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Abstract

We study the long-time behavior an extended Navier-Stokes system
in R2 where the incompressibility constraint is relaxed. This is one of
several “reduced models” of Grubb and Solonnikov ’89 and was revisited
recently (Liu, Liu, Pego ’07) in bounded domains in order to explain
the fast convergence of certain numerical schemes (Johnston, Liu ’04).
Our first result shows that if the initial divergence of the fluid velocity
is mean zero, then the Oseen vortex is globally asymptotically stable.
This is the same as the Gallay Wayne ’05 result for the standard Navier-
Stokes equations. When the initial divergence is not mean zero, we show
that the analogue of the Oseen vortex exists and is stable under small
perturbations. For completeness, we also prove global well-posedness
of the system we study.

1. Introduction

The dynamics of vortices of the incompressible Navier-Stokes equations play
a central role in the study of many problems. Mathematically, control of the
vorticity production [1, 8] will settle a longstanding open problem regarding
global existence of smooth solutions [7, 10]. Physically, regions of intense vor-
ticity manifest themselves as cyclones in the atmosphere [9,30], and at a slightly
decreased intensity as eddies in the oceans [6,32]. In all cases, regions of intense
vorticity are of vital geophysical (and astrophysical) interest.

After many years of intense study (see for instance [2, 3, 5, 11, 13, 15, 16, 24,
29, 31, 35–38]), the seminal work of Gallay and Wayne [14] proved the exis-
tence of a globally stable (infinite energy) vortex in R2, known as the Oseen
vortex. Physically, this means that any L1 configuration of vortex patches
will eventually combine into a “giant” vortex and then dissipate like the linear
heat equation. The main result of this paper is the analogue of this result
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for an extended Navier-Stokes system where the incompressibility constraint
is relaxed.

The equations we study are one of several “reduced models” of Grubb and
Solonnikov [18, 19]. This model resurfaced recently in [26] to analyze a stable
and efficient numerical scheme proposed in [22]. The numerical scheme is a time
discrete, pressure Poisson scheme which improves both stability and efficiency
of computation by replacing the incompressibility constraint with an auxiliary
equation to determine the pressure. The formal time continuous limit of this
scheme is the system

(1.1)


∂tu+(u ·∇)u+∇p= ∆u,

∂td= ∆d,

d=∇·u,

where u represents the fluid velocity and p the pressure. We draw attention to
the fact that the usual incompressibility constraint, d= 0, in the Navier-Stokes
equations has been replaced with an evolution equation for d. Of course, if
d= 0 at time 0, then it will remain 0 for all time and the system (1.1) reduces
to the standard incompressible Navier-Stokes equations.

In domains with boundary the system (1.1) has been studied by numerous
authors [20,21,23,26–28] both from an analytical and a numerical perspective.
Boundaries, however, cause production of vorticity in a nontrivial manner and
make the long time behavior of the vorticity intractable by current methods.
Thus, we study the system (1.1) in R2 where at least the long time behavior
of vorticity when d= 0 is now reasonably understood [14].

Since d approaches 0 asymptotically as t→∞, we expect that the long
time behavior of solutions to (1.1) should be the same as that of the standard
incompressible Navier-Stokes equations. Indeed, our first result (theorem 2.1)
shows that this is the case, provided the initial divergence d0 has mean 0.
In this case, the entropy constructed in [14] can still be used to show global
stability of the Oseen vortex. Surprisingly, if d0 does not have mean 0, the
nonlinearity contributes to the entropy non-trivially and we are unable to show
global stability of a steady solution using this method. Instead when d0 has
non-zero mean, we use methods similar to [34] and show existence (but not
uniqueness) of a solution that is stable under small perturbations globally in
time, provided d0 has a small enough mean. We are unable to show that this
solution is stable under large perturbations. Further, if d0 has large mean, we
are unable to show that this solution is stable even under small perturbations.

Plan of this paper. In section 2 we introduce our notation and state our main
results. Next, in section 3 we show that if β= 0 the Oseen vortex is the global
asymptotically stable steady state. Then, in section 4, we study the analogue
of this result when β 6= 0. We find the analogue of the Oseen vortex in this
context, but are unable to show a global stability result like in the case when
β= 0. We instead show that the solution is globally stable under perturbations
that are small in Gaussian weighted spaces. The proofs in section 3 relied on
certain heat kernel like bounds for the vorticity and on relative compactness of
complete trajectories. We prove these in sections 5 and 6 respectively. Finally,
to ensure our results long time results are not vacuously true, we conclude
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this paper with section 7, where briefly discuss global well-posedness for the
extended Navier-Stokes system in this context.

2. Statement of results.

For our purposes it is more convenient to formulate (1.1) in terms of the
vorticity

ω
def
=∇×u=∂1u2−∂2u1.

Taking the curl of (1.1) gives the system

∂tω+∇·(uω) = ∆ω,(2.1)

∂td= ∆d,(2.2)

u=KBS ∗ω+∇−1d,(2.3)

where, KBS and ∇−1 are defined by

KBS(x)
def
=

1

2π

x⊥

|x|2
, and ∇−1f def

=
1

2π

x

|x|2
∗f.

Equation (2.3) simply recovers u as the unique vector field with divergence d
and curl ω. When d= 0, this is simply the Biot-Savart law, hence our nota-
tion KBS .

Formally integrating equations (2.1) and (2.2), one immediately sees that
the quantities

(2.4) α
def
=

∫
R2

ω(x,t)dx, and β
def
=

∫
R2

d(x,t)dx

are constant in time. The value of α in the long term vortex dynamics is mainly
that of a scaling factor and not too important. The value of β, however, affects
the dynamics (or at least our proofs) dramatically. We begin by studying the
long term vortex dynamics when β= 0. In this case we show that the Oseen
vortex defined by

ω̃(x,t) =
1

t
G
( x√

t

)
is the globally stable solution, where

G(x)
def
=

1

4π
exp
(−|x|2

4

)
is the Gaussian. We state this as our first result.

Theorem 2.1. Suppose ω0, d0∈L1(R2) are such that |x|d0∈L1(R2) and
β= 0. If the pair (ω,d) solves the system (2.1)–(2.3) with initial data (ω0,d0)
then for any p∈ [1,∞] we have

(2.5) lim
t→∞

t1−1/p‖ω(t, ·)−αω̃(t,·)‖Lp = 0 and sup
t>0

t
3
2−

1
p ‖d(t, ·)‖Lp <∞.

When β 6= 0, we are unable to prove a result as strong as theorem 2.1, because
a key entropy estimate is destroyed by the nonlinearity. To formulate our result
in this situation, we first identify the analogue of the Oseen vortex. We show (in
section 4.1) that the radial self-similar solutions to the system (2.1)–(2.3) are
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obtained by rescaling Ws=Ws(β), where Ws is the unique, radially symmetric,
solution of the ODE

(2.6)
∂rWs

Ws
=
−r
2

+
β

2πr

(
1−e−r

2/4
)
, with normalization

∫
R2

Wsdx= 1.

A direct calculation shows that the pair (αω̃β , d̃β) defined by

(2.7) ω̃β(x,t) =
1

t
Ws

( x√
t

)
, d̃β(x,t) =

β

t
G
( x√

t

)
,

is a radially symmetric self-similar solution to the system (2.1)–(2.3), making
ω̃β the analogue of the Oseen vortex. When β= 0, we see Ws is exactly the
Gaussian G, but this is no longer true when β 6= 0. When β<4π the shape
of Ws is similar to that of the Gaussian in that Ws attains it’s maximum at
0 and is strictly decreasing for r>0. When β>4π, however, Ws attains its
maximum at some r0>0 and the profile looks like that of a “vortex ring” (see
figure 1). For any β 6= 0, the interaction between Ws and the nonlinearity is
largely responsible for the failure in our proof of theorem 2.1.
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Fig. 1. Plots of Ws vs r for β∈{−2π,0,2π,4π,8π,16π}.

