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Abstract

We review recent theories of non-classical, structured deformations and integral rep-
resentations for their Helmholtz free energy. Energy minimizers for a body undergoing
shearing at two di¤erent length scales and for a bar experiencing both smooth exten-
sion and macroscopic fractures then are determined, and applications to the shearing
of single crystals and to the cohesive fracture of solids are discussed. Yield, hysteresis,
and the associated dissipation in two-level shears are shown to arise from instabilities
at the microlevel, and the dichotomy between brittle and ductile fracture is related
precisely to a critical length of a bar.
(Running head: Structured Deformations, Fracture, and Hysteresis)
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1 Introduction

Structured deformations [1],[2] provide a geometrical setting rich enough to include not only

the smooth, classical deformations that underlie much of solid and �uid mechanics, but also

the piecewise smooth deformations that describe macroscopic cracking as studied in frac-

ture mechanics, as well as the complex combination of macroscopic and microscopic changes

relevant for the study of liquid crystals, crystals with defects, and granular materials. The
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variety of geometrical changes described by structured deformations o¤ers many mecha-

nisms for lowering the energy of a body. Thus, the determination of metastable equilibrium

con�gurations of a body entails the resolution of complex competitions between smooth

deformations and non-smooth �disarrangements� [3] at both macroscopic and microscopic

length scales. For example, in a metallic solid, separation of a crack at a single site at the

macrolevel can compete with lattice distortions and slip at many sites at the microlevel to

determine how the solid responds to prescribed tractions and displacements.

In the context of complex geometrical changes at more than one length scale, it is essen-

tial to have a rational procedure for assigning an energy to each structured deformation. In

the paper [4], a procedure is set forth that permits one to determine the bulk and interfacial

densities of the (Helmholtz) free energy associated with each structured deformation, given

the corresponding free energy densities for each piecewise classical, simple deformation [1].

The results obtained in [4] show that the bulk density of free energy of a structured defor-

mation can be in�uenced not only by the bulk density but also by the interfacial density

of free energy for simple deformations that approximate the given structured deformation.

Moreover, precise relations among these densities are derived in [4] via tools from geometric

measure theory and the calculus of variations.

In this paper, we summarize in Sections 2 and 3 the geometry and the energetics of

structured deformations, and we employ this framework in Sections 4 and 5 to predict in

simple models the onset and detailed features of fracture, yielding, and hysteresis.

In Section 2.1 we describe the basic concepts and principal results for structured defor-

mations in the original setting studied in the papers [1],[2], while in Section 2.2 we reexamine

these concepts in a broader mathematical setting employing �functions of special bounded

variation�, functions that arise naturally in applications based on the calculus of variations

[4]. In this setting, a counterpart (Theorem 2.12, [4]) of the Approximation Theorem (The-

orem 5.8, [1]) forms the basis for the de�nition of the energy of a structured deformation. In
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turn, the formulas for bulk and interfacial free energy density given in Section 3 provide the

basis for the analysis of fracture and hysteresis in Sections 4 and 5. The reader interested

mainly in these applications may wish to skip the material in Sections 2.2 and 3 on a �rst

reading of this paper.

In Section 4 we address the competition between shearing at two di¤erent length scales to

determine the equilibrium con�gurations of a body at �xed temperature. In Section 4.1 we

consider a two-dimensional body that undergoes special structured deformations called �two-

level shears.�Macroscopically, each two-level shear is a simple shear of amount �, called the

macroshear. A microview of a two-level shear reveals small thin parallel rectangular bodies

that undergo individually a simple shear of amount , called the shear without slip. The

di¤erence �� is shown to be a volume density of deformation due to microslip and is called

the shear due to microslip. The de�nition of a structured deformation in Section 2.1 permits

� and  to be arbitrary real numbers, and the representation of the bulk free energy density

provided in Section 3 tells us that this density H for a two level shear is a function of � and

of . Under special circumstances described at the end of Section 3, this function reduces to

the sum of a function of  alone and a function of ��  alone:

H(�; ) = '() +  (�� ): (1)

When applied to a single crystal that can deform through lattice distortion and through

slips concentrated within slip bands, the term '() in (1) is the free energy associated with

smooth distortion of the crystal lattice, and the term  (�� ) is the free energy associated

with the slips of parts of the lattice relative to other parts that accumulate across slip bands.

These interpretations lead us to assume that ' is a non-negative, smooth, strictly convex

function and that  is a non-negative, smooth periodic function whose period p is interpreted

and estimated in Section 4.3.

In Section 4.1 we �nd for each � 2 R the local minimizers of the function  7�! '() +
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 (� � ), i.e., we �nd the (meta)stable two-level shearing con�gurations of a rectangular

block when the macroshear � is prescribed. We show that the stable equilibrium pairs (�; )

consist of countably many bounded, smooth S-shaped curves in the �- plane (Figure 5

), called stable branches. We demonstrate in Section 4.1 and 4.2 how the geometry of the

stable branches is compatible with the phenomenon of hysteresis, when pairs (�; ) not only

are permitted to move continuously along stable branches, but also are permitted to jump

vertically from a point of one stable branch to a point on another stable branch (Figure 6).

Each vertical jump between stable branches corresponds to a sudden redistribution of the

current macroshear � between the shear without microslip  and the shear due to microslip

�� . As we show in Section 4.2, this redistribution of shear is the source of hysteresis and

dissipation for two-level shears under prescribed macroshear.

We examine also in Sections 4.1 and 4.2 the problem of determining the local minimizers of

the function (�; ) 7�! '()+ (��)���, with � a given real number. This corresponds to

�nding the (meta)stable two-level shearing con�gurations of a bar under prescribed shearing

traction �. As shown in Section 4.1, the stable pairs (�; ) form a proper subset of the stable

pairs under prescribed macroshear, with each stable branch now ending at points where the

tangent line is horizontal and where the shear without microslip attains an absolute maximum

or an absolute minimum value (Figure 7). We show how the geometry of the stable branches

is compatible with yielding and hysteresis, when pairs (�; ) now are permitted to jump

horizontally from an endpoint of one stable branch to an endpoint of another. In each

horizontal jump to the right from a maximum of , and in each horizontal jump to the left

from a minimum of , the free energy does not change and the work done is positive. Such

horizontal jumps between neighboring branches are dissipative and irreversible. In spite of

the irreversibility of these jumps, the original stable branch can be reached again from a

neighboring branch by �rst moving the pair (�; ) along the neighboring stable branch so as

to change  from its maximum to its minimum value (or vice versa), and then undergoing
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a horizontal jump back to the original stable branch. In this manner, the phenomena of

yielding and hysteresis are compatible with the two-level shearing of a bar under prescribed

shearing tractions (Figure 8). Both phenomena arise through transitions between unstable

pairs at the ends of stable branches of the equilibrium locus. These transitions may be

described as material instabilities at the microlevel.

In Section 4.3 we examine the physical setting of a single crystal with speci�c choices of

the free energy densitities ' and  . Experiments show that families of parallel slip bands with

separations on the order of 104 atomic units support the deformation due to microslip, and

we indicate how this fact �xes the period p of the microslip energy density  at the value

10�4. Our simple model predicts that irreversible shearing deformation due to microslip

can occur only in integral multiples of 10�4; changes in microslip of magnitude less than

10�4 correspond to reversible movement of the pair (�; ) on a single stable branch. The

choice made for ' implies that the traction � and the shear without microslip  satisfy

the linear relation � = k, with k = '00() at a stable equilibrium triple (�; ; �), so that

(�; ) = (�; �
k
). Thus, the stable branches in the �- plane are necessarily the stable branches

of the �stress-strain�relation
�
(�; �) j (�; �

k
; �) is a stable triple

	
: To within a rescaling of

the vertical axis by a factor of k, the curves in Figure 8 describe the stress-strain relation for

a bar undergoing two-level shear under prescribed traction and for the choices of free energy

densities ' and  made in Section 4.3. In this subsection, we also calculate and compare

numerical values of the ratio '= at the onset of shearing and at yield.

In contrast to the competition between shearing without slip and shearing due to microslip

studied in Section 4, we turn our attention in Section 5 to the competition between one-

dimensional, smooth stretching of a bar and one-dimensional cohesive fracture of the bar.

