, satisfying

N
, 0
/QW(y) dy=0  Agw:= ;A(” (xo)aw‘ =0. (4.1)

K2

Using the uniform continuity of f on compact sets we can choose n large
enough such that

_ - 1
|[f(a,0) = fl@',0)] <& forz,2" € Qao,r), v e QO c+]lwll) |z —a’] <.

Decompose

Qo) = Ui, Q(e, ),

where the equality above is up to a £V -negligible set. Consider ¢ € C°(Q(zo,7), [0, 1])
such that LN (Q(zo,7) N {p # 1}) < er™. Define

U () :=

{gp(m)w* (w) if z € Qwy, %)

0 otherwise,

15



where w*(y) :=w(y + (3,..,3)). We have

Ay, = Ay, — Axoum + -’4960 Um

N oV
B . , S
= (%) _A@) * j ;

;Fl Bz, ((A (z) - A (330)) o(z)w (mn . )) XQ(a;,)
_zz\r:nw ( )8(A(i)(x)—A(i)(x0)) . x— |

L 2P o, wh | mn——" ) XQ(a;.3)

=1 j=1

N N . a@ z—
+ ;j:1 A(Z) (ﬁ())axi w* <mn , ) XQ(fnn)

+ () i ”ZN: AW (z0) ’ <w* (mnm;xj )> XQ(z;,)

83%

i=1 j=1
2211 —|—IQ+I3—|—I4

(4.2)
* L —Zj \ ; q - r —
w (mn " ) 0 in L (Q(xj, n)> as m — 400,

we have Iy, I3 — 0 in W19 as m — +o00, and by (4.1) Iy = 0. Moreover

(A< D(g) — A (mo)) o (mnw —T%) ()

N N
2l ZZ L1(Q(x;, %))

q

N
3 [ 9@ - a0 )
i=1 Q(wo,m)
(4.3)
where C' is independent of m.
Now consider n € C°(€;]0,1]), n =1 on Q(xg,r) and define
U = Py,
As P, is an operator of order 0, by Theorem 2.8, we have
vmllpa < CllumllLq, (4.4)

vmlly 1.0 < Clltm] |10,
thus, up to a subsequence,
Uy — 0 in L9,
Moreover, by (2.4),
Av,, =0 in Wb

16



As the pseudodifferential operators are non-local, we need to localize the se-
quence {v,, }. For that consider 1, € C°(Q(xo,2r);[0,1]), n, = 1 in Q(xo,7),
and define

Um = 1NrUm-

We have
O — 0 in LY, A, — 0 in W4

thus, by the lower semicontinuity we have
lim inf/ flz, e+ Op(2)) do > / f(z,c)dz. (4.5)
Q Q

On the other hand, using (1.2), (2.3), (4.3), (4.4), and Holder’s inequality, we
get

/ F, e+ B (2)) da —/ f(x,c+um(x))‘
Q Q
< C/Q [T () =t ()] (1 e+ O]+ e+ um|q71> dx

<c 9 (2) = (@) (1 + [ + ") e
Q(z0,27)

< c(/ 16 (2) — um(a:)|qdac> o (/ |17m|qda:>
Q(z0,2r) Q(z0,2r)

1
a

+ / |t |? da
Q(zo,27)

i~ a

< C’</ [V (2) — U ()] d:c> rd + / [t |? da
Q Q(zo,7)

< O (1 Atnllyy s + il 1) < 3 (/ omr ) dz>

<C'7”q <Z/ *A( (o) d:c) +C7"’ [l -1.as
(:1:0,7‘)

where C' is independent of m. Thus using (4.5) and (4.6) we have

1
7

Q

(4.6)

a

hmsup/ flx,c+ up(x))dx + Crd (Z/ |AD (2 A(i)(wo)lq dx)

> /Q f(a,0)da

17



or, equivalently,

N
7

limsup/ f(zy e+ upm(z)) de + Cra
Q(zo,7)

> / flx,c)dx.
Q(zo,m)

We now estimate the first term above, using the continuity of f and Riemann-
Lebesgue lemma,

)¢ @D (2 da
(Z/(W)A A (0)|d>

lim sup/ fzy e+ um(z)) de

m Q(zo,r)
<hmsupZ/ f<x ¢+ w*(mn xj)> dz + 2Mer™
m j=1 Qzj,7%)
nN
<hmsup2/ f<x],c+w (mn xa)) dx + (2M + 1)er™
m j=1 Qzj, %)

