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Abstract. Lower semicontinuity properties of multiple-integrals

u ∈ W k,1(Ω; R
d) 7→

Z

Ω

f(x, u(x), · · · ,∇ku(x)) dx

are studied when f grows at most linearly with respect to the highest order derivative, ∇ku, and admissi-
ble W k,1(Ω; R

d) sequences converge strongly in W k−1,1(Ω; R
d). It is shown that under certain continuity

assumptions on f, convexity or 1-quasiconvexity of ξ 7−→ f(x0, u(x0), · · · ,∇k−1u(x0), ξ) ensure lower semi-
continuity. The case where f(x0, u(x0), · · · ,∇k−1u(x0), ·) is k-quasiconvex remains open except in some
very particular cases, as an example when f(x, u(x), · · · ,∇ku(x)) = h(x)g(∇ku(x)).

1. Introduction

In a classical paper Meyers [23] proved that k-quasiconvexity is a necessary and sufficient condition for
(sequential) lower semicontinuity of a functional

u 7→

∫

Ω

f(x, u(x), · · · ,∇ku(x)) dx,

with respect to weak convergence (resp. weak * convergence if p = ∞) in W k,p(Ω; Rd) and under appropriate
growth and continuity conditions on the integrand f , thus extending to the case k > 1 the notion of quasi-
convexity introduced by Morrey when k = 1. Here Ω is an open, bounded subset of R

N , with N ≥ 1, and
k, d ∈ N, 1 ≤ p ≤ ∞. Meyers’ theorem uses results of Agmon, Douglis and Nirenberg [1] concerning Poisson
kernels for elliptic equations. A different proof was later presented by Fusco in [21] using De Giorgi Slicing
Lemma. These results have recently been improved by Braides, Fonseca and Leoni in [8], who obtained a
general relaxation result in W k,p(Ω; Rd) with respect to weak convergence.

In most applications, the lower semicontinuity results mentioned above are completely satisfactory when
p > 1 since bounded sequences in W k,p(Ω; Rd) admit weakly convergent subsequences. However, when p = 1
due to loss of reflexivity of the space W k,1(Ω; Rd) one can only conclude that an energy bounded sequence
{un} ⊂ W k,1(Ω; Rd) with

sup
n

‖un‖W k,1 < ∞

admits a subsequence (not relabelled) such that

un → u in W k−1,1(Ω; Rd),(1.1)

where u ∈ W k−1,1(Ω; Rd) and ∇k−1u is a vector-valued function of bounded variation. In this paper we
seek to establish lower semicontinuity in the space W k,1(Ω; Rd) under this natural notion of convergence.

When k = 1 the scalar case d = 1 has been extensively treated, while the vectorial case d > 1 was first
studied by Fonseca and Müller in [18] where it was proven (sequential) lower semicontinuity in W 1,1(Ω; Rd)
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of a functional

u 7→

∫

Ω

f(x, u(x),∇u(x)) dx,

with respect to strong convergence in L1(Ω; Rd) (see also [4], [19], [16], [17] and the references contained
therein). The approach in [18] is based on blow–up and truncation methods.

Similar truncation techniques have been used quite successfully in the study of existence and qualitative
properties of solutions of second order elliptic equations and systems (see e.g. the work of [7] and the
references contained within). Their main drawback lies in the fact that they cannot be easily extended to
truncate gradients or higher order derivatives. This may explain in part why several important results for
second order elliptic equations have no analog for higher order equations.

The main result of this paper extends Meyers’ Theorem to the case where weak convergence in W k,1(Ω; Rd)
is replaced by (1.1) together with a weak form of coercivity of the convex or 1-quasiconvex density f (see
Theorem 2 below). We start with the case where f depends essentially only on x and on the highest order
derivatives, that is ∇ku(x). This situation is significantly simpler than the general case, since it does not
require to truncate the initial sequence {un} ⊂ W k,1(Ω; Rd). Using the notation and terminology introduced
in Section 2, we state the following:

Theorem 1. Let f : Ω×Ed
[k−1]×Ed

k → [0,∞) be a Borel integrand. Suppose that for all (x0,v0) ∈ Ω×Ed
[k−1]

and ε > 0 there exist δ0 > 0 and a modulus of continuity ρ, with ρ(s) ≤ C0(1 + s) for s > 0 and for some
C0 > 0, such that

f(x0,v0, ξ) − f(x,v, ξ) ≤ ε(1 + f(x,v, ξ)) + ρ(|v − v0|)(1.2)

for all x ∈ Ω with |x−x0| ≤ δ0, and for all (v, ξ) ∈ Ed
[k−1] ×Ed

k . Assume also that one of the following three

conditions is satisfied:
(a) f(x0,v0, ·) is k-quasiconvex in Ed

k and

1

C1
|ξ| − C1 ≤ f(x0,v0, ξ) ≤ C1(1 + |ξ|) for all ξ ∈Ed

k ,(1.3)

where C1 > 0;
(b) f(x0,v0, ·) is 1-quasiconvex in Ed

k and

0 ≤ f(x0,v0, ξ) ≤ C1(1 + |ξ|) for all ξ ∈Ed
k ,(1.4)

where C1 > 0;
(c) f(x0,v0, ·) is convex in Ed

k .
Let u ∈ BV k(Ω; Rd) and let {un} be a sequence of functions in W k,1(Ω; Rd) converging to u in W k−1,1(Ω; Rd).