Thus, we focus on the following questions: at what value of stretch, if any, during the smooth

extension of a bar does the formation of one or more cracks become energetically favorable,

and, if cracks do form, what occurs after their formation?
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In Section 5.1 we consider simple deformations with energy

E(f) =

lZ
0

W (rf(x)) dx+
X
z2�(f)

�([f ](z)) (2)

given as a sum of two parts, a bulk part with density W depending on the gradient of

the macroscopic deformation and an interfacial part concentrated at the jump set �(f) and

expressed by the values of a function � of the jumps. The bulk density W is assumed to

be strictly convex. To re�ect the assumed cohesive nature of fracture as described in the

model of Barenblatt [5], we assume that the function � is increasing and strictly concave.

We consider here only the case of a bar in a hard device for which the deformed length �l

is speci�ed, with � a given positive number.

In Sections 5.1 and 5.2 we consider the �rst and second variations of the energy (2) of

the bar constrained by the hard device and obtain both necessary and su¢ cient conditions

for a given simple deformation to be a local minimizer. Two of the necessary conditions that

we establish are statements of uniformity of the deformation: rf and [f ] must be constant.

Therefore, the energy at stationary points takes the simple form

E(f) = lW (rf) + n�([f ]) (3)

with n the number of jumps, and the deformed length of the bar is given by

lrf + n[f ] = �l: (4)

The assumptions made on the function � imply the inequality �(n[f ]) � n�([f ]), and this

tells us that it is energetically favorable to replace n small cracks of a single size by one large

crack n times that size. In other words, a metastable con�guration of the bar must have at

most one crack, so that n = 0 or n = 1: In the case of extension, � � 1, a local minimizer

must satisfy 1 � rf � �:

These considerations lead us to seek local minimizers of the function rf 7�! lW (rf) +

�(l(��rf)) on the interval [0; �]: The analysis carried out in Section 5.2 yields the locus of
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pairs (rf; �) that correspond to metastable equilibria of the bar (Figures 10 and 11). Two

cases can occur, depending upon whether the undeformed length l of the bar exceeds or is less

than a critical length lc determined by the functionsW and �. For the case l > lc; the stable

branches are as shown in Figure 10, and there is a distinguished value of the extension �

below which no fracture occurs and above which a crack of size no less than a speci�c positive

amount must form. This case is referred to as brittle fracture, because the distribution of

deformation between smooth extension and cracking changes abruptly at the distinguished

value of the extension. For the case l � lc, the stable branches are given in Figure 11,

and there again is a distinguished value of the extension � below which no fracture occurs.

As � increases through this value, a crack does open, but the amount of opening increases

gradually from the value 0 as � increases above the distinguished value. Thus, when the the

undeformed length of the bar exceeds the critical length, for small extensions it is energetically

favorable to have no cracks and for large extensions it is energetically favorable to have one

crack of a known minimum size. When the undeformed length of the bar is no greater than

the critical length, at small extensions it is again energetically favorable to have no cracks,

but for large extensions it is energetically favorable to have one crack whose size increases

gradually from zero with the amount of extension. This case is referred to as ductile fracture

because of the gradual increase in crack size. The analysis in Section 5.2 also provides us

with the stress-extension diagrams for both brittle and ductile fracture (Figure 12). Finally,

in Section 5.3 we discuss the relationship between our results and other research on fracture.

We have shown that the energetics of structured deformations given in Sections 2 and

3 is consistent with the phenomena of yield, hysteresis, brittle fracture, and ductile frac-

ture. The analysis of the examples in Section 4, to model a competition between shearing

without microslip and shearing due to microslip, and in Section 5, to model a competition

between smooth stretching and cohesive fracture of a bar, encourages us to believe that a

more systematic incorporation of the theory of structured deformations into continuum me-
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chanics may enable us to describe and to predict a wider class of phenomena of interest in

contemporary materials science.

2 Geometry of Structured Deformations

2.1 Structured Deformations

In this subsection we follow the description of structured deformations contained in the ar-

ticles [1]-[3], presenting the essential de�nitions and results. We begin by making explicit

the classes of regions that bodies can occupy in the N -dimensional Euclidean space E . Ac-

cording to Noll and Virga [6] a �t region A is a bounded, regularly open subset of E with

�nite perimeter and whose boundary has zero volume. A piecewise �t region [1] is a �nite

union of (not necessarily disjoint) �t regions. The de�nition of a structured deformation

rests on two special kinds of deformations: classical deformations and simple deformations.

A classical deformation from a �t region A is an orientation-preserving mapping f : A ! E

that extends to all of E as a C1-mapping that is invertible and whose inverse is of class C1. A

simple deformation is a �piecewise classical deformation� in the following sense: a simple

deformation from a piecewise �t region A is a pair (�; f) with � a subset of A and f a

mapping from An� into E such that � has volume zero, f is injective, and An� is a �nite

union of �t regions from each of which f is a classical deformation. The set � is called the

disarrangement site and the mapping f is called the transplacement for the simple deforma-

tion (�; f). (In [1], � was called the crack site; the more comprehensive term disarrangement

was introduced in [3].)

A structured deformation (�; g;G) from a piecewise �t region A consists of a simple

deformation (�; g) from A and a continuous tensor �eld G : An� ! LinV (with V the

translation space of E and LinV the set of all linear mappings on V ) such that

(1) G is piecewise continuous on the closure of A, i.e., there exists a �nite collection of
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�t regions fAj : j 2 f1; � � � ; Jgg whose union is An� and for each of which G jAj extends

continuously to the closure of Aj;

and

(2) there exists a positive number m for which

m � detG(x) � detrg(x) (5)

for all x in An� .

The de�nition of structured deformation by itself provides no interpretation for the ten-

sor �eld G , but an interpretation is provided by the Approximation Theorem [1]: every

structured deformation (�; g;G) from A is a limit of simple deformations from A, in the

sense that there exists a sequence n 7�! (�n; fn) of simple deformations such that

g = lim
n!1

fn; (6)

G = lim
n!1

rfn; (7)

and

� = lim inf
n!1

�n: (8)

In (6) and (7), the limits are taken in the sense of L1 convergence, and in (8) lim infn!1 �n

:=
S1
n=1

T1
p=n �p. The relations (6)-(8) identify each ingredient in a structured deformation

(�; g;G) in terms of the disarrangement sites, transplacements, and gradients of transplace-

ments associated with a sequence of simple deformations n 7�! (�n; fn). These �identi�ca-

tion relations� justify our calling � the (permanent) disarrangement site, g the transplace-

ment, and G the deformation without disarrangements: G(x) represents the local deforma-

tion at x without including the e¤ects of discontinuities of the transplacements fn at the

disarrangement sites �n for the approximating simple deformations (�n; fn): In the limit as

n tends to in�nity, some of the points of the disarrangement sites �n occur repeatedly as

members of the disarrangement site � and some di¤use away from � throughout subregions
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of A. Moreover, the limit in (7) permits us to interpret deformations associated with G as

occuring away from the disarrangement sites �n in smaller and smaller pieces of the body,

i.e.,

G(x) = lim
r!0

lim
n!1

LN(B(x; r))�1
Z

B(x;r)n�n

rfn(y)dy (9)

for all x 2 An�, where B(x; r) is the ball centered at x of radius r and LN denotes Lebesgue

measure in the N -dimensional space E . By contrast, we call rg and g the macroscopic local

deformation and the macroscopic transplacement for the structured deformation (�; g;G):

they are encountered in classical descriptions of the geometrical changes in a continuous

body, whereas G re�ects geometrical changes at smaller length scales that we interpret as

changes in geometry at the microlevel.

The identi�cation relations (6)-(8) permit one to deduce an identi�cation relation for the

tensor �eldM := rg�G [2]: for each structured deformation (�; g;G) and for each sequence

n 7�! (�n; fn) satisfying (6)-(8), the relation

M(x) = lim
r!0

lim
n!1

LN (B(x; r))�1
Z

�(fn)\B(x;r)

[fn](y)
 �(y) dHN�1(y) (10)

holds for every x 2 An�. Here �(fn) is the set of jump points of fn, [fn](y) is the jump

of fn at y , �(y) is the unit normal to �(fn) at a point y in �(fn), and HN�1denotes N-1-

dimensional Hausdor¤ measure in E . Note that L3 and H2 are the usual volume and area

measures in three-dimensional Euclidean space. It was observed in [2] that relation (10)

identi�es M as the volume density of deformation due to discontinuities in transplacements

at the microlevel, and we call M the deformation due to microdisarrangements. (The term

deformation due to microfracture was used in [1].) Thus, the algebraically obvious identity

rg = G+M (11)

has the deeper signi�cance of an additive decomposition of the macroscopic deformation
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rg into the deformation without disarrangements G and the deformation due to microdis-

arrangements M .

