An Incremental Delaunay Meshing Algorithm*

Gary L. Miller Steven E. Pav? Noel J. Walkington?

June 9, 2002

Abstract

The classical meshing problem is to construct a triangulation of a region that
conforms to the boundary, is as coarse as possible, and is constructed from simplices
having bounded aspect ratio. In this paper we present an implementation of a class
of algorithms introduced by Ruppert and establish their correctness. This class of
algorithms solves the meshing problem in two dimensions, and partially solve it in
three dimensions. Since geometric degeneracies frequrently cause such algorithms to
fail, care is taken to accomodate these in the proofs.

Keywords. Delaunay Triangulation, Mesh Generation, Ruppert’s Algorithm
AMS subject classifications 65N50, 68U05

1 Introduction

In 1992 Ruppert [16, 17|, building upon an idea of Chew [3], introduced a two dimensional
meshing procedure that is conceptually very elementary, produces meshes within a con-
stant of optimal output size, and works remarkably well in practice. The algorithm, as
implemented in Triangle [18], works remarkably well in practice with thousands of users.
Moreover, the ideas introduced by Ruppert to establish these results are very elegant and
have been useful in a much broader context [10, 11, 12].

*Submitted SICOMP June 2000

tDepartment of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213. Supported in
part by National Science Foundation Grants CCR-9902091, CCR-9706572 and ACI 0086093.

tDepartment of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213

$Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213. Supported
in part by National Science Foundation Grants DMS-9973285, CCR-9902091 and ACI-0086093. This work
was also supported by the NSF through the Center for Nonlinear Analysis.

Shewchuk [20] proposed a three dimensional version of Ruppert’s Delaunay refinement
algorithm. At the time of this writing we do not know of any publicly available imple-
mentation of this or any other three dimensional Delaunay refinement algorithm. We have
implemented a fully incremental refinement algorithm with fairly good success. One of the
goals of this paper is to give a complete enough exposition so that one may relatively easily
implement a three dimensional Delaunay refinement meshing algorithm.

The running time of Delaunay refinement algorithms is still open, and this is not addressed
here. The running time of two dimensional algorithms is still open. Examples suggest that,
in the worst case where there are both very large and very small features, that the running
time is Q(M?) where M is the size of the output mesh. The algorithm we present below does
not have blatantly quadratic run time. Many of the algorithms proposed in the literature do
not make explicit how some of the tests will be performed. One could assume that they had
in mind an auxiliary data structure such as a quadtree; the details are usually lacking. We
are able to construct our mesh incrementally. That is, we begin by picking a small number
of points, say four in 3D, and forming the mesh on these four vertices. At each stage we add
either a new input or Steiner point to the mesh induced on these points. Our algorithm is
based upon a well known incremental Delaunay triangulation algorithm. In order to coerce
the triangulation algorithm to solve the meshing problem we modify the code to satisfy
a small set of “invariants” or “induction hypotheses”. These induction hypotheses form
the cornerstone of both the design and analysis of our algorithm. The hypotheses were
constructed so that their satisfaction would guarantee that the triangulation conformed to
the input data (edges, faces etc.), and in some sense our algorithm is a minimal perturbation
of the incremental Delaunay triangulation code required to maintain them.

One of the subtle points about 3D meshing over 2D, at least for refinement based algorithms,
is that there is a partial order of meshes which are all being meshed at the same time, and
these meshes need not agree until the algorithm terminates. In particular, we have a
separate mesh for each input face. Understanding and controlling the interaction between
this partial order of meshes is critical for analysis and correctness of any algorithm. By
making the algorithm fully incremental this interaction becomes explicit and relatively easy
to understand.

While degeneracy is frequently dismissed as “an event having probability zero,” this is not
the case in practice since mechanical components typically contain rectangular faces and
circular holes. Also, algorithms in computational geometry involve many “real to Boolean”
operations so are inherently ill posed. Even if exact arithmetic is assumed, geometric de-
generacies can cause infinite recursions and other modes of failure. Our analysis assumes
all quantities are computed exactly. Shewchuk [19] developed precise real to Boolean pred-
icates, and empirical evidence shows that this approach has minimal impact upon perfor-
mance. In this situation algorithms must still accommodate the geometric degeneracies.
For example, if four points are cocircular, then the Delaunay triangulation is not unique. In
two dimensions only one mesh is being constructed, so any runtime breaking of symmetry
works. As stated above, in three dimensions there is a “partial order” of independently

maintained two and three dimensional meshes and at termination they must agree. Our al-
gorithm was carefully constructed to accommodate this requirement and effectively breaks
symmetries in each mesh in a consistent fashion.

Delaunay refinement algorithms can control the radius edge aspect ratio of tetrahedra and
it is known that this will not eliminate one class of degenerate tetrahedra, “slivers” and
the meshes they produce are only pointwise omptimal'. Recent results of Edelsbrunner
et. al. [8, 9] extend ideas of Chew [4] to prove that a specific “smoothing” algorithm can
eliminate slivers from a mesh having bounded radius edge ratio. Then all tetrahedra will
have a bounded classical aspect ratio (e.g. ratio of diameter to radius of largest inscribed
sphere). In this situation Ruppert’s two dimensional proof can be repeated to show that
the output size of a mesh produced by the composition of Ruppert’s procedure with the
smoothing algorithm is within a constant of optimal.

Prior to Ruppert’s paper the only two-dimensional meshing algorithm having a sound
theoretical footing was the quadtree algorithm introduced by Bern, Epstein, and Gilbert
[1]. Meshes produced by the quadtree algorithm have “Cartesian character” and are not
invariant under rotation of the input data; moreover, empirical evidence suggests that while
the output size of this algorithm is within a constant of optimal, the constant is significantly
larger than that of Ruppert’s procedure. The quadtree algorithm was extended to three
dimensions by Mitchell and Vavasis [13]. Their octree algorithm is non-trivial; however,
they have implemented a very general version of it [13, 14] and it is the only provably
correct three dimensional meshing algorithm that we are aware of that has actually been
implemented.

As in Ruppert’s original paper, our algorithm and proofs are only applicable to a limited
class of input. While this restriction is easy to circumvent in two dimensions, [16, 21],
currently modifications of the three dimensional algorithm to accommodate arbitrary input
data are not known. Partial results in this direction are available [5].

In the next section we introduce some terminology and recall Ruppert’s original proce-
dure for constructing a two dimensional mesh. We then recall a well-known incremental
Delaunay triangulation algorithm which is the kernel underlying our implementations of
our incremental algorithm. In Section 3 we present a two dimensional implementation of
Ruppert’s procedure and establish some properties of the algorithm. Section 4 extends the
ideas in Section 3 to solve the three dimensional meshing problem. This algorithm retains
much of the simplicity of the two dimensional algorithm; and is an extension in the sense
that the proof of correctness given in Section 5 contains the two dimensional proof.

!The radius edge ratio and pointwise optimality are defined in Sections 5.1 and 5.1 respectively

2 Background

Notation

In order to clearly define the input we recall the following definitions from Miller, et al.
[12]

Definition 2.1 (Polytope and PLS) A polytope is the convex combination of finite set
of points P C R%. The dimension of the polytope is the dimension of the affine subspace
generated by P.

A piecewise-linear system, or PLS, is a set of polytopes W with the following properties:

e The set W is closed under taking boundaries, i.e., for each polytope P in W, the
boundary of P is a union of polytopes in W.

o W is closed under intersection.

e For polytopes P,Q in W, if dim(PNQ) = dim(P) then P C Q and dim(P) < dim(Q).

The dimension of a PLS is the dimension of the highest-dimensional polytope in that PLS,
and we think of the polytopes of a d-dimensional PLS as being embedded in RY.

Two-dimensional PLS’s can be represented as a set of points P C R?, and a set of segments
S C P x P, with the intersection properties outlined above.

We adopt Ruppert’s terminology which distinguishes the set of input edges Sy in the PLS
from other edges by referring to them as input edges, and we refer to (them or) their
subdivisions as segments. In three dimensions the input will also consist of a set of planar
two dimensional polytopes denoted by Fy which we refer to as the input faces. These faces
will be triangulated and we will refer to the triangles in these triangulations as facets and
denote their union as F. The “empty sphere” property of Delaunay triangulation plays an
important role of our algorithm and the following definitions are useful in this context.

Definition 2.2 Let K C R? be a simplez.

e The diametral ball of K, denoted B(K), is the open ball of minimal diameter con-
taining the vertices of K. If dim(K) = d then B(K) is the circumball of K.

e Let p € R?, then p encroaches upon K if p € B(K). If K is a simplez in a triangula-
tion, we say it is encroached if any vertex of the triangulation is inside its diametral

ball.
The boundary sphere if B(K) is denoted by S(K).

e The radius edge ratio of K is the ratio of the radius of B(K) to the length of the
shortest edge of K.

Ruppert’s Procedure
We briefly recall Ruppert’s procedure for meshing a two dimensional PLS.

