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Abstract

It is shown that for integrals of the type

I(u, v) :=

∫
Ω

f(x, u(x), v(x)) dx,

with Ω ⊂ RN open, bounded, and f : Ω×Rm×Rd → [0, +∞) Carathéodory
satisfying a growth condition 0 ≤ f(x, u, v) ≤ C(1 + |v|p), for some
p ∈ (1, +∞), a sufficient condition for lower semicontinuity along se-
quences un → u in measure, vn ⇀ v in Lp, Avn → 0 in W−1,p is the
Ax-quasiconvexity of f(x, u, .). Here A is a variable coefficients operator
of the form

A :=

N∑
i=1

A(i)(x)
∂

∂xi
,

with A(i) ∈ C∞(Ω;Ml×d) ∩W 1,∞, i = 1, ..N , satisfying the condition

rank

(
N∑

i=1

A(i)(x)ωi

)
= const for x ∈ Ω and ω ∈ RN \ {0},

and Ax denotes the constant coefficients operator one obtains by freez-
ing x. Under additional regularity conditions on f it is proved that the
condition above is also necessary. A characterization of the Young mea-
sures generated by bounded sequences {vn} in Lp satisfying the condition
Avn → 0 in W−1,p is obtained.

Key words A-quasiconvexity, Young measures, lower semicontinuity.
AMS subject classification.
35D99, 35E99, 49J45

1 Introduction

Motivated in part by the study of equilibrium of certain advanced materials,
recently there has been extensive research on minimization and relaxation of
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nonconvex multiple integrals of the type

u→
∫

Ω

f(x, u(x),∇u(x), ..,∇ku(x)) dx, (1.1)

where Ω ⊂ RN is an open, bounded domain, u : Ω → Rm, N,m ≥ 1, and k ∈ N.
One way of attacking this problem is to use the Direct Method of the Calculus
of Variations, and a key step in that direction is to identify conditions on f that
ensure lower semicontinuity for an appropriate topology. In the case where k = 1
it is known that sequential weak lower semicontinuity on W 1,p is equivalent to
quasiconvexity of f(x, u, .) under appropriate growth and regularity conditions
on f (see [2],[10],[12]).

Recently Fonseca and Müller [7], drawing from the theory of compensated
compactness of Murat and Tartar ([11],[16]), extended this study to the more
general setting

(u, v) →
∫

Ω

f(x, u(x), v(x)) dx, Av = 0,

where u : Ω → Rm, v : Ω → Rd and A is a first order linear partial differential
operator with constant coefficients and of constant rank, i.e.,

Av :=
N∑

i=1

A(i) ∂v

∂xi
, and rank

(
N∑

i=1

A(i)wi

)
= const for every w ∈ SN−1,

where A(i), i = 1, .., N , are Ml×d matrices. This setting includes the framework
of (1.1), and also other situations like div = 0 or Maxwell Equations. In [7] it was
shown that, under appropriate regularity and growth conditions on f , sequential
lower semicontinuity of the functional on Lp(strong)×Lq(weak) is equivalent to
A-quasiconvexity of f(x, u, .). We recall that a continuous function f : Rd → R
is A quasiconvex if and only if

f(v) ≤
∫

Q

f(v + w(x)) dx

whenever w ∈ C∞per(RN ,Rd),
∫

Q
w(x) dx and Aw = 0.

In this paper we generalize some of the results of [7] to the case of variable
coefficients, precisely

Av :=
N∑

i=1

A(i)(x)
∂v

∂xi
,

where A(i) ∈ C∞(Ω; Ml×d)∩W 1,∞, and rank
(∑N

i=1A
(i)(x)wi

)
=const for every

x ∈ Ω and all w ∈ RN \ {0}.
Given x0 ∈ Ω, denote by Ax0 the partial differential operator with constant

coefficients that we obtain by freezing x0, i.e.,

Ax0v :=
N∑

i=1

A(i)(x0)
∂v

∂xi
.
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The following sufficient condition for lower semicontinuity holds.

Theorem 1.1. Let Ω ⊂ RN be an open, bounded set, 1 < q < +∞, and let
f : Ω × Rm × Rd → [0,+∞[ be a Caratheódory function, with 0 ≤ f(x, u, v) ≤
a(x, u)(1 + |v|q) for some locally bounded function a : Ω × Rm → [0,+∞) and
for all v ∈ Rd, a.e. x ∈ Ω. Suppose that f(x, u, .) is Ax-quasiconvex for a.e. x
in Ω and all u ∈ Rm. Then

lim inf
n→+∞

∫
Ω

f(x, un(x), vn(x)) dx ≥
∫

Ω

f(x, u(x), v(x)) dx

whenever un → u in measure, vn ⇀ v in Lq(Ω; Rd), Avn → 0 in W−1,q(Ω; Rl).

For the necessary condition we have the following.

Theorem 1.2. Let Ω ⊂ RN be an open, bounded set, 1 < q < +∞, and
let f : Ω × Rd → [0,+∞) be a continuous function satisfying the q-Lipschitz
continuity condition

|f(x, v1)− f(x, v2)| ≤ a(x)
(
1 + |v1|q−1 + |v2|q−1

)
|v1 − v2|, (1.2)

where a ∈ L∞loc(Ω). Suppose we have lower semicontinuity of the integral

lim inf
∫

Ω

f(x, vn(x)) dx ≥
∫

Ω

f(x, v(x)) dx

for sequences vn ⇀ v in Lq(Ω; Rm), constrained by the system of PDEs in the
following sense

Avn :=
N∑

i=1

A(i)(x)
∂vn

∂xi
→ 0 in W−1,q(Ω; Rl). (1.3)

Then f(x, .) is Ax-quasiconvex for all x ∈ Ω.