We close this subsection by noting that detG is the volume change without disarrange-

ments, whereas detrg represents the macroscopic volume change. Thus, the second in-

equality in (5) expresses the condition that disarrangements can only increase or maintain

volumes. This condition is necessary in order that the transplacements fm approximating g

be injective and, hence, not cause interpenetration of matter [1]. Of course, the equality

detG = detrg (12)

expresses the condition that no volume changes occur through disarrangements.

2.2 Structured Deformations in the Context of SBV

We begin this subsection with an intuitive discussion of the spaces BV and SBV . The reader

familiar with these spaces is encouraged to skip to the de�nition of structured deformations

in the paragraph preceding relation (14).

In Section 3 we will give meaning to the energy of a structured deformation (�; g;G). In

view of the Approximation Theorem [1], given an approximating sequence of simple defor-

mations n 7! (�n; fn), it is natural to consider the limit

lim
n!1

( bulk energy of fn + interfacial energy of fn): (13)

An approximating sequence is far from unique, and an energetically obvious selection rests

upon the least costly sequences n 7! (�n; fn) realizing the in�mum of (13) over all possible

sequences that approximate (�; g;G). What can be said about this in�mum and its depen-

dence on the pair (g;G)? Characterizations of integral representations have been the focus

of extensive research in recent years and require thorough manipulations of approximating

sequences. In order to pursue such analysis, it becomes necessary to relax the regularity and
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convergence assumptions of (6), (7), and (8). Moreover, with the possibility of interpreting

�elds as limits of local averages of quantities at small length scales (see (9) and (10)), it is

natural to work with function spaces and topologies which do not center on pointwise behav-

ior but rather on averaging properties. Thus, it proves both useful and natural to generalize

the notion of a structured deformation and to weaken the pointwise convergence in (6) and

(7).

Just as generalizations of continuous and smooth functions may be provided by Lp and

Sobolev functions, a natural extension of the space of discontinuous, piecewise smooth func-

tions is BV , the space of functions of bounded variation. Functions of bounded variation are

functions whose weak (distributional) derivative is a measure. A piecewise smooth function

u is in BV , and its distributional derivative is comprised of two parts: a bulk part repre-

senting the gradient away from the disarrangement site and a singular part consisting of a

surface-like measure supported on the interface where the jump discontinuity occurs. This

singular measure contains information about both the area of the disarrangement site and

the amplitude of the disarrangement.

Of course, the space BV includes functions that are not piecewise smooth, and this

fact presents two potential di¢ culties. One is that the singular part of the derivative may

consist of a measure supported on a fractional dimensional set, i.e., a measure associated

with neither the bulk nor jump derivatives. Such behavior is exempli�ed by the Cantor-

Vitali function de�ned on the unit interval [0,1], an increasing continuous function whose

�bulk�derivative is zero (i.e., its graph has slope is zero at almost every point) but whose

distributional derivative is a positive measure supported on the Cantor middle-third set. By

removing such functions from BV , one obtains SBV , the set of functions of special bounded

variation [9]. Functions in SBV are truly generalizations of piecewise smooth functions,

as the singular part of their distributional derivative is supported exactly on the set where

the function experiences jump discontinuities. For this reason, the space SBV is su¢ ciently
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large to provide an excellent working environment. The second di¢ culty is that, even within

the SBV setting, jump discontinuities in a deformation u can be dense and the bulk part

of the derivative, written ru, may lose completely its curl-free structure.

To provide a broader setting for structured deformations (�; g;G), we shall consider

the transplacement g to be in SBV , and we shall assume the deformation without dis-

arrangements G to be an integrable tensor �eld. To give a precise description of the space

SBV , we let 
 � RN be an open, bounded set (with the Euclidean space E now identi�ed

with RN), and we recall that a function u 2 L1(
;RN) is said to be of bounded variation,

u 2 BV (
;RN), if for all i 2 f1; :::; Ng; j 2 f1; :::; Ng; there exists a �nite Radon measure

�ij such that Z



ui(x)
@'

@xj
(x) dLN(x) = �

Z



'(x) d�ij

for every ' 2 C10(
;R). Equivalently, u 2 BV (
;RN) if its distributional derivative Du

is a Radon measure with �nite total variation. It can be shown that Du = (�ij) may be

represented as the sum of three mutually singular measures: if U � 
 is an open set, then

Du(U) =

Z
U

ru(x) dLN(x) +
Z

�(u)\U

[u](x)
 �(x) dHN�1(x) + C(u)(U);

where ru is the density of the absolutely continuous part of Du with respect to LN , u+ and

u� are the traces of u on the jump set �(u); and [u] := u+�u� is the jump of u across �(u).

C(u) is the so-called Cantor part of the measure Du; its support has Hausdor¤ dimension

between N � 1 and N . We also write

Du = ruLN +Dsu;

with

Dsu(U) : =

Z
�(u)\U

[u](x)
 �(x) dHN�1(x) + C(u)(U)

13
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for every open set U � 
. If C(u) is the zero measure, then the total variation of Du is

given by

kDuk (
) :=
Z



jru(x)j dLN(x) +
Z
�(u)

��u+(x)� u�(x)
�� dHN�1(x):

Although in general curlru 6= 0, it is well known that ru is an approximate gradient

in that near each point x0 the function u is close, in average, to the a¢ ne function x 7!

u(x0) +ru(x0)(x� x0). Also, LN(�(u)) = 0, and �(u) is N � 1 recti�able, i.e., there exists

a countable family of C1 hypersurfaces fSkg1k=1 such that

HN�1(�(u)n [
k
Sk) = 0:

For details, we refer the reader to [7],[8].

In this enlarged setting, the counterparts of simple deformations are functions u 2

BV (
;RN) that either are smooth, in the sense that Du = ruLN , or are smooth away

from a recti�able set K. In both cases, C(u) = 0. The subspace of BV of functions u

with C(u) = 0 , the space of special bounded variation functions, written SBV (
;RN), was

introduced by De Giorgi and Ambrosio in [9].

To introduce structured deformations in this setting, we consider triples (�; g;G) satisfy-

ing

g 2 SBV (
;RN) and G 2 L1(
;MN�N);

with MN�N the vector space of N � N matrices, and satisfying � � 
 with LN(�) = 0: In

particular, structured deformations as de�ned in Section 2.1 meet these requirements. In the

following, we restrict attention to the case where � = �(g), and we write (g;G) in place of

(�(g); g; G). Following Choksi and Fonseca [4], we call such pairs structured deformations,

and we denote by SD(
) the set of all structured deformations.

Using a Lusin-type result due to Alberti [10], Choksi and Fonseca [4] obtained an analogue

of the Approximation Theorem of Del Piero and Owen [1]: for each (g;G) 2 SD(
) there

14
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exists a sequence n 7! fn in SBV (
;RN) such that

fn ! g in L1(
;RN) and rfn
�
* G in the sense of measures. (14)

We write in this case

(fn;rfn)* (g;G):

Once again, we recover analogues of the identi�cation relations (9) for G and (10) for M :=

rg �G:

G(x) = lim
r!0

lim
n!1

LN(B(x; r))�1
Z

B(x;r)

rfn(y)dy

and

M(x) = lim
r!0

lim
n!1

LN (B(x; r))�1
Z

�(un)\B(x;r)

[fn](y)
 �(y) dHN�1(y)

for almost every x 2 
.

Note that we must have Dsfn ! (rg � G)LN +Dsg in the sense of distributions, so if

rg 6= G we are forced, whether or not g is in the Sobolev space W 1;1, to consider in (14)

approximating functions fn 2 SBV nW 1;1. Suppose further that the sequence n 7�! jrfnj is

uniformly bounded in Lp for p > 1 and that supn jDfnj (
) < +1. A compactness theorem

for SBV due to Ambrosio [11] implies that, in any open subset E of 
 where rg(x) 6= G(x)

for almost every x 2 E, one must have

HN�1(�(fn) \ E)!1 as n!1:

We conclude that as n increases the jump discontinuities of fn di¤use throughout the part

of the region where rg di¤ers from G:

3 Energetics

In the sequel,W :MN�N ! [0;+1] is the bulk energy density and � : RN�SN�1 ! [0;+1]

is the interfacial energy density, where SN�1 :=
�
� 2 RN : k�k = 1

	
is the unit sphere in

15
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RN , and we assign to each f 2 SBV (
;RN) the energy

E(f) :=

Z



W (rf(x)) dLN(x) +
Z
�(f)

�([f ](x); �(x)) dHN�1(x):

We seek now to determine from this energy the �e¤ective energy�of a structured deformation

(g;G), i.e., the most energetically economical way to realize (g;G) in terms of the energies

E(fn) of approximations fn 2 SBV (
;RN). For example, put 
 := (0; 1)2 and consider the

pair (id; I) 2 GSD(
), with id the identity mapping and I the 2 � 2 identity matrix, and

put �(�; �) := j�j. With fn = id for every n, it is clear that

(fn;rfn)* (id; I) and E(fn) =W (I) for all n:

On the other hand, if for n even and (x; y) 2 (0; 1)2, we de�ne

f̂n(x; y) :=

8>>>>>><>>>>>>:
(x+ 1

n
; y) if y 2 (2k

n
; 2k+1

n
) and k 2

�
0; 1; :::; n�2

2

	

(x� 1
n
; y) if y 2 (2k+1

n
; 2k+2

n
) and k 2

�
0; 1; :::; n�2

2

	
;

then

(f̂n;rf̂n)* (id; I)

and

E(f̂n) =W (I) + �(
2

n
e1; e2)(n� 1)! W (I) + 2

as n ! 1, where e1 = (1; 0) and e2 = (0; 1). This example shows that limits of the energy

may depend on the choice of the approximating sequence.