NN
I - : d N
< lmsup;nw /Q F(j,c+w(my) dy + M + Der
<
>,
< flz, e+ d ) dz + (2M + 2)er™
Z/( ([ s s oty ans 231+ e

g/@ </fx6+w( >>dy) d + O(e)r™
’ (4.7)

where M := sup{f(z,v) : € Q(zo,7), [v| < ¢+ [|w||.,}. Thus dividing by r¥
and using (4.7) we get

(/ flzj,c+w(y ))dy) dx + (2M + 1)er

Qzj, %)

T‘LN (/Q fz, e+ w(y)) dy) dz + O(e)

Q(zo,m)
1
) ¢ 1
+C / 1A (2) — AD(zo)| dz | > — / f(z,c)dx.
(2 ™ Jaon ™ JQo,m)
By letting r — 0 and using the arbitrariness of € we get

F(o,c /f zo,¢ +w(y)) dy,

ie., f(zo,.) is Ag,-quasiconvex. O

18
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5 Characterization of Young measures

We now prove Theorem 1.3. The idea is to split the domain in small cubes,
approach the variable coefficients operator by one with constant coefficients in
each cube, apply in each cube the theorem about characterization of Young
measures generated by bounded sequences in L9 that are in the kernell of an
operator with constant coefficients (Theorem 2.14), and then use an appropriate
diagonalization.

Proof. We assume without loss of generality that
(v, Id) = 0.

Otherwise we work with translated measure.

Consider {£,}7°5 a dense countable subset of L'(Q), &(x) = 1, {¢},°F a
dense countable subset of Cp(R?) and ¢g(z) = |2|?. Given o € N we can find
v > 0 such that

1
/ 6n(@) dellall. < & forhii=1,...a, (5.1)
B «
and )
[ ety e < (5.2)
B «
when LN (B) < .
For each a € N we consider a compact set K, such that LN (Q\ K,) <
min{-,~/3} and the functions

x — (v, |2]Y), = Ve,o1) 1=1,..,0,

are continuous in K,. We consider disjoint cubes @; CC € of side mi, for an
appropriate integer mq,, such that £V (Q\ UQ;) < min{-Z;,~/3} and

. . q 1/@ .
Supx,w/EQiﬁKQ|A(])(x) - A(J)(l‘/” < NCl J = L, "7N7 (53)
1/a

Supx,m’EQiﬁKa|<l/ra§0l> - <V1’a§0l>| < ||§/h|| hvl = ]-a cey O (54)

and /

1/«

Supx,x’EQiﬁKaKVx’ |Z|q> - <V$'7 |z|q>| < W’ (55)
where C1 := 2 [,(vy,]2/")dy + 1. By considering less cubes and a smaller

compact set Ko, if necessary, we may assume that for each cube @; we have

LN(Qi)

‘CN(Qiﬂf(a) Z 2 )

(5.6)
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and K, C UQ);. It is easy to check that
LYNQ\ K,) <min{3/a?,v}, LY (Q\UQ;) < min{3/a>,~}.

In each cube ); we pick up a point x; € K,N @; that fulfills the conditions
below

1
Vs |2|? SAi/ vy, |2|%) dy, Vg, 1d) = 0,
( ") N Q) Rain< v 121%) ( )

(Vai:9) = Qa,,9(0), (5.7)
for every continuous g satisfying |g(v)| < C(1 + |v|?). Now we apply Theorem

2.14 and get a g—equi-integrable sequence ﬁ&n € LP(Q;; RY) that generates the
homogeneous Young measure v, and satisfies Az, vg, , = 0. Using an appro-
priate sequence of cut-off functions, n°* € C°(Q;), n° " 1, and diagonalizing
nsﬁg’n, one can construct a new sequence, fo’n, such that vfx,n = 0 on a neigh-

borhood of 0Q);, g-equi-integrable, also generating v,, and

i

Ag v, =0 in WH(QuRY) as n— +oo.