We could not prove the necessary condition for exact solutions of the PDE,
but only under the more restrictive condition (1.3). In the case of constant
coefficients Fonseca and Müller [7] were able to prove the necessary condition
for sequences in the kernel of A. Using Fourier series representation they could
construct a projection P onto the kernel of A, using algebraic computations on
the symbols, and to prove the estimate (continuity of the inverse)

||v − Pv||Lq ≤ Cq||Av||W−1,q . (1.4)

A major difficulty that arises when we deal with the variable coefficients setting
is that to the composition of operators does not correspond the multiplication
of symbols any more, only up to a regularizing operator. Thus in our case, using
also Fourier analysis, we were just able to prove the estimate

||v − Pηv||Lq ≤ Cq (||Av||W−1,q + ||v||W−1,q ) , (1.5)
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where Pη is not a projection, APηv 6= 0 in general, but APηvn → 0 in W−1,q

whenever vn → 0 in W−1,q. We also emphasize that at least in the case q = 2
there exits a continuous projection onto the kernel of A but the continuity result
(1.4) remains to be asserted, or at least the weaker estimate(1.5) with the Pη

replaced by the projection P .
We also characterize the Young measures generated by bounded Lq sequences

satisfying (1.3). In the case of constant coefficients similar characterization is
provided for sequences in the kernel of the operator [7], in this way generalizing
the result of the Kinderleher and Pedregal on gradients [8] [9] (in that case
A = curl). For the same reasons we detailed above we were unable to replace
(1.3) by sequences in the kernel of the operator.

Theorem 1.3. Let 1 < q < +∞ and let {νx}x∈Ω be a weakly measurable family
of probability measures on Rd. Then there exists a q-equi-integrable sequence
{vn} in Lq(Ω; Rd) that generates the Young measure ν and satisfies Avn → 0
in W−1,q(Ω; Rl) if and only if

i) there exists v ∈ Lq(Ω; Rd) such that Av = 0 and v(x) = 〈νx, Id〉 a.e x ∈ Ω;

ii)
∫
Ω

∫
Rd |z|q dνx(z) dx < +∞;

iii) for a.e. x ∈ Ω and all continuous functions g that satisfy |g(v)| ≤ C(1+|v|q)
one has 〈νx, g〉 ≥ QAx

g (〈νx, Id〉).

2 Preliminaries

Here we present some notation that we will be using throughout the paper
and also some results about Pseudodifferential Operators, Young measures and
Linear Partial Differential Operators of constant coefficients and constant rank.

In the sequel Ω ⊂ RN is an open, bounded domain, Q := (0, 1)N , Q(x0, r) :=
x0 + r(− 1

2 ,
1
2 )N . The N -dimensional Lebesgue measure is LN . For a set A the

function χA is

χA :=

{
1 if x ∈ A,
0 otherwise.

Unless different thing is indicated, which will be clear from the context, the
operator A refers to

Av :=
N∑

i=1

A(i)(x)
∂v

∂xi
,

with v : Ω → Rd, A(i) ∈ C∞(Ω;Ml×d) ∩W 1,∞ for i = 1, .., N , and there exist
r positive integer such that

rank

(
N∑

i=1

A(i)(x)ωi

)
= r
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for x ∈ Ω and ω ∈ RN \ {0}. For x0 ∈ Ω, Ax0 is the constant coefficients
operator with constant rank defined by

Ax0v :=
N∑

i=1

A(i)(x0)
∂v

∂xi
.

2.1 Pseudodifferential operators

We present some results on Pseudodifferential Operators, for more details and
proofs we refer the reader to [14].

We start by introducing some notation. Given a function u : RN → C, we
denote by ∂j the partial derivative with respect to xj , and by Dj := −i∂j , where
i is the imaginary unit. Given two functions u and v in L2(RN ) we set

(u, v) :=
∫

RN

u(x)v(x) dx.

We denote by S the space of C∞(RN ) functions that are rapidly decreasing
at infinity, i.e., a function ϕ belongs to S if xα∂βϕ are bounded in RN for all
pairs α, β of multiindices. The topology on S is defined by the norms (k ∈ Z+

0 )

||ϕ||k = sup|α+β|≤k||xα∂βϕ||∞.

We denote by S ′
the set of semilinear forms u (i.e. (u, αϕ + βψ) = ᾱ(u, ϕ) +

β̄(u, ψ)) on S such that there exits C ∈ R and M ∈ Z+
0 verifying

|(u, ϕ)| ≤ C||ϕ||M for ϕ ∈ S.

For a function u ∈ S, the Fourier transform û (or Fu) of u, is defined by the
formula

û(λ) :=
∫

RN

u(x)e−ix.λ dx.

The inverse Fourier transform is given by

F−1u(λ) :=
1

(2π)N

∫
RN

u(x)eix.λ dx.

Given s ∈ R we denote by Ls,p(RN ) the image of Lp(RN ) under the linear
mapping

Jsu = F−1
(
(1 + |λ|2)

− s
2Fu

)
.

If u ∈ Ls,p(RN ) then there exits a unique ũ ∈ Lp(RN ) with u = Jsũ. The space
Ls,p(RN ) is a Banach space with norm

||u||Ls,p := ||ũ||Lp .
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The spaces Ls,p, with p = 2, coincide with Hs(RN ) for any s ∈ R, and for
p ∈ (1,+∞) and s ∈ Z they coincide with W s,p(RN ). We have the duality
relation

[Ls,p(RN )]
′

= L−s,p′(RN ),

where p′ = p
p−1 .

For more details about the spaces Ls,p we refer the reader to [1].

Let q ∈ R and let b(x, λ) be a C∞ complex-valued function on RN×RN . We
say that b is a symbol of order-q, and we write b ∈ Sq, if there exist constants
Cαβ such that

|∂α
x ∂

β
λb(x, λ)| ≤ Cαβ

(
1 + |λ|2

) q−|β|
2
, (2.1)

for (x, λ) ∈ RN × RN , α, β ∈ ZN
+ . We have Sq ⊂ Sl for q ≤ l, and define

S∞ := ∪qS
q.

Given a symbol b ∈ Sq we say that b ∼
∑

j bj , with j ∈ Z+, if bj ∈ Sq−j and

b−
∑
j<k

bj ∈ Sq−k.

We define below two operations on symbols, the compound, b#c, and the
adjoint, b?.

