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We investigate the well-posedness and asymptotic self-similarity
of solutions to a generalized Smoluchowski coagulation equation re-
cently introduced by Bertoin and Le Gall in the context of continuous-
state branching theory. In particular, this equation governs the evolu-
tion of the Lévy measure of a critical continuous-state branching pro-
cess which becomes extinct (i.e., is absorbed at zero) almost surely.
We show that a nondegenerate scaling limit of the Lévy measure (and
the process) exists if and only if the branching mechanism is regularly
varying at 0. When the branching mechanism is regularly varying, we
characterize nondegenerate scaling limits of arbitrary finite-measure
solutions in terms of generalized Mittag-Leffler series.

1. Introduction.

1.1. Overview. Recently Bertoin and Le Gall [3] observed a connection
between the Smoluchowski coagulation equation and any critical continuous-
state branching process (hereafter CSBP) that becomes extinct with prob-
ability one. Our general goal in this paper is to establish criteria for the
existence of dynamic scaling limits in such branching processes, by extend-
ing methods that were recently used to analyze coagulation dynamics in the
classically important ‘solvable’ cases (i.e., cases reduced to PDEs in terms
of Laplace transforms).

Substantial progress has been made in recent years understanding the
long-time behavior of solutions to solvable Smoluchowski coagulation equa-
tions. A rich analogy has been developed between dynamic scaling in these
equations and classical limit theorems in probability, including the central
limit theorem, the classification of stable laws and their domains of attrac-
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tion [14, 16], and the Lévy-Khintchine representation of infinitely divisible
laws [2, 18].

A new challenge in dealing with the coagulation equations that appear in
the context of CSBPs is that they typically lack the homogeneity properties
which were used extensively in earlier scaling analyses. On the other hand,
use of a Laplace exponent transform leads to the study of a rather simple
differential equation determined by the branching mechanism of the CSBP.
Moreover, these branching mechanisms have a special structure — a Lévy-
Khintchine representation formula expressed in terms of a certain measure
related to family-size distribution.

To deal with the lack of homogeneity, we will adapt ideas from renor-
malization-group analysis, studying convergence of rescaled solutions to-
gether with the rescaled equations they satisfy. Such methods have been
used to study asymptotic limits in a variety of problems including nonlinear
parabolic PDE and KAM theory [6, 7]. An important point in this type
of analysis, and one featured here, is that nontrivial scaling limits, if they
exist, satisfy a homogeneous limiting equation. We describe these features
in greater detail below.

1.2. Continuous-state branching processes. CSBPs arise as continuous-
size, continuous-time limits of scaled Galton-Watson processes, which model
the total number in a population of individuals who independently reproduce
with identical rates and family-size distributions. A CSBP consists of a two-
parameter random process (t, x) 7→ Z(t, x) ∈ [0,∞) (t ≥ 0, x > 0). For
fixed x, the process t 7→ Z(t, x) is Markov with initial value Z(0, x) = x. For
fixed t, the process x 7→ Z(t, x) is an increasing process with independent
and stationary increments. The right-continuous version of this process is a
Lévy process with increasing sample paths. In particular, the process enjoys
the branching property that Z(t, x+y) has the same distribution as the sum
of independent copies of Z(t, x) and Z(t, y) for all t > 0.

The structure of the process Z(t, x) has a precise characterization via the
Lamperti transform. That is, t 7→ Z(t, x) can be expressed as a subordinated
Markov process with parent process x+Xt where Xt is a spectrally positive
Lévy process. More specifically, Z(t, x) = x + XΘ(t,x) where the process
t 7→ Θ(t, x) has non-decreasing sample paths and formally solves ∂tΘ =
x + XΘ. In this context, the Laplace exponent of Xt, denoted Ψ, is called
the branching mechanism for Z(t, x) and has Lévy-Khintchine representation

Ψ(u) = αu+ βu2 +
∫

(0,∞)
(e−ux − 1 + ux1{x<1})π(dx),(1.1)
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where α ∈ R, β > 0, and
∫

(0,∞)(1∧x2)π(dx) <∞. The representation (1.1),
having the property Ψ(0+) = 0, assumes no killing for the associated CSBP
(cf. [11]).

Due to the nature of the Lamperti transform, Z(t, x) satisfies

(1.2) E(e−qZ(t,x)) = e−xϕ(t,q),

where the spatial Laplace exponent ϕ solves the backward equation

(1.3) ∂tϕ(t, q) = −Ψ(ϕ(t, q)), q ∈ (0,∞), t > 0.

Corresponding to Z(0, x) = x, the initial data takes the form ϕ(0, q) = q.
It follows that x 7→ Z(t, x) is an increasing process with independent and
stationary increments. As the Laplace exponent of a subordinator, ϕ has the
Lévy-Khintchine representation

(1.4) ϕ(t, q) = btq +
∫

(0,∞)
(1− e−qx)νt(dx), q ≥ 0,

where bt ≥ 0 and
∫
(0,∞)(1∧x)νt(dx) <∞. The quantities bt and νt represent

the drift coefficient and the Lévy jump measure, respectively. Taking q →∞
in (1.2) one sees that the CSBP becomes extinct in time t with positive
probability (i.e. P[Z(t, x) = 0] > 0) if and only if ϕ(t,∞) <∞. This means
that bt = 0 and ρt <∞, where

ρt = 〈νt, 1〉
def=
∫

(0,∞)
νt(dx).

(See Proposition 3.7 for a characterization of branching mechanisms of this
type.)

In the present work, we restrict our attention to the class of CSBPs for
which the branching mechanism Ψ has the property

Ψ′(0+) = α−
∫

[1,∞)
xπ(dx) > −∞.(1.5)

That is, we assume Ψ has the representation

Ψ(u) = α̂u+ β̂u2 +
∫

(0,∞)
(e−ux − 1 + ux)π(dx),(1.6)

where α̂ ∈ R, β̂ > 0, and the branching measure π(dx) verifies

(1.7)
∫

(0,∞)
(x ∧ x2)π(dx) <∞.

As shown in [9, 11], the CSBP associated to (1.6)-(1.7) is conservative in the
sense that P(Z(t, x) < ∞) = 1 for all t > 0. Of primary interest is the case
of critical branching, which is distinguished by the property E(Z(t, x)) = x,
and corresponds here to the value α̂ = 0.
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1.3. A generalized Smoluchowski coagulation equation. The connection
between branching and coagulation may be understood roughly as follows.
Fix a time horizon T . The Lévy jump measure νt(dx) has an interpretation
as the limiting size distribution of clans of individuals descending from a
common ancestor at time T − t. As t increases, we look further back in
time for a common ancestor, causing clans to coalesce. The rate at which
clans merge is governed by the branching measure π(dx), which roughly
corresponds to the first-generation family size distribution of an individual.

As shown in [3], the Lévy measure of a critical CSBP which becomes
extinct almost surely satisfies a generalized type of Smoluchowski coagulation
equation. This equation belongs to a general class of coagulation models
that account for the simultaneous merging of k clusters with (possibly time-
dependent) rate Rk. Specifically, the weak form of this equation is

(1.8)
d〈νt, f〉
dt

=
∑
k≥2

RkIk(f, νt), for all f ∈ C([0,∞]).

Here

Ik(f, ν) =
∫

(0,∞)k

(
f(x1 + . . .+ xk)−

k∑
i=1

f(xi)
) k∏
i=1

ν(dxi)
〈ν, 1〉

.(1.9)

represents the expected change in the moment

〈ν, f〉 def=
∫

(0,∞)
f(x) ν(dx)

upon merger of k clusters with size distribution ν. For the evolution equation
of the Lévy measure of a critical CSBP which becomes extinct almost surely,
the rate constants Rk have a particular Poissonian structure expressed in
terms of the branching mechanism and the total number ρt = 〈νt, 1〉. Namely
Rk = Rk(ρt) where

Rk(ρ) =
(−ρ)kΨ(k)(ρ)

k!
=
∫

(0,∞)

(ρy)k

k!
e−ρyπ(dy) + δk2β̂ρ

2.(1.10)

Here, β̂ is the diffusion constant appearing in (1.6), and δk2 is the Kro-
necker delta function, which is zero for k ≥ 3. Combining the relations (1.8)
and (1.10) gives the coagulation equation

d〈νt, f〉
dt

=
∞∑
k=2

(−〈νt, 1〉)kΨ(k)(〈νt, 1〉)
k!

Ik(f, νt).(1.11)
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In the case of the special branching mechanism Ψ(u) = u2, we recover the
classical Smoluchowski coagulation equation with rate kernel K(x, y) = 2.
Also, note that a Lévy measure solution of (1.11) represents a kind of fun-
damental solution for the coagulation equation, having the special property
that as t → 0 the measure xνt(dx) converges weakly to a delta function at
the origin (see Remark 3.9).

1.4. Results and organization.

1.4.1. Characterization of scaling limits for coagulation. Our main re-
sults relate to long-time scaling limits of measure solutions of the coagula-
tion equation (1.11) where Ψ is a critical branching mechanism for a CSBP
which becomes extinct almost surely. That is, we investigate the existence
of dynamic scaling limits of the form

α(t)νt(λ(t)−1dx)→ ν̂(dx) as t→∞,(1.12)

for functions α, λ > 0 and finite measure ν̂. We show that the existence of
nondegenerate limits is fundamentally linked to two conditions:

(i) Regular variation of Ψ at zero with index γ ∈ (1, 2].
(ii) Regular variation of the mass distribution function

∫ x
0 yνt(dy) at in-

finity with index 1− ρ, where ρ ∈ (0, 1].

First, assuming condition (i) holds, we prove (Theorem 5.1) that scaling
limits of the form (1.12) exist if and only if condition (ii) holds at some
initial time t = t0 > 0. Since initial data satisfying (ii) are easily constructed,
condition (i) gives a sufficient condition under which (1.11) admits nontrivial
scaling solutions. The remarkable fact (Theorem 6.1) is that condition (i) is
both necessary and sufficient for the scaling limit (1.12) to exist when νt is
the fundamental solution (defined in Section 3.2).

The theorems cited above also provide a precise characterization of the
limiting measure ν̂. Specifically, we show that (i) and (1.12) together imply
that there exist constants cλ > 0 and ρ ∈ (0, 1], the latter given by (ii), such
that

ν̂(dx) = 〈ν̂, 1〉Fγ,ρ(〈ν̂, 1〉
1
ρ c−1
λ dx),(1.13)

where Fγ,ρ is a generalized Mittag-Leffler probability distribution given by

Fγ,ρ(x) =
∞∑
k=1

(r)k
k!

(−1)k+1xsk

Γ(sk + 1)
,(1.14)
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where r = (γ−1)−1, s = ρ(γ−1), and (r)k denotes the Pochhammer symbol

(r)k = r(r + 1)(r + 2) · · · (r + k − 1).

Moreover, the corresponding solution νt is asymptotically self-similar in the
sense that for all t > 0,

α(τ)ντt(λ(τ)−1dx)→ t
1

1−γ ν̂(t
1

ρ(1−γ)dx)(1.15)

as τ →∞. In particular, the limiting function in (1.15) belongs to the family
of self-similar solutions of (1.11) with homogeneous branching mechanism
of the form Ψ̂(u) = βuγ , where β = (γ−1)−1〈ν̂, 1〉1−γ . These solutions have
the form

νt(dx) = a(t)Fγ,ρ(a(t)
1
ρ c−1
λ dx), a(t) = [β(γ − 1)t]

1
1−γ ,

which generalizes the one-parameter family obtained in [16] corresponding
to the classical Smoluchowski equation, with γ = 2 and cλ = 1.

1.4.2. Limit theorems for critical CSBPs. Theorems 5.1 and 6.1 estab-
lish a necessary and sufficient condition for the existence of nondegenerate
scaling limits of fundamental solutions, namely, Condition (i), above. We
now describe two rather direct consequences of this fact in terms of scaling
limits of the corresponding CSBP.