Let p 2 (1;1) be given. We de�ne the relaxed (or e¤ective) energy I(g;G) for (g;G) 2

SD(
) with g 2 L1(
;RN) and G 2 Lp(
;MN�N) by

I(g;G) : = inf flim inf
n!1

E(fn) : fn 2 SBV (
;RN) for all n;

(fn;rfn)* (g;G); supn jrfnjLp(
;MN�N ) <1; supn jDfnj (
) <1g:

16
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The argument that established (14) can be used to show that the class of sequences oveer

which this in�mum is taken is non-empty. The SBV Compactness Theorem of Ambrosio

prevents us from considering interfacial energy densities � that are bounded below by a

positive constant. Otherwise, for sequences n 7! fn with bounded energy we would have

(fn;rfn)* (g;rg) and, hence, rg = G almost everywhere. Thus, structured deformations

(g;G) with rg 6= G on a set of positive measure would have in�nite energy.

In this section, we assume that the bulk and interfacial energy densities W and � are

continuous and satisfy the following hypotheses:

� (H1) there exists a constant K > 0 such that

jW (A)�W (B)j � K jA�Bj (1 + jAjp�1 + jBjp�1)

for all A;B 2MN�N ;

� (H2) there exist constants C; �; L > 0 such that for all � 2 RN and � 2 SN�1;

0 � �(�; �) � C j�j

and �����0(�; �)� �(t�; �)t

���� � Ct� j�j�+1

for every t 2 (0; L), where �0 is the positively homogeneous of degree one function

de�ned by

�0(�; �) := lim sup
t!0+

�(t�; �)

t
:

� (H3) � is subadditive, i.e., for all �1; �2 2 RN and � 2 SN�1

�(�1 + �2; �) � �(�1; �) + �(�2; �):

Using the blow-up method [12], it was shown in [4], Theorem 2.17 and Remark 3.3,

that for (g;G) 2 SD(
) with G 2 Lp(
;MN�N) the energy has the following integral

17
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representation:

I(g;G) =
Z



H(rg(x); G(x)) dLN(x) +
Z
�(g)

�([g](x)) dHN�1(x) (15)

where for each A;B 2MN�N the e¤ective bulk energy density is

H(A;B) : = inf f
Z

(0;1)N

W (ru(x)) dLN(x) +
Z
�(u)

�0([u](x); �(x)) dH
N�1(x) :

u 2 SBV ((0; 1)N ;RN); u j@(0;1)N= x 7! Ax;

jruj 2 Lp((0; 1)N ;R);
Z

(0;1)N

ru(x) dLN(x) = B g :

For � 2 RN the e¤ective surface energy density becomes

�(�) : = inff
Z
�(u)

�([u](x); �(x)) dHN�1(x) : u 2 SBV ((0; 1)N ;RN)

u j@(0;1)N= u�;eN ; ru = 0 a:e:g;

where

u�;eN (x) =

8>>>>>><>>>>>>:
� if x � eN > 0

0 if x � eN � 0:

In particular, we remark that the e¤ective bulk energy results from interaction of the initial

volume and interfacial energy densitiesW and�, while the e¤ective interfacial energy density

depends only on the initial interfacial energy �.

In the next section we consider the case where the e¤ective bulk energy density has the

form

H(A;B) = '(B) +  (A�B): (16)

It can be shown that this representation holds in the case where, in addition to the assump-

tions (H1)� (H3), the function W is given by W (A) = K
2
jA� A0j2 for all matrices A and
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for some K > 0 and reference deformation A0: In this case

H(A;B) =
K

2
jB � A0j2 +H(A�B; 0)� K

2
jA0j2 :

Moreover, for a bulk energy density W that vanishes at a reference deformation A0 , and for

an e¤ective bulk energy H of the form (16), it can be shown that

 (0) = '(A0) = 0: (17)

4 Applications to Hysteresis

4.1 Equilibrium and hysteresis within the class of two-level shears

In this subsection we restrict our attention to structured deformations that describe shears

at both macroscopic and microscopic levels. Let � and  be real numbers, put E = R2,

A = (0; 1)2, � = ;, and de�ne mappings g and G on A by

g(x; y) : = (x+ �y; y) (18)

G(x; y) : =

0BB@ 1 

0 1

1CCA : (19)

It is easy to verify that the triple (�; g;G) is a structured deformation from A in the sense

of Section 2.1. For this structured deformation, the transplacement is the simple shear g

of amount �, the macroscopic deformation is rg =

0BB@ 1 �

0 1

1CCA, the deformation without

disarrangements is G =

0BB@ 1 

0 1

1CCA, the deformation due to microdisarrangements is M =

0BB@ 0 �� 

0 0

1CCA, and the (permanent) disarrangement site is � = ;. Consequently, the relation
19
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(5) is veri�ed with

m = det

0BB@ 1 

0 1

1CCA = det

0BB@ 1 �

0 1

1CCA = 1: (20)

Moreover, if for each positive integer n we put

�n :=

�
(x;

k

n
) : x 2 (0; 1); k 2 f1; � � � ; n� 1g

�
and

fn(x; y) :=

�
x+ y +

[[ny]]

n
(�� ) ; y

�
; (21)

then n 7�! (�n ; fn) is a sequence of simple deformations that determines the structured

deformation (�; g;G) in the sense that relations (6)-(8) are satis�ed. In (21), [[�]] denotes

the greatest integer function, and the mapping fn is a piecewise a¢ ne mapping that divides

An�n into n horizontal strips, translates each strip to the right an amount (��)=n relative

to the one below it, and shears each strip an amount . Thus, the number � represents the

(amount of) shear at the macrolevel (or, more brie�y, the macroshear), the di¤erence �� 

represents the (amount of) shear due to microslip, and the number  is the (amount of)

shear without microslip. Macro- and microviews of a two-level shear are shown in Figures 1

and 2.

Because g extends to a smooth mapping on R2, so that the jump set �(g) is empty, the

representation (15) for the energy of a structured deformation given in Section 3 here takes

the form

I(g;G) =
Z
(0;1)2

H(rg(x); G(x))dL2(x); (22)

and we specialize further by assuming the decomposition (16)

H(A;B) = '(B) +  (A�B): (23)

Since rg and G are constant �elds that depend only on the numbers � and , relations (22)
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and (23) provide the following formula for the energy of a two-level shear:

I(�; ) = '() +  (�� ): (24)

For convenience, we have used the same symbols for the functions occuring in (24) as in (22)

and (23). In view of the applications to be discussed in Subsection 4.3, we refer to '()

as the lattice energy density and to  (� � ) as the microslip energy density for the given

two-level shear, and we assume

(i) ' : R! R is a non-negative, even function of class C3 satisfying '(0) = '
0
(0) =

0; '
0 0 0
() � 0 for all  2 [0;1); and there exists k > 0 such that '0 0

() � k for all  2 R;

(ii)  : R! R is a non-negative, even function of class C3 that is periodic with period

p > 0,  (0) =  
0
(0) =  

0 0
(p
4
) = 0;  

0 0
(0) > '

0 0
(0);  

0 0
(s) > 0 and  

0 0 0
(s) � 0 for all

s 2 (0; p
4
); and

 (s) =

8>>>>>><>>>>>>:
2 (p

4
)�  (p

2
� s) for s 2 [p

4
; p
2
)

 (p� s) for s 2 [p
2
; p):

(25)

Graphs of energy density functions satisfying (i) and (ii) are illustrated in Figures 3 and 4

(with ��  replaced by s in Figure 4).