1. Encroached segments are eliminated by splitting them. Specifically, if s = (p,r) is
encroached, let ¢ be the mid point of s and add it to the point set, P < P U {q},
and replace s in the segment set by it’s two halves, S + (S \ {s}) U {(p,q), (g,7)}.
This process is repeated until all encroachments are eliminated.

2. The Delaunay triangulation 7 of the point set P is computed.

3. Skinny triangles are eliminated as follows: Set a threshold 6, < sin™(1/2v/2), then
if a triangle t € T has an angle less than 6, let p be the circumcenter. If p encroaches
upon a segment s € S, split s, and repeat steps (1) and (2); otherwise, if p doesn’t
encroach upon any segment update the Delaunay triangulation to include it.

It is clear that a naive implementation of this procedure would involve a lot of searching
that could easily lead to run times quadratic in the output size. The algorithm we propose
combines the first step to relieve encroachments with the construction of the initial Delau-
nay triangulation and is a modification of a well known incremental Delaunay triangulation
algorithm which we describe next.

Incremental Delaunay Algorithm

The incremental algorithm for computing the Delaunay triangulation of a set of points
is initialized by determining a large bounding simplex (or box) which contains all of the
points P and initializing 7 to be this simplex. Next, the points in P are added one at a
time to 7 as follows. Given p € P, remove all of the d-simplices in 7 that contain p in
their circumballs B(t). This leaves a “cavity” (the Delaunay Cavity) in the triangulation
bounded by a set of d — 1 simplices K = {ki, ks,... ,kn} (see Figure 1). The cavity is
filled by adding simplices to T of the form K = (p, k;) having apex p and opposite simplex
k€ K.

The algorithm for determining simplices in 7 containing p in their circumsphere needs to
be specified. This is a crucial step in the analysis of the algorithm. One method is to assign
every point p € P not yet in the triangulation to a simplex K for which p € B(K). Given
a point-simplex pair, (p, K), all all simplices K’ for which p € B(K') can be determined
by a local search since their union forms a connected patch (the cavity). As the search
proceeds and simplices K’ in the cavity are removed, the points {p'} that were assigned to
them are gathered, and reassigned to one of the new simplices having p as an apex, see [6].
An alternative method is to maintain a data structure for point location which essentially
stores the decision tree used to assign the points to simplices in the “gather and reassign”
step just described. This procedure has the advantage that the points new points (such a
segment split points) can be introduced at any stage.

5

(a) point to be added. (b) cavity removed. (c) tent panels added.

Figure 1: The incremental Delaunay construction.

In two dimensions the expected run time of the incremental algorithm on N randomly
ordered points is O(N In(N)). In three dimensions the situation is more complicated since
N points may result in O(N?) tetrahedra. Output sensitive algorithms optimal up to
logarithmic factors are known for three dimensional Delaunay triangulation [2].

Degeneracy

Given a collection of points P, the classical Delaunay “empty ball” criteria sates that if
an empty ball B contains £ 4+ 1 points on its boundary then the /-simplex formed from
their convex hull is present in the Delaunay triangulation of P. This statement holds in
the absence of degeneracy; that is, when the convex hull of any ¢ + 1 points lying on the
boundary of an empty ball has dimension /. When the dimension is less than ¢ the empty
ball criteria does not determine a triangulation of the convex hull of the input points,
instead it defines a decomposition into a unique collection of Delaunay polytopes.

Example: If the empty ball criteria is used to “triangulate” the eight vertices of a cube,
the decomposition into Delaunay polytopes would consist of the cube, its six square faces
and the edges of the cube.

In this situation Delaunay triangulation algorithms, represent the Delaunay polytopes as a
union of simplices; clearly these triangulations are not unique. The triangulation produced
by the incremental algorithm will depend upon the order in which the points are processed.
We have defined the circumballs of a simplex to be open; however, the incremental algo-
rithm will also produce a consistent, but different, Delaunay triangulation if the balls are
chosen to be closed. The two dimensional meshing algorithm introduced below will work if
diametral balls are defined to be open or closed; however, in three dimensions degeneracies
could result in an infinite recursion if the diametral balls are defined to be closed. By

defining circumballs to be open and assigning an order in which points are inserted into
the triangulations we avoid the problem with degeneracies encountered by Shewchuk [20].
In [20] distinct Delaunay triangulations of faces input to the three dimensional meshing
algorithm had to be adjusted to agree.

3 An Incremental 2d Meshing Algorithm

3.1 Overview

Our incremental algorithm is a modification of the incremental Delaunay triangulation
algorithm described above. Central to the implementation and analysis are the following
invariants that we maintain throughout.

Induction Hypotheses: At each stage a set of points P, segments S, and a Delaunay
triangulation 7 of a subset of P is maintained. These three sets satisfy

1. If the two end points of a segment s € S are in 7 then s is an edge in T
2. Segments present as edges in 7 are not encroached by vertices in 7.

We implicitly assume that the union of the sets of points, P, and segments, S, form a PLS
in the sense outlined in Definition 2.1. Notice that in the absence of degeneracy hypothesis
(2) implies hypothesis (1).

In order to interpret the induction hypotheses it is important to correctly interpret what is
and what is not a segment. Input to the algorithm is a set of points Py and a set of pairs of
points Sy which correspond to input line segments. During the execution of our algorithm
we maintain a set of points, P, and segments, S. These sets are initialized as P = Py and
S = 8o, and subsequently an edge (p, r) in the triangulation is called a segment if and only
if (p,r) € S. Frequently such a segment (p,r) will be split. This corresponds to removing
(p,r) from S and adding in the two halves S <+ (S \ {(p,7)}) U{(p,q), (¢, 7)} where ¢ is
the mid point of (p,7). Notice that after this operation (p,r), while still an edge in the
triangulation, is no longer considered to be a segment (it is not in S).

The function add-point2d() described in Figure 2 is a variant of the incremental Delau-
nay procedure designed to maintain the induction hypotheses. This function is the heart
of our incremental algorithm and is lazy in the sense that it never splits segments until
an encroachment is detected during the construction of a Delaunay cavity. Since the pro-
cedure for finding a triangle encroached by the point in Step 4 is identical to that used
for the incremental Delaunay algorithm the details for doing this have been omitted. The
parameter p, occurring in Step 6 is threshold edge-radius ratio; triangles having a smaller
ratio are declared to be skinny.

The initial call to add-point2d() with the Force option will implement the first two
steps of Ruppert’s procedure. The final stage, where skinny triangles are eliminated, is
accomplished by a function rm-tri () which simply makes judicious calls to add-point2d ()

. Procedure add-point2d ()

. INPUT: The current triangulation, a point p, a set P of points queued for Force’d addition
to the triangulation, a set of segments S, a queue of skinny triangles, and additionally an
option Force|Provisional.

. OuTtpuT: The updated triangulation (with p inserted), segment set and queue of skinny
triangles, or an exception which returns a segment mid point.

. Let ¢ be a triangle which p encroaches.
. DETERMINE THE DELAUNAY CAVITY:
e Beginning at ¢, search adjacent triangles to determine all triangles ¢ which p en-

croaches.

e If removal of a triangle eliminates a segment from the triangulation split the segment
and, (a) if this is a Force’d addition, add the mid point to the queue P and continue;
otherwise, (b) if this is a Provisional addition, abort and return the segment mid
point.

e As each boundary edge (g,r) is located, determine if it is a segment. If so, and if p
encroaches upon it then split the segment and (a) if this is a Force’d addition add the
mid point to P and continue; otherwise, (b) if this is a Provisional addition, abort
returning the mid point.

. FILL THE CAVITY: Remove the triangles in the cavity from the mesh and for each edge
(g,7) on the cavity boundary

e Add the triangle (p, g,7) to the triangulation.

o If (p,q) is a segment and r encroaches upon it then split (p,¢) and add the mid point
to P. Similarly if (p,r) is a segment and is encroached upon by ¢ it is split.

e If (p,q,r) has radius edge ratio greater than ps, add it to the queue of skinny triangles.

. If p is the end point of a segment (p, g) not in the triangulation (g is in the triangulation,
but not on the cavity boundary) split the segment and add the split point to the queue P.

. If P # (), remove a point p from P and recursively call add-point2d(p, ... ,Force).

Figure 2: Point Insertion Algorithm for the 2d Incremental Algorithm

R ;“Ki
'ﬁgk VS

AN

(a) Input data. (b) Conforming triangulation. (c) Final triangulation.

Figure 3: The three steps of our incremental algorithm.

as indicated in Figure 4. The complete algorithm then consists of the following three steps
which are illustrated in Figure 3

1. INITIALIZATION: After reading the input sets of points and segments, initialization
is exactly as in the incremental Delaunay triangulation algorithm, ¢.e., construct a
bounding triangle that contains all the input points.

2. CONSTRUCT A CONFORMING TRIANGULATION: The initial call to add-points(
... ,Force) constructs a triangulation which conforms to the input and satisfies the
induction hypotheses.