First, given a CSBP Z(t, x) for which the corresponding Lévy measure is
a fundamental solution of (1.11), we consider scaling limits of the form

λ(t)Z(t, α(t)x) L−→ Ẑ(x)(1.16)

as t → ∞. That is, we scale by a factor of λ(t) the total population at
time t descended from an initial population of size α(t)x, and we investigate
the convergence in law of the rescaled process, with parameter x, to a non-
degenerate Lévy process Ẑ. As above, we prove that such a limit exists if
and only if Condition (i) holds. This is Theorem 7.2. In particular, if (1.16)
holds, then for each t > 0

λ(τ)Z(τt, α(τ)x) L−→ t
1

γ−1 Ẑ(t
1

1−γ x)(1.17)

as τ → ∞, and the right-hand side is equal in law to the CSBP with Lévy
measure given by t

1
1−γ µ̂(t

1
1−γ dx), where µ̂ is the Lévy measure of Ẑ. In this

way, we establish the self-similar form of the limiting CSBP.
Alternatively, one can consider initial population as fixed, and obtain a

conditional limit theorem for critical continuous-state branching processes
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conditioned on non-extinction. In the context of discrete-state branching,
several authors [5, 20, 23] have investigated limits of the form

P(λ(t)Zt 6 x | Zt > 0)→ F (x)(1.18)

as t → ∞, where Zt is the branching process and F is a nondegenerate
distribution function on (0,∞). By various techniques (our own being most
similar to a method of Borovkov [5]), the authors prove that for the special
scaling function λ(t) = P(Zt > 0) a limit of the form (1.18) exists if and only
if the process Zt has an offspring law corresponding to a regularly varying
probability generating function. The question of whether the same regular
variation condition is implied for a general scaling function λ(t) → 0 was
left open by Pakes [20]. Theorem 7.1 provides an affirmative answer to the
continuous-state analog of the question posed by Pakes as an easy corollary
of Theorem 6.1.

Also implied by Theorem 7.1 are the conditional limit theorems obtained
by Kyprianou [12] for critical CSBPs with power-law branching mechanism
(the so-called α-stable case), and those obtained by Li [15] for critical CSBPs
with the property Ψ′′(0+) < ∞. In all cases above, including the discrete
cases previously mentioned, limiting distributions are characterized by rela-
tions of the form (1.14).

Let us note that, by comparison, non-critical CSBPs admit scaling limits
of a simpler form. Indeed, a well-known result of Grey [9] states that for any
supercritical CSBP with Ψ′(0+) > −∞, and for any critical or subcritical
CSBP with Ψ′(∞) < ∞ (in the latter case, the CSBP remains positive
almost surely – see Proposition 3.7(i)), there exists a scaling limit of the
form (1.16), where α(t) = 1 and ϕ(t, λ(t)) = const., with ϕ solving (1.3).
On the other hand, it follows directly from the work of Lambert [13] that
any subcritical CSBP which becomes extinct almost surely admits a limit
of the form (1.16) with scaling functions given by α(t) = 1/ϕ(t,∞) and
λ(t) = 1. In contrast with Theorem 7.2, only one nontrivial scaling function
is needed in each of the cases above.

1.4.3. Well-posedness. For the sake of completeness we also give an ac-
count of well-posedness for the coagulation equation. That is, we establish
the existence and uniqueness of weak solutions of (1.11) when Ψ is a criti-
cal branching mechanism and the initial data is a finite measure (Corollary
3.12). Here, we essentially tie together the ideas of Bertoin and LeGall [3],
Norris [19], and Menon and Pego [16] with a few new proofs and observa-
tions. In particular, we provide a simple and direct account of well-posedness
for the evolution of the Lévy measure νt in (1.4) (Proposition 3.7). The point
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is that equation (1.3) preserves the property that ϕ(t, ·) has a completely
monotone derivative. For an initial cluster size distribution given by a finite
measure, the latter property amounts to a well-posedness result for Smolu-
chowski dynamics.

1.4.4. Outline of the paper. We now give a brief outline of the paper. Sec-
tion 2 delineates some basic notation and definitions. Section 3 is dedicated
to well-posedness results. In Section 4, we derive the family of self-similar
solutions to (1.11) associated with generalized Mittag-Leffler laws. Section
5 is dedicated to a study of scaling limits of the form (1.12) in the case of a
regularly varying branching mechanism Ψ. In Section 6, we consider scaling
limits of fundamental solutions. Finally, in Section 7, we reformulate our
scaling results in terms of limit theorems for CSBPs.

2. Preliminaries. We begin with some notation that will be repeatedly
used throughout this paper. Let E be the open interval (0,∞), and E denote
the extended interval [0,∞]. We use C(E) to denote the space of continuous
functions f : E → R, equipped with the L∞-norm.

Three spaces of measures that arise often in our context are:

• The spaceM+, consisting of positive Radon measures on E equipped
with the vague topology. We recall that if µ, µ1, µ2, . . . are measures in
M+, then µn converges vaguely to µ as n→∞ (denoted by µn

v−→ µ)
if 〈µn, φ〉 → 〈µ, φ〉 for all φ ∈ Cc(E). Here Cc(E) denotes the space of
continuous functions on E with compact support, and 〈µ, f〉 denotes
the integral of f with respect to the measure µ.
• The space MF , consisting of finite positive measures on E, equipped

with the weak topology. That is, if µ, µ1, µ2, . . . are measures in MF ,
then we say µn converges weakly to µ as n→∞ (denoted by µn

w−→ µ)
if 〈µn, φ〉 → 〈µ, φ〉 for all φ ∈ Cb(E). Here Cb(E) denotes the space of
bounded continuous functions on E.
• The space M1∧x, consisting of the set of measures µ ∈M+ such that∫

(0,∞)
(1 ∧ x)µ(dx) <∞.

2.1. Branching mechanisms and Bernstein functions.

Definition 2.1. We say a function Ψ: E → R is a branching mechanism
if it admits the representation

Ψ(u) = α̂u+ β̂u2 +
∫
E

(e−ux − 1 + ux)π(dx),(2.1)
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where α̂ ∈ R, β̂ > 0 and π ∈ M+ with
∫
E(x ∧ x2)π(dx) <∞ (equivalently,

xπ ∈ M1∧x). The branching mechanism is called critical, subcritical, or
supercritical according to the conditions α̂ = 0, α̂ > 0, or α̂ < 0, respectively.

Definition 2.2. We say that f ∈ C∞(E) is a Bernstein function if
f > 0 and (−1)kf (k+1) > 0 for all integers k > 0.

In other words, f is a Bernstein function if f is non-negative and f ′ is
completely monotone. It is well known (see for instance [22]) that a function
is Bernstein if and only if it admits the representation

(2.2) f(q) = a+ bq +
∫
E

(1− e−qx)µ(dx),

where a, b > 0 and µ ∈ M1∧x. Note that f is strictly positive if and only if
(a, b, µ) 6= (0, 0, 0). On the other hand, a function Ψ: E → E belongs to the
set of critical or subcritical branching mechanisms if and only if Ψ(0+) = 0
and Ψ′ is a positive Bernstein function. The following lemma, for which we
have found no obvious reference, establishes a deeper relation between set
of critical or subcritical branching mechanisms and Bernstein functions.

Lemma 2.3. Assume Ψ: E → E is a critical or subcritical branching
mechanism. Then, the inverse function Ψ−1 is a Bernstein function.

Proof. Let f = Ψ−1 and g = 1/Ψ′. Note g is completely monotone, since
x 7→ 1/x is completely monotone and Ψ′ is a positive Bernstein function, as
observed above. Since f is positive and f ′ = g ◦ f , it directly follows that f ′

is completely monotone, from [18, Lemma 5.5].

3. Well-posedness for Smoluchowski dynamics. In this section we
define a notion of weak solution for the generalized Smoluchowski equa-
tion (1.11). As we will show, the question of existence of weak solutions
amounts to a study of (1.3). Several estimates appearing in Sections 3.1 and
3.3 have either been sketched in [3] from a probabilistic point of view, or are
straightforward extensions of the well-posedness theory in [16]. The origi-
nality of our treatment lies mainly in Lemma 2.3 and its use in the proof
of Proposition 3.7. The remaining estimates have been simplified by various
degrees and organized for convenience of the reader.

3.1. Weak solutions. In this section, we consider a critical branching
mechanism Ψ having the representation (2.1) with α̂ = 0. Following the
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approach in [16, 19], we associate to each finite, positive measure ν ∈ MF

the continuous linear functional L(ν) : C(E)→ R, defined by

〈L(ν), f〉 =
∑
k≥2

Rk(〈ν, 1〉)Ik(f, ν) =
∞∑
k=2

(−〈ν, 1〉)kΨ(k)(〈ν, 1〉)
k!

Ik(f, ν)(3.1)

where Ik and Rk are defined by (1.9) and (1.10), respectively. To verify con-
tinuity of L(ν), we observe |Ik(f, ν)| ≤ (k+1)‖f‖C(E). Thus for m = 〈ν, 1〉,
equations (2.1) and (3.1) give

|〈L(ν), f〉| =
∣∣∣∣∣β̂m2I2(f) +

∞∑
k=2

Ik(f)
∫
E

(mx)k

k!
e−mx π(dx)

∣∣∣∣∣
6 ‖f‖C(E)

[
3β̂m2 +

∫
E

[ ∞∑
k=2

mkxk

(k − 1)!
+
∞∑
k=2

mkxk

k!

]
e−mx π(dx)

]

= K(m)‖f‖C(E),

where K(m) = 3β̂m2 + 2mΨ′(m) − Ψ(m) < ∞, establishing continuity of
L(ν). Observe for future use, that

K(m) =
∫ m

0

[
3
2
β̂u+ 2uΨ′′(u) + Ψ′(u)

]
du.(3.2)

Since Ψ′,Ψ′′ > 0, the function m 7→ K(m) is positive and increasing.
With this, the natural notion of weak solutions to (1.11) is as follows.

Definition 3.1. We say that a weakly measurable function ν : E →MF

is a weak solution of (1.11) if

〈νt, f〉 = 〈νs, f〉+
∫ t

s
〈L(ντ ), f〉 dτ(3.3)

for all t, s > 0 and for all f ∈ C(E). If, additionally, there exists ν0 ∈ MF

such that νt converges weakly to ν0 as t→ 0, then we say ν : [0,∞)→MF

is a weak solution of (1.11) with initial data ν0.

To any function ν : E →M1∧x, we associate the function

ϕ(t, q) def=
∫
E

(1− e−qx)νt(dx).(3.4)

Our next result shows that weak solutions to (1.11) are characterized by (1.3)
for the associated function ϕ.
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Theorem 3.2. Let Ψ: E → E be a critical branching mechanism. As-
sume ν : E → MF and that ϕ is related to ν by (3.4). Then, ν is a weak
solution of (1.11) if and only if ϕ solves (1.3).

Proof. Let ν and ϕ be as described. First, we claim that ϕ satisfies (1.3)
if and only if (3.3) holds for the family of test functions fq(x) def= 1 − e−qx,
0 < q 6 ∞. Note, carefully, that we include the function f∞ = 1 in this
family. Indeed, since νt ∈MF , we have

ϕ(t, q)→ ϕ(t,∞) def= 〈νt, 1〉 <∞

as q →∞, so that if (1.3) holds for 0 < q <∞, it also holds for q =∞.
Now, for any 0 < q 6∞, we have

Ik(fq) =
∫
Ek

[
fq

(
k∑
i=1

xi

)
−

k∑
i=1

fq(xi)

]
dνkt

=
∫
Ek

[
1−

k∏
i=1

e−qxi −
k∑
i=1

(
1− e−qxi

)]
dνkt

= 〈νt, 1〉k − (〈νt, 1〉 − ϕ(t, q))k − k〈νt, 1〉k−1ϕ(t, q).

Consequently, using the Taylor expansion for Ψ about m = 〈νt, 1〉, we have

〈L(νt), fq〉 =
∞∑
k=0

(−1)kΨ(k)(m)
k!

