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1. Introduction

Mesoscale experiment and simulation permit harvesting information about both
geometric features and texture in material microstructures. The grain boundary
character distribution (GBCD) is an empirical distribution of the relative length
(in 2D) or area (in 3D) of interface with a given lattice misorientation and grain
boundary normal. During the growth process, an initially random texture distri-
bution reaches a steady state that is strongly correlated to the interfacial energy
density [7]. In simulation, it is found that if the given energy depends only on
lattice misorientation, then the steady state GBCD and the energy are related by
a Boltzmann distribution. This is among the simplest non-random distributions,
corresponding to independent trials with respect to the energy. Why does such a
simple distribution arise from such a complex system?

We outline a new entropy based theory which suggests that the evolution of the
GBCD satisfies a Fokker-Planck Equation. Coarsening in polycrystalline systems is
a complicated process involving details of material structures, chemistry, arrange-
ment of grains in the configuration, and environment. In this context, we consider
just two global features: cell growth according to a local evolution law and space
filling constraints. The growth process may be a gradient flow or curvature driven
growth. We shall impose the Mullins Equation of curvature driven growth. Space
filling requirements are managed by critical events, rearrangements of the network
involving deletion of small contracting cells and facets. The interaction between the
evolution law and the constraints is governed primarily by the Herring Condition,
the boundary condition associated with the equation of curvature driven growth.
It determines a dissipation relation. To assist in the derivation, a simplified model
is introduced which is driven by the boundary conditions and reflects the dissipa-
tion relation of the grain growth system. It resembles an ensemble of inertia-free
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spring-mass-dashpots. For this simpler coarsening network, we learn how entropic
or diffusive behavior at the large scale emerges from a dissipation relation at the
scale of local evolution. We offer a simple application of the method to the solution
of the Fokker-Planck Equation itself. We present evidence that the theory predicts
the results of large scale 2D simulations [1]. It is consistent with experiment. We
give a further illustration with the Read-Shockley Energy. Ongoing work involves
analysis of 3D simulation and incorporation of normal dependence.

2. View of the problem

2.1. Reprise of mesoscale theory. We confine our attention to a two dimensional
structure and interfacial energy densities which depend only on lattice misorienta-
tion. We describe the dissipation relation satisfied by this system. Suppose two
grains are separated by an arc Γ with misorientation α, normal n = (cos θ, sin θ),
tangent direction b and curvature κ. Let ψ = ψ(α) denote the energy density on
Γ, which we take to be a function of α alone. Let vn denote the normal velocity of
Γ, and asume the mobility µ = 1. The Mullins Equation of evolution is

vn = ψκ on Γ. (2.1)

Assume that only triple junctions are stable and that the Herring Condition holds

Figure 1. An arc Γ with normal n, tangent t, and lattice misorientation α,

illustrating lattice elements.

at triple junctions. This means that whenever three curves {Γ(1),Γ(2),Γ(3)}, meet
at a point p the force balance, (2.2) below, also known as Young’s Law for this case,
holds: ∑

i=1,..,3

ψb(i) = 0, (2.2)

2.2. Dissipation relation for a network. We turn now to a network of grains
bounded by {Γi} subject to some condition at the border of the region they occupy,
like fixed end points or periodicity. The total energy of the system is given by

E(t) =
∑
{Γi}

∫
Γi

ψ|b|ds (2.3)

Owing exactly to the Herring Condition (2.2), the instantaneous rate of change of
the energy is

d

dt
E(t) = −

∑
{Γi}

∫
Γi

v2
nds+

∑
TJ

v ·
∑

ψb = −
∑
{Γi}

∫
Γi

v2
nds 5 0, (2.4)
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rendering the network dissipative for the energy in any instant absent of critical
events. Indeed, in an interval (t0, t0 + τ) where there are no critical events, we may
integrate (2.4) to obtain a local dissipation equation∑

{Γi}

∫ t0+τ

t0

∫
Γi

v2
ndsdt+ E(t0 + τ) = E(t0) (2.5)

which bears a strong resemblance to the simple dissipation relation for an ensemble
of inertia free springs with friction. It is complicated, however, because the first
term in (2.5) is not the sum of velocities of elementary ‘elements’.

Figure 2. (left) The energy density ψ(α) = 1 + ε sin2 2α, ε = 1
2
, used for

the examples in this note. (right) GBCD and Boltzmann distribution for the
potential ψ with parameter σ ≈ 0.1 as predicted by our theory. This GBCD

is averaged over 5 trials.

3. Entropy and rearrangement events

3.1. A role for rearrangement events. To begin we define the grain boundary
character distribution, GBCD,

ρ(α, t) = relative length of arc of misorientation α at time t,

normalized so that

∫
Ω

ρdα = 1.
(3.1)

The GBCD is a derived statistic, that is, it is not among the variables being resolved
directly in simulation. These are the positions, curvatures, and velocities of the
curves which constitute the configuration. The GBCD is harvested from this data.
Thus it is a consequence of upscaling a finer level process. In addition to this, the
coarsening process itself is irreversible. Once the system has rearranged following
the deletion of a cell or a facet, its history is lost and cannot evolve backwards. For
these reasons, it is natural to think that entropy may play a role in the description
of GBCD evolution. Rearrangement events themselves play an important role in
this process. Consider, for example, cells with 5 facets. A given cell with 5 facets
has decreasing area according to well known von Neumann-Mullins n− 6-rule, [10],
[8]. However, for example, there is both experimental and computational evidence
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that the relative area of 5-sided cells is increasing. We deduce that the population
of 5-sided cells at a given time consists of cells which had 6, 7, 8 . . . facets at earlier
times. Thus in the network setting, the rearrangement events play a major role.
Although we may be reasonably confident that small cells with small numbers
of facets will be deleted, their effect on the configuration is essentially random.
A significant difficulty in developing a theory of the GBCD, and understanding
texture development in general, lies in the lack of understanding of the relationship
between these stochastic or critical or rearrangement events and the configuration.
This leads us to study a technically simpler coarsening model.