3. ELIMINATE SKINNY TRIANGLES: This is accomplished by a call to rm-tri().

3.2 Induction Hypotheses

We wish to show that the algorithm described above is correct in the sense that it (a)
solves the meshing problem, (b) terminates, and (c) produces well graded triangulations.
Property (a) is established in this section by showing that the induction hypotheses are
maintained. Termination will follow from the proof of (c) in Section 5 where we show that
the vertex density is bounded below.

To establish the induction hypotheses we begin with the following elementary property of
disks with a common chord which is readily observed in Figure 5. In the statement of the
lemma an interior edge of a Delaunay triangulation refers to an edge having two adjacent
triangles.

Lemma 3.1 Let e be an interior edge in a Delaunay triangulation in the plane with empty
diametral ball B = B(e). If By and By are the circumballs of the two triangles adjacent to
e, then By N\ By C B C By U By. Moreover, B is empty if and only if the opposite angles
of the two adjacent triangles are bounded above by 7 /2.

Lemma 3.2 After each point is inserted into the triangulation by add-point2d(), if a
segment is in the triangulation then its diametral ball is empty.

9

1. Procedure rm—tri()

2. INPUT: The current triangulation, the segment set, and the queue of triangles to be removed
from the mesh.

3. OuTpPUT: The triangulation and set of segments.

4. Let t be a triangle in the queue. If ¢ it is no longer in the triangulation remove it from
the queue and continue; otherwise, attempt to add its circumcenter, p, to the triangulation
using the procedure add-point2d(p, ... ,Provisional). This can have two outcomes:

e The addition is successful in which case ¢ has been eliminated, so can be removed from
the queue of skinny triangles.

e An exception is raised and a point p’ is returned. At this stage the triangulation and
queue of skinny triangles have not been modified. p’ is now Force’d into the triangula-
tion by a call to add-point2d(p’, ... ,Force) which does update the triangulation,
segment set and queue of skinny triangles.

5. Recursively call rm-tri() until the set of skinny triangles is emptied.

Figure 4: Function to Eliminate Triangles.

B,

Figure 5: Empty diametral circles are contained in adjacent circumcircles.

10

Proof. Consider the addition of a vertex p to the triangulation. Inductively all of the
segment diametral balls are empty; moreover, since edges of the bounding triangle are never
segments, any segment in the triangulation has two adjacent triangles as in Lemma 3.1.
If p is inside the diametral ball of a segment s Lemma 3.1 shows that it is inside at least
one of the circumballs of an adjacent triangle and hence this triangle contains p in its
circumball. If it is in both triangle circumballs then the segment is annihilated during the
formation of the cavity, and hence split, which resolves the conflict. If it is only in one
triangle circumball then s is on the boundary of the cavity and the algorithm explicitly
checks to see if p is inside the diametral ball of boundary segments; if it is the segment is
split which again resolves the conflict.

This argument shows that the diametral balls of segments originally in the triangulation
remain empty (or the segments are split) when a new point p is inserted into the mesh. It
is necessary to verify that if a new edge (p, ¢) is also a segment then it’s diametral ball is
also empty. Whenever such an edge is a segment we explicitly check to see if the opposite
vertex of the triangles on each side encroach, and it is easy to verify that the empty circle
criteria of Delaunay triangulations and Lemma 3.1 ensure that if any vertex encroaches
upon (p,q) then so too will one of the vertices of the adjacent triangles. O

Corollary 3.3 The two dimensional meshing algorithm maintains the induction hypothe-
ses.

Proof. Since the induction hypotheses trivially hold for the initial bounding triangle, it
suffices to show that execution of the algorithm doesn’t cause a violation.

(1) Whenever an edge is removed during the construction of the Delaunay cavity we ex-
plicitly check to see if it is a segment, and if so it is split (or the cavity construction is
aborted). If the point being added to the mesh is the second point of a segment to be
added to the mesh we explicitly check to see if the segment is present, and if it is not the
segment is split. (Recall that when a segment is split the induction hypotheses trivially
hold for the subsegments since the mid point will not be in the triangulation.)

(2) The empty diametral ball condition for segments was established in the previous lemma.
O

Notice that during the execution of the algorithm there are only three types of points added
to the triangulation: (0) input points, (1) segment mid points, and (2) circumcenters of
skinny triangles. We next show that circumcenters added to the triangulation never get
too close to segments.

Lemma 3.4 Let p be the circumcenter of a skinny triangle that is added to the triangula-
tion. Then p doesn’t encroach upon any segment in the triangulation when it is added, and
never encroaches upon any segment subsequently added to the triangulation.

Proof. A circumcenter p is only added when all of the segments are currently edges in
the triangulation, and the induction hypotheses guarantee that all their diametral balls

11

are empty. As in the proof of Lemma 3.2 this guarantees that the search will reveal any
segments encroached upon by p, and in order for p to be added no such segments will exist.
This establishes the lemma for the stage when p is added. Since subsequent segments are
all refinements of segments in the triangulation when p is added, and since diametral balls
of subseqments are contained in the diametral balls of parent segments, it follows that p
will never encroach. 0O

4 An Incremental 3D Meshing Algorithm

4.1 Overview

We extend the incremental algorithm developed for the two dimensional problem to solve
the meshing problem in three dimensions. Input points to the three dimensional algorithm
will be handled as they were in the two dimensional algorithm; they are always inserted
(Force’d) into the triangulation. As in the two dimensional algorithm, points will added
to input features to ensure that they are represented in the final (3d) mesh. In order to
see the analogy between the two and three dimensional algorithm it is convenient to recall
how input edges are accommodated in the two dimensional algorithm.

e A “Delaunay triangulation” of each input edge is maintained (as a set of segments)
independently of the two dimensional triangulation.

e The triangulation of an edge was refined in order to ensure it appeared in the two
dimensional mesh. The refinement operation, while essentially an atomic operation
in two dimensions, could be decomposed into the following steps:

— If a “simplex” (segment) in the triangulation of an edge was found to violate
the induction hypotheses it was queued for removal from the triangulation of
the input edge containing it.

— To annihilate a segment from the triangulation of an edge it’s (circum)center
was inserted into the edges triangulation.

— The segment center was then queued for Force’d addition into the two dimen-
sional mesh.

The three dimensional algorithm will maintain independent triangulations of each input
edge and input face. We refer to triangles in the triangulation of an input face as facets
to distinguish them from other triangles appearing in the three dimensional mesh. The
facets are then accommodated in the fashion outlined above for the segments with one
modification: if the addition of a facet circumcenter to a 2d triangulation encroaches upon
a segment (in the same triangulation), then annihilation of the facet is postponed until
the segment is annihilated. In essence facets are annihilated like the skinny triangles were

12

Figure 6: Distinct triangulations of cocircular points may occur in different meshes.

in two dimensions, and are processed with rm-tri(). If simplices in the triangulations of
input edges and faces are queued for annihilation it is first necessary to insert circumcenters
of the lowest dimensional simplex since these can eliminate a higher dimensional simplices.
Below we precisely state the minimal (partial) order required.

Unlike the two dimensional case, angle bounds upon the input may not eliminate infinite
recursion in three dimensions arising from degeneracy. This is illustrated in Figure 6 where
a square face is required to be represented in a 3d mesh. Since the square has two possible
Delaunay triangulations it is possible that distinct triangulations appear in the (indepen-
dently maintained) 2d triangulation of the face and the 3d triangulation. This would cause
the center of the square to be inserted into the 2d triangulation. Since refinement of the
square by repeated insertion of triangle circumcenters always results in degeneracies (four
or more cocircular points) this process may recurse indefinitely. Assuming exact arithmetic,
we show that this recursion can be eliminated by inserting points into each mesh in the
same order.

4.2 Description of the Algorithm

A triangulation of each input polytope will be maintained. While the triangulation of an
input edge is trivial, it is convenient to view it as a triangulation since all input polytopes
are processed similarly. An initial Delaunay triangulation of each face will be constructed
which satisfies the two dimensional induction hypotheses stated in Section 3. Our two
dimensional algorithm, with the following minor modifications, is used to maintain these
triangulations:

e Whenever a segment is split, the split point is queued for addition to the mesh of

13

every polytope containing the edge.

e Similarly, whenever the circumcenter of a triangle in the triangulation of an input
face is inserted into a two dimensional mesh, it is queued for addition to the 3d mesh.

e The queue of “skinny triangles” may now contain other facets queued for removal.

A work queue is maintained during the execution of the incremental algorithm. The queue
contains pairs of the form (p, F'), where p is a point to be added to a polytope F of the
input PLS, or pairs of the form (K, F)) where K is a simplex to be annihilated from the
triangulation of F'; dim(K) = dim(F'). A priority consistent with the following partial
order is assigned to each pair, and tasks with smaller priority are precessed first.