Theorem 2.1. Let b ∈ Sq and c ∈ Sl. Then the oscillatory integrals

b?(x, λ) :=
1

(2π)N

∫
b̄(x− y, λ− η)e−iy.η dy dη,

b#c(x, λ) :=
1

(2π)N

∫
b(x, λ− η)c(x− y, λ)e−iy.η dy dη

define symbols b? ∈ Sq and b#c ∈ Sq+l with the following asymptotic expansions

b? ∼
∑
α

1
α!
∂α

λD
α
x b̄, b#c ∼

∑
α

1
α!
∂α

λ bD
α
x c.

Remark 2.2. For any b ∈ S∞ we have

(b?)? = b.

For t ∈ R, denote by τ t the symbol τ t(λ) =
(
1 + |λ|2

) t
2
. We then have

i) (τ t)? = τ t;

ii) τ t1#τ t2 = τ t1+t2
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We associate a pseudo-differential operator B (or b(x,D)) to the symbol
b(x, λ) ∈ Sq via the formula

Bϕ(x) :=
1

(2π)N

∫
RN

b(x, λ)ϕ̂(λ)eix.λ, ϕ ∈ S(RN ).

The function Bϕ ∈ S(RN ) and the application is continuous from S to S (see
Theorem 3.1. in [14]).

The adjoint symbol is associated with the adjoint operator, it is the tool to
extend the domain of a pseudodifferential operator to S

′
, and the compound

symbol is associated with composition, as the theorem below shows.

Theorem 2.3. For any b, c ∈ S∞ and ϕ , ψ ∈ S one has

i) (b?(x,D)ϕ,ψ) = (ϕ, b(x,D)ψ),

ii) (b#c(x,D)ϕ,ψ) = (b(x,D)c(x,D)ϕ,ψ).

Remark 2.4. Given b = b(x, λ) ∈ Sq and c = c(λ) ∈ Sl, the symbol corre-
spondent to the composition b(x,D)c(D) is the multiplication of the symbols,
i.e.,

b#c(x, λ) = b(x, λ)c(λ).

However, the general case where the symbol c also depend on x, is more com-
plicated. In that case, according to Theorems 2.1 and 2.3, all one can say is
that

b#c(x, λ) = b(x, λ)c(x, λ) + symbol of order q + l − 1

The domain of a pseudodifferential can be extended to S ′
, in the way we

show below.

Definition 2.5. Given a b ∈ S∞, we call pseudodifferential operator of symbol
b, the operator b(x,D) : S ′ → S ′

defined by

(b(x,D)u, ϕ) = (u, b?(x,D)ϕ), for u ∈ S
′
, ϕ ∈ S

If b ∈ Sq then b(x,D) is said to have order q.

In particular we can define the action of a pseudodifferential operator on
Sobolev spaces, and the continuity result below holds.

Theorem 2.6. Let b ∈ Sq. Then for every s ∈ R there exists a constant Cs

such that b(x,D)u ∈ Hs−q for all u ∈ Hs, with

||b(x,D)u||Hs−q ≤ Cs||u||Hs .

For p 6= 2 a similar result holds if we replace the Sobolev spaces by the
spaces Ls,p. In order to prove this we need the following result, due to Coifman
and Meyer ([5]).
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Theorem 2.7. Let b ∈ S0 and p ∈ (1,+∞). Then b(x,D)u ∈ Lp(RN ) for all
u ∈ Lp(RN ), and

||b(x,D)ϕ||Lp ≤ C||ϕ||Lp , ∀ϕ ∈ Lp(RN ),

Theorem 2.8. Let b ∈ Sq. Then for every s ∈ R there exists a constant Cs

such that b(x,D)u ∈ Ls−q,p for all u ∈ Ls,p, with

||b(x,D)u||Ls−q,p ≤ Cs||u||Ls,p .

Proof. The proof is similar to the proof of Theorem 2.6 presented in [14].
Let b ∈ Sq. We first prove that

||b?(x,D)ϕ||L−s,p ≤ C||ϕ||Lq−s,p , for ϕ ∈ S.

Note that S ⊂ Ls,p and

||ϕ||Ls,p = ||τ s(D)ϕ||Lp .

We have

||b?(x,D)ϕ||L−s,p =||τ−sb?(x,D)ϕ||Lp

= ||τ−s(D)b?(x,D)τ−q+s(D)τ q−s(D)ϕ||Lp

≤ C||τ q−s(D)ϕ||Lp = C||ϕ||Lq−s,p .

Let u ∈ Ls,p. We now prove that

|(b(x,D)u, ϕ)| ≤ C||u||Ls,p ||ϕ||Lm−s,p
′ , ∀ϕ ∈ S.

Indeed,
|(b(x,D)u, ϕ)| = |(u, b?(x,D)ϕ)|

= |(u, τ s(D)τ−s(D)b?(x,D)ϕ)|
= |(τ s(D)u, τ−s(D)b?(x,D)ϕ)|
≤ ||u||Ls,p ||b?(x,D)ϕ||

L−s,p
′

≤ C||u||Ls,p ||ϕ||Lq−s,p
′ ,

thus b(x,D)u ∈ Ls−q,p and

||b(x,D)u||Ls−q,p ≤ C||u||Ls,p .

In what follows we are interested in pseudodifferential operators associated
with matrix-valued symbols. Given a matrix B(x, λ) := [bjk(x, λ)]s,t

j,k=1, we
say that B(x, λ) ∈ (Sq)s×t if bjk(x, λ) ∈ Sq for j = 1, .., s, k = 1, .., t. Given
u ∈ S ′

(RN ; Rt) we define Bu ∈ S ′
(RN ; Rs) by

(Bu)j :=
t∑

k=1

bjk(x,D)uk, j = 1, .., s.
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It is easy to check that all the results we presented above for scalar-valued
symbols still hold for matrix-valued symbols.

We now derive some estimates that are useful to prove the necessary condi-
tion.

We denote by A(x, λ) the symbol associated with the operator A, i.e.