Our main result when β 6= 0 uses the Gaussian weighted spaces appearing
in [13, 14, 34] and shows that the solution (αω̃β , d̃β) is stable under small per-
turbations. Explicitly, define the weighted spaces L2

w by

(2.8) L2
w

def
= {f ∈L2(R2) :‖f‖w<∞}, where ‖f‖2w

def
=

∫
G(x)−1|f(x)|2dx.

Now our stability result when β 6= 0 is as follows:

Theorem 2.2. Let t0>0 and (ω,d) solve the system (2.1)–(2.3) on the time
interval [t0,∞). For any γ∈ (0,1/2), there exists ε0 =ε0(γ)>0 such that if

|β|(1+ |α|)+
∥∥ω(t0)−αω̃β(t0)

∥∥
w

+
∥∥d(t0)− d̃β(t0)

∥∥
w
6ε0,

then
lim
t→∞

tγ‖G̃(t)−1/2(ω(t)−αω̃β(t))‖w = 0
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and

sup
t>0

t1/2‖G̃(t)−1/2(d(t)− d̃β(t))‖w<∞.

Here G̃(x,t) =G(x/
√
t) is the rescaled Gaussian.

When β= 0, the function ω̃β = ω̃, and theorem 2.1 proves stability of ω̃
(albeit under a different norm) without any smallness assumption on the per-
turbation.

Finally, to ensure that theorems 2.1 and 2.2 are not vacuously true, we
establish global existence of solutions to the system (2.1)–(2.3). While a little
work has been done on this system in R2, the existence and uniqueness theory
is not altogether far from the classical theory, and we address this next.

Proposition 2.3. Define the space X to be either L1 or L2
w. If ω0,d0∈X,

then there exists a unique time global solution (ω,d) to the system (2.1)–(2.3)
in X with initial data (ω0,d0).

The proof of this proposition follows a similar structure to results in [2,3,13,
14, 25, 34], and we do not provide a complete proof. However, for convenience
of the reader, we sketch a brief outline in section 7.

3. Global stability for mean zero initial divergence.

We devote this section to proving theorem 2.1. The main idea in the case
where β= 0 is the same as that used by Gallay and Wayne in [14]. However,
to use this method, certain compactness criteria and vorticity bounds need
to be established. In order to present a self contained treatment, we begin
with the heart of the matter (following [14]), and only state the compactness
criteria where required. We postpone the proofs of the vorticity bounds and
these criteria to sections 5 and 6 respectively.

3.1. Reformulation using self-similar coordinates. We begin by refor-
mulating theorem 2.1 in the natural self-similar coordinates associated to (1.1).

Proof of theorem 2.1. Define the coordinates ξ and τ by

(3.1) ξ
def
=

x√
t
, τ

def
= log(t),

and the rescaled velocity, vorticity, and divergence by

(3.2) U(ξ,τ)
def
=
√
tu(x,t), W (ξ,τ)

def
= tω(x,t), and D(ξ,τ)

def
= td(x,t).

With this transformation the system (2.1)–(2.3) becomes

∂τW +∇·(UW ) =LW,(3.3)

∂τD=LD,(3.4)

U =KBS ∗W +∇−1D.(3.5)

where L is the operator defined by

(3.6) Lf def
= ∆f+

1

2
ξ ·∇f+f.

In the rescaled variables we will prove the following result:
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Proposition 3.1. Let (W,D) solve the system (3.3)–(3.5) with initial data
(W0,D0) such that W0,(1+ |ξ|)D0∈L1(R2). If α=

∫
W0dξ and β=

∫
D0dξ= 0,

then

(3.7) lim
τ→∞

‖W −αG‖Lp = 0 and sup
τ>0

e
τ
2 ‖D‖Lp <∞

for any p∈ [1,∞].

Undoing the change of variables immediately yields theorem 2.1. �

Before proving proposition 3.1 we pause momentarily to explain why the
proof in this case is similar to the proof in [14] for the standard Navier-Stokes
equations. The only mean zero function D that decays sufficiently at infinity
and is an equilibrium solution to (3.4) is the 0 function, in which case the sys-
tem (3.3)–(3.5) reduces to the standard Navier-Stokes equations in self-similar
coordinates. Thus, when β= 0, the long time dynamics of the system (3.3)–
(3.5) should be similar to that of the standard Navier-Stokes equations (in
self-similar coordinates). Indeed, as we show below, the key step of the proof
in [14] goes through almost unchanged. Of course, the required bounds and
compactness estimates leading up to this still require work to prove and, for
clarity of presentation, we postpone their proofs to sections 5 and 6.

The proof of proposition 3.1 consists of two main steps. The first step is to
establish relative compactness of trajectories to the system (3.3)–(3.5) in the
space L1 and is our next lemma.

Lemma 3.2. Suppose that W and D solve the system (3.3)–(3.5) in
C0([0,∞),L1(R2)×L1(R2)). Then the trajectory {(W (τ),D(τ))}τ∈[0,∞) is rel-

atively compact in L1(R2). Further,

(3.8) |W (ξ,τ)|6C
∫
R2

exp
(−|ξ−ηe−τ/2|2

C

)
|W0(η)|dη.

for some constant C which depends only on ‖W0‖L1 and ‖(1+ |ξ|)D0(ξ)‖L1 .

The second step in the proof of proposition 3.1 is to characterize com-
plete trajectories of the system (3.3)–(3.5). To do this we need to introduce a
weighted Lp space. For any m>0, p∈ [1,∞) we define the space Lp(m) by

Lp(m) =
{
f ∈Lp :‖f‖Lp(m)<∞, where ‖f‖pLp(m) =

∫
(1+ |ξ|2)

pm
2 |f(ξ)|pdξ

}
.

It turns out that the only complete trajectories of the system (3.3)–(3.5) that
are bounded in L2(m) are scalar multiples of the Gaussian. This is our next
lemma.

Lemma 3.3. Let m>3 and suppose that {(W (τ),D(τ))} is a complete
trajectory of the system (3.3)–(3.5) which is bounded in L2(m). Then, if

∫
W0 =

α and
∫
D0 = 0 we must have W (τ) =αG and D= 0 for all τ .

Momentarily postponing the proofs of lemmas 3.2 and 3.3, we prove propo-
sition 3.1.

Proof of proposition 3.1. Let Ω be the ω-limit set of the trajectory (W,D).
Since lemma 3.2 guarantees {W (τ)} and {D(τ)} are relatively compact in L1,
Ω must be non-empty, compact, and fully invariant under the evolution of the



STABILITY OF VORTEX SOLUTIONS TO AN EXTENDED NAVIER-STOKES SYSTEM 7

system (3.3)–(3.5). Consequently, the trajectory of any (W,D)∈Ω must be
complete.

Further, the upper bound (3.8) implies W is bounded above by a Gaussian.
To see this, choose a sequence of times τn→∞ such that (W (τn))→W in L1

and almost everywhere. Now dominated convergence and (3.8) imply

|W (ξ)|= lim
n→∞

|W (ξ,τn)|6 lim
n→∞

C

∫
exp
(−|ξ−ηe−τn2 |2

C

)
|W0(η)|dη

6C‖W0‖L1 exp
(−|ξ|2

C

)
.

Consequently Ω⊂L2(m)2 for every m.
This implies that for any (W,D), the associated complete trajectory is

bounded in L2(m)2 for every m. Thus lemma 3.3 shows Ω⊂{(θG,0) :θ∈R}.
Since total mass is invariant under the flow (and Ω 6=∅), it follows that
Ω ={(αG,0)}, where α is defined in (2.4). Since Ω contains exactly one el-
ement and (W (τ),D(τ)) is relatively compact in L1, this immediately implies
the first equality in (3.7) for p= 1. Combined with the Gaussian upper bound
implied by (3.8), we obtain the first inequality in (3.7) for any p<∞.