Then
∫

Ω

f(x, u, . . . ,∇ku) dx ≤ lim inf
n→∞

∫

Ω

f(x, un, . . . ,∇kun) dx.

Here ∇ku is the Radon–Nikodym derivative of the distributional derivative Dku of ∇k−1u, with respect to
the N–dimensional Lebesgue measure LN . An important class of integrands which satisfy (1.2) of Theorem
1 is given by

f = f(x, ξ) := h(x)g(ξ),

where h(x) is a nonnegative lower semicontinuous function and g is a nonnegative function which satisfies
either (a) or (b) or (c). The case where h(x) ≡ 1 and g satisfies condition (a) was proved by Amar and De
Cicco [2]. Theorem 1 extends a result of Fonseca and Leoni [17] to higher order derivatives. Related results
when k = 1 where obtained previously by Serrin [25] in the scalar case d = 1 and by Ambrosio and Dal
Maso [4] in the vectorial case d > 1 (see also Fonseca and Müller [18], [19]). Even in the simple case f = f(ξ)
it is not known if Theorem 1(a) still holds without the coercivity condition

f(ξ) ≥
1

C1
|ξ| − C1.
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When the integrand f depends on the full set of variables in an essential way, the situation becomes
significantly more complicated since one needs to truncate gradients and higher order derivatives in order to
localize lower order terms. The main result of the paper is given by the following theorem:

Theorem 2. Let f : Ω × Ed
[k−1] × Ed

k → [0,∞) be a Borel integrand, with f(x,v, ·) 1-quasiconvex in Ed
k ,

such that

0 ≤ f(x,v, ξ) ≤ C(1 + |ξ|) for all (x,v, ξ)∈Ω × Ed
[k−1] × Ed

k ,(1.5)

where C > 0. Suppose that for all (x0,v0) ∈ Ω × Ed
[k−1] either f(x0,v0, ξ) ≡ 0 for all ξ ∈ Ed

k , or for every

ε > 0 there exist C1, δ0 > 0 such that

f(x0,v0, ξ) − f(x,v, ξ) ≤ ε(1 + f(x,v, ξ)),(1.6)

f(x,v, ξ) ≥ C1|ξ| −
1

C1
(1.7)

for all (x,v) ∈ Ω × Ed
[k−1] with |x − x0| + |v − v0| ≤ δ0 and for all ξ ∈ Ed

k . Let u ∈ BV k(Ω; Rd), and let

{un} be a sequence of functions in W k,1(Ω; Rd) converging to u in W k−1,1(Ω; Rd). Then
∫

Ω

f(x, u, . . . ,∇ku) dx ≤ lim inf
n→∞

∫

Ω

f(x, un, . . . ,∇kun) dx.

A standing open problem is to decide whether Theorem 2 continues to hold under the weaker assumption
that f(x,v, ·) is k-quasiconvex, which is the natural assumption in this context. The main tool in the proof
of Theorems 1-3 is the blow–up method introduced by Fonseca and Müller [18], [19], which reduces the
domain Ω to a ball and the target function u to a polynomial. Rather than using a smooth truncation of
the sequence {un} within the space W k,1(Ω; Rd), we consider one of the type un 1En

where 1En
denotes

the characteristic function of some set En, and thus we need to enlarge the class of admissible functions to
include special functions of bounded variation of order k. A truncation of this type has been introduced by
Carriero, Leaci and Tomarelli in [10].

As in Theorem 1, conditions (1.5) and (1.6) can be considerably weakened if we assume that f(x,v, ·) is
convex rather than 1-quasiconvex. Indeed we have the following result:

Theorem 3. Let f : Ω × Ed
[k−1] × Ed

k → [0,∞] be a lower semicontinuous function, with f(x,v, ·) convex

in Ed
k . Suppose that for all (x0,v0) ∈ Ω × Ed

[k−1] either f(x0,v0, ξ) ≡ 0 for all ξ ∈ Ed
k , or there exist C1,

δ0 > 0, and a continuous function g : B(x0, δ0) × B(v0, δ0) → Ed
k such that

f(x,v, g(x,v)) ∈ L∞ (B(x0, δ0) × B(v0, δ0); R) ,(1.8)

f(x,v, ξ) ≥ C1|ξ| −
1

C1
(1.9)

for all (x,v) ∈ Ω × Ed
[k−1] with |x − x0| + |v − v0| ≤ δ0 and for all ξ ∈ Ed

k . Let u ∈ BV k(Ω; Rd), and let

{un} be a sequence of functions in W k,1(Ω; Rd) converging to u in W k−1,1(Ω; Rd). Then
∫

Ω

f(x, u, . . . ,∇ku) dx ≤ lim inf
n→∞

∫

Ω

f(x, un, . . . ,∇kun) dx.