We now identify within the class of two-level shears the equilibrium con�gurations of a

body whose Helmholtz free energy density in a two-level shear is given by relation (24) and

for which either the macroscopic shear � or the shear stress � := �xy is speci�ed.

Case 1 : In the case where we �x the macroscopic shear �; we consider the free energy

I in (24) to be a function of  alone and require for metastable equilibrium that I have a

local minimum. Therefore, we seek values for the shear without microslip  that satisfy

@I
@

= '
0
()�  

0
(�� ) = 0 (26)
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and
@2I
@2

= '
00
() +  

00
(�� ) > 0: (27)

We call pairs (�; ) that satisfy (26) stationary pairs, and we note that relation (27) is

su¢ cient in order that the stationarity condition (26) on the energy determine the shear

without microslip  locally as a function of the macroshear �. When this is the case, we

have
d

d�
=

 
00
(�� )

'00() +  
00
(�� )

: (28)

The assumptions (i) and (ii) on the lattice energy density ' and the microslip energy density

 imply that there are stationary pairs (�; ) that violate (27) [21]. The form of the locus

of stationary pairs implied by these assumptions is illustrated in Figure 5. The locus divides

into branches that alternately satisfy and violate (27), i.e., into locally stable branches and

unstable branches. In general, the transition between a stable and an unstable branch occurs

at stationary pairs (�; ) that satisfy

'
00
() +  

00
(�� ) = 0; (29)

according to relation (28), these pairs correspond to points on the locus of stationary pairs

at which the tangent line is vertical. Moreover, it is easy to show that the free energy I

attains its global maximum at such pairs, so that I decreases if  changes from its value

at the stationary pair P in Figure 5 where the tangent line is vertical to its value at the

pair Q where the vertical tangent line intersects the nearest stable branch of the locus of

stationary pairs. For a deformation process in which the macroshear �rst is increased, then

is decreased, and again is increased, the hysteresis loop shown in Figure 6 is consistent with

the requirements that the pair (�; ) follow stable branches of the locus of stationary pairs

and, in jumping from one branch to another, the free energy is decreased.

Case 2 : In the case where the shear stress � on the boundary of the region A is speci�ed,
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we take the total energy E to be the di¤erence

E(�; ; �) = I(�; )� �� (30)

between the free energy in relation (24) and the work done by the shear stress. We consider

now the total energy to be a function of � and  and require for equilibrium that E have a

local minimum. Therefore, we seek pairs (�; ) that satisfy

@E
@�

=  
0
(�� )� � = 0; (31)

@E
@

= '
0
()�  

0
(�� ) = 0; (32)

and

 
00
(�� )'

00
() > 0;  

00
(�� ) > 0: (33)

The inequalities in (33) express the condition that the Hessian of E be positive de�nite, and,

in view of the assumption (i) on ', they are equivalent to the positivity of  
00
(� � ). We

call pairs (�; ) that satisfy (32) stationary pairs, and relations (32) and (26) imply that

the locus of stationary pairs (�; ) when the shear stress � is speci�ed is the same as the

locus of stationary pairs (33) when the macroshear is speci�ed. However, relations (27)

and (33) imply that each stable branch when the shear stress is speci�ed is included in the

corresponding stable branch when the macroshear is speci�ed. The transition from stable to

unstable branch for speci�ed shear stress occurs when the equilibrium pair (�; ) satis�es

 
00
(�� ) = 0; (34)

and inspection of the sign of d
d�
in (28) together with relations (34), (32), and the assumption

(i) tell us that such transition pairs (�; ) must correspond to local maximum and minimum

values of the shear without microslip  . Thus, as is illustrated in Figure 7, the transition

pairs between stable and unstable branches are points where the tangent to the stationary
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locus is horizontal. We note that a jump from one transition pair to a neighboring pair

involves no change in the free energy, because  and, hence, the lattice energy '() do not

change, and because, from (31), (32), (34), and assumption (ii), � �  must change by the

period p of the microslip energy  . When the shear stress � and, hence, by (31) and (32),

the shear without microslip  are positive, a horizontal jump to the right from point P in

Figure 7 to the neighboring transition pair Q decreases the total energy E , and a horizontal

jump to the left from point P to the neighboring transition pair R increases E . When � is

negative, the situation reverses, and horizontal jumps to the left decrease the total energy

E . For a shearing process in which the shear stress � �rst is increased, then decreased, and

again is increased, the hysteresis loop shown in Figure 8 is consistent with the requirements

that the pair (�; ) remain on a stable branch of the locus of stationary pairs and, when

the pair jumps from one stable branch to another, the total energy decreases. The examples

illustrated in Figures 6 and 8 show that the class of two-level shears together with the form

of the free energy in (24) lead to collections of equilibrium states that are compatible with

hysteresis in processes for which the macroscopic shear is controlled and in processes for

which the shear stress is controlled.

4.2 Yielding and dissipation associated with two-level shears

Before describing in Subsection 4.3 speci�c kinds of materials that exhibit such hysteretic

response, we identify in these processes the counterparts of yielding, reversible loading and

unloading, and dissipation.

For processes in Case 2, where the shear stress is speci�ed, relation (31) and the fact that

 
0
is a bounded function imply that the magnitude of the shear stress cannot exceed the

maximum value of
��� 0
���. Processes that attain and maintain that value may cause the shear

due to microslip � �  to jump by an amount equal to an integral multiple of the period p

of the microslip energy  . This jump arises when the stationary pair (�; ) reaches the end
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of a stable branch of the locus of stationary pairs and jumps horizontally to another branch,

while decreasing the total energy. We identify this behavior as yielding of the material

due to material instabilities at the microlevel. Because the free energy is constant in the

horizontal jumps, we may identify the work �[� � ] = �[�] as the dissipation arising due

to the microinstability, where, as before, [�] denotes the jump in a given quatity. As noted

above, � and the jump [�] have the same sign; consequently, the dissipation is positive,

in agreement with thermodynamics. It is interesting to note that yielding is not the only

circumstance in which microslip occurs. In fact, relation (31) and the fact that  
0
(0) = 0

show that, when the shear stress � is non-zero, then so is the shear due to microslip �� .

Hence, non-zero shear stresses below the yield value �y := max
��� 0
��� also cause microslip.

However, the microslip below the yield value occurs without dissipation, in the sense that

the work done and the accompanying change in free energy I are equal. In fact, by (31),

(32), and (24), we may writeZ
�d� =

Z
 
0
(�� )d�+

�
'
0
()�  

0
(�� )

�
d

=

Z
@I
@�

d�+
@I
@
d = �I . (35)

Thus, whereas the microslip at yield occurs in the form of a jump in �� and is dissipative,

the microslip below yield occurs as a continuous variation in ��  without dissipation.

For processes in Case 1, where the macroshear � is speci�ed, the magnitude jj of the

shear without microslip is subject to a bound by virtue of relation (26) and the assumptions

(i) and (ii) on ' and  . However, jj must decrease subsequent to the attainment of that

bound before dissipative behaviour occurs. In fact, it is only when relation (29) is satis�ed

that an unstable branch of the locus of stationary pairs is encountered. At such a point, jj

jumps to a smaller value, � remains constant, and the free energy decreases without work

being done. Thus, the shear due to microslip experiences a jump that is accompanied by

dissipation, and the material yields at a �xed value of the macroshear and at a value of jj
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below its maximum. We again identify this behavior as a yielding due to microinstabilities;

the accompanying dissipation is simply the magnitude of the change in free energy associated

with the jump in . At stages of a process under controlled macroshear, microslip occurs as

long as  is non-zero, just as is the case in a process under controlled, non-zero shear stress.

If we identify the shear stress under controlled macroshear as the quantity '
0
(), then the

calculation in (35) shows that, just as for the case of controlled shear stress, microslip in the

absence of microinstabilities occurs without dissipation. An interpretation of yielding as a

material instability already was given in the 1930�s by Nakanishi [13], pp. 3 and 127. The

possibility that microscopic instabilities are the source of yielding and hysteresis was studied

in the doctoral dissertaion of Grolig [14], written under the supervision of P. Haupt.