A(x, λ) :=
N∑

i=1

A(i)(x)λi,

and by P (x, λ) the projection onto Ker(A(x, λ)). Define Q(x, λ) by the implicit
equation

Q(x, λ)A(x, λ) := Im − P (x;λ). (2.2)

The function Q(x, λ) is positively homogeneous of degree -1 in λ and using (1.4)
we get that Q(x, λ) ∈ C∞(Ω× RN \ {0};Mm×d). Define

Qη(x, λ) := η(x)Q(x, λ)χ(|λ|),

where χ : [0,+∞) → R is a C∞-function for which we can find numbers r, R,
0 < r < R < +∞, such that χ(|λ|) = 0 for |λ| < r and χ(|λ|) = 1 for |λ| > R,
and η ∈ C∞c (Ω; [0, 1]), η = 1 on Ω̃, for some open set Ω̃ ⊂⊂ Ω . It is easy to
check that

|∂α
x ∂

β
λQη(x, λ)| ≤ Cα,β

(
1 + |λ|2

)−1−|β|
2

,

for x ∈ RN and λ ∈ RN . Thus Qη(x, λ) is a symbol of order -1 and we denote
by Qη the corresponding pseudo-differential operator.

We denote by Aη(x, λ) the symbol

Aη(x, λ) :=
N∑

i=1

η(x)A(i)(x)λi,

and by Aη the corresponding operator.
By Remark 2.4., the compound operator QηAη has order 0 and symbol

η(x)Q(x, λ)χ(|λ|)Aη(x, λ) + symbol of order -1,

or, using (2.2),

η2(x)Im − η2(x)P (x, λ)χ(|λ|) + symbol of order -1.

We denote by Pη the operator correspondent to the order 0 symbol η2(x)P (x, λ)χ(|λ|),
thus

u− Pηu = QηAu+Ku,

for u ∈ Lp(Ω) with compact support in Ω̃, where K is a pseudo-differential
operator of order -1. Using Theorem 2.8, we get the estimates

||u− Pηu||Lp ≤ C||Au||W−1,p + C||u||W−1,p , (2.3)
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and
||APηu||W−1,p ≤ C||u||W−1,p , (2.4)

where we have used the fact that APη is an operator of order 0, because of the
relation

A(x, λ)P (x, λ) = 0.

2.2 Young measures

We present here some results about Young measures, for more details and proofs
we refer the reader to [16], [4], [13].

Theorem 2.9. Let E ⊂ RN be a measurable set of finite measure and let
{zn} be a sequence of measurable functions, zn : E → Rd. Then there exists a
subsequence {znk

} and a weak? measurable map ν : E →M(Rd) such that the
following hold:

i) vx ≥ 0, ||νx||M ≤ 1 for a.e. x ∈ E;

ii) One has i’) ||νx||M = 1 for a.e. x ∈ E if and only if

lim
M→+∞

sup
k
LN ({|znk

| ≥M}) = 0; (2.5)

iii) if K ⊂ Rd is a compact subset and dist(znk
,K) → 0 in measure then

suppνx ⊂ K for a.e. x ∈ E;

iv) if i’) holds then in iii) one may replace ’if ’ by ’if and only if ’;

v) if f : Ω× Rd → R is a Carathéodory integrand, bounded from below, then

lim inf
k→+∞

∫
Ω

f(x, znk
(x)) dx ≥

∫
Ω

f̄(x) dx

where

f̄(x) := 〈νx, f(x, .)〉 =
∫

Rd

f(x, y)dνx(y);

vi) if i’) holds and if f is as in v), then

lim inf
k→+∞

∫
Ω

f(x, znk
(x)) dx =

∫
Ω

f̄(x) dx < +∞

if and only if {f(., znk
(.))} is equi-integrable. In this case

f(., znk
(.)) ⇀ f̄ in L1(Ω).
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The map ν : E → M(Rd) is called the Young measure generated by the
sequence {znk

}. The Young measure ν is said to be homogeneous if there is
ν0 ∈M(Rd) such that νx = ν0 for a.e. x ∈ E.

Remark 2.10. Condition (2.5) holds if for some p > 0

sup
n∈N

∫
E

|zn|p dx < +∞

Proposition 2.11. If {vn} generates a Young measure ν and if ωn → ω in
measure then {vn + ωn} generates the ’translated’ Young measure

ν̃x := Γω(x)νx

where
〈Γaµ, ϕ〉 := 〈µ, ϕ(.+ a)〉

for a ∈ Rd, ϕ ∈ C0(Rd). In particular, if ωn → 0 in measure then {vn + ωn}
generates the Young measure ν.

Proposition 2.12. If {vn} generates a Young measure ν and un → u a.e. in
Ω then the pair {(un, vn)} generates the Young measure µ defined by

µx := δu(x) ⊗ νx, a.e. x ∈ Ω

2.3 Operators with constant coefficients

In this subsection we present some results about operators of the form

Av :=
N∑

i=1

A(i) ∂v

∂xi
,

with

rank

(
N∑

i=1

A(i)ωi

)
= const,

for all ω ∈ RN \ {0}. For more details and proofs we refer the reader to [7].
We recall that for this kind of operators there exists a continuous projection

T : Lq(TN ; Rd) → Lq(TN ; Rd), where 1 < q < +∞ and Lq(TN ; Rd) denotes the
space of functions v : RN → Rd, Q−periodic, v ∈ Lq(Q). The operator T has
the following properties

Lemma 2.13. i) A(Tv) = 0;

ii) ||v − Tv||Lq ≤ Cq||Av||W−1,q for every v ∈ Lq(TN ; Rd) such that
∫

Q
v dx = 0;

iii) if {vn} is q-equi-integrable then {Tvn} is also q-equi-integrable.

The result below is due to Fonseca and Müller ([7]).
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Theorem 2.14. Let 1 ≤ q < +∞, and let ν = {ν}x∈Ω be a weakly measurable
family of probability measures on Rd. There exists a q-equi-integrable sequence
{vn} in Lq(Ω; Rd) that generates the Young measure ν and satisfies Avn = 0 in
Ω if and only if the following three conditions hold:

i) there exists v ∈ Lq(Ω; Rd) such that Av = 0 and

v(x) = 〈νx, Id〉 a.e. x ∈ Ω

ii) ∫
Ω

〈νx, |z|q〉 dx

iii) for a.e. x ∈ Ω and all continuous functions g that satisfy |g(v)| ≤ C (1 + |v|q)
for some C > 0 and all v ∈ Rd one has

〈νx, g〉 ≥ QAg(〈νx, Id〉),

where for v ∈ Rd

QAg(v) := inf
{∫

Q

f(v + ω(x)) dx : ω ∈ Lq(TN ; Rd) ∩KerA
}
.