The proof for p=∞ uses bounds on the semigroup generated by the operator
L and an integral representation for W . Since we develop these bounds in
section 6, we prove L∞ convergence as lemma 6.5 at the end of section 6.

The second inequality in (3.7) follows directly from the explicit solution
formula for the heat equation. Since this will also be used later, we extract it
as a lemma.

Lemma 3.4. Let D be a solution to (3.4) with initial data D0. Suppose∫
R2

(1+ |ξ|)|D0(ξ)|dξ<∞ and

∫
R2

D0dξ= 0.

There there exists a universal constant C>0 such that

(3.9) ‖D(τ)‖Lp 6Ce
−τ/2

∫
R2

(1+ |ξ|)|D0(ξ)|dξ

for all p∈ [1,∞].

We remark that the decay rate of D to 0 being faster than that of the
rescaled heat kernel is because the initial data has mean-zero. This concludes
the proof of proposition 3.1. �

It remains to prove lemmas 3.2–3.4. The proof of lemma 3.4 is short, and
we present it here.

Proof of lemma 3.4. Since the heat kernel in x-t coordinates is common knowl-
edge, we return to the x-t coordinates and prove d satisfies the second inequality
in (2.5). Let Ḡ(x,t) =G(x/

√
t)/t be the heat-kernel. Observe

‖d(t)‖Lp =‖d0 ∗Ḡ(t)‖Lp =
∥∥∥∫

R2

d0(y)Ḡ(x−y,t)dy
∥∥∥
Lp(x)

=
∥∥∥∫

R2

d0(y)
(
Ḡ(x−y,t)−Ḡ(x,t)

)
dy
∥∥∥
Lp(x)
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6
1

t1−1/p

∫
R2

|d0(y)|
∥∥G(x− t−1/2y)−G(x)

∥∥
Lp(x)

dy

6
C

t
3
2−

1
p

∫
R2

|yd0(y)|dy,

which implies the second inequality in (2.5) and concludes the proof. �

The proof of lemma 3.2 is technical; we postpone the proof of (3.8) to
section 5 and the proof of compactness to section 6. We prove lemma 3.3 in
section 3.2.

3.2. Characterization of complete trajectories. The characterization of
complete trajectories to the system (3.3)–(3.5) when β= 0 is identical to the
characterization of complete trajectories of the 2D Navier-Stokes equations
presented in [14]. Since the proof is short and elegant, we reproduce it here
for the reader’s convenience.

There are two steps to this proof: First, show that in a complete trajectory
both W and D must have constant sign. Of course, since D is mean-zero,
this forces D= 0 identically, and reduces to the situation already considered
by Gallay and Wayne [14]. Second, the most interesting step, is to use the
Boltzmann entropy functional to show that W must be a scalar multiple of a
Gaussian. This is exactly what fails in the case where D is not mean zero.

We state each of these steps as lemmas, below:

Lemma 3.5. Suppose m>3 and (W,D)∈C0(R,L2(m)2) is a solution of
the system (3.3)–(3.5) which is bounded in L2(m). Then both W and D must
have constant sign.

Lemma 3.6. Let (W,D) be a solution to the system (3.3)–(3.5) with W0∈
L2(m), D0 = 0, W0>0. For the relative entropy H given by

(3.10) H(W ) =

∫
R2

W ln
(W
G

)
dξ,

we have

(3.11) ∂τH=−
∫
R2

W
∣∣∣∇ ln

(W
G

)∣∣∣2dξ.
Lemma 3.3 immediately follows from lemmas 3.5–3.6, and we spell it out

here for completeness.

Proof of lemma 3.3. By lemma 3.5, we know that bothW andD have constant
sign. Since

∫
D= 0, this forces D= 0 identically. Further, by symmetry we can

assume W >0.
Note that by the comparison principle the set L2(m)∩{W̃ >0} is invariant

under the dynamics of the system (3.3)–(3.5). Restricting our attention to this
set, we observe that the entropy H is strictly decreasing except on the set of
equilibria W̃ =θG. By LaSalle’s invariance principle this implies that W =θG
for some θ. Since

∫
W =α this forces θ=α concluding the proof. �

It remains to prove lemmas 3.5 and 3.6, which we do in sections 3.2.1
and 3.2.2 respectively.
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3.2.1. The sign of complete trajectories. The main idea behind the proof
of lemma 3.5 is that the L1 norm can be used as a Lyapunov functional.
However, we first need a relative compactness lemma to guarantee that the α
and ω-limit sets are non-empty, and we state this next.

Lemma 3.7. Let m>3 and suppose (W,D)∈C0(R,L2(m)2) is a solu-
tion to the system (3.3)–(3.5) which is bounded in L2(m). The trajectory
{(W (τ),D(τ))}τ∈R is relatively compact in L2(m).

Lemma 3.7 is also used in the proof of lemma 3.2, and we defer its proof to
section 6. We prove lemma 3.5 next.

Proof of lemma 3.5. Define the Lyapunov function Φ by Φ(W,D) =‖W‖L1 +
‖D‖L1 . We claim that Φ is always decreasing, and is strictly decreasing in
time if and only if one of W and D does not have a constant sign. To see this,
define W+ and W− to be the solutions to

∂τW
+ +∇·(UW+) =LW+ and ∂τW

−+∇·(UW−) =LW−,

with initial data W+
0 = max{W,0} and W−0 = max{−W,0} respectively. We

clarify that U =KBS ∗W here, and does not depend on W+ or W−. Clearly
W±>0 and W =W+−W− for all time. Further, if both W+ and W− are
non-zero initially, the strong maximum principle implies that for any τ >0 the
supports of W±(τ) will necessarily intersect. Consequently, for any τ >0,

(3.12)

∫
R2

|W (ξ,τ)|dξ<
∫
R2

(W+(ξ,τ)+W−(ξ,τ))dξ

=

∫
R2

(W+
0 (ξ)+W−0 (ξ))dξ=

∫
R2

|W0|dξ.

A similar argument can be applied to D and replacing τ = 0 with any arbitrary
time τ0 will show that Φ is strictly decreasing in time if and only if either W
or D do not have a constant sign.

To see that complete trajectories have constant sign, we appeal to lemma 3.7
to guarantee that the trajectory {(W (τ),D(τ)}τ∈R has both an α and an ω-
limit. Now choose two sequences of times (τn)→∞ and (τn)→−∞ such that

W = limW (τn) and W = limW (τn) in L2(m).

Since
∫
W is conserved we must have

∫
W =

∫
W . Further, by LaSalle’s in-

variance principle both W and W have constant sign. Consequently, for any
τ ∈R,∣∣∣∫

R2

W dξ
∣∣∣=∫

R2

|W |dξ>
∫
R2

|W (τ)|dξ>
∫
R2

|W |dξ=
∣∣∣∫

R2

W dξ
∣∣∣= ∣∣∣∫

R2

W dξ
∣∣∣.

Hence,
∫
|W (τ)|dξ is constant in τ . This, along with (3.12), shows that W has

a constant sign. A similar argument can be applied to D. This shows that Φ
is constant in time and hence both W and D must have constant sign. �

3.2.2. Decay of the Boltzmann entropy. The use of the relative entropy
H in this context was suggested by C. Villani, and the decay (when D= 0) is
a direct calculation that was carried out in [14, lemma 3.2]. We briefly sketch
a few details here for the readers convenience.
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Proof of lemma 3.6. Differentiating (3.10) with respect to τ gives

∂τH=

∫
R2

(
1+ln

(W
G

))
∂τW =

∫
R2

(
1+ln

(W
G

))(
LW −∇·(UW )

)
.