4.3 Two level shears and slip mechanisms in single crystals

The cases considered in Subsections 4.1 and 4.2 show that the collection of equilibrium pairs

within the class of two-level shears is rich enough to capture simply and directly features

of yielding, hysteresis, and dissipation reminiscent of observed phenomenological properties

of metals. In this subsection, we describe in more detail connections between two-level

shears and the behavior of speci�c kinds of materials. We have in mind the use of two-level

shears to model the shearing of a piece of a single crystal that contains a large number of

parallel slip bands, whose thickness is each about 100 atomic units [15]. For the sequence

n 7�! (�n; fn) of simple deformations in (21), the disarrangment sites �n form a collection

of equally spaced parallel planes, and we identify each plane with a slip band. By (21) the

jump in transplacement [fn] across each slip band is (� � )=n and the vertical separation

of neighboring slip bands is 1=n, so that the relation

��  =
(�� )=n

1=n
(36)
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identi�es the shear due to microslip ��  as the (limiting) ratio of horizontal slip to vertical

spacing of the array of slip bands. This formula for our measure � �  of deformation due

to microslip is consistent with the de�nition of shear strain due to slip given by Taylor in

his studies of single crystals[16]. Note that if the horizontal slip across a given slip band

is one atomic unit and the separation of slip bands is 10,000 atomic units (as suggested in

the discussion by Hill [15], pp. 4-7), then we may conclude that the shear due to microslip

is 10�4. A horizontal slip of one atomic unit has particular signi�cance for the free energy

I, because such a slip translates the two halves of the crystal determined by the slip band

relative to one another, while restoring the original atomic con�guration of the two halves.

Therefore, if we interpret the term  (�� ) in (24) as the energy associated with microslip,

we are led to our earlier assumption in (ii) that  is periodic. Moreover, in the case where

slip bands are separated by 10,000 atomic units, � �  changes by 10�4 in a slip of one

atomic unit, and we are led to set the period p of  equal to 10�4: Because  is the shear

without microslip, we interpret the term '() in (24) as the energy due to distortion of the

crystalline lattice without the presence of slip.

It is instructive at this point to choose speci�c functions ' and  consistent with as-

sumptions (i) and (ii). For example, we take

'() : =
1

2
k2

(37)

 (�� ) : =
	0

2� � 104f1� cos(2� � 10
4(�� ))g:

with the positive numbers	0 and k to be further restricted below. (Recall from the discussion

at the end of Section 3 that the choiceW (A) = k
2
jA� Ij2 of initial bulk energy density assures

that the decomposition (23), with lattice energy density given by (37)1, is a consequence of

the representation (22).) The stationarity condition (32) then becomes

 =
	0
k
sin(2� � 104(�� )); (38)
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and the condition (34) for microinstability under prescribed shear stress reads

cos(2� � 104(�� )) = 0; (39)

an equation whose smallest positive solution is

��  =
1

4
� 10�4: (40)

The discussion in Hill [15] also suggests that the amount of strain at which dissipation �rst

arises is also 10�4, and we take this to mean that microinstability �rst occurs when � attains

that value. Thus, at the onset of microinstability, we may conclude from (40) that  equals

3
4
�10�4 and, from (38), that 	0

k
equals 3

4
�10�4: Therefore, the implicit relation (38) between

 and � becomes

 =
3

4
� 10�4 sin(2� � 104(�� )); (41)

(see Figure 9), and, indeed, with this value of the ratio 	0
k
, the functions ' and  satisfy the

conditions (i) and (ii) in Section 4.1. Moreover, (37) implies the relations

'yield =
9k

32
� 10�8

(42)

 yield =
3k

8�
� 10�8;

where the subscript �yield� indicates the value at the onset of microinstability under pre-

scribed shear stress. We conclude that the ratio of the lattice energy to the microslip energy

at yield is given by
'yield
 yield

=
3�

4
: (43)

On the other hand, the limit as the macroshear � tends to zero of the ratio at equilibrium

of lattice energy to microslip energy is readily calculated and has the value�
'

 

�
0

:= lim
�!0

'()

 (�� )
=
3�

2
: (44)
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Consequently, the speci�c choice (37) of ' and  implies that the ratio '= is halved in

proceeding from the initiation of shear to the onset of microinstability.

5 An Application to Fracture Mechanics

5.1 Equilibrium con�gurations of a bar

Let E be one-dimensional, let l > 0; and assume that a bar in its reference con�guration

occupies the interval (0; l). In order to emphasize the features of our analysis of fracture that

di¤er from the applications in Section 4, we focus our attention on the contributions to the

energy of the bar due to macroscopic deformation and due to macroscopic disarrangements

(fracture), leaving out the e¤ects of microscopic disarrangements. Accordingly, we consider in

this section only simple deformations (�; f) from (0; l). The de�nition of a simple deformation

in Section 2.1 applied to the present one-dimensional context tells us that � is a �nite subset

of (0; l), f is an injective, bounded, piecewise C1-function whose jump set �(f) is a subset of

�, and rf is a bounded, piecewise continuous function with a strictly positive lower bound.

We rule out the drastic case where pieces of the bar can be interchanged after fracture

by restricting our attention further to the case where f is strictly increasing, so that the

jump [f ](z) is positive for every z 2 �(f). In this context, we take the energy of a simple

deformation (�; f) to be

E(�; f) =

lZ
0

W (rf(x))dx+
X
z2�

�([f ](z)): (45)

We assume thatW is strictly convex, twice continuously di¤erentiable with second derivative

bounded below by a positive constant, and W (1) = W
0
(1) = 0: We assume further that the

interfacial energy density � : [0;1) ! R satis�es the hypotheses (H2) and (H3) made in

Section 3 with the unit vector � replaced here by the number 1. It follows that � is non-

negative with �(0) = 0; and further that � cannot be strictly convex. In view of the intended
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applications to fracture, it is assumed on the interval (0;1) that � is twice continuously

di¤erentiable with strictly negative second derivative and bounded �rst derivative, so that �

is strictly concave, �
0
is strictly decreasing, and 0 < �

0
(0+) <1. We note that the condition

�(0) = 0 permits us to replace � by �(f) as the range of summation in relation (45), because

at the points in �n�(f) the jump in f vanishes and, therefore, the corresponding energy does

not contribute to the sum. Accordingly, we write �(f) in place of � and f in place of (�; f)

in what follows.

Suppose now that the bar is constrained by means of a hard device, i.e., the length

�l = f(l�)� f(0+) after a simple deformation f is speci�ed. By formula (3.16) of [1]

lZ
0

rf(x)dx+
X
z2�(f)

[f ](z) = �l: (46)

The total energy of the bar then coincides with the energy in (45), and the condition that

the bar be in equilibrium implies the vanishing of the �rst variation

�E(f ; v) =

lZ
0

W
0
(rf(x))rv(x)dx+

X
z2�(f)

�
0
([f ](z))[v](z) (47)

for all variations v such that

(a) f + v is a simple deformation from (0; l) with �(f + v) � �(f);

and

(b) condition (46) is satis�ed with f replaced by f + v, or, equivalently:

lZ
0

rv(x)dx+
X
z2�(f)

[v](z) = 0: (48)

Variations v such that �(f + v)n�(f) 6= ; require a di¤erent argument and will be examined

in Section 5.2. Let x1 < x2 in (0; l)n�(f) and " in (0;minfx2�x1; x1; l�x2g) be given: Choose
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v";d to be the continuous, piecewise C1- mapping from (0; l) into R such that v";d(0+) = 0

and

rv";d(x) =

8>>>>>><>>>>>>:
d if x 2 (x1 � "; x1 + ");

�d if x 2 (x2 � "; x2 + ");

0 otherwise;

(49)

with

d := inffrf(x) : x 2 (0; l)n�(f)g = 2 > 0: (50)

Thus, f + v";d agrees with g on (0; x1� "] and on [x2+ "; l), increases more rapidly than f on

(x1 � "; x1 + "), more slowly than f on (x2 � "; x2 + "), and at the same rate elsewhere. By

the choice of d, f + v";d is bounded, piecewise C1 with derivative having a strictly positive

lower bound, so that f + v also is a simple deformation. It is clear that v";d satis�es the

condition (48), and the vanishing of the �rst variation (47) yields
"Z

�"

�
W

0
(rf(x1 + �))�W

0
(rf(x2 + �))

�
d� = 0: (51)

Because x1 and x2 are points of continuity of rf , because W
0
is continuous and " 2

(0;minfx2 � x1; x1; l � x2g) is arbitrary, we conclude that W
0
(rf(x1)) �W

0
(rf(x2)) = 0:

The strict convexity of W then tells us that rf(x2) = rf(x1), and because x1 and x2 are

arbitrary points in (0; l)n�(f), we conclude that a necessary condition for equilibrium of the

bar in the con�guration determined by f is that rf be constant on (0; l)n�(f). Therefore,

(47) becomes

�E(f ; v) = S

lZ
0

rv(x)dx+
X
z2�(f)

�
0
([f ](z))[v](z); (52)

where S := W
0
(rf) � 0 is called the equilibrium stress: In view of the constraint (48), the

vanishing of the �rst variation and (52) implyX
z2�(f)

(�
0
([f ](z))� S)[v](z) = 0: (53)
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Let z1 2 �(f) and recall that the jump [f ](z1) is non-negative. Therefore, for each A 2

(0; d); the function f + v
A
, with

v
A
(x) =

8>><>>:
�Ax for x 2 (0; z1)

�Ax+ lA for x 2 [z1; l);
(54)

is a simple deformation satisfying the constraint (48) and with jump Al + [f ](z1) at z1.