3.2. A simplified model. The simplified model is a one dimensional coarsening
process, a gradient flow, with a dissipation inequality amenable to upscaling to
the misorientation ensemble α, [3],[2] . In passing to the higher level ensemble, an
entropic contribution

+

∫
Ω

ρ log ρdα, (3.2)

appears. It is is minus the usual physical entropy. Minimizing (3.2) favors the uni-
form state, which would be our situation were ψ(α) =constant. The new extended
dissipation relation gives rise to an iterative implicit scheme involving the Monge-
Kantorovich-Wasserstein metric. The solution of this scheme has been established,
[6], to be the solution of the Fokker-Planck Equation

µ
∂ρ

∂t
=

∂

∂α
(λ
∂ρ

∂α
+ ψ′ρ) in Ω, 0 < t <∞, (3.3)

where µ > 0 is a constant, with, in this situation, periodic boundary conditions.
There is presently an extensive literature about MKW-implicit schemes, eg. [9].
We do not know if our statistic ρ(α, t) is a solution of (3.3) but we may ask if
characterizations of solutions have desirable properties which are also shared by ρ.

3.3. Relative entropy and validation of the scheme. The procedure which
leads to the implicit scheme is based on a dissipation inequality, like (2.5), which
holds for the entire configuration but does not identify individual intermediate level
‘spring-mass-dashpots’. The consequence is that we cannot set the temperature-like
parameter σ, but in some way must decide if one exists.

To investigate this, let us introduce the Boltzmann distribution and relative
entropy

ρλ(α) =
1

Zλ
e−

ψ(α)
λ , where Zλ =

∫
Ω

e−
ψ(α)
λ dα, and Φλ =

∫
Ω

ρ log
ρ

ρλ
dα (3.4)

By Jensen’s Inequality, Φλ = 0. If ρ is a solution of (3.3), then

Φλ → 0 as t→∞, exponentially fast. (3.5)

We therefore seek to identify the particular λ = σ for which Φσ defined by the
GBCD statistic ρ tends monotonely to the minimum of all the {Φλ} as t becomes
large. We then ask if the terminal, or equilibrium, empirical distribution ρ is equal
to ρσ. For our purposes, we simply decide the question of equality by inspection.

To understand how this is implemented, we offer an illustration using the solution
of the (3.3) itself, u(α, t) of with the choice λ = σ = 0.1, and a collection of relative
entropy plots {Φλ} where values of λ are close to σ, cf. Figure 3(left). The plot of
Φσ vs. time t is noted in red and it is decreasing and tends to 0. A glance at the



PREDICTIVE THEORY FOR THE GRAIN BOUNDARY CHARACTER DISTRIBUTION 5

Figure 3. (left) The relative entropy of the solution u(α, t) of the Fokker-

Planck Equation (3.3) with the choice λ = σ = 0.1, computed by a routine
numerical method, compared with a sequence of Φλ with the curve for σ = 0.1

noted in red. (right) The computed equlibrium solution, which is indistin-

guishable from ρσ , the Boltzmann distribution of (3.4).

resulting equilibrium u, Figure 3(right), identifies it as the Boltzmann distribution
ρσ, as constructed.

Figure 4. (left) The relative entropy of the grain growth simulation for
a sequence of λ with the optimal choice σ ≈ 0.1 noted in black. (right)
Comparison of the empirical distribution at time t = 2, when 0.8 of the cells
have been deleted, with ρσ , the Boltzmann distribution of (3.4).

We now engage in the identical procedure for the GBCD derived from the simu-
lation data. We identify σ as the value of λ for which Φλ is decreasing and tends to
a minimum, as shown in Figure 4(left). We then compare the empirical distribu-
tion at time t = 2 with the Boltzmann distribution ρσ, as shown in Figure 4(right).
There is good agreement. Averaging over several trials, five in this case, there is
excellent agreement, Figure 2(right). This constitutes the validation of our theory.
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4. A Read-Shockley example

Executing a simulation with a Read-Shockley energy is a test of the effectiveness
of the algorithm for energy densities which are not continuously differentiable. We

Figure 5. (left) A version of a Read-Shockley energy density. (right) Com-

puted near stationary distribution (black) compared with a Boltzmann distri-

bution (gray) of the energy density.

report the results of a first series of simulations in Figure 5. The two-dimensional
simulation shows the result of a completely energy driven GBCD evolution, whereas
the MacKenzie results in [4],[5] are better interpreted as a perturbation of the ran-
dom distribution in favor of the energy. We shall continue to explore this situation.
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