Definition 4.1 (Work Order) A total order is first assigned to points queued for inser-
tion into the mesh. A fized linear order of the input points is picked and these points have
smallest priority values, and at the time a Steiner point is first inserted into any mesh of
any polytope it is ordered to be greater than any point considered previously. Denote this
order by <,. We can now define the partial order < on the work queue by

e If (p, F) a point-polytope and (K, F') is a simplez-polytope pair, then (p, F) < (K, F")
if dim(F) < dim(F").

e If (p, F) and (q,F) are point-polytopes pairs with the same polytope, then (p, F) <
(g, F) if and only if p <, q.

o If(K,F) and (K', F') are simplex-polytope pairs, then (K, F) < (K', F") if dim(F') <
dim(F").

This partial order states that points queued for addition to the mesh of a polytope F' can be
inserted at any time; however, they must be done in the order given by <,. A simplex (K, F')
can be processed for annihilation only if all queued points (p, F') with dim(F") < dim(F)
have been processed and all simplices (K, F') in polytopes having strictly lower dimension,
dim(F') < dim(F), have been processed. Notice that the reccursive calls in the two
dimensional algorithm provide an elegant way of processing the points in an order consistant
with the above. Since the three dimensional algorithm is more complex, below we explicitly
implement a scheduler. In this instance it is assumed that the reccursive calls in the two
dimensional algorithms are omitted. Our algorithm may attempt to add the circumcenter
p of a triangle to the triangulation of an input face; however, such attempts may fail if p
encroahces upon a segment. In this situation p is not included in the order <,, it would
only be included if the insertion succeedes.

The functions to add a point to the three dimensional mesh and to process a tetrahedra
for removal are given in Figures 8 and 9 respectivly. The high level description of our
incrimental algorithm is:

14

(a) Input PLS. (b) Conforming triangulation. (c) Final triangulation.

Figure 7: The three steps of our 3d incremental algorithm.

e Initialize the triangulations of each two and three dimensional polytope to be a large
bounding simplex containing all of their input points. The initial triangulation of an
input edge is the segment containing their two end points.

e Initialize the work queue with the all pairs of the form (p, F') for which p is an input
point in the polytope F' and dim(F) > 1.

e If the work queue is not empty, select a maximal element W.

— If W = (p, F) is a point-polytope pair, call add-pointid(... ,Force) where
i = dim(F).

— If W = (K, F) is a simplex-polytope pair, (i) if K is a segment, split and queue
the mid-point for addition to every polytope containing it. (ii) If K is a triangle
or tetrahedra call rm-tri() or rm-tet () respectivly.

Figure 7 illustrates the three stages of our incremental meshing algorthm. Figure 7a shows
that input PLS, and Figure 7b illustrates the conforming triangulation where all input
edges and faces are first present in the mesh. Figure 7c shows that final mesh after all
skinny tetrahedra have been removed.

4.3 Induction Hypotheses

As in the two dimensional algorithm, the function add-point3d() essentially augments
the incremenatl Delaunay construction to maintain induction hypotheses which, in turn,
guarantee that the input features are represented in the mesh.

Induction Hypotheses: A set of points, P, segments, S, and facets, F, and a 3d Delaunay
triangulation, 7, of a subset of P is maintained. These sets satisfy:

15

. Procedure add-point3d ()

. INPUT: A point p to be added to the (3d) mesh and an option Force|Provisional. The
PLS data structure is also required to facilitate interogation of other triangulations and
insertion into the work queue.

. OutpuT: The updated data structure with the point p added to the triangulation, or an
exception returning a lower dimensional segment or facet &’ in the triangulation of an input
polytope P'.

. FORM THE CAvITY: The first step is to remove tetrahedra T which p encroaches upon, and
determine the boundary of the cavity. The tetrahedra are determined by a search starting
from a tetrathedra T for which p € B(T).

e Beginning at T search the dual graph to find all 7' which p encroaches upon, p € B (T)

e When traversing a face £ of T' check to see if it is a facet (a triangule in the triangulation
of in input face P;). If so then
— If this a Forced add, (£, P') to the work queue.

— Otherwise, this is a Provisional add; raise an exception returning the pair (£, P’).

. Examine the removed cavity: if any removed edge is a segment, either raise an exception,
returning the segment and the input edge containing it, or insert the segment into the queue
of simplices to be anihilated from the input edge. depending on if the add is Provisional
or Forced, as above.

. Examine the cavity boundary; if any face or edge on the boundary is a facet or segment,
and if p encroaches upon it, either raise an exception or queue it for anhilation as above.

. FiLL THE CAVITY: Remove tetrathedra in the cavity from the mesh and for each triangle
t on the cavity boundary:

e Form the tet 7" = (p : t) and insert it into the triangulation. Check if any face or
edge of T is a facet or segment, and if it is encroached by a vertex of T'. If so, queue
the encroached segment/facet for anhilation.

e If T' is of poor quality (radius edge ratio greater than ps), queue it for anhilation.

. If p is a vertex of a segment or a facet, and the other vertices of the segment/facet are
present in the triangulation but the segment/facet is not, queue the segment or facet for
anhilation.

Figure 8: Point addition routine for three dimensional meshes.

16

1. Procedure rm-tet ()

2. INPUT: A tetrahedra T to be removed from the (3d) triangulation, and the PLS data
structure to facilitate modification of the trianglation and work queue.

3. OutpuT: Updated triangulation, and work queue.
4. If T is no longer in the triangulation return.

5. Let p be the circumcenter of T'. Attempt to add p to the triangulation with add-point3d(p,
... ,Provisional). There are two possible outcomes:

e An exception was raised returning an encroached simplex ¢’ in some subpolytope P’.
Add (¥, P') the work queue and return.

e Otherwise the point addition succeeded and T is annihilated. Remover T' from the
work queue and return.

Figure 9: Function to anhilate tetrahedra for the Incremental 3-d Algorithm.

1. F is the union of the triangles in the (2d) Delaunay triangulations of the input
faces. These triangulations satisfy the induction hypotheses for the two dimensional
algorithm.

2. If the two end points of a segment are in the triangulation, then either the segment
is present as an edge in 7 and its circumball is empty (contains no vertices of 7), or
the segment has been queued for annihilation.

3. If the three vertices of a facet are in the triangulation, then either the facet appears
as a triangle in 7 and its circumball is empty (contains no vertices of 7'), or the facet
is in the queue of simplices to be annihilated.

The remainder of this section is devoted to establishing that the induction hypotheses hold
after each call to add-point3d() and to characterising the meshes our algorithm produces
when geometric degeneracies exist. The following lemma is the three dimensional analogue
of Lemma 3.1.

Lemma 4.2 Let t be an interior triangle in a 3d Delaunay triangulation with empty cir-
cumball B = B(t). If By and By are the circumballs of the two adjacent tetrahedra, then

B, NBy C B C B;U Bas.

Similarly, if e is an interior edge in a 3d Delaunay triangulation having empty circumball
B = B(e), and {B;} are the circumballs of the tetrahedron containing this edge, then

(\Bic Bc|JB:

17

Lemma 4.3 If a point p is added to the 3-d triangulation and it encroaches upon a segment
or facet, t, then either this condition is detected during the addition of p (in which case the
addition of p is aborted or t is queued for annihilation), or t has already been queued for
annihilation.

Proof. Suppose that t has not been queued for annihilation, then inductively it has not been
encroached upon yet. Then the previous lemma shows that p must be in the circumsphere
of a tetrahedron adjacent to £ so that ¢ is in the Delaunay cavity.

If p is in the circumsphere of both tetrahedra adjacent to a facet ¢, then ¢ is “traversed”
during the search to determine the Delaunay cavity, and the algorithm checks to see if
traversed triangles are facets. Otherwise, the algorithm explicitly checks to see if edges in
the cavity are segments, or if triangles on the cavity boundary are facets, and if so checks
to see if p encroaches. [

Corollary 4.4 The induction hypotheses are satisfied.

Proof. (1) The two dimensional induction hypotheses were established in Corollary 3.3.

(2) and (3) When the last vertex of a segment or facet is added to the triangulation the
algorithm explicitly checks to see if the segment or facet is present in the mesh. If it is not
in the mesh it is queued for annihilation. If it is in the mesh the Delaunay property shows
that points are inside its circumball if and only if a point in its link on the cavity boundary
is inside the ball. The algorithm explicitly checks to see if the points in the link are in the
ball, and if so queues the segment or facet.

It follows that at the time that the last vertex of a segment or facet is added to the mesh
the induction hypotheses hold. Lemma 4.3 shows that if the addition of a subsequent point
is in the circumball that this condition is detected and the segment or facet is queued for
annihilation. 0O

Lemma 4.5 Let T be a Delaunay triangulation of a convex planar face F — R3 with
bounding edges E, and suppose that the circumballs of the bounding edges are empty. Let
By = UecrB(e) be the union of the circumballs of the edges in E and By = Uycp B(t) be the
union of the circumballs of triangles in F'.