It is interesting to observe that without a condition of the type (1.8) Theorem 3 is false in general. This
has been recently proved by Černý and Malý in [12].

2. Preliminaries

We start with some notation. Here Ω ⊂ R
N is an open, bounded subset, LN and HN−1 are, respectively,

the N dimensional Lebesgue measure and the N − 1 dimensional Hausdorff measure in R
N . Given ν ∈

SN−1 := {x ∈ R
N : |x| = 1} let {ν1, · · · , νN−1, ν} be an orthonormal basis of R

N varying continuously with
ν, and let Qν := {x ∈ R

N : |x · νi| < 1/2, |x · ν| < 1/2, i = 1, · · · , N − 1} be a unit cube centered at the
origin with two of its faces orthogonal to the direction ν. We set Qν(x0, ε) := x0 + εQν .
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We recall briefly some facts about functions of bounded variation which will be useful in the sequel. A
function u ∈ L1(Ω; Rd) is said to be of bounded variation, and we write u ∈ BV

(

Ω; Rd
)

, if for all i = 1, · · · d,
and j = 1, · · ·N , there exists a Radon measure µij such that

∫

Ω

ui(x)
∂ϕ

∂xj
(x) dx = −

∫

Ω

ϕ(x) dµij

for every ϕ ∈ C1
0 (Ω; R). The distributional derivative Du is the matrix–valued measure with components

µij . Given u ∈ BV (Ω; Rd) the approximate upper and lower limit of each component ui, i = 1, · · · d, are
given by

u+
i (x) := inf

{

t ∈ R : lim
ε→0+

1

εN
|({y ∈ Ω ∩ Q(x, ε) : ui(y) > t})| = 0

}

and

u−
i (x) := sup

{

t ∈ R : lim
ε→0+

1

εN
|({y ∈ Ω ∩ Q(x, ε) : ui(y) < t})| = 0

}

,

while the jump set of u, or singular set, is defined by

S(u) :=

d
⋃

i=1

{x ∈ Ω : u−
i (x) < u+

i (x)}.

It is well known that S(u) is N − 1 rectifiable, i.e.

S(u) =
∞
⋃

n=1

Kn ∪ E,

where HN−1(E) = 0 and Kn is a compact subset of a C1 hypersurface. If x ∈ Ω\S(u) then u(x) is taken
to be the common value of (u+

1 (x), · · · , u+
d (x)) and (u−

1 (x), · · · , u−
d (x)). It can be shown that u(x) ∈ R

d

for HN−1 a.e. x ∈ Ω\S(u). Furthermore, for HN−1 a.e. x ∈ S(u) there exist a unit vector νu(x) ∈ SN−1,
normal to S(u) at x, and two vectors u−(x), u+(x) ∈ R

d (the traces of u on S(u) at the point x) such that

lim
ε→0

1

εN

∫

{y∈Q(x0,ε): (y−x)·νu(x)>0}

|u(y) − u+(x)|N/(N−1)dy = 0

and

lim
ε→0

1

εN

∫

{y∈Q(x0,ε): (y−x)·νu(x)<0}

|u(y) − u−(x)|N/(N−1)dy = 0.

Note that, in general, (ui)
+ 6= (u+)i and (ui)

− 6= (u−)i. We denote the jump of u across S(u) by [u] :=
u+ − u−. The distributional derivative Du may be decomposed as

Du = ∇uLN + (u+ − u−) ⊗ νu HN−1⌊S(u) + C(u),

where ∇u is the density of the absolutely continuous part of Du with respect to the N–dimensional Lebesgue
measure LN and C(u) is the Cantor part of Du. These three measures are mutually singular.

The space SBV (Ω; Rd) of special functions of bounded variation, introduced by De Giorgi and Ambrosio
[14], is the space of all functions u ∈ BV (Ω; Rd) such that

Du = ∇uLN + (u+ − u−) ⊗ νu HN−1⌊S(u).

For any multi-index α = (α1, . . . , αN ) ∈ N
N , we use the notation

∇α :=
∂|α|

∂xα1
1 . . . ∂xαN

N

, |α| = α1 + . . . + αN

and for each j ∈ N the symbol ∇ju stands for the vector-valued function whose components are all the
components of the ∇αu for |α| = j. If u is C∞ then for j ≥ 2 we have that ∇ju(x) ∈ Ed

j , where Ed
j stands

for the space of symmetric j-linear maps from R
N into R

d. We set Ed
1 := R

d×N and

Ed
[j−1] := R

d × Ed
2 × · · · × Ed

j−1.
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For any integer k ≥ 2 we define

BV k(Ω; Rd) :=
{

u ∈ W k−1,1(Ω; Rd) : ∇k−1u ∈ BV (Ω; Ed
k−1)

}

,

SBV k(Ω; Rd) :=
{

u ∈ SBV (Ω; Rd) : ∇ju ∈ SBV (Ω; Ed
j ) j = 1, . . . , k − 1

}

,

where ∇ju is the Radon–Nikodym derivative of the distributional derivative Dju of ∇j−1u, with respect to
the N–dimensional Lebesgue measure LN .