[
mk − (m− ϕ(t, q))k − kmk−1ϕ(t, q)

]
= Ψ(0+)−Ψ(ϕ(t, q)) + ϕ(t, q)Ψ′(0+) = −Ψ ◦ ϕ(t, q).

Note that the terms corresponding to k = 0, 1 in the sum above are clearly
0. The last equality follows because Ψ(0+) = Ψ′(0+) = 0, by assumption.
Therefore (3.3) holds for f = fq if and only if

ϕ(t, q)− ϕ(s, q) = −
∫ t

s
Ψ(ϕ(τ, q)) dτ

for all s, t > 0. This proves the claim.
In particular, if ν is a weak solution of (1.11), then ϕ solves (1.3). On

the other hand, if ϕ solves (1.3), then (3.3) holds for all test functions fq,
0 < q 6∞. This family of test functions spans a dense subset of the metric
space C(E). Now, given f ∈ C(E) and ε > 0, choose g ∈ span{fq : 0 < q 6
∞} such that ‖f − g‖ < ε. By linearity, (3.3) holds for the test function g.
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Therefore, assuming for definiteness that t > s, we have∣∣∣∣〈f, νt〉 − 〈f, νs〉 − ∫ t

s
〈f, L(ντ )〉 dτ

∣∣∣∣
=
∣∣∣∣〈f − g, νt〉 − 〈f − g, νs〉 − ∫ t

s
〈f − g, L(ντ )〉 dτ

∣∣∣∣
6 ‖f − g‖C(E)

(
〈νt, 1〉+ 〈νs, 1〉+

∫ t

s
K(〈ντ , 1〉) dτ

)
6 ε[2〈νs, 1〉+ (t− s)K(〈νs, 1〉)],

where the function K is given by (3.2). Taking ε→ 0 shows that (3.3) holds
for all f ∈ C(E). This completes the proof.

Remark 3.3. Bertoin and LeGall [3] propose a weaker form of Smolu-
chowski’s equation that requires only νt ∈ M1∧x, not MF , but which still
transforms to (1.3). In particular, they show that if Ψ′(∞) =∞ (see Propo-
sition 3.7, below), then the Lévy measure of the associated CSBP verifies
this weak form for the special test functions fq, 0 < q < ∞. However,
there appear to be no obvious estimates available to deal with a general test
function f ∈ C(E).

3.2. Fundamental solutions. For any weak solution ν : E → MF of the
generalized Smoluchowski equation (1.11), the solution ϕ(t, q) of (1.3) has
a finite limit as t→ 0 whether or not νt has a weak limit as t→ 0. Indeed,
if ϕ(t, q0) → ∞ as t → 0 for some q0 > 0, then, by a translation invariance
of solutions, one shows that for any q > q0 there exists tq > 0 such that
ϕ(t, q) = ϕ(t− tq, q0)→∞ as t→ tq, which contradicts νtq ∈MF .

It follows that ϕ has the convenient representation

ϕ(t, q) = Φ(t, ϕ(0, q)),(3.5)

where ϕ(0, q) def= ϕ(0+, q) and where Φ solves the initial value problem

(3.6)

{
∂tΦ(t, q) = −Ψ(Φ(t, q)), q ∈ E
Φ(0, q) = q.

The functions Φt = Φ(t, ·) have the semigroup property Φt+s = Φt ◦ Φs for
t, s > 0. Because of the composition structure (3.5), we make the following
definition.
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Definition 3.4. Assume Ψ: E → E is a critical branching mechanism.
We say that a function µ : E → MF is the fundamental solution of the
generalized Smoluchowski equation (1.11) if the function

Φ(t, q) =
∫
E

(1− e−qx)µt(dx)(3.7)

solves the initial value problem (3.6), where Φ(0, q) def= Φ(0+, q).

The fundamental solution relates solutions of the generalized Smoluchow-
ski equation to their initial data via solutions of a linear problem; see Re-
mark 3.10 below for details. But first we establish necessary and sufficient
criteria for the existence of a fundamental solution, and develop the basis
for our discussion of well-posedness theory for weak solutions with initial
data. For this purpose, we adopt the following terminology from [3].

Definition 3.5. We say that a branching mechanism Ψ : E → R satis-
fies Condition E provided Ψ(∞) =∞ and∫ ∞

a

1
Ψ(u)

du <∞ for some a > 0.(3.8)

Remark 3.6. It is well-known that Condition E gives a necessary and
sufficient condition under which solutions to (1.3) have finite-time blow-up,
backward in time.

Proposition 3.7. Let Φ be the unique solution of the initial value prob-
lem (3.6), where Ψ: E → R is any branching mechanism of the form (2.1).
Then, for each fixed t > 0, the map Φ(t, ·)E → E is a Bernstein function.
More precisely,

Φ(t, q) = btq +
∫
E

(1− e−qx)µt(dx)(3.9)

for some bt > 0 and µt ∈M1∧x. Furthermore, the following properties hold.

(i) bt = 0 for some (equivalently all) t > 0 if and only if Ψ′(∞) =∞.
(ii) bt = 0 and µt ∈MF for some (equivalently all) t > 0 if and only if Ψ

satisfies Condition E.

Remark 3.8. While the facts above can be infered from CSBP theory,
we summarize them here for convenience of the reader, and give a proof
independent of the latter theory. In particular, we recognize equation (3.9)
as the Lévy-Khintchine formula for the Laplace exponent of a CSBP with
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branching mechanism Ψ, as sketched in Section 1.2. In this context, property
(ii) states that a CSBP becomes extinct by time t with positive probability
(Φ(t,∞) < ∞) if and only if Condition E holds. For critical CSBPs, this
is the case if and only if the process becomes extinct almost surely. Thus,
property (ii) establishes a one-to-one correspondence between fundamental
solutions of (1.11) and Lévy measures for critical CSBPs that become extinct
almost surely.

Proof. Our proof is based on the implicit Euler method. First we will
show that each iteration of the implicit Euler scheme for (3.6) yields a Bern-
stein function. Then, since the set of Bernstein functions is closed under
composition and pointwise limits [22, pp. 20-21], convergence of the implicit
Euler scheme implies that Φ(t, ·) is Bernstein.

By assumption, Ψ has the representation (2.1). Since Ψ′ is increasing
and Ψ′(0+) = α̂ ∈ R, it follows that Ψ is Lipshitz on bounded intervals.
Hence (3.6) has a unique solution. Furthermore, the solution remains positive
for all time since the equation is autonomous and Ψ(0+) = 0. Also, since
∂tΦ = −Ψ(Φ) 6 −α̂Φ, we obtain, for all t, q > 0, the bound

0 6 Φ(t, q) 6 qe−α̂t.(3.10)

For fixed t > 0 and N ∈ N, let h = t/N and consider the iteration scheme

(3.11) Φ̂n+1(q) = Φ̂n(q)− hΨ(Φ̂n+1(q)), n = 0, 1, . . . , N − 1.

Note that for N sufficiently large, the function FN : E → E defined by

FN (u) = u+
t

N
Ψ(u) = u+ hΨ(u)(3.12)

is a bijection, since F ′N (u) = 1 + hΨ′(u) > 1 + α̂h > 0. By consequence,
Φ̂n+1(q) = F−1

N (Φ̂n(q)) is well-defined and positive for all q > 0 and n =
0, 1, . . . , N−1. Since Ψ is locally smooth on E and we have the bound (3.10),
the proof of the pointwise convergence Φ̂N (q)→ Φ(t, q) as N →∞ for each
q > 0 is standard and we omit it.

Observe now that FN is a branching mechanism since it has a represen-
tation of the form (2.1). Hence by Lemma 2.3, F−1

N is a Bernstein function,
provided N is sufficiently large. Since the set of Bernstein functions is closed
under composition, and Φ̂0(q) = q is a Bernstein function, it follows Φ̂n is a
Bernstein function for each n = 0, . . . , N . Finally, the pointwise convergence
Φ̂N → Φ(t, ·) as N →∞ implies that Φ(t, ·) is a Bernstein function, by [22,
Cor. 3.8]. The representation (2.2) then gives

(3.13) Φ(t, q) = at + btq +
∫
E

(1− e−qx)µt(dx),
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for some at, bt > 0 and µt ∈M1∧x. Note that (3.10) implies at = Φ(t, 0+) =
0 for all t > 0.

Next we establish (i). Observe that bt = ∂qΦ(t,∞), and that the relation

∂qΦ(t, q) = e−
∫ t
0

Ψ′(Φ(s,q)) ds(3.14)

is an easy consequence of (1.3). If Ψ′(∞) <∞, then since Ψ′ and Φ(s, ·) are
increasing, for any t > 0 we find

bt = e−
∫ t
0

Ψ′(Φ(s,∞)) ds > e−tΨ
′(∞) > 0.

Conversely, suppose bt > 0 for some t > 0, then (3.13) implies Φ(t,∞) =∞
and hence Φt = Φ(t, ·) is a surjection onto E. Since Φt = Φs ◦ Φt−s for
0 < s < t, Φs is also a surjection and hence Φ(s,∞) = ∞. Thus bt =
e−tΨ

′(∞) > 0. Hence, Ψ′(∞) <∞. This completes the proof of (i).
Finally, let us show that (ii) holds. First suppose bt = 0 and µt ∈MF for

some t > 0. We claim Condition E holds. From (3.9) we have

Φ(t,∞) =
∫
E
µt(dx) <∞.(3.15)

Assume for the sake of contradiction that Ψ(∞) < ∞. Then Ψ′(∞) 6 0,
and we have by (2.1), β̂ = 0 and α̂ = Ψ′(0+) 6 −

∫
xπ(dx). In that case,

Ψ(u) <
∫
E(e−ux − 1)π(dx) < 0 for all u ∈ E, and Φ(·, q) is increasing.

Hence Φ(t, q) > q → ∞ as q → ∞, which contradicts (3.15). This shows
Ψ(∞) =∞.

Now, assume (3.8) fails. As remarked above, failure of this condition en-
sures that all solutions of (1.3) with finite initial data remain finite backward
in time. In particular, by uniqueness and positivity of solutions of (3.6), we
have that for all q > 0,

q = Φ(0, q) = Φ(−t,Φ(t, q)) 6 Φ(−t,Φ(t,∞)),

which is finite and independent of q. Note that we used monotonicity of Φ
in q for the inequality. This is a contradiction. Hence, Condition E holds.

Conversely, assume Condition E holds, and let

q∗
def= inf{q ∈ E : Ψ(q) > 0}

denote the largest equilibrium solution of (1.3). Then, for any q > q∗ there
exists tq < 0 such that E 3 Φ(t, q) → ∞ as t → t+q . We define the special
solution

Φ∗(t) = Φ(t− tq, q),
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which is independent of q > q∗ and has the property E 3 Φ∗(t) → ∞ as
t→ 0+. Since Φ(0, q) < Φ∗(0+) =∞, we deduce, by uniqueness of solutions
of (1.3), that Φ(t, q) < Φ∗(t) for all t, q > 0. Therefore, taking q →∞, shows
Φ(t,∞) <∞. That is, bt = 0 and µt ∈MF , for all t > 0.

Remark 3.9. Note that the Bernstein functions Φ(t, ·) converge point-
wise to the function Φ(0, q) = q as t→ 0. It follows that

∂qΦ(t, q) = bt +
∫
E
e−qxxµt(dx)

converges pointwise to ∂qΦ(0, q) = 1 =
∫

[0,∞) e
−qxδ0(dx) as t → 0 (see, for

instance, [22, p. 21]). Therefore, by the continuity theorem (cf. [8, XIII.1]),
the measures κ(t)(dx) = btδ0(dx)+xµt(dx) converge vaguely to the measure
δ0(dx) in the space of positive Radon measures on [0,∞). In particular,
if Ψ is a critical branching mechanism satisfying Condition E, then the
mass measure, xµt(dx), converges weakly to a delta mass at zero as t →
0. Moreover, the total mass at time t, given by ∂qΦ(t, 0+), is conserved
by (3.14).