Using the identity ∇G/G=−ξ/2 and the term involving L simplifies to∫
R2

(
1+ln

(W
G

))
LW dξ=−

∫
R2

(
∇W +

ξ

2
W
)
·
(∇W
W
−∇G

G

)
dξ

=−
∫
R2

W
∣∣∣∇W
W
−∇G

G

∣∣∣2dξ=−
∫
R2

W
∣∣∣∇ln

(W
G

)∣∣∣2dξ.
We claim the convection terms integrate to 0. Indeed,

−
∫
R2

(
1+ln

(W
G

))
∇·(UW )dξ=

∫
R2

U ·∇W dξ+
1

2

∫
R2

WU ·ξ dξ.

The first term on the right clearly integrates to 0. If U decayed sufficiently
at infinity, we can write W =∇×U , integrate the second term by parts, and
obtain

(3.13)
1

2

∫
R2

WU ·ξ dξ=
1

4

∫
R2

ξ ·∇⊥|U |2dξ= 0.

Without the decay assumption one can use the Biot-Savart law and Fubini’s
theorem (see for instance [14, lemma 3.2]) and still show this term integrates
to 0. This immediately yields (3.11) as desired. �

4. Stability when the initial divergence has non-zero mean

In this section, we study the long time behaviour of the system (2.1)–(2.3)
when β 6= 0 (i.e. when the mean of the initial divergence is non-zero) and prove
theorem 2.2. Unlike the behaviour in section 3, the divergence D of the equilib-
rium solution to the system (3.3)–(3.5) is non-zero. Consequently, the steady
state of the system (3.3)–(3.5) is no longer a Gaussian (like the Oseen vortex),
but the radial function Ws defined by (2.6). We remark, however, that differ-
ent, non-radial, steady solutions to the system (3.3)–(3.5) may exist and we
can neither prove nor disprove their existence.

Further it turns out that the radial state Ws doesn’t “play nice” with the
non-linearity. We are unable to show decay of the analogue of the Boltzmann
entropy (3.10), which is a key step in both [14] and the proof of theorem 2.1.
We can, however, show that Ws is stable under small perturbations globally in
time (theorem 2.2) using techniques that are similar to those in [12, 34]. This
is the main goal of this section.

In section 4.1, we derive an explicit equation for the radial steady state Ws.
In section 4.2, we compute the evolution of the Boltzmann entropy func-
tional mainly to point out the breaking point of the argument of Gallay and
Wayne [14]. In section 4.3, we use a different method (similar to that in [34])
to prove stability under small perturbations (theorem 2.2) modulo the proofs
of a few estimates which are presented in section 4.4.
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4.1. The radial steady state. Since the equation for D is linear, we find that
D→βG as τ→∞. This can be seen, for instance, by noticing that D−βG
satisfies the heat equation in Euclidean coordinates with initial mean zero. An
argument analogous to the proof of lemma 3.4 gives the precise decay. Turning
to W , we denote the steady state by Ws. For convenience, we normalize Ws

so that
∫
Wsdξ= 1. We claim that a unique radial steady state exists, and

is exactly given by (2.6). (We can not, however, rule out the possibility that
other non-radial steady states exist.)

To see that the unique radial steady state satisfies (2.6), we use equa-
tion (3.3) to obtain

0 =−(KBS ∗Ws) ·∇Ws−β∇·
(
(∇−1G)Ws

)
+LWs,

in L2
w. Under the assumption that Ws is radial, KBS ∗Ws ·∇Ws= 0 and hence

β∇·
(
(∇−1G)Ws

)
=LWs=∇·

(
G∇Ws

G

)
.

Consequently,

∇⊥ϕ=−β∇−1GWs+G∇Ws

G
.

for some function ϕ. Since the right hand side is radial and smooth, we must
have ∇⊥ϕ= 0 identically.

Switching to polar coordinates immediately shows that Ws satisfies (2.6),

and reverting back to the x and t coordinates shows that (ω̃β , d̃β), defined
in (2.7), is the unique radially symmetric, self-similar solution to the sys-
tem (2.1)–(2.3).

4.2. The Boltzmann entropy. Before embarking on the proof of theo-
rem 2.2, we briefly study the analogue of the Boltzmann entropy in this situ-
ation. Naturally, the Gaussian in this context needs to be replaced with Ws,
the solution to (2.6), and so (3.10) now becomes

H(W ) =

∫
R2

W ln
(W
Ws

)
dξ.

Computing ∂τH and performing a calculation similar to that in section 3.2.2
we obtain

∂τH=

∫
R2

W (KBS ∗W ) ·
(∇W
W
−∇Ws

Ws

)
dξ−

∫
R2

W
∣∣∣∇W
W
−∇Ws

Ws

∣∣∣2dξ
=−

∫
R2

W (KBS ∗W ) · ∇Ws

Ws
dξ−

∫
R2

W
∣∣∣∇W
W
−∇Ws

Ws

∣∣∣2dξ.
The second term is of course always negative. The first term can be simplified
using (2.6) to

−
∫
R2

W (KBS ∗W ) · ∇Ws

Ws
dξ

=

∫
R2

W (KBS ∗W ) · ξ
2
dξ+β

∫
R2

W (KBS ∗W ) · ξ

2π|ξ|2
(

1−4πG
)
dξ.

The first term on the right integrates to 0 (by equation (3.13)). Further for
any radial function (hence certainly for W =Ws) the second term vanishes.
Consequently,
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∂τH=−
∫
R2

W
∣∣∣∇W
W
−∇Ws

Ws

∣∣∣2dξ.
+β

∫
R2

(W −Ws)KBS ∗(W −Ws) ·
ξ

2π|ξ|2
(

1−4πG
)
dξ.

While the second term on the right should, in principle, be small (at least for
small values of β and when W is close to Ws), we are (presently) unable to
dominate this by the first term and show that ∂τH60. Thus we do not know
whether the steady state Ws is stable under large perturbations.

4.3. Stability under small perturbations. We now turn to proving stabil-
ity of (ω̃β , d̃β) as stated in theorem 2.2.

Proof of theorem 2.2. Using the ξ-τ coordinates, let (W,D) be solutions to the
system (3.3)–(3.5) with initial data W0,D0∈L2

w. Define the perturbations
from the steady state Dp, Up and Wp by

(4.1) Wp
def
=W −αWs, Dp

def
=D−βG, and Up

def
=KBS ∗Wp+∇−1Wp.

In this setting, theorem 2.2 will follow if we establish

‖Wp(τ)‖w6C
(
‖Wp(τ0)‖we−γτ +‖Dp(τ0)‖L1(1)e

−τ/2)(4.2)

for some constant C, where τ0 = log(t0). As before, the estimate for D in
theorem 2.2 is analogous to lemma 3.4.

To begin we state one basic result without proof. First, a straightforward
adaptation of the work in [34, theorem 1] yields the following existence result.

Lemma 4.1. For ε0>0, there exists δ0>0, depending only on α, such that
if W (0),D(0)∈L2

w and

|β|+‖Wp(τ0)‖w+‖Dp(τ0)‖w6 δ0,
then there is a unique solution to the system (3.3)–(3.5) such that, for all τ ,

(4.3) ‖Dp(τ)‖w+‖Wp(τ)‖w6ε0.

In order to show convergence to the steady state, we work with the equation
for the perturbation,

(4.4) ∂τWp+∇·
(
UWp+αKBS ∗WpWs+α∇−1DpWs

)
=LWp.

We multiply (4.4) by G−1Wp and integrate to obtain

(4.5)
1

2
∂τ‖Wp‖2w+

∫
R2

G−1Wp∇·
(
UWp+αKBS ∗WpWs+α∇−1DpWs

)
=

∫
R2

G−1WpLWp.