Let p € F be specified and suppose that either (a) p is the mid point of a bounding edge,
or (b) p is disjoint from By. If T' is the triangulation of F resulting from the addition
of p, define By and B} to be the union of the circumballs of bounding edges and triangles
respectively. Then

B, UB; C By U B;.

Proof. Clearly B} C B, the non-trivial statement is to conclude that B}, C By U By.

Each new triangle, ¢’ has p as one of its vertices and an edge e € T opposite p. Consider
first the situation where e is interior to F'. Then there are triangles ¢, and t_ € T adjacent

18

Figure 10: Circumcircles are nested

to e. For convenience assume that p is inside the circumball of ¢, and outside of the
circumball of ¢ , as in Figure 10a. Since the centers of the balls are all in the same plane,
B(t) C B(t-) U B(ty) will hold if the corresponding circles in the plane are are similarly
nested, C(t) C C(t_) U C(t;). Elementary geometry shows that the set of circles passing
through two specified points (in this case the ends of e) are nested in this fashion.

Now suppose e is a bounding edge; then ¢_ and its accompanying sphere S(¢_) don’t
exist. If H' is the half plane determined by e containing ¢* then C(¢) N HT C C(ty) (see
Figure 10b). Since p is outside the circumball of e the angle at p is acute. It follows that
the portion of the circle through p and the end points of e on the opposite side of e is
contained in the e’s diametral circle so that C(t) C C(t,) U C(e). O

Corollary 4.6 Circumcenters of tetrahedra that get added to the triangulation are never
inside the circumballs of any segments or facets.

Proof. At the time a tetrahedron circumcenter is added to the triangulation all of the facets
and segments are present in the triangulation, and Lemmad4.3 shows that at this time any
encroachments would be detected. Since p only gets added if it is outside of the union of
the circumspheres of all segments and facets it doesn’t encroach any of them at insertion
time. Lemma 4.5 shows that the union of all the circumspheres of segments and facets at
each stage are nested by inclusion, so if a point is ever outside of the union it remains so.
[I

The following elementary lemma gives a precise characterization of the triangles that appear
in a mesh when degeneracies occur.

Lemma 4.7 (1) Let T be the Delaunay triangulation of a set of points P C R? and
suppose that B C R? is a ball, BNP =0 and BNP = P. Suppose that T is constructed
by the incremental algorithm that formed the cavity by removing triangles t if and only if

19

the insertion point was in the open circumball of t, and that the points of P = {p:}24
were inserted in order of increasing i'n,de:z; Ifi < j < k then the (p;, pj,pr) are vertices of
a triangle in T if and only if {pm}= 2, C H;ji, where H;jy, is the closed half space whose
boundary contains p; and p; and is disjoint from py,.

(2) Let T be the Delaunay triangulation of a set of points P C R3 and suppose that B C R3
is a ball, BNP =0 and BNP = P liein a plane F. Suppose that T is constructed by the
incremental algorithm that formed the cavity by removing tetrahedra T' if and only if the
insertion point was in the open circumball of T', and that the points of P = {pi}, were
inserted in order of increasing index. Then i < j < k then (p;,pj, pr) are the vertices of a
triangle in T if and only if {pm}5Y C H;ji, where H;jy, is the closed half space in F' whose
boundary contains p; and p; and is disjoint from py.

Proof. Notice that if ¢ was not created during the addition of py it is never created, since
all new triangles contain the vertex being added. It then suffices to show that (i) at the
time pk is inserted into the triangulation the triangle ¢ = (p;, p;, px) is formed if and only
if {pm}F, C H;ji, and (ii) the triangle is never annihilated subsequently.

We first establish statement (ii). Since B NP = () and in two dimensions the incremental
algorithm only removes a triangle if a point is inside it’s (open) circumball it follows that
triangles with vertices on the boundary of B are never annihilated.

Consider next the three dimensional case where ¢ is an interior triangle. Then ¢ is anni-
hilated if and only if both adjacent tetrahedra are annihilated, which would only occur
during the addition of a point interior to both of their circumballs. Lemma 4.2 shows that
p would then be interior to B which is excluded by hypothesis. If ¢ is on the convex hull
of a triangulation 7" of a subset P’ C P, then t will only be annihilated by the addition of
a point interior to B N F' which is excluded by hypotheses.

To establish (i) we need to show that the edge e = (p;, pJ) is on the boundary of the
cavity formed during the addition of pj if and only if {p, }* %, C H;j.. The proof proceeds
inductively, the base case of k = 3 following from the Delaunay property which guarantees
that ¢ is present in the mesh if B(t)NP = {p1,p2,p3}. When k > 3 the edge e = (p;, p;)
on the convex hull of {p,, }*", for which p; ¢ H,ji is unique.

Let 7' be the triangulation pI‘lOI‘ to the addition of pr and P’ be its vertex set. Since
BNP =0and BNP' = {pn,}} are all coplanar it follows that {p,,}*~" are the vertices
of a Delaunay polytope P’ (see the discussion in Section 2). The triangulation 7' induces
a triangulation of P’; in particular, edges on the convex hull of P’ are represented in 7.
The half space condition guarantees that e is an edge on the convex hull of P’ so is an edge
of T'. After py is inserted into the mesh {p,,}* _, are the vertices of a Delaunay polytope
P in the new mesh, and since (pi,p;) and (pk,p;) are on the convex hull of P they will
exist in the augmented triangulation. To finish the proof it suffices to show that e is not
annihilated when p, was inserted.

Since k > 3, the the triangulation of P’ induced by 7" contains a triangle of the form
t' = (pi, pj,pe). If e = (pi, p;) was annihilated during the addition of pj then so too was t/,

20

and this would contradict (ii). O

Corollary 4.8 At the time a simpler K is queued for annihilation from the mesh of the
input feature F' containing K (dim(F') = dim(K)) either (a) K was encroached, or (b) K
was skinny, or (c) the circumsphere of K contains a vertex v ¢ F from the triangulation
of anther feature.

Proof. Non-skinny simplices are queued for annihilation in three situations: when a point
is being inserted (i) any segments or facets interior to the cavity are queued, (ii) facets and
segments on the cavity boundary encroached by the new point are queued, and (iii) the
last vertex of K is being inserted into a triangulation and K does not appear. Clearly we
need only consider cases (i) and (iii).

Suppose that an “unqueued” facet or segment is interior to a cavity being formed during
the addition of a point p to the mesh containing K. The induction hypotheses guarantee
that circumball of the facet/segment is empty. Lemmas 4.2 and 3.1 show that p is inside
the circumball of K and hence encroaches.

For case (iii), let K be a segment or facet that is not encroached and does not appear in a
mesh containing its vertices. If the circumsphere S(K) only contains the vertices of K then
K will appear in any mesh containing the vertices, so S(K) must contain other points. If
K is a segment these points are not collinear with K so must belong to some other feature.
If K is a facet, Lemma 4.7 shows that if all of the points on S(K) belong to the face F
containing K, then K will appear in the three dimensional mesh. It follows that S(K)
must contain some point not in F. [

5 Correctness of the Algorithms

In this section we prove that the two and three dimensional meshing algorithms proposed
above terminate and have a vertex density determined by the input. The two dimensional
proof is obtained by omitting those portions of the proof concerning facets and tetrahedra
(CD = 2 or 3 below). We begin with the following elementary lemma which is useful for
determining how the mesh density changes when segments are split.

Lemma 5.1 Let two rays, R and R' emanate from a point z have angle 6 > /4 between
them. If a ball B with center p on R intersects R' and does not contain x then

dist(a,)

< 2cos(6 Yae BNR.
dist(a.p) = cos(6), a€

Note that if § > 7/2 then BN R' = (.
Proof.

21

(a) as stated (b) bounded by the isosceles

Figure 11: Proof of Lemma 5.1; The lemma as stated is shown in (a). It can be shown that
6 < ¢, so we may draw the isosceles triangle, as in (b) with base angle 8 to get the desired
bound. The altitude is also drawn in (b), and both triangle legs will be to its right.

We wish to show that P/X < 2cos(f) where P, X are as in Figure 11. We first note that
X < A because z is not inside the ball, but a is. Using the sine identity we find that
sinf < sin ¢, implying that § < ¢. We can then draw an isosceles triangle of base angle
6 and base (z,a), with side lengths A’. Since 7/4 < 6 the apex angle of this isosceles
triangle will be acute, so the altitude h, the leg A" and the leg X are ordered left to right
as shown in Figure 11(b), and thus A’ < X. Using the cosine relation it is easy to show
that P/A" = 2cos(f) so P/X < 2cos(f) as desired. [

The functions occurring in the following definition will enable us to bound the density of
vertices produced by our algorithm.

Definition 5.2 Let W be a PLS with dimeinson d.

e The local feature size at z in W, lfs(z) = sy (z) is the distance to the second
nearest disjoint polytope in W, i.e. the radius of the smallest closed ball centered at
x which intersects two feature in W which do not intersect.

e For each integer 0 < ¢ < d let W; be the PLS consisting of the the polytopes in W
having dimension at most i. Then lfs;(z) = lfsy, (z).