Remark 3.10. Formula (3.5) has a standard probabilistic interpreta-
tion: For fixed t, the Lévy process with Lévy measure νt is subordinated
to the Lévy process with Lévy measure ν0 by the directing process Z(t, ·)
with Lévy measure µt. In terms of generators, this corresponds however to
a deterministic formula that expresses the weak solution νt of the nonlin-
ear Smoluchowski equation in terms of the fundamental solution µt and the
solution of a linear problem. Namely,

(3.16) νt(dx) =
∫
E
Qs(dx)µt(ds),

where Qs is the kernel for the convolution semigroup esA (a Lévy diffusion)
with generator determined by ν0(dx). That is, for all smooth f ∈ Cc(R) we
have

(3.17) esAf(x) =
∫

R
f(x+y)Qs(dy), Af(x) =

∫
E

(f(x+y)−f(x))ν0(dy).

These formulas are straightforward to establish by Laplace transform, after
multiplying (3.16) by 1− e−qx and s−1(esA − I)f by eqx and integrating on
R. (Note that Qs(dx) retains an atom at 0 with mass e−s〈ν0,1〉.)
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3.3. Weak solutions with initial data. In this section we establish the
existence and uniqueness of weak solutions of (1.11) with initial data ν0 ∈
MF .

Lemma 3.11. Assume Ψ: E → R is a branching mechanism, and let ν0 ∈
M1∧x. Then, there exists a unique vaguely continuous map ν : [0,∞)→M+

such that ϕ, defined by (3.4), is a solution of (1.3) with initial data

ϕ0(q) =
∫
E

(1− e−qx)ν0(dx)(3.18)

Furthermore, if ν0 ∈MF , then νt ∈MF for all t > 0, and ν : [0,∞)→MF

is weakly continuous. In this case, we have for t > 0

d〈νt, 1〉
dt

= −Ψ(〈νt, 1〉).(3.19)

Proof. Note that (3.5) represents the unique solution of (1.3) with ini-
tial data ϕ(0, q) = ϕ0(q). By Proposition 3.7, the map Φ(t, ·) is a Bernstein
function for all t > 0. Also, ϕ0 is a Bernstein function as it admits a repre-
sentation of the form (2.2). Therefore the composite function, given by (3.5),
is a Bernstein function for all t > 0. Furthermore, we have ϕ(t, 0+) = 0 and

∂qϕ(t,∞) = lim
q→∞

∂qΦ(t, ϕ0(q)) · lim
q→∞

ϕ′0(q).

By assumption, the latter limit vanishes, and since ∂qΦ(t, ·) is decreasing,
the former limit is finite. Hence, ∂qϕ(t,∞) = 0 and the representation (2.2)
for ϕ reduces to

ϕ(t, q) =
∫
E

1− e−qx

x
µt(dx),(3.20)

for some µt ∈ M+ with x−1 µt ∈ M1∧x. Note that the measure µt is deter-
mined uniquely by its Laplace transform ∂qϕ(t, q). Further, ∂qϕ(t, q) is con-
tinuous in t, since ∂t∂qϕ(t, q) = Ψ′(ϕ(t, q))Ψ(ϕ(t, q)). Therefore, viewing µt
as a measure on [0,∞) (which assigns measure zero to the point {0}), it fol-
lows from the continuity theorem (cf. [8, XIII.1]) that the map µ : [0,∞)→
M+([0,∞)) is vaguely continuous, whereM+([0,∞)) is the space of Radon
measures on [0,∞). In particular, for all f ∈ Cc(E) ⊂ Cc([0,∞)), we have
〈f, µs〉 → 〈f, µt〉 as s→ t. That is, the map µ : [0,∞)→M+ is vaguely con-
tinuous. Hence, the map t 7→ νt

def= x−1µt ∈ M+ is also vaguely continuous
(since µs

v−→ µt implies φ · µs
v−→ φ · µt for any φ ∈ Cc(E)). This establishes

the first part of the lemma. Finally, observe

〈νt, 1〉 = lim
q→∞

ϕ(t, q) = lim
q→∞

Φ(t, ϕ0(q)) = Φ(t, 〈ν0, 1〉).
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Thus if ν0 ∈ MF , equation (3.19) follows from (3.6) by taking q = 〈ν0, 1〉.
Since (3.19) implies t 7→ 〈νt, 1〉 is continuous on [0,∞), we conclude that
ν : [0,∞)→MF is weakly continuous (see, for instance, [1, Theorem 30.8]).

Corollary 3.12. Assume Ψ: E → E is a critical branching mecha-
nism, and let ν0 ∈MF . Then, there exists a unique weak solution of (1.11)
with initial data ν0.

Proof. First, by Lemma 3.11, there exists a weakly continuous map
ν : [0,∞) → MF such that ϕ, defined by (3.4), satisfies (1.3) with initial
data (3.18). In particular, νt ∈ MF converges weakly to ν0 as t → 0. By
Theorem 3.2, ν restricted to E verifies (3.3). Hence, by definition, ν is weak
solution of (1.11) with initial data ν0. Uniqueness of the solution follows
from Lemma 3.11.

4. Self-similarity and Generalized Mittag-Leffler functions. Re-
call from [16], that the classical Smoluchowski equation, which corresponds
here to the special branching mechanism Ψ(u) = u2, admits a one-parameter
family of self-similar solutions of the form

νt(dx) = t−1Fρ(t
− 1
ρ dx), t > 0, 0 < ρ 6 1,

where Fρ is given by the classical Mittag-Leffler distribution function, sat-
isfying

Fρ(x) =
∞∑
k=1

(−1)k+1xρk

Γ(ρk + 1)
,

∫
E

(1− e−qx)Fρ(dx) =
1

1 + q−ρ
.(4.1)

We now discuss the existence of self-similar solutions for homogeneous
branching mechanisms of the form

Ψ(u) = βuγ , 1 < γ 6 2, β > 0.(4.2)

As in [16], we look for self-similar solutions of the form

νt(dx) = α(t)F (λ(t)−1dx),(4.3)

where F is a probability distribution and α, λ > 0 are differentiable. In this
case, the function ϕ, defined by (3.4), takes the form

ϕ(t, q) = α(t)ϕ̄(qλ(t)), ϕ̄(s) =
∫
E

(1− e−sx)F (dx).(4.4)
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Furthermore, by Theorem 3.2, ϕ satisfies the equation

∂tϕ(t, q) = −βϕ(t, q)γ(4.5)

for all 0 6 q 6 ∞, where ϕ(t,∞) def=
∫
E νt(dx). By (4.4), ϕ(t,∞) = α(t).

Hence, up to the normalization α(0+) =∞, (4.5) gives

α(t) = [(γ − 1)βt]
1

1−γ .(4.6)

Now, given (4.4), we rewrite (4.5) as

α′(t)
α(t)γ

ϕ̄(qλ(t)) + qα(t)1−γλ′(t)ϕ̄′(qλ(t)) = −βϕ̄(qλ(t))γ .

In terms of the variable s def= qλ(t), separation of variables yields

(γ − 1)tλ′(t)
λ(t)

=
ϕ̄(s)− ϕ̄(s)γ

sϕ̄′(s)
=

1
ρ
,

where we label the separation constant as 1/ρ for convenience. The constant
β disappears thanks to (4.6). Solving for the general solution in each case,
we obtain

λ(t) = c1t
1

ρ(γ−1) , ϕ̄(s) =
[

1
1 + c2s−ρ(γ−1)

] 1
γ−1

,(4.7)

where c1, c2 > 0 are arbitrary constants. Taking into account (4.4), we have
ϕ̄(0+) = 0. Therefore, ρ > 0. Furthermore, the fact that ϕ̄ is a Bernstein
function implies that 0 < ρ 6 1, otherwise ϕ̄′′ takes positive values near
s = 0. We obtain the following proposition.

Proposition 4.1. Assume Ψ is given by (4.2). Then (1.11) admits a
one-parameter family of self-similar solutions, indexed by ρ ∈ (0, 1], of the
form

µβ,γ,ρt (dx) = α(t)Fγ,ρ(α(t)
1
ρdx), α(t) = [(γ − 1)βt]

1
1−γ ,(4.8)

where Fγ,ρ is a probability measure determined by the relation∫
E

(1− e−qx)Fγ,ρ(dx) =
[

1
1 + q−ρ(γ−1)

] 1
γ−1

.(4.9)

More precisely, the function

ϕβ,γ,ρ(t, q) =
∫
E

(1− e−qx)µβ,γ,ρt (dx)(4.10)
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solves (4.5) with initial data ϕβ,γ,ρ(0, q) = qρ. In particular, µβ,γ,1t is the
fundamental solution of (1.11). That is, µβ,γ,1t is the Lévy measure for
Zβ,γ(t, x), the continuous-state branching process with branching mechanism
(4.2).

Proof. We set c1 = [(γ − 1)β]
1

ρ(γ−1) and c2 = 1 in (4.7), so that (4.4)
takes the form

ϕβ,γ,ρ(t, q) =
[

1
(γ − 1)βt+ q−ρ(γ−1)

] 1
γ−1

.(4.11)

By construction, this function solves (4.5) and has initial data ϕβ,γ,ρ(0, q) =
qρ, which is a Bernstein function. Hence, by Proposition 3.7, formula (3.5),
and Theorem 3.2, ϕβ,γ,ρ has the representation in (4.10) where µβ,γ,ρt solves
(1.11). The remaining statements regarding the case ρ = 1 follow easily from
definitions – see Sections 1.2 and 3.2.

Finally, we show that the distribution function for Fγ,ρ has a generalized
Mittag-Leffler structure analogous to (4.1).

Lemma 4.2. Suppose F is a probability measure on E such that for some
fixed r, s > 0, ∫

E
(1− e−qx)F (dx) =

[
1

1 + q−s

]r
,(4.12)

for all q > 0. Then the distribution function of F takes the form

F (x) =
∞∑
k=1

(r)k
k!
· (−1)k+1xsk

Γ(sk + 1)
,(4.13)

where (r)k denotes the Pochhammer symbol, or “rising factorial” function

(r)k = r(r + 1)(r + 2) · · · (r + k − 1).

Remark 4.3. A study of generalized Mittag-Leffler distribution func-
tions of the form (4.13) is given by Prabhakar [21]. In particular, we may
define, as in [21], the family of generalized Mittag-Leffler functions

Eρα,β(x) =
∞∑
k=0

(ρ)k xk

k! Γ(αk + β)
, α, β, ρ > 0,(4.14)

in which case (4.13) has the particular form

F (x) = 1− Ers,1(−xs).
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Proof. By series expansion of (1 − x)−r at x = 0, one easily computes
that [

1
1 + q−s

]r
=
∞∑
k=0

r(r + 1) . . . (r + k − 1)
k!

(−q−s)k

for |q| > 1. Next, note that

q−sk =
sk

Γ(sk + 1)

∫ ∞
0

e−qxxsk−1 dx,

for k > 1. Since

1−
∫ ∞

0
e−qxF (dx) =

∞∑
k=0

(r)k
k!

(−1)kq−sk = 1−
∞∑
k=1

(r)k
k!

(−1)k+1q−sk,

we conclude, formally, that

F (dx) =
∞∑
k=1

(r)k
k!
· (−1)k+1sk

Γ(sk + 1)
xsk−1 dx.(4.15)

Indeed, the previous series converges for all x > 0, has a (probability) dis-
tribution function given by (4.13), and satisfies (4.12) for all Re(q) > 1. It
follows by the identity theorem, that (4.12) holds for all q > 0, since both
the left and right hand sides of (4.12) are analytic for Re(q) > 0.