We recall that a function f : Ed
k → R is said to be k-quasiconvex if

f(ξ) ≤

∫

Q

f(ξ + ∇kw(y)) dy

for all ξ ∈ Ed
k and all w ∈ C∞

0 (Q; Rd) .
The following theorem was proved in the case k = 1 by Ambrosio and Dal Maso [4], while Fonseca and

Müller [18] treated general integrands of the form f = f(x, u,∇u), but their argument requires coercivity.
The case k ≥ 2 is due to Amar and De Cicco [2]. For completeness we give a proof for all k ≥ 1.

Proposition 1. Let f : Ed
k → [0,∞) be a k-quasiconvex function, such that

0 ≤ f(ξ) ≤ C (1 + |ξ|) ,(2.1)

for all ξ ∈ Ed
k . Moreover, when k ≥ 2 assume that

f(ξ) ≥ C1 |ξ| for |ξ| large.(2.2)

Let {un} be a sequence of functions in W k,1(Q; Rd) converging to 0 in W k−1,1(Q; Rd). Then

f(0) ≤ lim inf
n→∞

∫

Q

f(∇kun) dx.

Proof. We start with the case k ≥ 2. Without loss of generality we may assume that

lim inf
n→∞

∫

Q

f(∇kun) dx = lim
n→∞

∫

Q

f(∇kun) dx < ∞

so that by condition (2.2)

K := sup
n

∫

Q

|∇kun| dx < ∞.

Let ε > 0, M ∈ N, and decompose L := Q \ (1 − ε)Q into M layers with mutually disjoint interiors,
Li := αi+1Q \αiQ, so that 1 − ε = α1 < α2 < . . . < αM < 1 =: αM+1. Since

M
∑

i=1

∫

Li

(

1 + |∇kun|
)

dx ≤ K + 1

for all n ∈ N, there exists iε ∈ {1, . . . , M} and a subsequence of {un} (not relabelled) such that
∫

Liε

(

1 + |∇kun|
)

dx ≤
K + 1

M
for all n ∈ N.(2.3)

Let ϕ ∈ C∞
c (Q; [0, 1]) with ϕ(x) = 1 in αiε

Q, ϕ(x) = 0 if x /∈ αiε+1Q. Since f is k-quasiconvex

f(0) ≤ lim inf
n→∞

∫

Q

f(∇k (ϕun)) dx

≤ lim inf
n→∞

∫

Q

f(∇kun) dx +

∫

Q \αiε+1Q

f(0) dx

+ C lim sup
n→∞

∫

Liε

(

1 + |∇k (ϕun) |
)

dx,

where we have used (2.1). As un → 0 in W k−1,1(Q; Rd) strongly, we have

lim sup
n→∞

∫

Liε

(

1 + |∇k (ϕun) |
)

dx ≤ lim sup
n→∞

∫

Liε

(

1 + |∇kun|
)

dx ≤
K + 1

M



6 IRENE FONSECA, GIOVANNI LEONI, AND ROBERTO PARONI

by (2.3). We conclude that

αiε+1f(0) ≤ lim inf
n→∞

∫

Q

f(∇kun) dx +
K + 1

M
,

and the result now follows by letting first ε → 0+ and then M → ∞.
Next we prove the result when k = 1. As before, let ε > 0, M ∈ N and decompose L := Q \ (1 − ε) Q

into M layers with mutually disjoint interiors, Li := αi+1Q \αiQ, so that 1 − ε = α1 < α2 < . . . < αM <
1 =: αM+1 and, in addition αi+1 − αi = ε

M , i = 1, . . . , M. Fix

M = Mn :=

[

n

∫

Q

(1 + |∇un|) dx

]

+ 1,

where [·] denotes the integer part, and let ϕi ∈ C∞
c (Q; [0, 1]) with ϕi(x) = 1 in αiQ, ϕi(x) = 0 if x /∈ αi+1Q,

‖∇ϕi‖∞ ≤ 2M
ε , i = 1, . . . , M. We have

∫

Q

f(∇ (ϕiun)) dx ≤

∫

Q

f(∇un) dx +

∫

Q \αi+1Q

f(0) dx

+ C

∫

Li

(1 + |∇un|) dx + C
2M

ε

∫

Li

|un| dx.

Thus

1

M

M
∑

i=1

∫

Q

f(∇ (ϕiun)) dx ≤

∫

Q

f(∇un) dx +

∫

Q \α1Q

f(0) dx

+
C

M

∫

Q \α1Q

(1 + |∇un|) dx +
C

ε

∫

Q \α1Q

|un| dx

≤

∫

Q

f(∇un) dx + O (ε) +
1

n
+

C

ε

∫

Q \α1Q

|un| dx.

We may, therefore, find i = i(n, ε) ∈ {1, . . . , M} such that

f(0) ≤

∫

Q

f(∇ (ϕiun)) dx ≤

∫

Q

f(∇un) dx + O (ε) +
1

n
+

C

ε

∫

Q \α1Q

|un| dx,

and the conclusion follows by letting n → ∞ and then ε → 0+.