3 The sufficient condition

We now prove Theorem 1.1.

Proof. By extracting a subsequence we can assume

L := lim inf
∫

Ω

f(x, un(x), vn(x)) dx = lim
∫

Ω

f(x, un(x), vn(x)) dx.

By extracting another subsequence we can assume that the pair {(un, vn)} gen-
erates a Young measure {µx = δu(x) ⊗ νx}x∈Ω, where {νx}x∈Ω is the Young
measure associated to vn. We have

L ≥
∫

Ω

∫
Rm×Rd

f(x, η, ξ) dµx(η, ξ) =
∫

Ω

∫
Rd

f(x, u(x), ξ) dνx(ξ).

Now we truncante the sequence vn to get q−equi-integrability. As vn is a
bounded sequence in Lq we have∫

Ω

〈νx, |z|q〉 dx < +∞.

Consider the following family of truncation functions

τk(z) :=

{
z if |z| ≤ k

k z
|z| if |z| > k,

12



and we have

lim
k

lim
n

∫
Ω

|τk(vn)|q dx = lim
k

∫
Ω

〈νx, |τk(.)|q〉 dx =
∫

Ω

〈νx, |z|q〉 dx.

We can then find a sequence v̂k := τk(vnk
) such that

||v̂k − vnk
||Ls → 0, lim

k→+∞

∫
Ω

|v̂k|q dx =
∫

Ω

〈νx, |z|q〉 dx,

for 1 < s < p. The sequence v̂k also generates the Young measure ν, it is
q−equi-integrable and

Av̂k → 0 in W−1,s.

Now choose a point x0 ∈ Ω such that f(x0, u(x0), .) is Ax0-quasiconvex,

lim
r→0

1
rN

∫
Q(x0,r)

|〈νx, |z|q〉 − 〈νx0 , |z|
q〉| dx = 0,

lim
r→0

1
rN

∫
Q(x0,r)

|v(x)− v(x0)|q dx = 0,
(3.1)

and
lim
r→0

∫
Q

|〈νx0+rz, ϕ〉 − 〈νx0 , ϕ〉| dz = 0 (3.2)

for a countable number of ϕ in C0(Rd). Define wk,r ∈ Lq(Q; Rd) by wk,r(z) :=
v̂k(x0 + rz). Using (3.1) and (3.2), we have

lim
r→0

lim
k→+∞

∫
Q

|v̂k(x0 + rz)|q dz = 〈νx0 , |z|
q〉,

N∑
i=1

A(i)(x0 + rz)
∂(v̂k(x0 + rz))

∂zi
→ 0 in W−1,s as k → +∞

lim
r→0

lim
k→+∞

∫
Q

(v̂k(x0 + rz)− v(x0))Ψ(z) dz = 0,

for every Ψ ∈ Lq′ ,

lim
r→0

lim
k→+∞

∫
Q

ζ(z)ϕ (v̂k(x0 + rz)) dz = 〈νx0 , ϕ〉
∫

Q

ζ(z) dz,

for ζ in Cc(Q) and ϕ in the countable subset of C0(Rd) for which (3.2) holds.
Then using an appropriate diagonalization can find a sequence ωk ∈ Lq(Q; Rd)

such that

ωk ⇀ v(x0) in Lq,
N∑

i=1

A(i)(x0 + rkz)
∂ωk(z)
∂zi

→ 0 in W−1,s (3.3)
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and
lim

k→+∞

∫
Q

η(z)ϕ(ωk) dz = 〈νx0 , ϕ〉
∫

Q

η(z) dz,

for η and ϕ in a countable dense subset of L1(Q) and C0(Rd), respectively, and

lim
k→+∞

∫
Q

|ωk(z)|q dz = 〈νx0 , |z|
q〉,

thus ωk generates the Young measure νx0 and it is q-equi-integrable.
Now we prove that

Ax0ωk =
N∑

i=1

A(i)(x0)
∂ωk

∂zi
→ 0 in W−1,s. (3.4)

In fact we have

Ax0ωk =
N∑

i=1

∂

∂zi

[(
A(i)(x0)−A(i)(x0 + rkz)

)
ωk(z)

]
+ rk

N∑
i=1

∂A(i)

∂xi
(x0 + rkz)ωk(z) +

N∑
i=1

A(i)(x0 + rkz)
∂ωk

∂zi

and all the terms go to 0 in W−1,s. The first because of the s-equi-integrability
of ωk and the continuity of the coefficients which imply(

A(i)(x0)−A(i)(x0 + rkz)
)
ωk(z) → 0 in Ls,

the second because rk → 0 and the boundedness of ωk in Ls, and the third
because of (3.3).

Next we modify ωk in order to get Q-periodicity. We consider an increasing
sequence of smooth cut-off functions ϕj ∈ C∞c (Q), ϕj ↗ 1 and we do a ap-
propriate diagonalization of ϕjωk, in order to get a new sequence ω̃k ∈ Lq(Q),
q-equi-integrable, that still generates the homogeneous Young measure νx0 , and
verifies

Ax0 ω̃k → 0 in W−1,s.

Now we just have to project {ω̃k} into the kernel of Ax0 , i.e., we apply Lemma
2.13. to get

ω̂k := T
[
ω̃k − v(x0)−

∫
Q

(ω̃k(x)− v(x0)) dx
]

+ v(x0),

Q-periodic, q-equi-integrable, ω̂k ⇀ v(x0),
∫

Q
ω̂k(y) dy = v(x0), ω̂k still gener-

ates νx0 and Ax0 ω̂k = 0. Thus∫
Rd

f(x0, u(x0), ξ)dνx0(ξ) = lim
k

∫
Q

f(x0, u(x0), ω̂k(y)) dy ≥ f(x0, u(x0), v(x0)),
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from which we get

L ≥
∫

Ω

f(x, u(x), v(x)) dx.