We estimate each term individually. First, for the right hand side, we use
a coercivity estimate proven in [34]. Namely, since

∫
Wpdξ= 0, for any γ∈

(0,1/2) and ε>0 such that γ+1000ε<1/2, we have

(4.6) −
∫
G−1WpLWp

> (γ+ε)‖Wp‖2w+
1−2(γ+ε)

2

[
1

3
‖∇Wp‖2w+

1

32
‖ξWp‖2w

]
.
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This is proved by first observing operator L
def
=−G−1/2LG1/2 is a harmonic os-

cillator with spectrum {0,1/2,1,3/2,. ..} where 0 is a simple eigenvalue. Com-
bining this with a standard energy estimate shows (4.6), and we refer the reader
to [13, Appendix A] or [34, §3.1] for the details. We assume, without loss of
generality, that γ>1/4.

For the first term in the integral on the left of (4.5), observe∫
R2

G−1Wp∇·(UWp)dξ=

∫
R2

(
G−1W 2

pD+
1

2
G−1U ·∇

(
W 2
p

))
dξ

=
1

2

∫
R2

G−1W 2
p

(
D− 1

2
ξ ·U

)
dξ

=
1

2

∫
R2

G−1W 2
p

(
D− 1

2
ξ ·∇−1D

)
dξ+

∫
R2

G−1Wp(KBS ∗Wp) ·∇Wpdξ,(4.7)

since KBS ∗Ws ·ξ= 0.
To estimate this we claim

‖D‖w+‖D‖L∞+‖∇−1D‖L∞ 6C [|β|+‖Dp(0)‖w],(4.8)

and ‖KBS ∗Wp‖L∞ 6C
(
‖Wp‖w+‖∇Wp‖w

)
,(4.9)

for some constant C that is independent of D0,Wp and β. To avoid breaking
continuity we defer the proof of these estimates to section 4.4 and continue
with our proof of theorem 2.2 here.

Let ε0 to be a small constant to be determined later. Using lemma 4.1,
choose δ0 to guarantee (4.3) holds. Then, returning to (4.7) we see∣∣∣∫

R2

G−1Wp∇·(UWp)dξ
∣∣∣6C(|β|+‖Dp(τ0)‖w+ε0

)(
‖Wp‖2w+‖∇Wp‖2w

)
.

For the second term in the integral on the left of (4.5) we obtain smallness
by using the fact that this term vanishes when Ws=G. Indeed,

α

∫
R2

G−1WpKBS ∗Wp ·∇Wsdξ=−α
∫
R2

G−1WsKBS ∗Wp

(
∇Wp+

ξ

2
Wp

)
dξ,

which vanishes when Ws=G due to the identity (3.13). Consequently,

(4.10) α

∫
R2

G−1WpKBS ∗Wp ·∇Wsdξ

=−α
∫
R2

G−1(Ws−G)KBS ∗Wp

(
∇Wp+

ξ

2
Wp

)
dξ.

We claim that for all β sufficiently small,

(4.11) ‖Ws−G‖w6C|β|,

for some universal constant C. Again, to avoid breaking continuity, we defer
the proof of (4.11) to section 4.4, and continue with the proof theorem 2.2.

Equations (4.10) and (4.11) immediately show∣∣∣α∫
R2

G−1WpKBS ∗Wp ·∇Wsdξ
∣∣∣

6C|αβ|‖KBS ∗Wp‖L∞‖Wp‖w‖∇Ws‖w
6C|αβ|(‖Wp‖2w+‖∇Wp‖2w).(4.12)
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For the last inequality above we absorbed ‖∇Ws‖w into the constant C, and
used (4.9) and interpolation.

For the last term in the integral on the left of (4.5) observe∣∣∣α∫
R2

G−1Wp∇·(∇−1DpWs)dξ
∣∣∣= ∣∣∣α∫

R2

G−1Wp(DpWs+∇−1Dp ·∇Ws)dξ
∣∣∣

6 |α|‖Wp‖w
(
‖Dp‖L∞+‖∇−1Dp‖L∞

)
‖Ws‖w

6C|α|‖Wp‖w
(
‖Dp‖L∞+‖Dp‖1/2L1 ‖Dp‖1/2L∞

)
.

The last estimate followed from the interpolation inequality

(4.13) ‖∇−1Dp‖L∞ 6C‖Dp‖1/2L1 ‖Dp‖1/2L∞ ,

the proof of which can be found in [34] or [13] (see also proposition 6.2 in
section 6, below).

Since Dp satisfies (3.4) with mean-zero initial data Dp(τ0)∈L1(1), it must
satisfy the decay estimate (3.9). Thus∣∣∣α∫

R2

G−1Wp∇·(∇−1DpWs)dξ
∣∣∣6C‖Dp(τ0)‖L1(1)e

−τ/2‖Wp‖w

6
ε

8
‖Wp‖2w+C‖Dp(τ0)‖2L1(1)e

−τ .

Making (1+ |α|)|β|, δ0 and ε0 small enough, our estimates so far give

1

2
∂τ‖Wp‖2w+(γ+ε)‖Wp‖2w+

1−2(γ+ε)

2

[
1

3
‖∇Wp‖2w+

1

32
‖ξWp‖2w

]
6ε
[
‖Wp‖2w+‖ξWp,k+1‖2w+‖∇Wp‖2w

]
+Ce−τ‖Dp(τ0)‖2L1(1).

Because we chose ε small enough, the first three terms on the right can be
absorbed in the left. Consequently,

∂τ‖Wp(τ)‖2w+2γ‖Wp‖2w6Ce−τ‖Dp(0)‖2L1(1),

which immediately implies (4.2). �

4.4. Proofs of estimates. In this section, we prove the bounds (4.8), (4.9)
and (4.11), which were used in the proof of theorem 2.2. We begin with the
bounds on the divergence.

Lemma 4.2. Let D satisfy (3.4) with initial data D0∈L2(w), and let β=∫
D0dξ. Then if Dp=D−βG, there exists a uniform constant C>0 such

that (4.8) holds.

Proof. Multiplying (3.4) by G−1D, integrating and using the coercivity es-
timate (4.6) gives

1

2
∂τ‖D‖2w+

1

4

[
‖D‖2w+

1

3
‖∇D‖2w+

1

32
‖ξD‖2w

]
60.

Integrating this inequality in τ gives us the desired inequality for ‖D‖w.
Further, in the standard x-t coordinates, D solves the heat equation. The

classical estimates for solutions to the heat equation give us

‖D(τ)‖L∞+‖D(τ)‖L1 6C‖D(τ0)‖L1 6C‖D(τ0)‖w.
Combined with the interpolation inequality (4.13) this yields the same bound
for ‖∇−1D‖L∞ , completing the proof. �
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Now we turn to (4.9), which follows using the Sobolev embedding theorem
and interpolation.

Proof of inequality (4.9). We know that the Biot-Savart operator satisfies the
interpolation inequality

‖KBS ∗Wp‖L∞ 6C‖Wp‖1/2L4/3‖Wp‖1/2L4 .

The proof is the same as that of (4.13), and can be found in [13, 34] (see also
proposition 6.2 in section 6, below). Combining this with Sobolev inequality
we obtain

‖KBS ∗Wp‖L∞ 6C‖Wp‖1/2L4/3‖Wp‖1/2L4 6C‖Wp‖1/2L4/3‖∇Wp‖1/2L4/3

6C‖Wp‖1/2L2(w)‖∇Wp‖1/2L2(w)6C
(
‖Wp‖L2(w) +‖∇Wp‖L2(w)

)
,

as desired. �

Finally, we prove (4.11) showing Ws is close to G when β is small.

Lemma 4.3. Let Ws∈L2
w be a solution to equation (2.6). Then there is a

universal constant C>0 such that such that the inequality (4.11) holds for all
β sufficiently small.

Proof. Define Ps=Ws−G. Notice that this solves

LPs=βGPs+β∇−1G ·∇Ps+βG2 +β∇−1G ·∇G.