Consequently, relation (53) applied to the variation v
A
yields the condition

�
0
([f ](z1)) = S (55)

for all z1 2 �(f): To summarize, necessary conditions for equilibrium of the bar under the

simple deformation f are constancy of rf on (0; l)n�(f) and of [f ] on �(f); as well as the

relation

�
0
([f ]) =W

0
(rf): (56)

The relations (46) and (56) then imply that, if the bar is in equilibrium with � < 1, then

�(f) is empty, so that equilibrium under compression entails no fracture. Indeed, if � < 1

and �(f) 6= ;, since [f ] > 0, we would have �0
([f ]) = W

0
(rf) > 0; so that rf > 1: On the

other hand, we would also have

l > �l =

lZ
0

rf dx+
X
z2�(f)

[f ](z) >

lZ
0

rf dx > l;

a contradiction. We note, �nally, that the monotonicity of �
0
on [0;1) tells us that we may

solve the relation (56) for [f ] as a function of rf when the jump set �(f) is not empty:

[f ] = h(rf); (57)

where the decreasing, positive-valued, di¤erentiable function h is the inverse of �
0
composed

with W
0
:

h = �0 �1 �W 0: (58)
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For future reference we note that

h�1(0+) > 1: (59)

Indeed, �0(0+) > 0 by assumption. Then W 0 �1(�0(0+)) > W 0 �1(0) because W 0 �1 is

monotone, and the two members of this inequality are equal to h�1(0+) and 1, respectively.

5.2 Metastable con�gurations

Among the equilibrium con�gurations of the bar, we are interested in those which are

metastable, i.e., which are local minimizers of the energy in a sense to be made precise

below. Taking into account the constancy of rf and the relation (57), we have the neces-

sary condition for metastability:

��E(f)(v; v) =W
00
(rf)

lZ
0

rv(x)2dx+�00
(h(rf))

X
z2�(f)

[v]2(z) � 0 (60)

for all variations v satisfying (48) and such that f+v is a simple deformation with �(f+v) �

�(f): By choosing a continuous variation, we conclude immediately that W
00
(rf) must be

non-negative, as assumed at the beginning of Section 5.1. A further necessary condition for

metastability is obtained from (60) with the choice v
A
given in (54), namely,

lW
00
(rf)A2 +�00

(h(rf))l2A2 � 0

so that

W
00
(rf) + l�

00
(h(rf)) � 0: (61)

Finally, for points z1< z2 in �(f) and for each � with j�j � min f[f ](z1); [f ](z2)g ;we may

choose the variation v2;& de�ned by

v2;&(x) =

8>>>>>><>>>>>>:
0 for x 2 (0; z1)

� for x 2 (z1; z2)

0 for x 2 (z2; l);

(62)
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and obtain from (60) the necessary condition

�
00
(h(rf)) � 0;

which contradicts the assumed negativity of �
00
. In other words, simple deformations with

more than one jump point cannot be metastable.

Returning momentarily to �rst variations of the energy, we consider now the case of a

variation v for which �(f + v)n�(f) 6= ;. For example, choose z1 =2 �(f); let � 2 [0; d) be

given with d de�ned in (50), and choose a variation v as in (54) with A := �=2 to obtain the

energy

E(f + v) = lW

�
rg � �

2

�
+
X
z2�(f)

�([f ](z)) + �(l�=2) (63)

for a simple deformation that perturbes f by adding one crack of magnitude l�=2 and reducing

the stretch in the bar elsewhere so as to maintain the prescribed length �l. A necessary

condition for equilibrium is that the right-hand derivative of the right-hand side of (63) at

� = 0 be non-negative. This condition along with the relation (56), implies

�
0
(0+) � W

0
(rf) = S: (64)

In other words, in equilibrium, the stress is no greater than the positive number �
0
(0+):

We turn now to su¢ cient conditions for obtaining a local minimizer of the energy. It can

be proved [21] that if we de�ne the distance between two simple deformations f and �f by

d(f; �f) := sup
x2(0;l) n (�(f)[�( �f))

(
��f(x)� �f(x)

��+ ��rf(x)�r �f(x)��);
then we obtain the following su¢ cient conditions for a simple deformation f to correspond

to a metastable con�guration of the bar:

(A) rf is constant,
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(B) f has at most one jump point,

(C) relation (56) is satis�ed if f does have a jump point,

(D) relation (64) is satis�ed,

(E) relation (61) is satis�ed with strict inequality.

These su¢ cient conditions di¤er from the necessary conditions obtained above only by the

fact that inequality (61) in (E) must now be strict. Note also that the choice of distance d

is consistent with the notion of convergence given in formulae (6) and (7) in Section 2.1.

We consider the form that relation (46) assumes for metastable con�gurations:

� =

8>><>>:
rf when f has no jumps

rf + h(rf)
l

when f has one jump,

(65)

where h is the decreasing, di¤erentiable function in (58). The formula for the energy E in

(45) becomes

E(f) =

8>><>>:
W (rf)l when f has no jumps,

W (rf)l +�(h(rf)) when f has one jump.

(66)

We consider from now on the case � � 1 in which the bar is extended beyond its natural

length l. Our goal is to study the relations between � and rf at metastable con�gurations.

For con�gurations in which g has no jumps, because W
0
is invertible, the inequality (64) can

be rewritten in the form

rf � W 0 �1(�0(0+)): (67)

We also have from (65) that rf � 1; and we conclude that

1 � rf � h�1(0+):

Hence, for simple deformations in which f has no jump and � � 1; the deformation gradient

rf = � is bounded above by h�1(0+). Moreover, relation (57) tells us that if f has a jump,
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then rf must be in the range of h�1, and we may conclude that extension with a jump can

occur only if

infRng(h�1) � rf < � and rf � h�1(0+): (68)

In particular, if inf �
0
is positive, then inf Rng(h�1) > 1, and the bar extends from length l up

to length inf Rng(h�1)l without fracture. Whenrf is in the interval (inf Rng(h�1); h�1(0+)];

both of the relations between rf and � in (65) must be considered. Di¤erentiation of the

second relation in (65) with respect to rf , together with (56), (57), condition (E), and the

negativity of �
00
, yields:

d�

drf = 1 +
W

00
(rf)

l�00(h(rf)) =
W

00
(rf) + l�

00
(h(rf))

l�00(h(rf)) < 0 (69)

for metastable con�gurations with one crack. Thus, the metastable portion of the locus in

the rf � � plane representing equilibrium con�gurations with one crack

Lc :=
��
rf;rf + h(rf)

l

�
: rf 2 (infRng(h�1); h�1(0+))

�
(70)

consists only of branches on which the extension � is a decreasing function of rf . Relation

(65) describes not only the locus Lc but also the locus

Ln :=
�
(rf;rf) : rf 2 [1; h�1(0+)]

	
(71)

of equilibrium con�gurations without a crack. According to the su¢ cient conditions for

metastability listed above, all of the points on Ln are metastable.