Remark 3.1. Using a similar prove one can obtain the same result of Theorem
1.1. for systems in the divergence form with L∞ coefficients

Av :=
N∑

i=1

∂
(
A(i)(x)v(x)

)
∂xi

,

and rank
(∑N

i=1A
(i)(x)ωi

)
=const, for a.e. x ∈ Ω and all ω ∈ RN \ {0}, i.e., if

f(x, u, .) is Ax-quasiconvex for a.e. x ∈ Ω and all u ∈ Rm then we have lower
semicontinuity for sequences un → u in measure, vn ⇀ v in Lq, Avn → 0 in
W−1,q. In the prove one uses the approximate continuity of the coefficients at
a.e. x ∈ Ω.

However, in this case, we were unable to prove that the sufficient condition
is also necessary.

4 The necessary condition

In this section we prove Theorem 1.2

Proof. Fix x0 in Ω, c ∈ Rd, and let r > 0 be such that Q(x0, 2r) ⊂⊂ Ω. Let
ω ∈ C∞(RN ; Rm), Q-periodic, satisfying

∫
Q

ω(y) dy = 0 Ax0ω :=
N∑

i=1

A(i)(x0)
∂ω

∂yi
= 0. (4.1)

Using the uniform continuity of f on compact sets we can choose n large
enough such that

|f(x, v)−f(x′, v)| < ε for x, x′ ∈ Q(x0, r), v ∈ Q(0, c+ ||ω||∞), |x−x′| < 1
n
.

Decompose

Q(x0, r) = ∪nN

j=1Q(xj ,
r

n
),

where the equality above is up to a LN -negligible set. Consider ϕ ∈ C∞c (Q(x0, r), [0, 1])
such that LN (Q(x0, r) ∩ {ϕ 6= 1}) < εrN . Define

um(x) :=

{
ϕ(x)ω?

(
mn(x−xj)

r

)
if x ∈ Q(xj ,

r
n )

0 otherwise,

15



where ω?(y) := ω(y + ( 1
2 , ..,

1
2 )). We have

Aum = Aum −Ax0um +Ax0um

=
N∑

i=1

nN∑
j=1

∂

∂xi

((
A(i)(x)−A(i)(x0)

)
ϕ(x)ω?

(
mn

x− xj

r

))
χQ(xj , r

n )

−
N∑

i=1

nN∑
j=1

ϕ(x)
∂
(
A(i)(x)−A(i)(x0)

)
∂xi

ω?

(
mn

x− xj

r

)
χQ(xj , r

n )

+
N∑

i=1

nN∑
j=1

A(i)(x0)
∂ϕ

∂xi
ω?

(
mn

x− xj

r

)
χQ(xj , r

n )

+ ϕ(x)
N∑

i=1

nN∑
j=1

A(i)(x0)
∂
(
ω?
(
mn

x−xj

r

))
∂xi

χQ(xj , r
n )

:= I1 + I2 + I3 + I4.
(4.2)

As

ω?

(
mn

x− xj

r

)
⇀ 0 in Lq

(
Q(xj ,

r

n
)
)

as m→ +∞,

we have I2, I3 → 0 in W−1,q as m→ +∞, and by (4.1) I4 = 0. Moreover

||I1||W−1,q ≤
N∑

i=1

nN∑
j=1

∣∣∣∣∣∣∣∣(A(i)(x)−A(i)(x0)
)
ω?

(
mn

x− xj

r

)
ϕ(x)

∣∣∣∣∣∣∣∣
Lq(Q(xj , r

n ))

≤ C

N∑
i=1

(∫
Q(x0,r)

|A(i)(x)−A(i)(x0)|
q
dx

) 1
q

,

(4.3)
where C is independent of m.

Now consider η ∈ C∞c (Ω; [0, 1]), η = 1 on Q(x0, r) and define

vm := Pηum.

As Pη is an operator of order 0, by Theorem 2.8, we have

||vm||Lq ≤ C||um||Lq , (4.4)

||vm||W−1,q ≤ C||um||W−1,q ,

thus, up to a subsequence,

vm ⇀ 0 in Lq.

Moreover, by (2.4),
Avm → 0 in W−1,q.
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As the pseudodifferential operators are non-local, we need to localize the se-
quence {vm}. For that consider ηr ∈ C∞c (Q(x0, 2r); [0, 1]), ηr = 1 in Q(x0, r),
and define

ṽm := ηrvm.

We have
ṽm ⇀ 0 in Lq, Aṽm → 0 in W−1,q,

thus, by the lower semicontinuity we have

lim inf
∫

Ω

f(x, c+ ṽm(x)) dx ≥
∫

Ω

f(x, c) dx. (4.5)

On the other hand, using (1.2), (2.3), (4.3), (4.4), and Hölder’s inequality, we
get ∣∣∣∣∫

Ω

f(x, c+ ṽm(x)) dx−
∫

Ω

f(x, c+ um(x))
∣∣∣∣

≤ C

∫
Ω

|ṽm(x)− um(x)|
(
1 + |c+ ṽm|q−1 + |c+ um|q−1

)
dx

≤ C

∫
Q(x0,2r)

|ṽm(x)− um(x)|
(
1 + |ṽm|q−1 + |um|q−1

)
dx

≤ C

(∫
Q(x0,2r)

|ṽm(x)− um(x)|q dx

) 1
q

rN
q′ +

(∫
Q(x0,2r)

|ṽm|q dx

) 1
q′

+

(∫
Q(x0,2r)

|um|q dx

) 1
q′


≤ C

(∫
Ω

|vm(x)− um(x)|q dx
) 1

q

rN
q′ +

(∫
Q(x0,r)

|um|q dx

) 1
q′


≤ C (||Aum||W−1,q + ||um||W−1,q )

(
r

N
q′ + r

N
q′

(∫
Q

|ω(mz)|q
) 1

q′

dz

)

≤ Cr
N
q′

(
N∑

i=1

∫
Q(x0,r)

|A(i)(x)−A(i)(x0)|
q
dx

) 1
q

+ Cr
N
q′ ||um||W−1,q ,

(4.6)
where C is independent of m. Thus using (4.5) and (4.6) we have

lim sup
m

∫
Ω

f(x, c+ um(x)) dx+ Cr
N

q
′

(
N∑

i=1

∫
Q(x0,r)

|A(i)(x)−A(i)(x0)|
q
dx

) 1
q

≥
∫

Ω

f(x, c) dx.
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or, equivalently,

lim sup
m

∫
Q(x0,r)

f(x, c+ um(x)) dx+ Cr
N

q
′

(
N∑

i=1

∫
Q(x0,r)

|A(i)(x)−A(i)(x0)|
q
dx

) 1
q

≥
∫

Q(x0,r)

f(x, c) dx.