5. Scaling limits with regularly varying Ψ. Proposition 4.1 estab-
lishes the existence of a family of self-similar solutions of (1.11) with power-
law branching mechanisms Ψ(u) = βuγ , 1 < γ 6 2. These solutions have a
scaling invariance given by

µβ,γ,ρt (dx) = s
1

γ−1µβ,γ,ρst (s
1

ρ(γ−1)dx),

for any s > 0. While self-similarity arises in this case due to homogeneity of
Ψ, we will show that branching mechanisms with an asymptotic power-law
structure admit solutions which are asymptotically self-similar.

Recall that a function f > 0 is said to be regularly varying at zero (re-
spectively, infinity) with index ρ ∈ R if

f(tx)
f(t)

→ xρ

as t → 0 (respectively, t → ∞) for all x > 0. If ρ = 0, then f is said to be
slowly varying.
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Theorem 5.1. Let ν : E → MF be a weak solution of equation (1.11)
where Ψ is a critical branching mechanism which is regularly varying at zero
with index γ ∈ (1, 2].

(i) Suppose there exists a nonzero ν̂ ∈ MF and functions α, λ > 0 such
that

α(t)νt(λ(t)−1 dx) w−→ ν̂(dx) as t→∞.(5.1)

Then, there exists ρ ∈ (0, 1] such that for all t > 0,∫ x

0
yνt(dy) ∼ x1−ρL(t, x) as x→∞,(5.2)

where L(t, ·) is slowly varying at infinity. Furthermore, there exists
cλ > 0, given by (5.15), such that

ν̂(dx) = 〈ν̂, 1〉Fγ,ρ(〈ν̂, 1〉
1
ρ c−1
λ dx).(5.3)

Here Fγ,ρ is the generalized Mittag-Leffler distribution defined by (4.9).
Moreover, for all t > 0,

α(s)νst(λ(s)−1dx) w−→ t
1

1−γ ν̂(t
1

ρ(1−γ)dx) as s→∞,(5.4)

and the limit in (5.4) is a self-similar solution of (1.11) with branching
mechanism

Ψ̂(u) = βuγ , β =
〈ν̂, 1〉1−γ

γ − 1
.(5.5)

(ii) Conversely, suppose there exist t0 > 0, ρ ∈ (0, 1], and L slowly varying
at infinity such that (5.2) holds for t = t0. Then, there exists a function
λ(t)→ 0, implicitly defined by (5.16), such that (5.1) holds with α(t) =
〈νt, 1〉−1 and ν̂ = Fγ,ρ.

Remark 5.2. Note that if (6.1) holds for a weak solution ν : [0,∞) →
MF with initial data ν0, then (5.2) holds for t = 0. Similarly, if (5.2) holds
for t = t0 = 0, then the converse result holds (cf. [16]). Indeed, the proof
below extends easily to these cases.

We begin our analysis leading to the proof of Theorem 5.1 with the fol-
lowing pair of useful lemmas.
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Lemma 5.3. (Uniform Convergence Lemma) Assume f > 0 is monotone
and regularly varying at x =∞ with index ρ 6= 0. Assume h > 0. Then, for
any 0 6 λ 6∞,

f(xh(x))
f(x)

→ λρ(5.6)

as x→∞ if and only if h(x)→ λ as x→∞.

Proof. The result essentially follows from the Uniform Convergence
Theorem of Karamata (see, for instance, [4, Theorem 1.5.2]). In particular,
if f satisfies the hypotheses above, then the convergence f(λx)/f(x) → λρ

as x→∞ is uniform in λ on compact subsets of E. Therefore, if h(x)→ λ
as x → ∞ for 0 < λ < ∞, then (5.6) holds. The cases λ = 0 and λ = ∞
then follow from the monotonicity of f .

Conversely, suppose (5.6) holds for some 0 6 λ 6∞. Then, if h(x) 9 λ,
there exists a subsequence xn →∞ such that h(xn)→ ν for some 0 6 ν 6∞
with ν 6= λ. We deduce that f(xnh(xn))/f(xn) → νρ, which contradicts
(5.6). This completes the proof.

Lemma 5.4. Assume Ψ: E → E is continuous and regularly varying at
u = 0 with index γ > 1. Further, assume u : E → E solves the ordinary
differential equation

u′ = −Ψ(u).(5.7)

Then u is regularly varying at infinity with index (1− γ)−1.

Proof. First assume u is invertible. Then it suffices to show that the
function u−1 : (0, u(0+)) → E is regularly varying at s = u(∞) = 0 with
index 1/(1−γ)−1 = 1−γ. In that case, we apply Lemma 5.3 to the identity

(
x

1
1−γ
)1−γ

=
u−1(u(tx))
u−1(u(t))

=
u−1

(
u(tx)
u(t) u(t)

)
u−1(u(t))

,

to obtain

lim
t→∞

u(tx)
u(t)

= x
1

1−γ ,

for all x > 0. Hence, u is regularly varying at infinity with index (1− γ)−1.
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Obviously, u is decreasing when u > 0. Therefore, to show that u is
invertible, we must show that u does not vanish in finite time. Writing (5.7)
in integral form, we have

t− t0 =
∫ u(t0)

u(t)

1
Ψ(w)

dw.(5.8)

Thus, u vanishes in finite time if and only if
∫ 1

0
1

Ψ(w)dw < ∞. Note that
Ψ(s) = sγL(s) where L is slowly varying. Also,∫ 1

s

1
Ψ(w)

dw =
s

Ψ(s)

∫ 1
s

1

Ψ(s)
Ψ(sw)

dw =
1

sγ−1L(s)

∫ 1
s

1

Ψ(s)
Ψ(sw)

dw.(5.9)

Since Ψ is regularly varying at zero, the integral term on the right-hand
side is bounded away from zero for s sufficiently small. Also, srL(s)→ 0 as
s → 0 for all r > 0 (see, for instance, [8, VIII.8]). Hence the left-hand side
of (5.9) diverges as s→ 0, and we conclude that u is invertible.

It remains to show that u−1 is regularly varying at zero with index 1− γ.
We consider any fixed 0 < s0 < u(0+). By a change of variables, (5.8) implies

u−1(s) = u−1(s0)−
∫ s

s0

1
Ψ(w)

dw

for all 0 < s < u(0+). Therefore, by L’Hôpital’s rule, we obtain for any s > 0

lim
τ→0

u−1(τs)
u−1(τ)

= lim
τ→0

s
(
u−1

)′ (τs)
(u−1)′ (τ)

= lim
τ→0

−s
Ψ(τs)
−1

Ψ(τ)

= lim
τ→0

sΨ(τ)
Ψ(τs)

= s1−γ .

This completes the proof.

Solutions of the autonomous equation (5.7) have a translation invariance
which plays an important role in our analysis. Specifically, if Ψ > 0 is con-
tinuous and Ψ(0+) = 0 (for instance, any critical branching mechanism),
and if u > v > 0 are solutions of (5.7) defined on E, then

v(t) = u(t− τ + u−1(v(τ)))

for all t, τ > 0. Recall that if ν : E → MF is a weak solution of (1.11),
then the function ϕ(·, q), defined by (3.4), solves (5.7) for all 0 6 q 6∞. In
particular, the function

η(t) def= 〈νt, 1〉 = ϕ(t,∞)(5.10)
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solves (5.7). Since ϕ(t,∞) > ϕ(t, q) > 0 , we obtain the identity

ϕ(t, q) = η(t− τ + η−1(ϕ(τ, q)))(5.11)

for all q > 0. Thanks to this identity, the characterization of scaling limits
in the case of regularly varying branching mechanisms is relatively straight-
forward.

Proof of Theorem 5.1. Let ϕ and η be defined by (3.4) and (5.10),
respectively. Assuming (5.1) holds, we have

α(t)η(t) =
〈
α(t)νt(λ(t)−1 dx), 1

〉
→
〈
ν̂, 1

〉
Moreover, taking into account (5.11), we have〈

ν̂, 1− e−qx
〉

= lim
t→∞

〈
α(t)νt(λ(t)−1 dx), 1− e−qx

〉
= lim

t→∞
α(t)ϕ(t, qλ(t))

= lim
t→∞

α(t)η(t) · lim
t→∞

η(t[1− τ
t + 1

t η
−1(ϕ(τ, qλ(t)))])
η(t)

=
〈
ν̂, 1

〉 (
lim
t→∞

[
1 +

1
t
η−1(ϕ(τ, qλ(t)))

]) 1
1−γ

(5.12)

where the last equality follows from Lemmas 5.3 and 5.4. Since the left-hand
side is finite and independent of τ , we conclude that there exists χ(q) <∞
such that

1
t
η−1(ϕ(τ, qλ(t)))→ χ(q),

for all τ > 0. Since Ψ > 0 and Ψ(0+) = 0, the function η, which solves (5.7),
is decreasing and η(∞) = 0. Also, by the analysis of Section 3.2, ϕ(τ, ·) is
increasing with ϕ(τ, 0) = 0 for all τ > 0. Hence, η−1(ϕ(τ, ·)) is decreasing
with η−1(ϕ(τ, 0)) = +∞. Since the limit in (5.12) is non-constant in q, we
must have χ(q) > 0 and λ(t) → 0 (otherwise, χ vanishes on an unbounded
interval). Therefore,

1
t η
−1(ϕ(τ, qλ(t)))

1
t η
−1(ϕ(τ, λ(t)))

→ χ(q)
χ(1)

> 0.

as t→∞. A standard rigidity lemma (see, for instance, [8, VIII.8]) implies
χ(q) = χ(1)qρ̂ for some ρ̂ 6 0, and implies η−1(ϕ(τ, ·)) is regularly varying at
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q = 0 with index ρ̂. Note that ρ̂ < 0 since χ is non-constant. Also, since η−1

is regularly varying at q = 0 with index 1− γ (see the proof of Lemma 5.4),
it follows that ϕ(τ, ·) is regularly varying at q = 0 with index ρ = ρ̂/(1− γ)
for all τ > 0. Therefore,

ϕ̂(q) def=
〈
ν̂, 1− e−qx

〉
=
〈
ν̂, 1

〉 [
1 + χ(1)qρ(1−γ)

] 1
1−γ .(5.13)

As a pointwise limit of Bernstein functions, ϕ̂ is a Bernstein function. Hence,
we must have 0 < ρ 6 1, otherwise ϕ̂′′ takes positive values near q = 0.

Now let us show that (5.2) holds. For t > 0, we write

ϕ(t, q) =
∫ ∞

0
(1− e−qx)νt(dx) ∼ qρL(t, q−1) as q → 0,

where L(t, ·) is slowly varying at infinity. Next, we claim that q∂qϕ(t, q) ∼
ρϕ(t, q) as q → 0 for all t > 0. Indeed, since ϕqq 6 0, we have

q∂qϕ(t, q)
ϕ(t, q)

>

ϕ(t,xq)
ϕ(t,q) − 1

x− 1

for all x > 1. Hence,

lim inf
q→0

q∂qϕ(t, q)
ϕ(t, q)

> lim inf
q→0

ϕ(t,xq)
ϕ(t,q) − 1

x− 1
=
xρ − 1
x− 1

.

Also, the reverse inequality holds if we consider x < 1 and take the limit
supremum instead. Thus, as x→ 1, we recover the limit q∂qϕ(t, q)/ϕ(t, q)→
ρ.

Therefore, we have

∂qϕ(t, q) =
∫ ∞

0
e−qxxνt(dx) ∼ ρqρ−1L(t, q−1) as q → 0.

This establishes a regular variation condition on the Laplace transform of
the measure xνt(dx). By a classical Tauberian result (see, for instance, [16,
Theorem 3.2]) we obtain the following equivalent condition on the distribu-
tion function:∫ x

0
yνt(dy) ∼ x1−ρL(t, x) · ρ

Γ(2− ρ)
as x→∞.