Next we present two approximation results for convex functions.

Proposition 2. Let M be a closed set of R
p, let V be a reflexive and separable Banach space. Let f :

M × V → (−∞, +∞] be a M × (w − V ) sequentially lower semicontinuous function, convex in the last
variable and such that there exists a continuous function v0 : M → V with

(f(·, v0(·)))
+ ∈ L∞(M ; R).(2.4)

Then there exist two sequences of continuous functions

aj : M → R, bj : M → V ∗,

where V ∗ is the dual space of V , such that

f(t, v) = sup
j

(aj(t)+ < bj(t), v >)

for all t ∈ M and v ∈ V . Moreover if f is bounded from below, then (2.4) can be weakened to

(f(·, v0(·)))
+
∈ L∞

loc(M ; R).(2.5)

Proposition 2 was proved by Fonseca and Leoni in [17], following closely the argument of Ambrosio in
[3], who studied the case where (2.4) is replaced by the assumption that f(·, v0(·)) is continuous.

The following result is due to Serrin (cf. [25]).
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Proposition 3. Let A be an open set of R
p and let f : A×R

q → [0, +∞) be a continuous function, convex
in the last variable. Then for every pair of positive numbers L, ε, and every compact set C of A, there exists
a function g(t, v) with compact support in A, satisfying the same hypotheses as f , and such that

(i) g(t, v) ≤ f(t, v) + ε(1 + |v|).
(ii) |g(t, v) − f(t, v)| ≤ ε for t ∈ C and |v| ≤ L.
(iii) There exist constants C1 and C2 such that

0 ≤ g(t, v) ≤ C1(1 + |v|), |g(s, v) − g(t, v)| ≤ C2|s − t|(1 + |v|).

The following result is due to Fonseca and Müller (see Lemma 2.6 in [18]; see also [22]).

Proposition 4. Let v ∈ W 1,1
loc (RN ; Rd), let 0 < α < β < L, and let K > 0 be such that

∫

{|v|≤L}∩Q

|∇v(y)| dy ≤ K.(2.6)

Then

essinf
t∈[α,β]

tHN−1({y ∈ Q : |v(y)| = t}) ≤
K

log(β/α)
.

3. Proof of Theorems 1-3

Proof of Theorem 1. Without loss of generality we may assume that

liminf
n→∞

∫

Ω

f(x, un(x), . . . ,∇kun(x)) dx = lim
n→∞

∫

Ω

f(x, un(x), . . . ,∇kun(x)) dx < ∞.

Passing to a subsequence, if necessary, there exists a nonnegative Radon measure µ such that

f(x, un(x), . . . ,∇kun(x))LN⌊Ω
∗
⇀ µ

as n → ∞, weakly ⋆ in the sense of measures. We claim that

dµ

dLN
(x0) = lim

ε→0+

µ(Q(x0, ε))

εN
≥ f(x0, u(x0), . . . ,∇ku(x0)) for LN a.e. x0 ∈ Ω,(3.1)

where Qν(x0, ε) := x0 +εQν . If (3.1) holds, then the conclusion of the theorem follows immediately. Indeed,
let ϕ ∈ Cc(Ω; R), 0 ≤ ϕ ≤ 1. We have

∫

Ω

f(x, un, . . . ,∇kun) dx ≥ lim inf
n→∞

∫

Ω

ϕ f(x, un, . . . ,∇kun) dx

=

∫

Ω

ϕ dµ ≥

∫

Ω

ϕ
dµ

dLN
dx ≥

∫

Ω

ϕ f(x, u, . . . ,∇ku) dx.

By letting ϕ → 1, and using Lebesgue Dominated Convergence Theorem, we obtain the desired result. Thus,
to conclude the proof of the theorem, it suffices to show (3.1).

Take x0 ∈ Ω such that

dµ

dLN
(x0) = lim

ε→0+

µ(Q(x0, ε))

εN
< ∞, lim

ε→0+

1

εN

∫

Q(x0,ε)

|u(x) − Tk(x)|

|x − x0|
k

dx = 0,(3.2)

where

Tk(x) :=
∑

|α|≤k

1

α!
∇αu(x0)(x − x0)

α,

and set

v0 :=
(

u(x0), . . . ,∇k−1u(x0)
)

.
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Choosing εh ց 0 such that µ(∂Q(x0, εh)) = 0, then

lim
h→∞

µ(Q(x0, εh))

εN
h

= lim
h→∞

lim
n→∞

1

εN
h

∫

Q(x0,εh)

f(x, un, . . . ,∇kun) dx

= lim
h→∞

lim
n→∞

∫

Q

f(x0 + εhy, Tk−1(x0 + εhy) + εk
hwn,h(y),∇Tk−1(x0 + εhy)

+ εk−1
h ∇wn,h(y),∇2Tk−1(x0 + εhy) + εk−2

h ∇2wn,h(y), . . . ,∇kwn,h(y)) dy,

where

wn,h(y) :=
un(x0 + εhy) − Tk−1(x0 + εhy)

εk
h

.