Define _
o Vg if z € Q;,
)0 otherwise.
We have
9 (AW (z;)0, )
aVla,n = el 0 i Wﬁl’q
Aqva, Z ; oz, —0 in
We claim that
/ [Va.n|? dz < Cy (5.8)
Q

i
a,n

for all @ € N and n large enough. As (v
integrable, we know that

)” generates v,, and it is g—equi-

/ i, " d — (v, |17V LY (Q0).

i

By (5.6) and (5.7),

q\ pN ) ﬁN(Qi) q
AVEVQ) < g o /Q il dy

<9 / (v, 2|7 dy,

i

(Vas

and for n large enough

/ |Ua,n|qdz < 2/<Vy7|2|q> dy+1=Ch.
Q Q
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We claim that

) /Q bl < Plo), (5.9)

for some F' satisfying the condition F(a) — 0 as & — 0 and n large enough.
Using the g—equi-integrability of (v}, n) and (5.7) we have

/ N |Ui,n|q dm - <V$i7
Qi\Ka

(Qi\ K.) o
(QMK)/cgmka<y’|>dy

Let Jo = {i: alN(Q; \ Ko) > LN (Q; N K4)}, we then have

2AMLN(Qi\ Ka)

S LN@QiNK) <> aLN(Qi\ Ka) < aLN(Q\ K,) <

i€Ja icJ

o

Thus
» LN\ K, 1
>/ |v;n\qu§27“’2 \K )/ vy 2| dy + ©
T JQi\Ka ’ LN(Q; N K,) iNKo «
1 1
< )yd - N dq =
Z/ el dy+ 3 [l

1€Jq

for n large enough, from which we get (5.8).
As

N i
AaVan — Avgpn = Z (Z (A — AV (@ )> a;;n)
J

j=

[

9 ((AD) (2) — AU () HAW) (z y
Z (Z oz z:: 0z Van )

j=1

and

1
j i o 1
ZZ/ |A] Aj(wi)‘q’va,n’qu < a/g|va,n|q dx < S
> / A (@) — A ()|l | de < 29| A, N F(a),
i

Qi\Ka

we conclude that for n large enough

2
[ Aava,n — Ava,nH_Lq < 2/|A||5,NF(a) + o (5.10)
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We now prove that for n large enough

<

6 for h,l=1,..,« (5.11)
e

/Q (@)1 (v ) it — /Q 6 (2) (ver 1) de

Indeed, as n — 400,

/Q 6wVt e = Sl [ ) e + 0 / () de,

Q\UQi

and

\/Q §h($)<ygc7§0l>d$—zi:<l/:cw<pl>/lgh(ﬂf) dzx — ¢;(0) /Q\uQi En(z) dx
< /9\qu |&n () Ve, 1) ] dx+Z/ 1€ (2) (W, 21) — (s, 01))] de

+Z/ oG uxl,mde/  Jn@)vn, 0] do
+ i (0 |/ |§h )| dz,

using (5.1) and (5.4) we get (5.11). A similar argument can be done in order to

obtain
/|va,n(x)|%zx—/<yw,\z|Q>dx
Q Q

for n large enough. Then, using appropriate diagonalization, we can find a
sequence Wy := Vg n, € LI, we — 0in L9, Aw, — 0 in W19, verifying

4
<F —
< F(a) + .

li(in/ﬂfh(a:)wl(wa(x))dxz/th(l“)@m@l)dxv

lim/ |wa(x)\qu:/(uw,|z\q>dx
@ Jo Q

thus wy, generates the Young measure v and it is g-equi-integrable.

For the necessary condition we can use an argument similar to the proof of
Theorem 1.1, in order to get that at a.e. z¢ € €2, the homogeneuos Young mea-
sure v, is generated by a sequence wy € L1(Q), Q-periodic, g-equi-integrable,
wr — v(z0) in LY, fQ wi(z) dr = v(zg), Agowr = 0. Then

for all h,l € N, and

lim /Q 9(wr(@)) dz = Ve, 9) > Q. (v(z0)),

which proves iii); i) and ii) are trivial. O
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Remark 5.1. Using a similar prove one can obtain the same result of Theorem
1.8. for systems written in the divergence form with L coefficients

N9 (A (z)v(x))

Av = Z oz,

i=1

and rank (Zil A(i)(x)wi> = const, for a.e. * € Q and all w € RN, In the

proof we can use Lusin’s Theorem to get continuity of the coefficients out of a
set of small measure.
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