Hence, redefining L by a multiplicative factor, we obtain (5.2).
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Finally, let us verify (5.4). A slight variation of estimate (5.12) gives, for
all 0 6 q 6∞,

lim
s→∞

〈
α(s)νst(λ(s)−1 dx), 1− e−qx

〉
= lim

s→∞
α(s)ϕ(st, qλ(s))

=
〈
ν̂, 1

〉 (
lim
s→∞

[
t+

1
s
η−1(ϕ(τ, qλ(s)))

]) 1
1−γ

=
〈
ν̂, 1

〉 [
t+ χ(1)qρ(1−γ)

] 1
1−γ

=

[
〈ν̂, 1〉1−γt+

(
〈ν̂, 1〉

1
ρχ(1)

1
ρ(1−γ) q

)ρ(1−γ)
] 1

1−γ

=
〈
µβ,γ,ρt (c−1

λ dx), 1− e−qx
〉

(5.14)

where µβ,γ,ρ is defined by (4.8), with β = (γ − 1)−1〈ν̂, 1〉1−γ and

cλ = 〈ν̂, 1〉
1
ρχ(1)

1
ρ(1−γ) =

[
d

dq

∣∣∣∣
q=0

ϕ̂(q
1
ρ )

] 1
ρ

(5.15)

chosen according with (4.11). The last equality, which is by no means obvi-
ous, follows from (5.13). In particular, when ρ = 1, we obtain the relation
cλ = ϕ̂′(0) = 〈xν̂, 1〉 (cf. Theorem 6.1).

Since (5.14) is valid for all 0 6 q 6 ∞ (note, carefully, that we include
q = ∞) the continuity theorem (see, for instance, [8, XIII.1]) implies that
α(s)νst(λ(s)−1 dx) converges vaguely to µβ,γ,ρt (c−1

λ dx). Also, the case q =∞
implies convergence in total measure. We therefore obtain convergence in
the weak topology (see, for instance, [1, Theorem 30.8]). Hence, taking into
account (4.8), we obtain (5.3)–(5.5). This completes the proof of part (i) of
the theorem.

Now suppose there exists t0 > 0, ρ ∈ (0, 1], and L slowly varying at
infinity such that (5.2) holds for t = t0. Again, by the Tauberian theorem,
we have ∂qϕ(t0, ·) regularly varying at q = 0 with index ρ − 1. The regular
variation of ϕ(t0, ·) at q = 0 with index ρ then follows from the observation:

ϕ(t0, q)
q∂qϕ(t0, q)

=
ϕ(t0, q)− ϕ(t0, 0)

q∂qϕ(t0, q)
=
∫ 1

0

∂qϕ(t0, qz)
∂qϕ(t0, q)

dz → 1
ρ

as q → 0.

The convergence of the integral term is easy to verify, see for instance [18,
Lemma 3.3].
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Finally, for s > 0, let α(s) = η(s)−1 and define λ(s) by the relation

1
s
η−1(ϕ(t0, λ(s))) = 1.(5.16)

It follows that

1
s
η−1(ϕ(t0, qλ(s)))→ qρ(γ−1),

and we conclude, as above, that

lim
s→∞

〈
η(s)−1νst(λ(s)−1 dx), 1− e−qx

〉
=
[
t+ qρ(1−γ)

] 1
1−γ

=
〈
µβ,γ,ρt (dx), 1− e−qx

〉
for all t > 0 and for all 0 6 q 6∞, where β = (γ − 1)−1. Weak convergence
of the measures follows as before. This completes the proof.

6. Scaling limits for fundamental solutions. In this section we
show that a necessary condition for asymptotic self-similarity of fundamen-
tal solutions is regular variation of the branching mechanism Ψ. In view
of Definition (3.4) and property (ii) of Theorem (3.7), we consider critical
branching mechanisms Ψ for which Condition E holds. Our main result is
the following:

Theorem 6.1. Let µ : E →MF be the fundamental solution of (1.11),
where Ψ is a critical branching mechanism verifying Condition E. Further,
assume there exists a nonzero probability measure µ̂ ∈ MF and a function
λ > 0 such that

µt(λ(t)−1 dx)
〈µt, 1〉

w−→ µ̂(6.1)

as t → ∞. Then Ψ is regularly varying at u = 0 with index γ ∈ (1, 2].
Furthermore, xµ̂ ∈MF and λ(t)/〈µt, 1〉 → 〈xµ̂, 1〉 as t→∞. Moreover, we
have the representation

µ̂ = Fγ,1(〈xµ̂, 1〉−1 dx)(6.2)

where Fγ,1 is the generalized Mittag-Leffler distribution defined by (4.9).

Before proving Theorem 6.1, we discuss a few basic properties of funda-
mental solutions. Let us define, as before, the total measure function

η(t) def= 〈µt, 1〉 = Φ(t,∞),
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where Φ is given by (3.7). Since Φ(t, ·) is increasing, we have

lim
t→0+

η(t) > lim
t→0+

Φ(t, q) = q

for all q > 0. Hence, η(t)→∞ as t→ 0. Moreover, η solves (5.7), where Ψ >
0 and Ψ(0+) = 0. Hence, η(t) decreases to zero as t → ∞. It follows that
η : E → E is bijective, and it is straightforward to check that its inverse is
given by

ζ(τ) def= η−1(τ) =
∫ ∞
τ

1
Ψ(u)

du.(6.3)

With this notation, Φ in (3.7) has the representation

(6.4) Φ(t, q) = η(t+ ζ(q)),

which is a special case of (5.11). From this it follows easily that Φ satisfies
the forward equation

(6.5) ∂tΦ + Ψ(q)∂qΦ = 0.

Finally, we note the following useful estimates.

Lemma 6.2. Assume Ψ is a critical branching mechanism verifying Con-
dition E, and assume ζ is defined by (6.3). Then the following hold for all
s > 0:

(i)
d

ds

[
Ψ(s)
s2

]
6 0 6

d

ds

[
Ψ(s)
s

]
,

(ii)
d2

ds2

[
1

Ψ(s)

]
> 0,

(iii)
d

ds
[sζ(s)] > 0.

Proof. Part (i) is equivalent to the estimate

Ψ(s)
s

6 Ψ′(s) 6
2Ψ(s)
s

.(6.6)

The first inequality in (6.6) follows from the convexity of Ψ. That is,

Ψ(s)
s

=
Ψ(s)−Ψ(0)

s− 0
6 Ψ′(s).
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Similarly, the concavity of Ψ′ gives the estimate Ψ′′(s) 6 Ψ′(s)/s, which
implies

sΨ′(s) =
∫ s

0
[τΨ′′(τ) + Ψ′(τ)] dτ 6

∫ s

0
2Ψ′(τ) dτ = 2Ψ(s).

For the proof of (ii), we compute

d2

ds2

[
1

Ψ(s)

]
=

2Ψ′(s)2 −Ψ′′(s)Ψ(s)
Ψ(s)3

,

which is nonnegative by the estimate

Ψ′′(s)
Ψ′(s)

6
1
s

6
Ψ′(s)
Ψ(s)

6
2Ψ′(s)
Ψ(s)

.

Finally, for the proof of (iii), observe that

d

ds
[sζ(s)] =

∫ ∞
s

1
Ψ(u)

du− s

Ψ(s)
=
∫ ∞

1

s

Ψ(su)
du−

∫ ∞
1

s

Ψ(s)
· 1
u2
du

(6.7)

For u > 1, part (i) implies

Ψ(su)
(su)2

6
Ψ(s)
s2

.

Hence (6.7) is nonnegative, and the proof is complete.

Proof of Theorem 6.1. Assuming (6.1), we have for all 0 < q 6 ∞
that

η(t+ ζ(qλ(t)))
η(t)

=

〈
µt(λ(t)−1 dx)
〈µt, 1〉

, 1− e−qx
〉
→ ϕ̂(q) def= 〈µ̂, 1− e−qx〉

as t→∞. Equivalently, in the variable τ def= η(t), we have

ϕ̃(τ, q) def=
η(ζ(τ) + ζ(qλ(τ)))

τ
→ ϕ̂(q)(6.8)

as τ → 0, where, for simplicity of notation, λ(τ) represents λ(ζ(τ)). Note
that ϕ̂ : [0,∞) → [0,∞) is increasing from 0 to 1, since µ̂ is a probability
measure. Also, note that ϕ̃ is implicitly determined by the relation

ζ(qλ(τ)) = ζ(τϕ̃(τ, q))− ζ(τ),(6.9)
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Claim: λ(τ)→ 0 as τ → 0.

Proof of claim: Consider

F (τ) def=
τ

Ψ(τ)
.(6.10)

By part (i) of Lemma 6.2, F is nonincreasing, and τ 7→ τF (τ) is nondecreas-
ing, hence

(6.11) 1 6
F (τu)
F (τ)

6
1
u
, for u 6 1,

1
u

6
F (τu)
F (τ)

6 1, for u > 1.

Therefore, equations (6.3) and (6.9) imply

ζ(qλ(τ))
F (τ)

=
∫ 1

ϕ̃(τ,q)

F (τv)
F (τ)

dv

v
>
∫ 1

ϕ̃(τ,q)

1
v
dv.

As τ → 0, the right-hand side is bounded away from zero for fixed q > 0.
Also, F (τ)→∞ since Ψ(0+) = 0 and Ψ′(0+) = 0. It follows that ζ(qλ(τ))→
∞ as τ → 0. Since ζ is decreasing on E and ζ(0+) =∞, the claim follows.

We now consider the rescaled equation

ζs(qλs(τ)) = ζs(τϕ̃(sτ, q))− ζs(τ),(6.12)

where

ζs(τ) def=
ζ(sτ)
ζ(s)

, λs(τ) def=
λ(sτ)
s

.(6.13)

We will show that equation (6.12) has a nontrivial limit

ζ̂(qλ̂(τ)) = ζ̂(τϕ̂(q))− ζ̂(τ)(6.14)

as s→ 0, where

λs(τ)→ λ̂(τ) = ϕ̂′(0)τ, ζs(τ)→ ζ̂(τ) = τ−r,(6.15)

for some r ∈ (0, 1]. We will then show that the previous limits imply that Ψ
is regularly varying at zero with index γ = r+1 and that ϕ̂ has a generalized
Mittag-Leffler form determined by

ϕ̂(q) =
[

1
1 + (ϕ̂′(0)q)−r

] 1
r

.(6.16)
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The main idea is to show that subsequential limits of (6.12) exist and are
unique. We divide the proof into three main steps.

Step 1. (Existence of subsequential limits.)

First, we write

ζs(τ)− 1 =
∫ τ

1
ζ ′s(u) du =

∫ τ

1

sζ ′(su)
ζ(s)

du =
−sζ ′(s)
ζ(s)

∫ 1

τ

Ψ(s)
Ψ(su)

du.(6.17)

Note that for fixed s > 0, the function

Ψs(u) def=
Ψ(su)
Ψ(s)

is increasing and convex. Furthermore, by part (i) of Lemma 6.2, we have

(6.18) u2 6 Ψs(u) 6 u for u 6 1, u 6 Ψs(u) 6 u2 for u > 1.

On the other hand, by part (iii) of Lemma 6.2, for all s > 0 we have

ξ(s) def=
−sζ ′(s)
ζ(s)

∈ (0, 1].(6.19)

Claim: lim sup
s→0

ξ(s) > 0.

Proof of claim: Assume for the sake of contradiction that ξ(s)→ 0 as s→ 0.
Then, by (6.17) and (6.18), ζ is slowly varying at u = 0. By Helly’s selection
theorem, there exists a sequence τj → 0 and a function 1 6 f(u) 6 1/u such
that

F (τju)
F (τj)

→ f(u)

pointwise for u ∈ (0, 1). Since ζ is slowly varying and λ(τj)→ 0, we have∫ 1

ϕ̂(q)

f(u)
u

du = lim
j→∞

ζ(qλ(τj))
F (τj)

= lim
j→∞

ζ(qλ(τj))
ζ(λ(τj))

· ζ(λ(τj))
F (τj)

= lim
j→∞

ζ(λ(τj))
F (τj)

.

This gives a contradiction since ϕ̂ is nonconstant and the right-hand side is
independent of q. Therefore, the claim holds.