Notice that 1fs(.) = lfsy(.) and lfsy(.) is the distance to the second nearest vertex in the
PLS. Below Ifs will always be the local feature size determined by the input data, Py and
So (and Fy in three dimensions). If the local feature size is required for another PLS (such
as the final mesh) the function will be annotated appropriately. Notice that [fs() is a

22

Lipschitz function with constant 1; that is, |lfs[z] — Ifs[y]| < |« — y|, where | - | on the right
hand side of this expression denotes Euclidean distance.

The following elementary corollary will be used frequently in our proof of termination.

Corollary 5.3 Let p, a and x be three points in a plane or R? and with 0 = /pza > /4.
Suppose that a € B,(p) and r < |p — z|, and Ufs[a] < Cla — z|, then lfs[p] < (1 + Cpg)r
where pg = 2 cos(6).

Proof. The Lipschitz property of the local feature size gives

Ifs[p] Ifs[a] + |p — q|
Cla—z|+r
(1+Cla—=z|/|p—q|)r

(1+ Cpo)r

INIA N IA

0

The following definitions are useful in the proof of our main theorem.

Definition 5.4 Let W be a d-dimensional PLS, and p € R¢.

e The containment dimension of p in W, CD(p), is the dimension of the lowest dimen-
sional polytope in W that contains p. If no polytope contains p then CD(p) is the
dimension of the underlying space, i.e. d.

e If an attempt to add the circumcenter p of a simplex K queued for annihilation from
the mesh of a polytope F' € W failed due to p encroaching upon a segment or facet
also in the mesh of F', we say that p yields to the segment or facet.

Theorem 5.5 Suppose that the input PLS satisfies:

e the angles between any two non-disjoint input segments is bounded below by 6 > 7/3;
e the angle between a non-disjoint face and segment is bounded below by ¢ > cos *(1/2v/2);

e if two faces meet at a point x, then the angle between any pair of rays emanating from
z into each plane is bounded below by ¢ > cos™(1/2+/2);

e the dihedral angle between non-disjoint faces is bounded below by /2.

Let the edge-radius ratio threshold for splitting skinny triangles satisfy py > /2, and the
threshold for splitting skinny tetrahedra be ps > 1/2v/2. Then there exist constants C;,
0 < i < 3, such that at the time an attempt is made to insert the circumcenter p of a
simplez K into the (unique) mesh W' of dimension dim(K), then Ifs[p] < Cilfsyyp where
i =CD(p).

23

Proof. In order to minimize the number of subscripts, we will write lfsyy, (z) = N(z).
That is, N(z) is the distance to the second nearest vertex from z in W', where W' is the
“current” mesh into which the insertion of p is attempted.

It may happen that CD(p) < dim(K) if the circumcenter of K lies in a sub-face which
happens to be a facet or segment. In this situation insertion will fail due to the obvious
encroachment, and points will only be inserted into the mesh when CD(p) = dim(K).
Typically we will prove that Ifs[p] < Caimx)N(p), for dim(K) > 1, which suffices provided
C1 > Cy > Cs.

We proceed inductively beginning with the input points. We consider the singleton sets
of input points to be zero dimensional triangulations, and since distinct points are disjoint
features it suffices to take Cy = 1. We then consider the insertion of circumcenters of
simplices having dimension strictly positive dimension.

Consider the attempted insertion of the circumcenter p of a Delaunay simplex K, having
dimension ¢ > 0. Denote the circumball of K, by B, = B(K,), the circumsphere by
Sp = S(K,), and their radii rp. Let Pipsert = P N B, be the (possibly empty) set of points
that encroach upon K, at the time insertion of p is attempted. When Piysert # 0 it follows
that K, is encroached and we use induction to establish the estimate lfs[p] < C;N(p).
When Pjnsert = 0 so K, is not encroached it is necessary to also consider the situation that
existed at the time K, is queued.

Case Pijpsert # 0: Of the points closest to p in Pjpsert let a be the one of minimal contain-
ment dimension, then N(p) = |a — p|.

Let F, and F, be the input features (input points, edges or faces) containing p and a
respectively. If F,, N F, = () they are disjoint input features, so lfs[p] < |a — p| = N(p) <
C;N(p) provided C; > 1. In particular, if a = F, is an input point then it is a disjoint
feature (it couldn’t be inside B, otherwise). It then suffices to consider the situation when
j =dim(F,) >0 and F,NEF, # 0.

Subcase i = j = 1: Letting z be the point of intersection of the two segments, then x
is an input point and was present at the time a was inserted into the mesh. Inductively
Ifs[a] < C1N(a) < Cila — z|, then Corollary 5.3 then gives

Ifs[p] < (1+ C1pe)N(p),
so the induction hypotheses hold provided
14 Cipg < Ch. (1)
Subcases i = 1, j = 2 and ¢ = 2, j = 1: First suppose that F,N F, is a point where the
input edge and face meet. The angle condition on the input guarantees that in the plane
of (p,z,a) the angle Z(p, z,a) is bounded below by ¢. Upon invoking Corollary 5.3 and

repeating the above argument we find that the induction hypotheses are satisfied provided
inequalities 1 + Cjpy < C;, and 1+ C;jpy < C; that is

1+ 02,0¢ S Cl, and 1 + Clp¢ S Cg. (2)

24

Figure 12: Points in intersecting Planes aren’t close

The other possibility is that F,NF, = F,, or F,NF, = F,, so p and a are in a common mesh.
The definition of Pj,sert then requires a € B, (the open ball), and Lemma 3.4 shows that
circumcenters of triangles are never inside the diametral balls of segments (i = 1, j = 2),
and the Delaunay property excludes the possibility that a point is inside the circumball of
a triangle (1 =2, j = 1).

Subcase i = j = 2: If the two input faces meet at a point z, (dim(F, N F,) = 0) then
using the angle condition on the input and Corollary 5.3 as above shows that the induction
hypotheses are satisfied provided

1+ Capy < Cs. (3)

If the input faces meet along an edge e (dim(F, N F,) = 1) we show that the lower bound of
7/2 on the dihedral angle excludes the possibility that a is the closest point to p of minimal
containment dimension. To argue this let P be the plane containing F, oriented so that
F, is in the half space above the line of intersection L containing F, N F, as illustrated in
Figure 12. Let A be the intersection of the closed ball centered at p of radius |p — a| with
the plane P. Then A is a closed disk with a on its boundary, and the lower bound of the
dihedral angle between F, and F}, requires the center of A to lie on or below L. Since a is
interior to F, and a € ANT, it follows that A meets a bounding segment s of F,; however,
it can not contain any boundary vertices since, of the points closest to p, a was chosen to
be the one with minimal containment dimension. It follows that the intersection of A with
boundary of F, only contains points interior to s.

We now get a contradiction by recalling that the bounding edges of an input face have
empty circumballs; in particular, Lemma 3.4 shows that a can not be in the (open) the
circumball, B(s), of s (it would have yielded to s). Since B(s) has center on or above the
line L and A is a disk with center on or below the line L that doesn’t meet the end points
of s it follows that A N F, C B(s), and a € AN F, C B(s) gives the contradiction.

Subcase ¢ = 3: The order in which points are processed eliminates this case. Circumcen-
ters of tetrahedra are proposed for insertion after all other points have been added into the

25

mesh and the Delaunay property excludes the presence of encroached tetrahedra.

Subcase j = 3: This case never arises since Corollary 4.6 shows that a tetrahedra circum-
center a would never have been inserted into the mesh if it encroaches upon a facet or a
segment.

Case Piysere = 0: If K, is not encroached by a point in a mesh at the time its circumcenter
is proposed for addition we need to recall the situation which caused K, to be queued.
Lemma 4.8 shows that either K, was encroached, skinny, or “degenerate”. We consider
these situations separately. Since Pjpsers = 0 we know that N(p) = 7p, the radius of the
circumball of K.