Multiply this equation by G−1Ps and using (4.6), with γ= 1/4, to obtain that

1

4
‖Ps‖2w+

1

4

[
1

3
‖∇Ps‖2w+

1

32
‖ξPs‖2w

]
6−

∫
G−1PsLPs

=−β
∫
P 2
s −β

∫
G−1Ps∇−1G ·∇Ps

−β
∫
GPs−β

∫
G−1Ps∇−1G ·∇G

6 (2|β|+ε)
[
‖Ps‖2w+‖∇Ps‖2w

]
+ |β|2Cε.

Here ε<1/20 is a positive constant. Then when β is sufficiently small, we
may absorb the terms on the last line into the left hand side, giving (4.11) as
desired. �

5. Bounds for the vorticity

Bounds on the vorticity to the standard 2D incompressible Navier-Stokes
equations are well known. In this section we prove the analogues of these
bounds for the extended Navier-Stokes equations (1.1).

We begin with the vorticity decay in Lp. The strategy for this proof is
not entirely different from the classical case, however, the appearance of a
divergence term complicates matters and yields a slightly different final esti-
mate. We will use this estimate in the proof of (3.8) and in our discussion of
well-posedness in section 7.
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Lemma 5.1. Let p be an element of [1,∞], and suppose that (ω,d) solve the
system (2.1)–(2.3) with ω0,d0∈L1. Then there exists C>0, depending only on
p, ‖ω0‖L1 , and ‖d0‖L1 such that

(5.1) ‖ω‖Lp + t1/2‖∇ω‖Lp 6
C

t1−1/p

and

(5.2) ‖∇ω‖Lp 6
C

t3/2−1/p
.

Proof. We omit the proof of the bound on the gradient. Indeed, by fol-
lowing the work in [25, proposition 4.1], we note that the estimate relies only
on (5.1) and Duhamel’s principle. In view of this, obtaining this result is a
straightforward adaptation.

Now, we obtain the Lp bound by obtaining a bound in L1 and L∞ and in-
terpolating. The L1 bound follows by splitting ω0 into its positive and negative
parts, using the maximum principle, and using that the mass is preserved.

The classical technique for obtaining the L∞ bound has three steps: (i) get
a bound on the L2 norm in terms of the L1 norm divided by t1/2, (ii) show
that this gives a bound on the L∞ norm in terms of the L2 norm divided by
t1/2 for the adjoint problem, and (iii) apply these inequalities over [0,t/2] and
[t/2,t] to finish. Since the work in (ii) is the same as the work in (i) and since
(iii) is unchanged from the classical setting, we simply show the first step (i).
To this end, multiplying our equation by ω and integrating by parts gives us

d

dt
‖ω‖2L2 6−2‖∇ω‖2L2 +2‖d‖L∞‖ω‖2L2 .

Using the Fourier transform, we see that there is a constant C>0 such that
for any R,

‖ω̂‖2L2 6
∫
BcR

|ξ|2

R2
|ω̂|2dξ+

∫
BR

|ω̂|2dξ

6
1

R2

∫
|ξ|2|ω|2dξ+

∫
BR

‖ω̂‖2L∞dξ

6
1

R2
‖∇ω‖2L2 +CR2‖ω‖2L1 .

Using R=‖ω‖2L2/(2C‖ω0‖2L1) along with these inequalities yields

(5.3)
d

dt
‖ω‖2L2 6

[
C‖d0‖L1

t
−
‖ω‖2L2

2C‖ω0‖2L1

]
‖ω‖2L2 .

Here we used the standard estimates for the heat equation, and then we used
Young’s inequality. Define φ(t) = t‖ω‖2L2 to obtain

φ′(t)6
φ

t

[
‖d0‖L1− φ

2C‖ω0‖2L1

+1

]
.

This implies that φ62C‖ω0‖2L1 [‖d0‖2L1 +1], which proves our claim. �

Now, we prove the pointwise, heat kernel type bound on the vorticity when
β= 0 stated in lemma 3.2. We use the increased decay of the heat equation
when the initial data is mean-zero here. The key point here is that the L∞
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norm of the divergence is integrable in time, so we may reproduce the classical
arguments in this case. We follow the work of Carlen and Loss in [4] in order
to do this.

Proof of (3.8). Our first step is to obtain bounds for the equation

(5.4) φt= ∆φ+∇·(bφ)+cφ.

which depend only on certain norms of b and c. To this end, fix T >0 and
we let r(t) be a monotone increasing, smooth function defined on [0,T ] to be
determined later. In addition, we may assume without loss of generality that
φ is non-negative. Then we calculate

r(t)2‖φ‖r−1Lr
d

dt
‖φ‖Lr = ṙ

∫
φr log

(
φr(x)

‖φ‖Lr

)
dx+r(t)2

∫
φr−1φtdx

= ṙ

∫
φr log

(
φr(x)

‖φ‖Lr

)
dx

+r(t)2
∫
φr−1 (∆φ+∇·(bφ)+cφ)dx

= ṙ

∫
φr log

(
φr(x)

‖φ‖Lr

)
dx+4(r−1)

∫ ∣∣∣∇(φr/2)∣∣∣2dx
+

∫
r(r−1)φr (∇·b)+r2

∫
cφrdx.

The log-Sobolev inequality [4, Equation (1.17)], which the authors derive from
the work in [17], is

(5.5)

∫
|f |2 log

(
f2

‖f‖2L2

)
dx+(2+log(a))

∫
|f |2dx6 a

π

∫
|∇f |2dx,

for any f ∈H1 and a∈ (0,∞). Applying this with a= 4π(r−1)/ṙ, gives us

r(t)2‖φ‖r−1Lr
d

dt
‖φ‖Lr 6− ṙ

(
2+log

(
4π(r−1)

ṙ

))
‖φ‖rLr

+
(
r(r−1)B(t)+r2C(t)

)
‖φ‖rLr ,

where B(t) =‖∇·b(t,·)‖L∞ and C(t) =‖c(t,·)‖L∞ . Now we set G(t) = log‖φ‖Lr
and s= 1/r to obtain

dG

dt
6 ṡ(2+log(4πs(1−s)))− ṡ log(−ṡ)+(1−s)B(t)+C(t).

Letting s(t) be a linear interpolation of 1 and 0 over [0,T ], we see that ṡ=
−T−1. Then we may integrate this to obtain

G(T )−G(0)64− log(4π)− log(T )+

∫ T

0

[B(t)+C(t)]dt.

Exponentiating gives us

(5.6) ‖φ(T )‖L∞ 6
K

T
exp

(∫ T

0

[B(t)+C(t)]dt

)
.

In order to get pointwise decay from (5.6), we look at the operator

P (α)(T,x,y) :=e−α·xP (T,x,y)eα·y,
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where P is the solution kernel for our linear problem (5.4) with c≡0 and
α(x,y) is a function to be identified later. We assume that b can be written as
b= b1 +b2 where ∇·b1 = 0

(5.7) ‖b1(t)‖L∞ 6
K1√
t+1

, ‖∇·b2‖L∞ 6
K2

(t+1)3/2
, and ‖b2‖L∞ 6

K2

(t+1)
.

In the application we have in mind, b1 comes from the Biot-Savart kernel of
the vorticity, while b2 comes from ∇−1 of the divergence.

We wish to obtain bounds for P through our integral bounds on P (α). To
this end, we notice that P (α) is the solution kernel for the problem

φt= ∆φ+∇·((b+2α)φ)+(α ·b+ |α|2)φ.

Applying (5.6), and noticing that ∇·(b+2α) =∇·b, we obtain, for any α,

P (α)(T,x,y)6

K

T
exp

(
2

∫ T

0

[
K2(t+1)−3/2 +K2

2 (t+1)−2 + |α|K1(t+1)−1/2 + |α|2
]
dt

)
.

Choosing

α=− 1

4T

(x−y)

|x−y|

[
|x−y|−2K1

√
T +1

]
+
,

using the definition of P (α), and integrating in time, we obtain

P (T,x,y)6
K

T
exp

(
(4K2 +2K2

2 )− 1

8T

[
|x−y|−2K1

√
T +1

]2
+

)
.