Clearly wn,h ∈ W k,1(Q; Rd), and by (3.2), lim
h→∞

lim
n→∞

||wn,h − w0||W k−1,1(Q;Rd) = 0, where

w0(y) :=
∑

|α|=k

1

α!
∇αu(x0)y

α.

By a standard diagonalization argument, we may extract a subsequence wh := wnh,h which converges to w0

in W k−1,1(Q; Rd), and such that

dµ

dLN
(x0) = lim

h→∞

∫

Q

f(x0 + εhy, Tk−1(x0 + εhy) + εk
hwh(y), . . . ,∇kwh(y)) dy.(3.3)

By condition (1.2) for all ε > 0 and for h large enough

(1 + ε)
dµ

dLN
(x0) + ε ≥ lim

h→∞

(
∫

Q

f(x0, u(x0), . . . ,∇k−1u(x0),∇
kwh(y)) dy −

∫

Q

ρ(|zh(y)|) dy

)

,

where

zh(y) :=
(

Tk−1(x0 + εhy) + εk
hwh(y), . . . ,∇k−1Tk−1(x0 + εhy) + εh∇

k−1wh(y)
)

− v0.

By Fatou’s Lemma, and since ρ is continuous with ρ(0) = 0, we have

C0 − lim sup
h→∞

∫

Q

ρ( |zh(y)|) dy = lim inf
h→∞

∫

Q

[C0(1 + |zh(y)|) − ρ(|zh(y)|)] dy

≥

∫

Q

lim inf
h→∞

[C0(1 + |zh(y)|) − ρ( |zh(y)|)] dy = C0,

and so
∫

Q

ρ(|zh(y)|) dy → 0 as h → ∞.

Thus

(1 + ε)
dµ

dLN
(x0) + ε ≥ lim

h→∞

∫

Q

f(x0,v0,∇
kwh(y)) dy.(3.4)

If g(ξ) := f(x0,v0, ξ) satisfies either condition (a) or (b) then we may apply Proposition 1 to conclude
that

(1 + ε)
dµ

dLN
(x0) + ε ≥ f(x0, u(x0), . . . ,∇ku(x0)),

and it suffices to let ε → 0+. If g is convex then we can write

g(ξ) = sup
j

gj(ξ),

where gj(ξ) is convex, 0 ≤ gj(ξ) ≤ gj+1(ξ) ≤ Cj+1(1 + |ξ|). From (3.4) and for any fixed j, we have

(1 + ε)
dµ

dLN
(x0) + ε ≥ lim inf

h→∞

∫

Q

gj(∇
kwh(y)) dy ≥ gj(∇

ku(x0)),

where we have used Proposition 1. By letting j → ∞ we obtain as before that

dµ

dLN
(x0) ≥ f(x0, u(x0), . . . ,∇ku(x0)).
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Proof of Theorem 2. We proceed as in Theorem 1 until (3.3). By (1.5), without loss of generality we may
assume that wh ∈ C∞

c (Q; Rd). If f(x0,v0, ξ) ≡ 0 for all ξ then there is nothing to prove. Otherwise, fix
ε > 0 and let 0 < δ < δ0, where δ0 is given by (1.6) and (1.7). For h sufficiently large, we have that

∣

∣

(

x0 + εhy, Tk−1(x0 + εhy), . . . ,∇k−1Tk−1(x0 + εhy)
)

− (x0,v0)
∣

∣ ≤ δ/2.(3.5)

Let

Qh :=
{

y ∈ Q :
∣

∣

(

wh(y), . . . ,∇k−1wh(y)
)
∣

∣ ≤ δ/2εh

}

.

From (3.3) and (1.7), and for h large,

(3.6)
dµ

dLN
(x0) + 1 ≥

∫

Qh

f(x0 + εhy, Tk−1(x0 + εhy) + εk
hwh(y), . . . ,∇kwh(y)) dy

≥ C1

∫

Qh

|∇kwh(y)| dy − 1/C1,

and so there exists a constant K > 0 such that
∫

Qh

∣

∣

(

∇wh(y), . . . ,∇kwh(y)
)
∣

∣ dy ≤ K for all h ∈ N.(3.7)

Set α := δ/2ε
1/2
h and β := δ/2εh. By Proposition 4 we may find Lh ∈ (δ/2ε

1/2
h , δ/2εh) such that

LhH
N−1

({

y ∈ Q :
∣

∣

(

wh(y), . . . ,∇k−1wh(y)
)
∣

∣ = Lh

})

≤
2K

log(1/ε
1/2
h )

.(3.8)

Define

D+
h :=

{

y ∈ Q :
∣

∣

(

wh(y), . . . ,∇k−1wh(y)
)
∣

∣ > Lh

}

; D−
h :=

{

y ∈ Q :
∣

∣

(

wh(y), . . . ,∇k−1wh(y)
)
∣

∣ ≤ Lh

}

.