Subcase K, Encroached: Let a be the point that encroached upon K, causing it to
be queued, and consider the mesh of the input face, F,, containing a. In order for a to
encroach upon K,, K, must be contained in the mesh of F;,. Since a € Pjnsert it was not
inserted into the mesh, so it must have yielded to K, in which case CD(a) = j > i =
CD(p) > 0. It follows that a is the circumcenter of a Delaunay simplex K, of dimension
j > 1 with circumradius r,. At the time p was queued (and insertion of a was attempted),
the circumball of K, was empty, and the induction hypotheses (2) (2d) and (2), (3) (3d)
guarantee that the circumball of K, contained no other points in the mesh of F,. This

configuration is illustrated in Figure 13.

a

K,
U
Figure 13: (a) 3d circumcenter encroaching a facet, (b) 2d circumcenter encroaching a
segment.

h

&4

4

Inductively we may assume that Iifs[a] < C;N(a) = C;r, and since a is inside B,, but B,
contains no vertices of F},, it follows that r, < 27,. Then

Ifs[p] < Ifsla] + |a — p| < 2C;r, + 7p = (1 4+ 2C;)N(p).
The induction hypotheses will be satisfied provided

1+2Cj§0i Vj>2>0 (4)

26

When 7 = 1, K, is a segment and a sharper estimate holds due to the fact that the end
points of the segment are antipodal, as in Figure 13. In this situation we can conclude that
e < ﬂrp which leads to the requirement

1+\/§Cj§01 Vi >1. (5)

Subcase Skinny Polytopes: If K, is a skinny polytope, notice that at the time an
attempt is made to insert its circumcenter the circumball B, of K}, may not be empty; the
Delaunay property only only guarantees that its intersection with F,, the face containing
K,, is empty. However, the case where B, is non-empty was addressed previously when
we considered Pjzert 7 0. (In essence, this simplex would have been split even if it wasn’t
skinny). It follows that we need only address the case where B, is empty.

Since the radius edge ratio of K, is greater than p; it follows that there is an edge e = (a, b)
of F,, having length |e| < 7,/p;. If both a, b are input points, then Ifs[b] < |b — a|. Otherwise,
without loss of generality assume b was added to F), after a, then inductively, at the time
b was added, Ifs[b] < max(C;)N(b) < max(C;) |e|]. Then

Ifsp] < lfs[b] + |p — b| < (max(Ci)/pi + 1)rp,
so the induction hypotheses hold provided

J

Note this assumes max(C;) > 1 to take care of the case a,b are input.

Subcase Degenerate Points: Finally, consider the situation when a simplex K, with
circumsphere S, was queued for annihilation because it never appeared in a higher di-
mensional mesh due to degeneracy. Let F, be the input face containing K, and write
CD(p) = dim(F,) = i. Since only segments or facets are required to be present in other
meshes ¢ = 1 or 2.

Lemma 4.8 shows that there are points not in the mesh of F,, on S,. If any of these points
are on a input polytopes disjoint from F},, then such a point and F), are disjoint features so
Ifs[p] < r,, where 7, is the circumradius of K, and the induction hypotheses hold provided
C; > 1. We then need only consider the situation where all of the points on S, belong to
input features having a common intersection, and we let a be one of them having maximal
containment dimension, CD(a) = j.

e Suppose j = CD(a) > CD(p) = i and F, C F,. When claim that, at the time a
was added to the mesh of Fj, at least one vertex in Fj, NS, was present in the mesh
of F,. If not, the order that the queues are processed guarantee that the closed ball
B, N F, is empty, so is contained in an (open) circumball of a simplex K C F,. Then
a € B(K) N F, gives rise to a contradiction; a would have yielded to K. If F), is
a segment then both vertices were present since every point of the closed ball B,,
except the end points of K, is in the open ball of a super segment.

27

Figure 14: Degenerate facets may not appear as faces of tetrahedra; however, their circum-
center lies on a segment.

We may then use repeat the “Subcase Encroached” argument above to conclude that
the induction hypotheses are satisfied provided equations 4 and 5 hold.

e When 7 = j = 1 we may repeat the argument given for Pjpsers # 0 for the cor-
responding case and deduce that the induction hypotheses hold if equation (1) is
satisfied.

e When (7,5) = (1,2) or (4,5) = (2,1) and F,NF, = {z} meet at a point (dim(F,NF,) =
0) we may repeat the argument given for Pj,.er¢ 7# 0 to get the induction hypotheses
holding provided equations (2) hold.

If dim(F, N F,) = 1, then a is not in the mesh of F, and the order in which the
work queue is processed imply (4,j) = (1,2), i.e. K, is a segment contained in the
input face F,. Then j > 7 and the intersection properties of the PLS guarantee that
F, C F,, and this situation was considered above.

e The remaining case of ¢ = j = 2 requires a separate argument.

If : = j = 2 we use the angle condition on the input to claim that there exists a segment
segment s C F, N F, for which B, = B(s) so that p € s and CD(p) = 1 (see Figure 14).
Assuming this, it follows that the induction hypotheses are satisfied provided 1+ v/2Cy <
C;. To see this, notice that at the time a was inserted into its mesh the segment s must
have been present. Otherwise s was contained in a super-segment and since a is on the
boundary of B(s) it would have been interior to the circumball of this larger segment, so
would have yielded. It follows that when a was inserted N(a) < /27, so that

Ifs[p]

Ifs[a] + 7,
CyN(a) + rp
(1+v2Cy)r,
(1+v2C2)N(p)

IN AN IA DA

28

Remark: It is also possible to argue that the segment doesn’t appear in the (3d) mesh, so
was queued to be split. Since segment centers are inserted prior to triangle circumcenters
p would have been inserted into F,, annihilating K.

To establish the claim, observe that if the angle between F), and F, is bounded below by
7/2 then the intersection of F, with any empty ball B having center in F), is contained
in one of the diametral balls B(s) of a segment s bounding F, (see Figure 12). Moreover,
BN B(s) C B(s)U s except in the situation where (i) s C F, N F, and (ii) B = B(s).
Letting B = B, we find B, C B(s) U s unless the (i) and (ii) hold. Since CD(a) = 2 it
follows that a & s, and since a € F, N B, it follows that B, ¢ B(s)Us, so (i) and (ii) must
hold. In particular, B, = B(s), so has center p € s and CD(p) = 1 as claimed.

Computing the Constants: The constraints 1 + 2C; < C; for j > % > 0 show that
Ci > €y > Cs. Using these identities and the fact that pg, pg < 1 some of the inequalities
in equations (1-6) are redundant; the remaining inequalities are

1++20, < Cy,

1+2C5; <0y
1+Ci/ps < Cs
14+ C1/p2 < Cy 14 Cipy < Cy,
and C; > 1/(1 — pg), C2 > 1/(1 — py).
The first three inequalities have a solution with equality provided ps > 2v/2.

_ ps(1+3v2) _ 3p3+2 _ s+ (1+v?2)
== y = —————, 3= .
p3 — 2v/2 p3 — 2v/2 p3 — 2v/2

These constants are greater than one and tend to infinity as ps tends to 24/2 from above.
We can then compute

Ci

1+3v2 _ V2(3ps+2)

p2 > (03/2)m, po < oall 4 3v2)’

and

p3+(1+\/§)2p3+(1+x/§)):2p3+(1+x/§)

Ps < min | 2 , .
¢ (p3(3v2 +1) 3ps + 2 ps(3v2 1 1)
As p3 \ 22, pa, ps and pg tend monotonically to

p2 = V2, pg—1/V2, and pg — 1.

We then find solutions provided ps > 2v/2, p; > /2, and 6 > cos 1(1/2) = 60°, ¢ >
cos 1(1/2v/2) ~ 69.3°. [

29

Corollary 5.6 Suppose the algorithm is run on input that satisfies the hypotheses of the
theorem to produce a three dimensional mesh W. Then for all vertices p € Wy in the mesh
Ifs[p] < (1 4 C1)lfsyy, (p)-

Proof. Let a be the point nearest p in the mesh. If a and p are both input points, then
Ifs[p] < |a —p| = N(p). Otherwise consider which was added first. If a was added first,
Lemma 5.5 shows that when p was added lfs[p] < C; |p — a| < C1N(p).

Similarly, if p was added first, then at the time a was added lfs[a] < C1N(a) = C1N(p).
Using the Lipschitz continuity of lfs we deduce Ifs[p] < |a — p| + Ifs[a] < (1 + C1)N(p) and
the corollary follows. 0O

Remark: The following lemma from Shewchuk [20] can be used to obtain slightly sharper
estimates for the constants above.

Lemma 5.7 Let T be a Delaunay triangulation of a set of points P and let the planar
face F is represented as the union of triangles in T. Suppose that the circumballs of all
triangles and bounding edges of F' are empty, and let p the the circumcenter of a tetrahedra
inT.

If p encroaches upon a triangle in F then (i) if the orthogonal projection of p onto the
plane containing F' is inside F, then p also encroaches upon the triangle(s) containing the
orthogonal projection; otherwise (ii) p encroaches upon a bounding segment.

If Step 5 of rm-tet () is modified to queue the facet or segment guaranteed by this lemma,
instead of the first facet discovered by add-point3d(), the extreme situation shown in
Figure 13 would not arise. In this situation inequality (4) with (i,7) = (2,3) can be
sharpened to 1 + v/2C3 < Cy which results in better constants. Specifically, the modified
system of inequalities will have a solution if p3 > 2, and recomputing the constants gives
i — p3(3 +v2) C, — p3+V2(ps +1) C, — ps+(1++2)
p3—2 ps —2 ’ p3s —2

Again these constants tend to infinity as p3 tends to 2 from above, and we require

3+V2 ps(2+V2) +2 ps+(1++2)
ps+ (1++v2) po = p3(3+v2) P V2 ps(3+v2)

As p3 \(2, p2, pg and ps tend monotonically to the values computed previously.

p2 > (p3/V2)

5.1 Size Optimality

Corollary 5.6 guarantees termination of our algorithm; however, unlike the two dimensional
situation doesn’t directly yield size optimality. Optimality in two dimensions follows from

30

the observation that if a triangulation 7 has bounded aspect ratio, then clfsr(z) < lfspz <
Clfs(z), and clearly lfsy(x) < lfs(z). Since various integrals of the local feature size bound
the number of vertices in a mesh with bounded aspect ratio [7, 17] these inequalities imply
size optimality.