By possibly changing the constants, we may obtain

P (T,x,y)6
C

T
exp

(
−|x−y|

2

CT

)
.

To conclude, we apply the above to equation (2.1), by choosing b1 =KBS ∗
ω and b2 =∇−1d. Lemmas 3.4 and 5.1 and interpolation inequalities of the
form (4.13) show that (5.7) is satisfied, concluding the proof. �

6. Relative compactness of complete trajectories

In this section we prove lemmas 3.2 and 3.7, showing that complete trajec-
tories in L1 are relatively compact. The development is similar to [14], and
the main difference here is the additional divergence term which requires us to
alter many of the proofs. We first work up towards proving lemma 3.7, and
then use this to prove lemma 3.2.

6.1. The semi-group of L and apriori bounds. In order to obtain the de-
sired compactness results, we will need estimates on various quantities. We will
state these estimates here, but we will omit the proofs and provide references.

Let S(τ)
def
= exp(τL) be the semigroup generated by the operator L. First we

recall some estimates on the operator S(τ). In order to state these, we define
the function

a(τ)
def
= 1−e−τ .

This function appears naturally with the change of variables. We recall a
lemma on the operator S from [13].
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Lemma 6.1. [13, Appendix A]

1) For m>1, S(τ) is a bounded operator on L2(m). In addition, ∇S(τ) is
bounded away from τ = 0. More precisely, there is a universal constant
C such that

‖S(τ)‖L2(m)→L2(m)6C, ‖∇S(τ)‖L2(m)→L2(m)6
C√
a(τ)

.

2) Let L2
0(m) be the space of L2(m) functions with integral zero. For µ∈

(0,1/2] and m>1+2µ and τ >0, there is a universal constant C such
that

‖S(τ)‖L2
0(m)→L2

0(m)6Ce
−µτ , ‖∇S(τ)‖L2

0(m)→L2
0(m)6C

e−µτ√
a(τ)

.

3) For 16 q6p6∞, T >0, m∈ [0,∞) and α∈N2, there is a constant CT ,
depending on T , such that

‖∂αS(τ)f‖Lp(m)6
CT

a(τ)(q−1−p−1)+|α|/2 ‖f‖Lq(m),

for any f ∈Lq(m) and any 0<τ 6T .

We note that the commutator of ∇ and S(τ) is computed as

∂iS(τ) =eτ/2S(τ)∂i.

In addition, we need the well-known bounds on Biot-Savart kernel and ∇−1.
The proof of this proposition may be found in [34, proposition 1] and [13,
Appendix B].

Proposition 6.2. Denote by K either the operator KBS∗ or the operator
∇−1. Then the following inequalities hold for any f such that the right hand
side of each inequality is finite.

1) If 1<p<2<q and 1+q−1−p−1 = 1/2 then there is a constant C such
that

‖Kf‖Lq 6C‖f‖Lp .
2) If 16p<2<q6∞ and 0<θ<1 satisfy

θ

p
+

1−θ
q

=
1

2
,

then there is a constant C such that

‖Kf‖L∞ 6C‖f‖θLp‖f‖1−θLq .

3) There exists a constant Cp>0 depending only on p such that if p>1 then

‖∇Kf‖Lp 6Cp‖f‖Lp .

4) If 0<m<1 and q>2 then there is a constant Cq, depending only on q,
such that

‖Kf‖Lq(m−2/q)6Cq‖f‖L2(m).

Finally, we state an a priori bound on solutions to the system (3.3)–(3.5).
The proof of this lemma is a straightforward adaptation of [14, lemma 2.1].
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Lemma 6.3. Suppose that (W,D) solves the system (3.3)–(3.5) in the space

C0([0,T ],L2(m))∩C0((0,T ],H1(m))

with W0∈L2(m) and D0∈L2(m) as the initial conditions for W and D re-
spectively. Then there is a constant C such that

‖W (τ)‖L2(m) +a(τ)1/2‖∇W (τ)‖L2(m)6C.

6.2. Compactness in L2(m). First we show relative compactness of com-
plete trajectories on R+ in L2(m). This is accomplished by decomposing the
remainder term into convenient functions, two of which decay to zero and one
whose trajectory is relatively compact.

Lemma 6.4. Assume that m>3 and that (W,D)∈C0([0,∞),L2(m)2) is a
solution to the system (3.3)–(3.5), and is bounded in L2(m). The trajectory
{(W,D)}τ∈R>0

is relatively compact in L2(m).

Proof. We work here with W only, but the proof for D is similar and simpler.
We define the remainder, R, to be such that W =αG+R. One can check that

∂τR=LR−αΛR−N(R)−∇·(W∇−1D).

where

αΛR
def
= (αKBS ∗G ·∇R+αKBS ∗R ·∇G) and N(R)

def
=KBS ∗R ·∇R.

Hence we may write

(6.1) R(τ,ξ) =S(τ)R0−R1−R2

where

R1
def
=

∫ τ

0

S(τ−s)(αΛR(s)+N(R)(s))ds

and R2
def
=

∫ τ

0

S(τ−s)∇·(W (s)∇−1D(s))ds.

The first term tends to zero by part two of lemma 6.1 and the fact that
∫
R0dξ=

0. It follows from the work in lemma 2.2 in [14] that R1 is bounded in L2(m+
1), and, hence, is a relatively compact trajectory. Thus, we need only show
that R2 tends to zero.

To this end, we use the first inequality in lemma 6.1 to obtain

‖R2‖L2(m)6
∫ τ

0

e−
1
2 (τ−s)‖∇S(τ−s)(W∇−1D)(s)‖L2(m)ds

6C
∫ τ

0

e−
1
2 (τ−s)√
a(τ−s)

‖(W∇−1D)(s)‖L2(m)ds

6C
∫ τ

0

e−
1
2 (τ−s)√
a(τ−s)

‖∇−1D(s)‖L∞‖W (s)‖L2(m)ds.

The results of lemma 3.4 and proposition 6.2 imply that ‖∇−1D(s)‖L∞ tends
to zero as s tends to infinity. Hence, we see that ‖R2‖L2(m) tends to zero as τ
tends to infinity. �

Now we will show relative compactness of complete trajectories in L2(m),
i.e. we will prove lemma 3.7. Our method of proof will be similar to above.
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Proof of lemma 3.7. Again we will look at R as above and only work with W .
This time we will decompose R as

R(τ) =S(τ−τ0)R(τ0)−
∫ τ

τ0

S(τ−s)(αΛR(s)+N(R)(s))ds

−
∫ τ

τ0

S(τ−s)∇·(W (s)∇−1D(s))ds,

where τ0<τ . Since R∈L2
0(m), by construction, it follows from lemma 6.1 that

S(τ−τ0)R(τ0) tends to zero as τ0 tends to negative infinity. Hence we may
write

R(τ) =−R1−R2,

where

R1
def
=

∫ τ

−∞
S(τ−s)(αΛR(s)+N(R)(s)) ds

and R2
def
=

∫ τ

−∞
S(τ−s)∇·(W (s)∇−1D(s))ds.

As before, showing that R1 is relatively compact is exactly as in [14]. Thus,
we need only investigate R2, which we handle similarly to the previous lemma.

We will show that R2 is bounded in L2(m+r) for some r>0. For any
q∈ (1,2), lemma 6.1 gives us

‖R2‖L2(m+r)6C
∫ τ

−∞

e−
1
2 (τ−s)

a(τ−s)1/q
‖W∇−1D‖Lq(m+r)ds.

Hölder’s inequality implies that

‖W∇−1D‖Lq(m)6‖W‖L2(m)‖∇−1D‖L2q/(2−q)(r).

The first term is bounded due to the assumptions in the statement of the
current lemma. For the remaining term concerning the divergence D, we apply
proposition 6.2 to see that, letting m̃= r+(2−q)/q, and choosing r and q such
that m̃6m,

‖∇−1D‖L2q/(2−q)(r)6C‖D‖L2(m̃)6C‖D‖L2(m).