Since wh ∈ C∞
c (Q; Rd), the C∞open set D+

h is compactly contained in Q. Define

vh(y) := wh(y) 1D−

h
(y),

where 1D−

h
denotes the characteristic function of the set D−

h . It is easy to see that vh ∈ SBV k(Ω; Rd), with

∇jvh(x) =







∇jwh(x) LN a.e. in D−
h

0 LN a.e. in D+
h ,

for j = 1, . . . , k, so that
∫

Q

∣

∣

(

∇vh(y), . . . ,∇kvh(y)
)
∣

∣ dy ≤ K for all h ∈ N,(3.9)

where we have used (3.7) and the fact that D−
h ⊂ Qh, while for j = 0, . . . , k − 1, we have that

S
(

∇jvh

)

⊆ ∂D−
h

so that, from the definition of the sets D−
h and (3.8),

(3.10)

∫

S(∇jvh)∩Q

(

1 +
∣

∣

[

∇jvh

]
∣

∣

)

dHN−1

≤ (1 + Lh)HN−1
({

y ∈ Q :
∣

∣

(

wh(y), . . . ,∇k−1wh(y)
)
∣

∣ = Lh

})

≤
4K

log(1/ε
1/2
h )

→ 0

as h → ∞. Moreover for j = 0, . . . , k − 1,

||∇jvh −∇jw0||L1(Q;Ed
j
) = ||1D−

h
∇jwh −∇jw0||L1(Q;Ed

j
)

≤ ||∇jwh −∇jw0||L1(Q;Ed
j
) +

∥

∥∇jw0

∥

∥

L1(D+
h

;Ed
j
)

≤ ||∇jwh −∇jw0||L1(Q;Ed
j
) + ||∇jw0||∞

∣

∣D+
h

∣

∣→ 0 as h → ∞,
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because

0 ≤
∣

∣D+
h

∣

∣ =
∣

∣

{

y ∈ Q :
∣

∣

(

wh(y), . . . ,∇k−1wh(y)
)
∣

∣ > Lh

}
∣

∣

≤
∣

∣{y ∈ Q : |
(

wh(y), . . . ,∇k−1wh(y)
)

−
(

w0(y), . . . ,∇k−1w0(y)
)

| ≥ 1}
∣

∣

≤ ||wh − w0||W k−1,1(Q;Rd) → 0 as h → ∞,

(3.11)

where we have used the fact that Lh > 1+||
(

w0, . . . ,∇k−1w0

)

||∞ for h large enough. By (3.5), the definition

of the set D−
h and the fact that εh → 0, we have that

∣

∣

(

x0 + εhy, Tk−1(x0 + εhy), . . . ,∇k−1Tk−1(x0 + εhy) + εh∇
k−1wh(y)

)

− (x0,v0)
∣

∣ ≤ δ,

for y ∈ D−
h , and thus by (3.3), (1.5) and (1.6),

dµ

dLN
(x0) ≥ lim

h→∞

∫

D−

h

f(x0 + εhy, Tk−1(x0 + εhy) + εk
hwh(y), . . . ,∇kwh(y)) dy

≥ lim
h→∞

(

∫

D−

h

f(x0,v0,∇
kwh(y)) dy − εC

∫

D−

h

(1 + |∇kwh(y)|) dy

)

≥ lim
h→∞

∫

D−

h

f(x0,v0,∇
kvh(y)) dy − εC(1 + K),

(3.12)

where we have used (3.7). Moreover by (3.11)
∫

D+
h

f(x0,v0,∇
kvh(y)) dy =

∫

D+
h

f(x0,v0, 0) dy → 0 as h → ∞,

and so, from (3.12), we deduce that

dµ

dLN
(x0) ≥ lim inf

h→∞

∫

Q

f(x0,v0,∇
kvh(y)) dy − Cε(1 + K).(3.13)

Let zh(y) := ∇k−1vh(y). Then zh ∈ SBV (Q; Ed
k−1), with ||zh −∇k−1w0||L1(Q;Ed

k−1)
→ 0. Moreover, since

D+
h ⋐ Q we have that zh(y) ≡ 0 in a neighborhood of ∂Q, so that we may extend zh to be zero outside Q,

without introducing further jumps in zh nor in its derivatives. Let {ϕδ} , δ > 0, be a family of C∞ mollifiers
and define

Zh,δ (y) := (ϕδ ∗ zh) (y) :=

∫

RN

ϕδ (y − x) zh(x) dx.

Then

lim
h→∞

lim
δ→0+

||Zh,δ −∇k−1w0||L1(Q;Ed
k−1)

= 0.(3.14)

Since ∇Zh,δ = ϕδ ∗ Dzh = ϕδ ∗ ∇zh + ϕδ ∗ Dszh, by the Lipschitz continuity of f(x0,v0, ·), which follows
from 1-quasiconvexity (see e.g. [13]), we obtain

(3.15)

∫

Q

f(x0,v0,∇Zh,δ(y)) dy ≤

∫

Q

f(x0,v0, ϕδ ∗ ∇zh(y)) dy + C |Dszh| ((1 + δ)Q)