Various possibilities for the geometry of the graph of the relation (65) arise depending

upon the length l of the undeformed bar and the functions W and �. For de�niteness, we

consider here only the case where inf �0 is positive. In this case, there are two possibilities,

depending upon whether l is greater than or smaller than the critical length

lc := �
W 00(�P )

�00(�P )
(72)
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with �P := h�1(0+). The �rst possibility, l > lc; corresponds to the case where both the

unstable and the stable portions of Lc are non-empty, as illustrated in Figure 10. We note

that the two loci Ln and Lc meet at the point P=(�P ; �P ): Moreover, the horizontal line

through the low point R on Lc and the horizontal line through P determine an interval

(�R; �P ) of extensions � for each of which there are three choices of rf such that the

point (rf; �) represents an equilibrium con�guration of the bar. We identify the three

corresponding branches of equilibrium pairs in Figure 10 from point R to Q, from R to P,

and from S to P by the symbols LRQ; LRP ; and LSP , respectively, and we note that LRP is

the unstable branch, that LQR [ LRP � Lc; and that LSP � Ln. On each of the branches

LRQ and LRP of Lc and on the single branch LSP of Ln we may use (65) to express rf as a

function of �; rf = G(�) � �, for � in the interval (�R; �P ) shown in Figure 10. For each

of these three branches, we can express the energy as a function of �,

ERQ(�) = lW (GRQ(�)) + �(h(GRQ(�))

ERP (�) = lW (GRP (�)) + �(h(GRP (�))

ESP (�) = lW (�);

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

(73)

and we wish to compare these energies at each � in the interval (�R; �P ): We note �rst that

ERQ(�R) = ERP (�R) and ERP (�P ) = ESP (�P ) (74)

because LRQ and LRP intersect at the point R; and LRP and LSP intersect at the point

P: Next, we compute the derivative of ERQ � ERP : Recalling from (65) that h(G(�)) =

l(� � G(�)), we have
d

d�
h(G(�)) = l(1� d

d�
G(�)); (75)
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and therefore, by (73), we obtain the formula

d

d�
(ERQ(�)� ERP (�)) = lW 0(GRQ(�))

d

d�
GRQ(�) + �0(h(GRQ(�)))l

�
1� d

d�
GRQ(�)

�
�lW 0(GRP (�))

d

d�
GRP (�)��0(h(GRP (�)))l

�
1� d

d�
GRP (�)

�
:

By employing (12) in the form W 0(G(�)) = �0(h(G(�))); we can reduce this relation to the

simple form
d

d�
(ERQ(�)� ERP (�)) = lW 0(GRQ(�))� lW 0(GRP (�)): (76)

Because W is a smooth, strictly convex function, its derivative W 0 is strictly increasing;

moreover, the de�nitions of the branches LRQ and LRP imply the relation GRQ(�)) < GRP (�)

for all � in the interval (�R; �P ): We conclude that the right-hand side of (76) is negative

and, therefore, that the di¤erence ERQ � ERP is strictly decreasing on [�R; �P ]. However,

by (74)1, this di¤erence vanishes at �R, so that

ERQ(�) < ERP (�) (77)

for all � in the interval (�R; �P ]: Similarly, the computation of the derivative of ERP �ESP

yields in place of (76) the relation

d

d�
(ERP (�)� ESP (�)) = lW 0(GRP (�))� lW 0(GSP (�));

from which we conclude that ERP �ESP also is strictly decreasing on [�R; �P ]: Because this

di¤erence vanishes at �P by (74)2; we have

ESP (�) < ERP (�) (78)

for all � in the interval [�R; �P ): From the fact that both ERQ � ERP and ERP � ESP are

strictly decreasing, it follows that the di¤erence ERQ � ISP = (ERQ � ERP ) + (ERP � ESP )

is strictly decreasing. Moreover, relations (74), (77), and (78) tell us that

ERQ(�R)� ESP (�R) = ERP (�R)� ESP (�R) > 0

ERQ(�P )� ESP (�P ) = ERQ(�P )� ERP (�P ) < 0;
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and the continuity and monotonicity of ERQ � ESP then yield the conclusion: there exists

exactly one extension �F in the interval (�R; �P ) such that (a) ERQ(�) > ESP (�) for all

� 2 [�R; �F ) and (b) WRQ(�) < WSP (�) for all � 2 (�F ; �P ]: As the extension � increases

from �R to �P ;when � = �F it becomes energetically favorable for a metastable equilibrium

pair (GSP (�); �) on the locus LSP to jump to a metastable equilibrium pair (GRQ(�); �) on

the locus LRQ. In passing through the extension �F , the deformation gradient rf decreases

discontinuously from �F to GRQ(�F ), due to the appearance of a positive jump

h(GRQ(�)) = l(�F � GRQ(�F )) (79)

in the transplacement. This sudden appearance of an opened crack is referred to as brittle

fracture, as distinguished from the �ductile fracture�to be described below, and the concen-

tration of deformation at the site of the crack, with consequent decrease in the deformation

gradient away from the crack, is an instance of strain localization in the sense described, for

example, in [20].

The second possibility, l < lc; is illustrated in Figure 11. In this case the locus Lc consists

entirely of metastable pairs. Because the two loci Ln and Lc must meet at the point P , each

horizontal line � = const: meets the equilibrium locus Ln[Lc in exactly one point. Thus, as

the extension � increases from its minimum value 1 to the value �P , metastable equilibrium

con�gurations of the bar follow the locus Ln, and as � increases beyond �P , the con�gurations

follow the locus Lc; without the appearance, as was the case for brittle fracture, of a sudden

lowering of the deformation gradient rf at the transition point P. Thus, in the present case,

a crack appears at the extension �P and opens gradually as � increases above this value. A

corresponding gradual lowering of the deformation gradient rf accompanies the opening of

the crack, as is shown in Figure 11. This situation is described by saying that ductile fracture

occurs as the bar passes through the equilibrium con�guration corresponding to the pair P.

The preceding analysis enables us to deduce deformation-elongation curves, rf v.s. �; for

39



Structured Deformations as Energy Minimizers in Models of Fracture and Hysteresis

the bar. In view of the identi�cation of the equilibrium stress S as the derivative W 0(rg) of

the bulk energyW , and by the assumed convexity ofW , there is a one-to one correspondence

between S and rf , S = W 0(rf); which makes it possible to obtain stress-elongation curves,

S v.s. �, from the deformation-elongation relations in Figures 10 and 11. In fact, there are

two types of stress-elongation curves for given energy densities W and �, depending upon

the length of the bar is greater than or less than the critical length l. These two types of

curves correspond to brittle and ductile fracture, respectively. In brittle fracture, the stress

increases with � to the value W 0(�F ); whereupon there is a discontinuous decrease in the

stress to the value W 0(GRQ(�F )); followed by a continuous decrease as illustrated in Figure

12(a). In ductile fracture the stress increases to a maximum valueW 0(�P ) and then decreases

continuously as shown in Figure 12(b).

5.3 Discussion

The dichotomy between brittle and ductile fracture has been studied by several authors. For

example, Needleman [17] considers a rectangular block with an imperfection in the form of

a band of reduced sti¤ness and takes two incremental constitutitve equations of the Kelvin-

Voigt type, one for the block and one for the band. His model predicts the occurence of ductile

fracture when both of the instantaneous elastic moduli are negative and of brittle fracture

when the modulus of the block is positive and that of the band is negative. The viscous

moduli are taken to be equal, and their common value, as a parameter in the model, does

not a¤ect the type of fracture. In contrast, Carpinteri [18] develops Barenblatt�s cohesive

crack model [5] using a crack in place of a band: the constitutive equation for the crack

is a relation between stress and jump in displacement determined by a concave, decreasing

function similar to the function �
0
in the present theory. The use of a crack in place of a

band permits one to predict a ductile-to-brittle transition that depends upon a scale factor

given by the length of the bar, as in the present analysis, whose presence has been con�rmed
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in many experiments over the years.

Another development of Barenblatt�s ideas is due to Truskinovsky [19]. He replaces the

bar by a �nite chain of atoms, each connected to its nearest neighbors by a non-linear spring

obeying the Lennard-Jones law of atomic interactions. The resulting relation between stress

and extension is similar to our Figure 12(a), with the form of the lowest branch depending

upon the number of atoms in the chain in such a way that the lowest branch approaches

the horizontal axis and the elongation �F , marking the transition between the two branches,

approaches zero as the number of atoms tends to in�nity. Thus, in the limit, the material

elongates inde�nitely at zero stress. Truskinovsky attributes this undesired e¤ect to the lack

of an internal length scale in the model and examines ways of introducing such a scale.

The approach presented here shares with Carpinteri�s model the feature of splitting the

energy into two parts, one associated with bulk e¤ects and one with interfacial e¤ects. Here

the scale factor l appears in (65), and its e¤ect on the form of the branch Lc of the equilibrium

loci in each of Figures 10 and 11 is embodied in relation (69). This e¤ect agrees with a result

of Schreyer and Chen [20], who considered the equilibrium of a strain-softeneing bar in the

presence of an imperfection distributed over a band and studied the slope of the stress-strain

curve in the neighborhood of the point �P in our Figures 10, 11, and 12(b) . An advantage

of the present model, as well as that of Truskinovsky, is that it does not assume that cracks

or bands pre-exist: these two models predict the formation of cracks, in the sense that cracks

provide energetically favorable alternatives to con�gurations without cracks.
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