We now estimate the first term above, using the continuity of f and Riemann-
Lebesgue lemma,

lim sup
m

∫
Q(x0,r)

f(x, c+ um(x)) dx

≤ lim sup
m

nN∑
j=1

∫
Q(xj , r

n )

f

(
x, c+ ω?(mn

x− xj

r
)
)
dx+ 2Mεrn

≤ lim sup
m

nN∑
j=1

∫
Q(xj , r

n )

f

(
xj , c+ ω?(mn

x− xj

r
)
)
dx+ (2M + 1)εrN

≤ lim sup
m

nN∑
j=1

rN

nN

∫
Q

f(xj , c+ ω(my)) dy + (2M + 1)εrN

≤
nN∑
j=1

∫
Q(xj , r

n )

(∫
Q

f(xj , c+ ω(y)) dy
)
dx+ (2M + 1)εrN

≤
nN∑
j=1

∫
Q(xj , r

n )

(∫
Q

f(x, c+ ω(y)) dy
)
dx+ (2M + 2)εrN

≤
∫

Q(x0,r)

(∫
Q

f(x, c+ ω(y)) dy
)
dx+O(ε)rN ,

(4.7)
where M := sup{f(x, v) : x ∈ Q(x0, r), |v| ≤ c + ||ω||∞}. Thus dividing by rN

and using (4.7) we get

1
rN

∫
Q(x0,r)

(∫
Q

f(x, c+ ω(y)) dy
)
dx+O(ε)

+ C

(
N∑

i=1

1
rN

∫
Q(x0,r)

|A(i)(x)−A(i)(x0)|
q
dx

) 1
q

≥ 1
rN

∫
Q(x0,r)

f(x, c) dx.

By letting r → 0 and using the arbitrariness of ε we get

f(x0, c) ≤
∫

Q

f(x0, c+ ω(y)) dy,

i.e., f(x0, .) is Ax0-quasiconvex.
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5 Characterization of Young measures

We now prove Theorem 1.3. The idea is to split the domain in small cubes,
approach the variable coefficients operator by one with constant coefficients in
each cube, apply in each cube the theorem about characterization of Young
measures generated by bounded sequences in Lq that are in the kernell of an
operator with constant coefficients (Theorem 2.14), and then use an appropriate
diagonalization.

Proof. We assume without loss of generality that

〈νx, Id〉 = 0.

Otherwise we work with translated measure.
Consider {ξh}+∞h=1 a dense countable subset of L1(Ω), ξ0(x) = 1, {ϕl}+∞l=1 a

dense countable subset of C0(Rd) and ϕ0(z) = |z|q. Given α ∈ N we can find
γ > 0 such that ∫

B

|ξh(x)| dx||ϕl||∞ <
1
α

for h, l = 1, ..., α, (5.1)

and ∫
B

〈νx, |z|q〉 dx <
1
α

(5.2)

when LN (B) < γ.
For each α ∈ N we consider a compact set Kα such that LN (Ω \ Kα) <

min{ 1
α2 , γ/3} and the functions

x→ 〈νx, |z|q〉, x→ 〈νx, ϕl〉 l = 1, ..., α,

are continuous in Kα. We consider disjoint cubes Qi ⊂⊂ Ω of side 1
mα

, for an
appropriate integer mα, such that LN (Ω \ ∪Qi) < min{ 1

α2 , γ/3} and

supx,x′∈Qi∩Kα
|A(j)(x)−A(j)(x′)|

q
<

1/α
NC1

j = 1, .., N, (5.3)

supx,x′∈Qi∩Kα
|〈νx, ϕl〉 − 〈νx′ , ϕl〉| <

1/α
||ξh||

h, l = 1, ..., α, (5.4)

and

supx,x′∈Qi∩Kα
|〈νx, |z|q〉 − 〈νx′ , |z|q〉| <

1/α
|Ω|

, (5.5)

where C1 := 2
∫
Ω
〈νy, |z|p〉 dy + 1. By considering less cubes and a smaller

compact set K̂α, if necessary, we may assume that for each cube Qi we have

LN (Qi ∩ K̂α) ≥ LN (Qi)
2

, (5.6)
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and K̂α ⊂ ∪Qi. It is easy to check that

LN (Ω \ K̂α) < min{3/α2, γ}, LN (Ω \ ∪Qi) < min{3/α2, γ}.

In each cube Qi we pick up a point xi ∈ K̂α ∩Qi that fulfills the conditions
below

〈νxi
, |z|q〉 ≤ 1

LN (K̂α ∩Qi)

∫
K̂α∩Qi

〈νy, |z|q〉 dy, 〈νxi
, Id〉 = 0,

〈νxi , g〉 ≥ QAxi
g(0), (5.7)

for every continuous g satisfying |g(v)| ≤ C(1 + |v|q). Now we apply Theorem
2.14 and get a q−equi-integrable sequence v̂i

α,n ∈ Lp(Qi; Rd) that generates the
homogeneous Young measure νxi

and satisfies Axi
vi

α,n = 0. Using an appro-
priate sequence of cut-off functions, ηs ∈ C∞c (Qi), ηs ↗ 1, and diagonalizing
ηsv̂i

α,n, one can construct a new sequence, vi
α,n, such that vi

α,n = 0 on a neigh-
borhood of ∂Qi, q-equi-integrable, also generating νxi and

Axi
vi

α,n → 0 in W−1,q(Qi; Rl) as n→ +∞.

Define

vα,n :=

{
vi

α,n if x ∈ Qi,

0 otherwise.

We have

Aαvα,n :=
∑

i

 N∑
j=1

∂
(
A(j)(xi)vi

α,n

)
∂xj

→ 0 in W−1,q

We claim that ∫
Ω

|vα,n|q dx ≤ C1 (5.8)

for all α ∈ N and n large enough. As
(
vi

α,n

)
n

generates νxi
and it is q−equi-

integrable, we know that∫
Qi

|vi
α,n|

q
dx→ 〈νxi

, |z|q〉LN (Qi).