The following definition characterises the optimality criteria satisfied by the three dimen-
sional meshes computed using Delaunay refinement.

Definition 5.8 Let W;, be a three dimensional PLS, then a mesh WV is pointwise optimal
with respect to Wiy, if (i) each polytope in W, is represented in W as a union of simplices,
(ii) each simplex of W has a bounded radius edge ratio, and (iii) there exists a constant
¢ > 0 such that c lfsyy, (z) < lfsyy, (z) < Ifsy,, (2) for each z € R®

Recent results in [8, 9] show that it is possible modify a pointwise optimal mesh obtain a
mesh conforming to the boundary with bounded classical aspect ratio; moreover, lfsy(z)
only changes by a constant factor. Arguments similar those used in two dimensions can
then be used to establish size optimality of the resulting three dimensional triangulations.

6 Comments on Implementation

The two dimensional algorithm is very easy to implement once the fundamental data struc-
tures to represent a triangulation and the segments set have been developed. We imple-
mented the algorithm in [6, Chapter 9] to associate points queued for addition to the mesh
with triangles. The only time a segment is split and there is no triangle to assign the mid
point to occurs in Step 7. In this step the two end points of a segment are present in the
mesh but the segment does not appear. In this situation we have just inserted the second
end point in the mesh, so have a triangle containing it. To locate a triangle containing the
mid point we implement a geometric search along the segment starting from a triangle con-
taining the end point. In order to accommodate input with small angles we implemented a
version of the technique suggested by Ruppert [17]. Essentially the input is “groomed” so
that segments forming a small angle form isosceles triangles in the mesh, and these isosceles
triangles are never declared to be skinny. Similar approaches were considered by Shewchuk
in [21].

The 2D code also accommodates inputs with small angles. We implemented a version of the
technique suggested by Ruppert [17]. Essentially the input is “groomed” so that segments
forming a small angle form isosceles triangles in the mesh, and these isosceles triangles are
never declared to be skinny. Similar approaches were considered by Shewchuk in [21]. We
point out that all known heuristics for handling small angle do not have optimality results
associated with them. One only proves that the algorithm terminates, it generates a finite,
possibly very large, mesh.

For both the two and three dimensional codes precise insphere tests were used to determine
if points encroached upon simplices. These functions use the variable precision floating

31

(a) A non-convex face (b) Spurious facets cause anomalous refine-
sub-dived into convex ment.
faces.

Figure 15: Triangulating non-convex faces may produce facets which intersect other fea-
tures.

point arithmetic proposed in [19] and were automatically generated from “straight line
code” using the compiler developed in [15]. When generating the two dimensional Delaunay
meshes of an input face embedded in three dimensions the three dimensional insphere test
was used to determine encroachment. This was done so that the two and three dimensional
components of the code would always use the same function to determine encroachment. In
particular, we did not map the faces into the the (z,y) plane and back, since the associated
roundoff errors may cause the two and three dimensional routines to have a different view
of degenerate data.

For our three dimensional code, when a point p was inserted into a mesh of a polytope F
for the first time (the mesh of dimension dim(F') = C'D(p) containing p) it was inserted
(Force’d) into the meshes of all polytopes containing F. It is easy to verify that this
is consistent with the work order in Definition 4.1. As p is inserted into each mesh the
simplices having p as a vertex are carried forward. This provides a convenient way to
implement Steps 7 of the two dimensional algorithm and Step 8 of the three dimensional
algorithm where the simplices containing the point being inserted are required.

Our incremental algorithms were always initialized with a large bounding simplex contain-
ing the input data. This avoids the need for code to add a point exterior to a triangulation.
However, triangulations of the input faces then contain triangles that are not required to
present in the three dimensional mesh. This was accommodated by declaring that triangles
having a vertex on the bounding triangle are not facets. Moreover, two or three dimen-
sional simplices having a vertex on the bounding simplex are never declared to be skinny.
This strategy suffices provided all input faces are convex, since in this situation all trian-

32

gles exterior to the triangulated face contain a bounding vertex (and correspond to infinite
triangles). If non-convex faces are input to the algorithm then “finite” triangles not in the
face should not be identified as facets which always appear in the three dimensional mesh.
Otherwise, these spurious triangles may intersect other input faces and this can result in
anomalous refinement as shown in Figure 15. Currently we split non-convex input faces
into a union of convex faces to avoid this problem; however, other alternatives could easily
be implemented.

References

[1]

2]

M. Bern, D. Eppstein, and J. R. Gilbert. Provably good mesh generation. In 31th Annual
Symposium on Foundations of Computer Science, pages 231-241, Oct. 1990.

T. M. Chan, J. Snoeyink, and C.-K. Yap. Primal dividing and dual pruning: output-sensitive
construction of four-dimensional polytopes and three-dimensional Voronoi diagrams. Discrete
Comput. Geom., 18(4):433-454, 1997.

L. Chew. Guaranteed-quality triangular meshes. CS 89-983, Cornell, 1989.
L. P. Chew. Guaranteed—quality Delaunay meshing in 3d. preprint, 1997.

D. Chhen-Steiner, E. C. de Verdiere, and M. Yvinec. Conforming delaunay triangulations in
3D. CS 4345, INRIA, 2001.

M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry.
Springer, 2000.

H. Edelsbrunner. Geometry and Topology for Mesh Generation. Cambridge, 2000.

H. Edelsbrunner, X. Li, Miller, G. Stathopoulos, D. A. Talmor, S. Teng, A. Ungor, and
N. J. Walkington. Smoothing and cleaning up slivers. In ACM Symposium on Theory of
Computing, pages 273-277, 2000.

X.-Y. Li and S.-H. Teng. Generating well-shaped delaunay meshed in 3d. In Proceedings of
the twelfth annual ACM-SIAM symposium on Discrete algorithms, pages 28-37. ACM Press,
2001.

G. L. Miller, D. Talmor, S. Teng, and N. J. Walkington. A Delaunay based numerical
method for three dimensions: generation, formulation and partition. In Proceedings of the
27th Annual ACM Symposium on Theory of Computing. ACM Press, 1995.

G. L. Miller, D. Talmor, S. Teng, and N. J. Walkington. On the radius—edge condition in
the control volume method. SIAM J. Numer. Anal., 36(6):1690-1708, 1998.

G. L. Miller, D. Talmor, S. Teng, N. J. Walkington, and H. Wang. Control volume meshes
using sphere packing: Generation, refinement and coarsening. In 5th International Meshing
Round Table, ‘96, pages 47—-62. Sandia National Laboratories, 1996.

33

[13]

[14]

[15]

S. A. Mitchell and S. A. Vavasis. Quality mesh generation in three dimensions. In Proceedings
of the ACM Computational Geometry Conference, pages 212-221. ACM Press, 1992. Also
appeared as Cornell C.S. TR 92-1267.

S. A. Mitchell and S. A. Vavasis. Quality mesh generation in higher dimensions. SIAM J.
Comput., 29(4):1334-1370 (electronic), 2000.

A. Nanevski, G. Blelloch, and R. Harper. Automatic generation of staged geometric pred-
icates. In International Conference on Functional Programming, pages 217-228, Florence,
Italy, September 2001.

J. Ruppert. A new and simple algorithm for quality 2-dimensional mesh generation. In
Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms (Austin,
TX, 1993), pages 83-92, New York, 1993. ACM.

J. Ruppert. A Delaunay refinement algorithm for quality 2-dimensional mesh generation.
J. Algorithms, 18(3):548-585, 1995. Fourth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA) (Austin, TX, 1993).

J. R. Shewchuck. Triangle: A two-dimensional quality mesh generator and Delaunay trian-
gulator. See: http://www.cs.cmu.edu/~quake/triangle.html, 1995.

J. R. Shewchuk. Delaunay Refinement Mesh Generation. PhD thesis, School of Computer
Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, May 1997. Available as
Technical Report CMU-CS-97-137.

J. R. Shewchuk. Tetrahedral mesh generation by delaunay refinement. In Proceedings of
the Fourteenth Annual Symposium on Computational Geometry (Minneapolis, Minnesota),

pages 86-95. ACM, June 1998.

J. R. Shewchuk. Mesh generation for domains with small angles. In Proceedings of the
Sizteenth Annual Symposium on Computational Geometry (Hong Kong, 2000), pages 1-10
(electronic), New York, 2000. ACM.

34