Now we may apply Helly’s selection theorem to find a sequence sk → 0
and a function Ψ̂ > 0 for which
(6.20)

ξ(sk)→ ξ̂ for some ξ̂ ∈ (0, 1], Ψsk(u)→ Ψ̂(u) for all u > 0.
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Furthermore, as a pointwise limit of convex functions, Ψ̂ is convex. By dom-
inated convergence,

ζsk(τ)→ ζ̂(τ) def= 1 + ξ̂

∫ 1

τ

1
Ψ̂(u)

du.(6.21)

Since Ψ̂ is convex and positive, ζ̂ ∈ C1(E) and is strictly decreasing, and the
convergence in (6.21) occurs locally uniformly for τ ∈ E. Now by assumption
(6.8), the right-hand side of (6.12) converges to

R(τ, q) def= ζ̂(τϕ̂(q))− ζ̂(τ) > 0(6.22)

for all τ, q > 0. Hence, the left-hand side of (6.12) also converges, and if ζ̂−1

is defined on E, then

λsk(τ)→ λ̂(τ) def= q−1ζ̂−1(R(τ, q)).(6.23)

Claim: ζ̂ : E → E is a bijection.

Proof of claim: Recall ζ̂ is strictly decreasing. For τ 6 1, estimate (6.18)
implies

ζ̂(τ) > 1 + ξ̂

∫ 1

τ

1
u
du = 1− ξ̂ ln τ →∞ as τ → 0.

It remains to show that ζ̂(τ) → 0 as τ → ∞. Assume, for the sake of
contradiction, that ζ̂(τ)→ L > 0 as τ →∞. Since ϕ̂(q)→ 1 as q →∞, we
may choose for any τ > 0 a value q̂ > 0 sufficiently large so that R(τ, q̂) < L.
It follows

(6.24) λsk(τ)→∞ as k →∞,

for otherwise, along some bounded subsequence, the left-hand side of (6.12)
would have a subsequential limit with value larger than L, which is a con-
tradiction. But now (6.24) implies that for all q > 0

R(τ, q) = lim
k→∞

ζsk(qλsk(τ)) 6 1,

since ζs(u) 6 1 for any s > 0 and u > 1. However, by (6.22), R(τ, q) → ∞
as q → 0, since ζ̂ is unbounded above and ϕ̂ → 0 as q → 0. This is a
contradiction, which gives the claim.

We conclude that, along the sequence sk → 0, equation (6.12) has a well-
defined limit of the form (6.14) for all τ, q > 0. Furthermore, by (6.12) and
(6.17), we have
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1 + ξ(sk)
∫ 1

qλsk (τ)

1
Ψsk(u)

du = ξ(sk)
∫ τ

τϕ̃(skτ,q)

1
Ψsk(u)

du.

In particular, fixing q > 0 and taking into account (6.18) shows that

λsk(τ)→ λ̂(τ) locally uniformly for τ ∈ E.(6.25)

This fact will play a role in the uniqueness proof to follow.

Step 2. (Uniqueness of subsequential limits.)

We now show that subsequential limits obtained as in Step 1 are unique.
First, equations (6.14) and (6.21) imply

ζ̂(τ) = ξ̂

∫ qλ̂(τ)

τϕ̂(q)
F̂ (s)

ds

s
= ξ̂

∫ λ̂(τ)

τ
ϕ̂(q)
q

F̂ (qs)
ds

s
, F̂ (u) def=

u

Ψ̂(u)
.(6.26)

It follows that

ϕ̂′(q) 6
ϕ̂(q)
q

6
λ̂(τ)
τ

for all τ, q > 0.

Therefore, ϕ̂′(q) =
∫
E e
−qxxµ̂(dx) is decreasing and bounded above, and we

deduce that

0 < ϕ̂′0
def= ϕ̂′(0+) <∞.

Furthermore, taking q → 0 in (6.26) gives

ζ̂(τ) = ξ̂F̂0 ln
λ̂(τ)
ϕ̂′0τ

, with F̂0
def= F̂ (0+).(6.27)

Formally, we have F̂0 = ∞ if and only if λ̂(τ) = ϕ̂′0τ for all τ > 0. More
precisely, note that the left-hand side of (6.26) is positive, so that F̂ (qs) has
a finite limit as q → 0 if and only if λ̂(τ) > ϕ̂′0τ for each τ > 0.

On the other hand, equations (6.14) and (6.21) also imply

ζ̂(qλ̂(τ)) = ξ̂

∫ τ

τϕ̂(q)
F̂ (s)

ds

s
= ξ̂

∫ 1

ϕ̂(q)
F̂ (τs)

ds

s
.(6.28)

Taking τ → 0 implies

ζ̂(qλ̂0) = ξ̂F̂0 ln
1

ϕ̂(q)
, with λ̂0

def= λ̂(0+).(6.29)
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In particular, λ̂0 = 0 if and only if F̂0 =∞. Note also λ̂0 <∞, since F̂0 > 1.
We now consider two cases.

Case 1: (λ̂0 = 0). As noted above, λ̂0 = 0 if and only if λ̂(τ) = ϕ̂′0τ for all
τ > 0. Hence, (6.14) reduces to

ζ̂(τqϕ̂′0) = ζ̂(τϕ̂(q))− ζ̂(τ).(6.30)

Differentiating in q and τ gives the relations

ϕ̂(q)
qϕ̂′(q)

=
F̂ (τϕ̂(q))
F̂ (τqϕ̂′0)

= 1 +
F̂ (τ)

F̂ (τqϕ̂′0)
.(6.31)

Therefore, F̂ (τqϕ̂′0)/F̂ (τ) is constant in τ and we deduce that F̂ is a power
law: F̂ (u) = u−r, since F̂ (1) = 1. Note that r 6= 0, since F̂0 = ∞. It then
follows from (6.18) and (6.26) that 0 < r 6 1. The second equality above
reduces to

(qϕ̂′0)r

ϕ̂(q)r
= 1 + (qϕ̂′0)r,(6.32)

which gives (6.16). On the other hand, Ψ̂(u) = ur+1, so that (6.21) implies

0 = ζ̂(∞) = 1− ξ̂
∫ ∞

1

1
ur+1

du = 1− ξ̂

r
.

Hence, ξ̂ = r. In summary, we obtain in this case:

λ̂(τ) = ϕ̂′0τ, Ψ̂(τ) = τ r+1, ζ̂(τ) = τ−r, ξ̂ = r,(6.33)

where 0 < r 6 1 and ϕ̂ is given by (6.16).

Case 2: (λ̂0 > 0). We will show that the remaining case, λ̂0 > 0, leads to a
contradiction. We divide this case into three parts.

(i) First, let us show that if λ̂0 > 0, then ϕ̂ has the form (6.16), and

λ̂(τ)r = λ̂r0 + (τϕ̂′0)r.(6.34)

The idea is to consider a rescaling of (6.14), of the same form as (6.12);
namely,

ζ̂s(qλ̂s(τ)) = ζ̂s(τϕ̂(q))− ζ̂s(τ)(6.35)
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where

ζ̂s(τ) def=
ζ̂(sτ)
ζ̂(s)

, λ̂s(τ) def=
λ̂(sτ)
s

.(6.36)

Since ζ̂(τ)→ 0 as τ → 0, we deduce from (6.27) that

λ̂s(τ) = τ · λ̂(sτ)
sτ

→ τϕ̂′0 as s→∞.(6.37)

Furthermore, since Lemma 6.2 applies to the functions Ψ̂ and ζ̂, we can use
Helly’s selection principle, as in Step 1, to pass to the limit in (6.35) along
some sequence ŝk →∞. Up to relabeling, the limit equation matches exactly
the form (6.30). In particular, (6.37) implies that ζ̂ŝk has a nonconstant
limit, and we obtain, as before, (6.16) from the relations (6.31). Note that
the constant r in (6.16) is the same as in the previous case, since ϕ̂ is fixed.

Now, substituting q = τ/λ̂0 in (6.29) and comparing with (6.27), we
obtain

λ̂(τ)
τϕ̂′0

=
1

ϕ̂(τ/λ̂0)
(6.38)

for all τ > 0. Using (6.16) in the previous relation gives (6.34). In particular,

λ̂(τ)
τ

=

[
λ̂r0
τ r

+ (ϕ̂′0)r
] 1
r

(6.39)

is decreasing as a function of τ > 0.

(ii) Next, let us show that if (6.39) holds, then

lim sup
τ→0

λ(τ)
τ

=∞ and lim inf
τ→0

λ(τ)
τ

= ϕ̂′0.(6.40)

Recall that λ̂(τ) = limk→∞ λsk(τ) for some sk → 0. Therefore, (6.39) implies

lim
k→∞

λ(skτ)
skτ

=
λ̂(τ)
τ
→∞

as τ → 0, and the first statement in (6.40) follows.
On the other hand, by (6.9)

λ(τ)
τ

>
ϕ̃(τ, q)
q

, for all τ, q > 0.
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Hence, for all t > 0 and for all q > 0,

λ̂(t)
t

= lim
k→∞

λ(skt)
skt

> lim inf
τ→0

λ(τ)
τ

> lim inf
τ→0

ϕ̃(τ, q)
q

=
ϕ̂(q)
q

Taking into account (6.39) and passing to the limit t → ∞ on the left and
q → 0 on the right yields the last statement in (6.40).

(iii) Finally, we show that (6.39) and (6.40) lead to a contradiction. Fix M >
m > ϕ̂′0, and choose a sequence of disjoint intervals [ak, bk] as follows.

1. Choose bk → 0 such that
λ(bk)
bk

> M .

2. Define ck = sup{τ < bk :
λ(τ)
τ

< m}.

3. Choose ak such that 1 <
ck
ak

< 1 +
1
k

and
λ(ak)
ak

< m.

Taking s = ak and τ = 1 in (6.12), we have

ζak(qλak(1)) = ζak(ϕ̃(ak, q))− 1.(6.41)

Since

ϕ̂′0 6 lim inf
k→∞

λ(ak)
ak

6 lim sup
k→∞

λ(ak)
ak

6 m

and ϕ̃(ak, q) → ϕ̂(q) as k → ∞, it follows that the sequence ξ(ak), defined
by (6.19), is bounded away from zero; otherwise, there exists a subsequence
ζakj (τ) → 1, which contradicts (6.41). Therefore, as in Step 1, (6.12) has a
nontrivial limit along a subsequence akj → 0, j > 1. In particular, the local
uniform convergence of λakj implies

λakj (τ)

τ
→ Λ̂(τ)

τ
locally uniformly for τ ∈ E,(6.42)

where Λ̂ satisfies (6.34), or, equivalently,

Λ̂(τ)
τ

=

[
Λ̂r0
τ r

+ (ϕ̂′0)r
] 1
r

.(6.43)

If Λ̂0 > 0, then (6.43) is strictly decreasing in τ , and we have, for all τ > 1,

Λ̂(τ)
τ

< Λ̂(1) = lim
j→∞

λakj (1) 6 m.



38 G. IYER, N. LEGER AND R. L. PEGO

On the other hand, if Λ̂0 = 0, then Λ̂(τ)/τ = Λ̂(1) = ϕ̂′0 < m for all τ > 0.
Hence, in either case, we have Λ̂(τ)/τ < m is non-increasing for all τ > 1.