Hence R2 is bounded in L2(m+r). Lemma 6.1 and lemma 6.3 imply that
R2 is also bounded in H1(m), so that Rellich’s theorem, see e.g. [33, the-
orem XIII.65] implies that R2 is relatively compact in L2(m), finishing the
proof. �

In order to conclude, we need that bounded trajectories in L1 are relatively
compact. In order to show this, one may reproduce the proof of [14, lemma 2.5]
as it relies only on a pointwise estimate on W , which we recreate in (3.8). This
yields the final lemma we need to prove the necessary compactness.

6.3. Convergence in L∞. In this section we prove convergence of W to αG
in L∞, as stated in theorem 2.1.

Lemma 6.5. Let (W,D) solve the system (3.3)–(3.5) with initial data
(W0,D0) such that W0,D0∈L1(1). If α=

∫
W0dξ and β=

∫
D0dξ= 0, then

lim
τ→∞

‖W −αG‖L∞ = 0.
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Proof. Recall that we have shown that W converges to αG in Lp for all
p∈ [1,∞). As in (6.1), letting R=W −αG, we may write an integral equation
for R using the semigroup S. We will use this to show that ‖R‖L∞ tends to
zero. As above, R satisfies

R(τ) =S(1)R(τ−1)−
∫ τ

τ−1
S(τ−s)(αΛR(s)+N(R)(s))ds

−
∫ τ

τ−1
S(τ−s)∇·(W (s)∇−1D(s))ds.

First, we use the third conclusion of lemma 6.1 with p=∞, q= 1, α= 0 and
m= 0 on the first term. Hence, we have that

‖S(1)R(τ−1)‖L∞ 6C‖R(τ−1)‖L1 .

Since ‖R(τ−1)‖L1 tends to zero, then ‖S(1)R(τ−1)‖L∞ tends to zero. We
may use this same strategy to deal with the rest of the terms.

First we look at

ΛR= (KBS ∗G) ·R+(KBS ∗R) ·∇G=∇·((KBS ∗G)R+(KBS ∗R)G).

Then lemma 6.1, implies that,∥∥∥∫ τ

τ−1
S(τ−s)ΛR(s)ds

∥∥∥
L∞
6
∫ τ

τ−1
(‖(KBS ∗G)R‖L1 +‖(KBS ∗R)G‖L1)ds

6C
∫ τ

τ−1
(‖R‖L1 +‖KBS ∗R‖L∞)ds.

Since R tends to zero in Lp for all p, then lemma 6.2 implies that KBS ∗R
tends to zero in L∞.

Next, we deal with the term involvingN(R). Notice thatN(R) =∇·((KBS ∗
R)R). Hence, as above, we obtain∥∥∥∫ τ

τ−1
S(τ−s)N(R)(s)ds

∥∥∥
L∞
6
∫ τ

τ−1
‖(KBS ∗R)R‖L1ds

6C
∫ τ

τ−1
‖KBS ∗R‖L∞‖R‖L1ds.

Hence, this term tends to zero as well.
Finally, for the last term, we obtain∥∥∥∫ τ

τ−1
S(τ−s)∇·(W∇−1D)(s)ds

∥∥∥
L∞
6
∫ τ

τ−1
‖W∇−1D‖L1ds

6C
∫ τ

τ−1
‖∇−1D‖L∞‖W‖L1ds.

Using lemma 3.4 and lemma 6.2, we see that ‖∇−1D‖L∞ tends to zero. This
finishes the proof that ‖R‖L∞ tends to zero. �

7. Brief Remarks on Well-posedness

The well-posedness of the system (2.1)–(2.3) in classical or Lebesgue spaces
is very similar to the development in [2, 3, 25]. For the weighted spaces, one
may look to the strategies of [13, 34]. Since the adaptations required in our
setting are minimal, we only briefly comment on the manner of proof. First,
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we discuss the primary a priori estimates in each of these spaces. Then, we
discuss the iterative scheme used to prove local existence.

A Priori Estimates. The main a priori estimates in Lp and in L2
w follow

as in the work of lemma 5.1 and section 4, respectively. The a priori esti-
mate in L2(m)2 is a slight modification of the argument of [13]. To this end,
multiply (3.3) by |ξ|2mW to obtain

1

2

d

dτ

∫
|ξ|2mW 2dξ+

∫
|ξ|2mW∇·(UW )dξ

=

∫
|ξ|2m

{
W∆W +

W

2
(ξ ·∇)W +W 2

}
dξ.

Integrating by parts, we see that these terms can be rewritten as∫
|ξ|2mW (∆W )dξ=−

∫
|ξ|2m|∇W |2dξ+2m(m−1)

∫
|ξ|2m−2W 2dξ,∫

|ξ|2mW
2

(ξ ·∇)Wdξ=−m+1

2

∫
|ξ|2mW 2dξ,∫

|ξ|2mW∇·(UW )dξ=
1

2

∫
|ξ|2mDW 2dξ+

1

2

∫
|ξ|2m∇·(UW 2)dξ

=
1

2

∫
|ξ|2mDW 2dξ−m

∫
|ξ|2m−2(ξ ·U)W 2dξ.

By noting that for any ε>0 there is a Cε>0 so that |ξ|2m−26ε|ξ|2m+Cε, we
see that

1

2

d

dτ

∫
|ξ|2mW 2dξ+

∫
|ξ|2m|∇W |2dξ+

m−1−4ε

2

∫
|ξ|2mW 2dξ

6Cε

∫
W 2dξ+Cε‖U‖2m∞

∫
W 2dξ+

‖D‖∞
2

∫
|ξ|2mW 2dξ.

We know that ‖D‖L∞ decays to zero, and there is sufficient control over ‖W‖L2

and ‖U‖L∞ by lemma 5.1 and proposition 6.2. Hence choosing ε>0 sufficiently
small and integrating the above inequality yields the apriori estimate required
in L2(m)2. These a priori estimates are summarized in the following proposi-
tion.

Proposition 7.1. Fix (W0,D0)∈X where X is either L2(m)2, with m>1
and

∫
D0dξ= 0, or (L2

w)2. Then there exists a unique solution to the sys-
tem (3.3)–(3.5) which satisfies

‖W (τ)‖X 6C.

Here C is a constant depending only on the initial data and which tends to
zero as ‖W0‖X tends to zero.

An Iterative Scheme. To prove existence and uniqueness of classical solu-
tions with initial data in L1 we follow [2]. For existence, we begin with smooth
initial data, and use an iterative argument to obtain the existence of solutions
which are bounded in Lp for every p. The key contribution here is that we
iterate only in the vorticity, leaving the divergence fixed as solutions to the



24 GIE, HENDERSON, IYER, KAVLIE & WHITEHEAD

heat equation follow from the classical theory. We define ω0 = 0 and then let
ωk be the solution to the linear system

∂tωk+∇·(uk−1ωk) = ∆ωk

uk =∇−1d+KBS ∗ωk.

Bounds similar to lemma 5.1 can be obtained for this system, establishing the
existence of a solution. Uniqueness follows by directly estimating the difference
of two solutions. Afterwards, a continuity argument is used to extend this to
any initial data in L1.

In general, this argument differs from that in [2] only in the appearance of
an extra term involving d in several of the estimates. However, this extra term
behaves much better than the non-linear term as the classical theory on the
heat equation for d yields appropriate bounds on the divergence in any of the
required spaces. In particular, this gives us the following result which we state
without proof.

Proposition 7.2. Suppose that ω0 and d0 are elements of L1(R2). Then
there exist ω,d∈C(R+,L

1)∩C(R+,W
1,1∩W 1,∞), where R+ := (0,∞), which

are the unique solutions to the system (2.1)–(2.3).
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