By (5.6) and (5.7),

〈νxi
, |z|q〉LN (Qi) ≤

LN (Qi)
LN (Qi ∩ K̂α)

∫
Qi∩K̂α

〈νy, |z|q〉 dy

≤ 2
∫

Qi

〈νy, |z|q〉 dy,

and for n large enough∫
Ω

|vα,n|q dx ≤ 2
∫

Ω

〈νy, |z|q〉 dy + 1 = C1.
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We claim that ∑
i

∫
Qi\K̂α

|vi
α,n|

q
dx ≤ F (α), (5.9)

for some F satisfying the condition F (α) → 0 as α → 0 and n large enough.
Using the q−equi-integrability of

(
vi

α,n

)
n

and (5.7) we have∫
Qi\K̂α

|vi
α,n|

q
dx→ 〈νxi

, |z|q〉LN (Qi \ K̂α)

≤ LN (Qi \ K̂α)
LN (Qi ∩ K̂α)

∫
Qi∩K̂α

〈νy, |z|q〉 dy

Let Jα := {i : αLN (Qi \ K̂α) > LN (Qi ∩ K̂α)}, we then have∑
i∈Jα

LN (Qi ∩ K̂α) ≤
∑
i∈J

αLN (Qi \ K̂α) ≤ αLN (Ω \ K̂α) <
1
α
.

Thus∑
i

∫
Qi\K̂α

|vi
α,n|

q
dx ≤

∑
i

LN (Qi \ K̂α)
LN (Qi ∩ K̂α)

∫
Qi∩K̂α

〈νy, |z|q〉 dy +
1
α

≤
∑
i∈Jα

∫
Qi∩K̂α

〈νy, |z|q〉 dy +
1
α

∫
Ω

〈νy, |z|q〉 dy +
1
α
,

for n large enough, from which we get (5.8).
As

Aαvα,n −Avα,n =
∑

i

 N∑
j=1

(
A(j)(xi)−A(j)(x)

) ∂vi
α,n

∂xj


=
∑

i

 N∑
j=1

∂
((
A(j)(xi)−A(j)(x)

)
vi

α,n

)
∂xj

+
N∑

j=1

∂A(j)(x)
∂xj

vi
α,n


and ∑

i

∑
j

∫
Qi∩K̂α

∣∣Aj(x)−Aj(xi)
∣∣q∣∣vi

α,n

∣∣q dx ≤ 1
α

C1

∫
Ω

|vα,n|q dx <
1
α∑

i

∑
j

∫
Qi\K̂α

∣∣Aj(x)−Aj(xi)
∣∣q∣∣vi

α,n

∣∣q dx ≤ 2q||A||q∞NF (α),

we conclude that for n large enough

||Aαvα,n −Avα,n||−1,q ≤ 2||A||q∞NF (α) +
2
α
. (5.10)
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We now prove that for n large enough∣∣∣∣∫
Ω

ξh(x)ϕl(vα,n) dx−
∫

Ω

ξh(x)〈νx, ϕl〉 dx
∣∣∣∣ ≤ 6

α
for h, l = 1, .., α (5.11)

Indeed, as n→ +∞,∫
Ω

ξh(x)ϕl(vα,n) dx→
∑

i

〈νxi , ϕl〉
∫

Qi

ξh(x) dx+ ϕl(0)
∫

Ω\∪Qi

ξh(x) dx,

and∣∣∣∣∣
∫

Ω

ξh(x)〈νx, ϕl〉 dx−
∑

i

〈νxi , ϕl〉
∫

Qi

ξh(x) dx− ϕl(0)
∫

Ω\∪Qi

ξh(x) dx

∣∣∣∣∣
≤
∫

Ω\∪Qi

|ξh(x)〈νx, ϕl〉| dx+
∑

i

∫
Qi∩K̂α

|ξh(x) (〈νx, ϕl〉 − 〈νxi
, ϕl〉)| dx

+
∑

i

∫
Qi\K̂α

|ξh(x)〈νxi
, ϕl〉| dx+

∑
i

∫
Qi\K̂α

|ξh(x)〈νx, ϕl〉| dx

+ |ϕl(0)|
∫

Ω\∪Qi

|ξh(x)| dx,

using (5.1) and (5.4) we get (5.11). A similar argument can be done in order to
obtain ∣∣∣∣∫

Ω

|vα,n(x)|q dx−
∫

Ω

〈νx, |z|q〉 dx
∣∣∣∣ ≤ F (α) +

4
α
,

for n large enough. Then, using appropriate diagonalization, we can find a
sequence wα := vα,nα ∈ Lq, wα ⇀ 0 in Lq, Awα → 0 in W−1,q, verifying

lim
α

∫
Ω

ξh(x)ϕl(wα(x)) dx =
∫

Ω

ξh(x)〈νx, ϕl〉 dx,

for all h, l ∈ N, and

lim
α

∫
Ω

|wα(x)|q dx =
∫

Ω

〈νx, |z|q〉 dx,

thus wk generates the Young measure ν and it is q-equi-integrable.
For the necessary condition we can use an argument similar to the proof of

Theorem 1.1, in order to get that at a.e. x0 ∈ Ω, the homogeneuos Young mea-
sure νx0 is generated by a sequence ωk ∈ Lq(Q), Q-periodic, q-equi-integrable,
ωk ⇀ v(x0) in Lq,

∫
Q
ωk(x) dx = v(x0), Ax0ωk = 0. Then

lim
k

∫
Q

g(ωk(x)) dx = 〈νx0 , g〉 ≥ QAx0
(v(x0)),

which proves iii); i) and ii) are trivial.
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Remark 5.1. Using a similar prove one can obtain the same result of Theorem
1.3. for systems written in the divergence form with L∞ coefficients

Av :=
N∑

i=1

∂
(
A(i)(x)v(x)

)
∂xi

and rank
(∑N

i=1A
(i)(x)ωi

)
= const, for a.e. x ∈ Ω and all ω ∈ RN . In the

proof we can use Lusin’s Theorem to get continuity of the coefficients out of a
set of small measure.
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