Next, choose ε < min{M −m, m− Λ̂(2)
2 }, and choose J large enough so

that ∣∣∣∣∣λakj (τ)

τ
− Λ̂(τ)

τ

∣∣∣∣∣ < ε ∀ j > J, ∀ τ ∈ [1, 3].(6.44)

Since rj
def= bkj/akj > 1 and∣∣∣∣∣λakj (rj)rj

− Λ̂(rj)
rj

∣∣∣∣∣ =

∣∣∣∣∣λ(bkj )
bkj

− Λ̂(rj)
rj

∣∣∣∣∣ > |M −m| > ε,

it follows from (6.44) that rj > 3 for all j > J . Therefore,

λakj (τ)

τ
> m ∀ j > J, ∀ τ ∈ [2, 3] ⊂

(
ckj/akj , rj

]
,(6.45)

since, by construction, λ(τ)/τ > m for all τ ∈ (ck, bk]. Hence, (6.45) implies∣∣∣∣∣λakj (τ)

τ
− Λ̂(τ)

τ

∣∣∣∣∣ >
∣∣∣∣∣m− Λ̂(τ)

τ

∣∣∣∣∣ >
∣∣∣∣∣m− Λ̂(2)

2

∣∣∣∣∣ > ε(6.46)

for all j > J and for all τ ∈ [2, 3]. This contradicts (6.44). Therefore, the
hypothesis of Case 2, λ̂0 > 0, is never satisfied, and we obtain in Step 1
unique subsequential limits of the form (6.33).

Step 3. (Limit as s→ 0.)

To finish the proof of the Theorem, note that we must have ξ(s)→ ξ̂ = r
as s→ 0. Otherwise, by Step 1, it is possible to extract subsequential limits
with distinct values of ξ̂, contradicting (6.33). Similarly, the full limit of
each of the rescaled functions ζs, Ψs, and λs exists as s → 0, since given
any sequence sk → 0, there exist unique subsequential limits by Steps 1
and 2. In particular, (6.33) shows that Ψ is regularly varying with index
γ = r + 1 ∈ (1, 2]. Also, (6.32) implies

〈µ̂, 1− e−qx〉 = ϕ̂(q) =
1

[1 + (ϕ̂′(0)q)−r]1/r
,

where ϕ̂′(0) = 〈xµ̂, 1〉. This gives (6.2). Finally, (6.15) implies that

λ(ζ(sτ))
η(ζ(sτ))

τ =
λ(ζ(sτ))

s
= λs(τ)→ ϕ̂′(0)τ
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where we recall that the term λ(τ), first appearing in (6.9), is shorthand
notation for λ(ζ(τ)), where λ > 0 is the scaling function in (6.1). It follows
that λ(t) ∼ ϕ̂′(0)η(t) = 〈xµ̂, 1〉 〈µt, 1〉 as t→∞, and the proof is complete.

Remark 6.3. The conclusions of the Theorem follow much more quickly
if one assumes that the scaling function λ(t) ∼ 〈µt, 1〉 in (6.1), based on
the arguments of Pakes [20] which make use of the forward equation (6.5).
Testing (6.1) with xe−qx it follows

(6.47) ∂qΦ(t, λq) =
Ψ(Φ(t, λq))

Ψ(λq)
→ ϕ̂′(q), q > 0.

Writing u = λq and noting θ = ϕ̂(q)/q is a monotonic function of q, we have
that Φ(t, λq) = uθ(1 + o(1)) and thus

(6.48)
Ψ(uθ(1 + o(1)))

Ψ(u)
→ h(θ)

as u→ 0. By simple estimates based on the continuity and monotonicity of
Ψ, one can eliminate the 1 + o(1) factor and conclude that Ψ is regularly
varying by the standard rigidity lemma in [8, VIII.8].

7. Limit theorems for critical CSBPs. We conclude this paper by
applying the results in Sections 5 and 6 to derive limit theorems for critical
CSBPs that become extinct almost surely. First, we obtain a conditional
limit theorem for fixed initial population x. In particular this solves the
continuous-state analog of the open question posed by Pakes in [20, Remark
6.1].

Theorem 7.1. Assume Z(t, x) is a continuous-state branching process
with critical branching mechanism Ψ verifying Condition E. Further, assume
that for some (equivalently all) x > 0, there exists a function λ > 0 and a
probability measure µ̂ ∈MF such that

P(λ(t)Z(t, x) 6 z | Z(t, x) > 0)→
∫

(0,z)
µ̂(dz)(7.1)

vaguely as distribution functions. Then, there exists 1 < γ 6 2 such that
Ψ is regularly varying at u = 0 with index γ. Furthermore, xµ̂ ∈ MF and
λ(t) ∼ 〈xµ̂, 1〉P(Z(t, x) > 0) as t→∞.

Conversely, suppose Ψ is regularly varying at u = 0 with index 1 < γ 6 2.
Then, (7.1) holds with λ(t) = P(Z(t, x) > 0) and µ̂ = Fγ,1(dz).
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Proof. It follows from (1.2) that

P(Z(t, x) = 0) = lim
q→∞

E(e−qZ(t,x)) = e−xϕ(t,∞) = e−x〈µt,1〉,(7.2)

with µt the Lévy measure for Z(t, x). By the continuity theorem [8, XIII.1],
(7.1) implies

∫
E
e−qyµ̂(dy) = lim

t→∞

E(e−qλ(t)Z(t,x))− P(Z(t, x) = 0)
P(Z(t, x) > 0)

= lim
t→∞

e−xϕ(t,λ(t)q) − e−x〈µt,1〉

1− e−x〈µt,1〉

Hence,

lim
t→∞

∫
E

(1− e−qy)µt(λ(t)−1dy)
〈µt, 1〉

= lim
t→∞

ϕ(t, λ(t)q)
〈µt, 1〉

= lim
t→∞

1− e−xϕ(t,λ(t)q)

1− e−x〈µt,1〉
=
∫
E

(1− e−qy)µ̂(dy),

where the second equality follows by Taylor expansion and the fact that
0 < ϕ(t, λ(t)q) < 〈µ(t), 1〉 → 0 as t → ∞. Since µt is the fundamental
solution of the associated equation (1.11), we conclude, by Theorem 6.1,
that there exists 1 < γ 6 2 such that Ψ is regularly varying at u = 0 with
index γ. Also, by Theorem 6.1,

λ(t) ∼ 〈xµ̂, 1〉〈µt, 1〉 ∼ 〈xµ̂, 1〉(1− e−〈µt,1〉) = 〈xµ̂, 1〉P(Z(t, 1) > 0)

as t → ∞. The converse follows easily from Theorem 5.1. This completes
the proof.

Next, based on the same results on scaling limits of fundamental solutions,
we study scaling limits as t→∞ of CSBPs with initial population scaled to
obtain non-degenerate Lévy process limits x 7→ Ẑ(x). As in [10, Ch. VI], let
D to denote the space of càdlàg paths equipped with the Skorokhod topology.
We use the notation L= to denote equality in law (i.e. both processes define
the same measure on the Skorokhod space D), and the notation L−→ to denote
convergence in law for these processes (i.e. weak convergence of the induced
distributions on the Skorokhod space).

For convenience, we introduce a notation for rescaled processes. If λ, α >
0, and x 7→ X(x) is a process, then we define the rescaled process δλ,αX by
δλ,αX(x) def= λX(αx).
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Theorem 7.2. Let Z(t, x) be a continuous state branching process with
critical branching mechanism Ψ verifying Condition E.

(i) Assume there exists a Lévy process Ẑ = Ẑ(x) and functions α, λ > 0
such that

δλ(t),α(t)Z(t, ·) L−−−→
t→∞

Ẑ(·).(7.3)

Further, assume the non-degeneracy condition

lim
t→∞

P(Z(t, α(t)x) = 0) = P(Ẑ(x) = 0) ∈ (0, 1)(7.4)

for some x > 0. Then, there exists 1 < γ 6 2 such that Ψ is regularly
varying at u = 0 with index γ, and there exist constants cα, cλ > 0
such that

cα
α(t)

∼ λ(t)
cλ
∼ P(Z(t, 1) > 0) as t→∞.(7.5)

Furthermore, for all (fixed) t > 0

δλ(s),α(s)Z(st, ·) L−−−→
s→∞

δtγ∗ ,t−γ∗ Ẑ, where γ∗
def=

1
γ − 1

.(7.6)

Also, for all t > 0,

δ1,cαcλZβ,γ(t, ·) L= δtγ∗ ,t−γ∗ Ẑ(7.7)

where Zβ,γ(t, ·) is the continuous-state branching process with branch-
ing mechanism Ψ̂(u) = βuγ with β = γ∗cγ−1

λ .
(ii) Conversely, assume Ψ is regularly varying at zero with index 1 < γ 6 2.

Then (7.6) holds with λ(s) = α(s)−1 = P(Z(s, 1) > 0), where Ẑ(x) is
the Lévy process with Lévy measure Fγ,1(dx) defined by (4.9).

Proof. Since we are dealing with increasing Lévy processes, the process
convergence in (7.3) is equivalent to the pointwise convergence of Laplace
exponents

α(t)ϕ(t, λ(t)q) −−−→
t→∞

ϕ̂(q), for all q ∈ [0,∞),(7.8)

where xϕ̂(q) def= − ln E(e−qẐ(x)) is the Laplace exponent of Ẑ(x). (See, for in-
stance [10, XV.3.2,XIII.1.2] or the proof of Theorem 1 in [17].) Furthermore,
by (7.4) we must have

lim
t→∞

lim
q→∞

xα(t)ϕ(t, λ(t)q) = lim
t→∞

lim
q→∞

− ln E(e−qZ
(t)(x))

= lim
t→∞
− ln P(λ(t)Z(t, α(t)x) = 0) = − ln P(Ẑ(x) = 0) = lim

q→∞
xϕ̂(q),
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and hence

lim
t→∞

α(t)ϕ(t,∞) = ϕ̂(∞) ∈ (0,∞).(7.9)

Then, denoting the Lévy measures of Z(t, x) and Ẑ(x) by µt and µ̂, respec-
tively, we deduce from (7.8) and (7.9) that

1
〈µt, 1〉

µt(λ(t)−1dx) w−→ 1
〈µ̂, 1〉

µ̂(dx).(7.10)

Therefore, by Theorem 6.1, there exists 1 < γ 6 2 such that Ψ is regularly
varying at u = 0 with index γ. Moreover,

λ(t) ∼ 〈xµ̂, 1〉
〈µ̂, 1〉

〈µt, 1〉 ∼
〈xµ̂, 1〉
〈µ̂, 1〉

(1− e−〈µt,1〉) =
〈xµ̂, 1〉
〈µ̂, 1〉

P(Z(t, 1) > 0).

Hence, together with (7.9), we obtain (7.5) with cα = 〈µ̂, 1〉 and cλ = 〈xµ̂,1〉
〈µ̂,1〉 .

Also, by Theorem 6.1,

µ̂(dx) = cαFγ,1(c−1
λ dx) = cαcλ

[
c−1
λ Fγ,1(c−1

λ dx)
]

= cαcλ µ
β,γ,1
1 (dx)

where µβ,γ,1 is defined by (4.8) with β = cγ−1
λ
γ−1 . Therefore, by Theorem 5.1,

we have

α(s)ϕ(st, λ(s)q)→ t−γ
∗
ϕ̂(tγ

∗
q) = cαcλ ϕ

β,γ,1(t, q)(7.11)

as s→∞ for all 0 6 q 6∞, where ϕβ,γ,1 is defined by (4.10). Since

E(e−qλ(s)Z(st,α(s)x)) = e−xα(s)ϕ(st,λ(s)q)

s→∞−−−→ e−xt
−γ∗ ϕ̂(tγ

∗
q) = E(e−qt

γ∗ Ẑ(t−γ
∗
x)),

we obtain (7.6). Similarly, we obtain (7.7) from (7.11).
For the converse, we observe that the convergence in (7.3) holds if and only

if the Laplace exponent converge pointwise as in (7.8) (see, for instance [10,
XV.3.2,XIII.1.2] or the proof of Theorem 1 in [17]). The converse now follows
by a similar argument.

Remark 7.3. The non-degeneracy condition (7.4) has the following in-
terpretation. The spatial process x 7→ Zα,λt (x) is a compound Poisson process
with jump measure α(t)µt(λ(t)−1dx) and scaled intensity α(t)〈µt, 1〉. One
thing that (7.4) means is that we assume the scaled intensity converges to
the intensity of jumps 〈µ̂, 1〉 = 1 in the limiting process Ẑ. In particular this
presumes there are no small jumps with finite intensity being lost in the
limit.
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