=

∫

Q

f(x0,v0, ϕδ ∗ ∇
kvh(y)) dy + C

∫

S(∇k−1vh)∩Q

(

1 +
∣

∣

[

∇k−1vh

]
∣

∣

)

dHN−1,

where we have used the fact that zh has compact support in Q. Since for each fixed h

lim
δ→0+

∫

Q

f(x0,v0, ϕδ ∗ ∇
kvh(y)) dy =

∫

Q

f(x0,v0,∇
kvh(y)) dy

by (3.13), (3.15) we have
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dµ

dLN
(x0) ≥ lim inf

h→∞
lim inf
δ→0+

∫

Q

f(x0,v0,∇Zh,δ(y)) dy

− lim sup
h→∞

C

∫

S(∇k−1vh)∩Q

(

1 +
∣

∣

[

∇k−1vh

]
∣

∣

)

dHN−1 − εC(1 + K)

= lim inf
h→∞

lim inf
δ→0+

∫

Q

f(x0,v0,∇Zh,δ(y)) dy − εC(1 + K),

(3.16)

by virtue of (3.10). By (3.14), the 1-quasiconvexity of f(x0,v0, ·), and applying Proposition 1 we have

dµ

dLN
(x0) ≥ f(x0, u(x0), . . . ,∇ku(x0)) − εC(1 + K).

Now we let ε → 0+.

Proof of Theorem 3. We proceed as in Theorem 1 until (3.3). By Proposition 2, with M = (x0 + ε1Q) ×

B(v0, δ) and V = Ed
k , there exist two sequences of continuous functions

aj : M → R, bj : M → Ed
k ,

such that

f(x,v, ξ) = sup
j

(aj(x,v) + bj(x,v) · ξ)

for all (x,v) ∈ M and ξ ∈ Ed
k . Define

fj(x,v, ξ) := sup
i≤j

(ai(x,v) + bi(x,v) · ξ)+ .

Then fj(x,v, ξ) ≤ f(x,v, ξ) and fj(x,v, ξ) → f(x,v, ξ) as j → ∞. Moreover, fj is continuous, convex in ξ
and

0 ≤ fj(x,v, ξ) ≤ Cj(|ξ| + 1)(3.17)

for all (x,v) ∈ M and ξ ∈ Ed
k , where

Cj := max{Aj(x,v) : (x,v) ∈ M}, with Aj(x,v) = sup
i≤j

{|ai(x,v)| + |bi(x,v)|}.

By (3.3) for any fixed j, and with the notation introduced in the proof of Theorem 2,

dµ

dLN
(x0) ≥ lim

h→∞

∫

D−

h

f(x0 + εhy, Tk−1(x0 + εhy) + εk
hwh(y), . . . ,∇kwh(y)) dy

≥ lim
h→∞

∫

D−

h

fj(x0 + εhy, Tk−1(x0 + εhy) + εk
hwh(y), . . . ,∇kwh(y)) dy

= lim
h→∞

∫

D−

h

fj(x0 + εhy, Tk−1(x0 + εhy) + εk
hvh(y), . . . ,∇kvh(y)) dy.

(3.18)

Moreover, by (3.17) and (3.11)
∫

D+
h

fj(x0 + εhy, Tk−1(x0 + εhy) + εk
hvh(y), . . . ,∇kvh(y)) dy ≤ Cj

∫

D+
h

(1 + |∇kvh| )dy = Cj

∣

∣D+
h

∣

∣→ 0

as h → ∞, and so, from (3.18)

dµ

dLN
(x0) ≥ lim inf

h→∞

∫

Q

fj(x0 + εhy, Tk−1(x0 + εhy) + εk
hvh(y), . . . ,∇kvh(y)) dy.(3.19)

We now fix ε > 0, and apply Proposition 3 with

A := (x0 + ε1Q) × Ed
[k−1], C := (x0 + ε2Q) × B(v0, δ) and L := |∇ku(x0)|,



12 IRENE FONSECA, GIOVANNI LEONI, AND ROBERTO PARONI

to obtain a function gj such that, by (3.19),

dµ

dLN
(x0) ≥ lim inf

h→∞

(
∫

Q

gj(x0 + εhy, Tk−1(x0 + εhy) + εk
hvh(y), . . . ,∇kvh(y)) dy − ε

∫

Q

(1 + |∇kvh(y)|) dy

)

≥ lim inf
h→∞

(
∫

Q

gj(x0,v0,∇
kvh(y)) dy − (C2δ + ε)

∫

Q

(1 + |∇kvh(y)|) dy

)

≥ lim inf
h→∞

∫

Q

gj(x0,v0,∇
kvh(y)) dy − (C2δ + ε)(1 + K)

by Proposition 2(iii) and (3.9), and where we have used the fact that
∣

∣

(

vh(y), . . . ,∇k−1vh(y)
)
∣

∣ ≤ δ/2εh.

We can now continue as in the previous theorem to conclude that

dµ

dLN
(x0) ≥ gj(x0, u(x0), · · · ,∇ku(x0)) − (C2δ + ε)(1 + K).

By applying Proposition 3(ii) we have

dµ

dLN
(x0) ≥ fj(x0, u(x0), · · · ,∇ku(x0)) − (C2δ + ε)(2 + K).

Now we let first δ → 0+, then ε → 0+, and finally j → ∞.
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