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The purpose of this brief note is to call attention to a theorem published almost
twenty-�ve years ago [GGH] on two dimensional cellular automata which we believe
is still of interest, but which seems to be very little known. One reason for this
obscurity may be that when we wrote this paper, we did not know the term �cellular
automata�, and so it does not appear in the title or elsewhere in the paper. A
second reason may be that the journal itself was discontinued more than 15 years
ago. Despite the long intervening period, we are not aware of another theorem like
it in this �eld.

The model in question is quite well known, as a discrete model of �excitable
media�. See for example [W], where the model is described (with acknowledgement)
and some of the patterns are shown. What seems to be largely unknown is that we
proved a theorem which allows one to predict from the initial condition an important
aspect of the long time behavior of this model. The theorem is based on de�ning
a �topological invariant� for the model. We now state a special case of the main
result in the paper, in order for the reader to decide quickly if the result indeed
merits reading further, and perhaps even looking up the original reference.

We consider a speci�c three-state cellular automata on a two-dimensional square
lattice. This means that to each index pair (i; j), and for each integer valued �time�
n � 0: we associate a number from the set f0; 1; 2g, denoted by sn (i; j) ; and
this mapping obeys a set of rules which enable us to determine sn+1 (i; j) if we know
sn (i; j) and also the values of fsn (i0; j0)g for (i0; j0) lying in some �neighborhood set�
of (i; j). The nature of this neighborhood does not matter much in the statement
of the theorem. Indeed, the result is not restricted to two dimensions. For the
purpose of this basic example, consider that the neighborhood of the �cell� (i; j)
consists of the set Nij = f(i+ 1; j) ; (i� 1; j) ; (i; j + 1) ; (i; j � 1)g : This is often
called the �von Neumann�neighborhood of the cell (i; j) :

Our rules are as follows:

sn+1 (i; j) =

8>><>>:
2 if sn (i; j) = 1
0 if sn (i; j) = 2
1 if sn (i; j) = 0 and sn (i0; j0) = 1 for at least one (i0; j0) 2 Nij
0 otherwise
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The reader who has not seen this model before may wish to consider the following
example. In this example we pick out for examination a four square block whose
cells at time n = 0 are in the states shown

1 2
0 0

:

Use the rule to determine the states at future times n = 1; 2; 3: Actually, we have
not given quite enough information to do this. For example, the states of three of
these cells at time n = 1 are completely determined by what we can see above, but
the state of the lower right cell depends also on neighbors which we have not shown.
Nevertheless, if the we follow all possible alternatives for the arrangement above, we
�nd only two possibilities:

After one time step we have the same pattern except that it is rotated by 90 degrees

or, after three time steps, we have returned to the original pattern in these four squares.

We quickly conclude that if one has this pattern to begin with, then for all n � 0;
at least two of these four cells must have non-zero state. We call the pattern
�persistent�, because within a �xed region it never goes to all zeros.

Our theorem was more interesting than this. As restricted to this model it says:

Theorem: If the initial state space fs0 (i; j) j �1 < i; j <1g contains any
copies or re�ections of the pattern above, or of one of the patterns

1 2
0 2

;
1 1
2 0

then the pattern is persistent. If none of these patterns exist at t = 0; and
the number of non-zero cells initially is �nite, then the pattern is not
persistent.

We have emphasized the interesting part of the theorem.

Above we referred to a �topological invariant�which we discovered for this model.
This is used in the proof of the theorem. To de�ne this invariant we consider any
cycle of cells, which we denote by

C= fC1; C2; ::::; Cng ;
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where Cj+1 is a neighbor of Cj and where Cn is a neighbor of C1: We also consider
that the states f0; 1; 2g are on a circle. At a certain time n we proceed from C1
along the cycle of cells, and as we do so, we move from point to adjacent point on
the circle. That is, at step k we are at state � 2 f0; 1; 2g if the state sk (n) of cell Ck
at time n is equal to �: When we return to C1 we will have made some net integer
number of clockwise rotations around the circle. We denote this number byWn (C) :
Our basic lemma is that Wn (C) is independent of time n:

The theorem as stated requires more work, to reduce consideration to the shortest
possible cycles of four cells in a square. We refer the interested reader to the original
paper. If such a reader is unable to locate the paper, please email sph@pitt.edu for
a hard copy. Electronic copies are not presently available, but should be obtainable
from SIAM starting in 2005.

Remarks: The result above was stated in [GH], but without proof. The winding
number concept introduced in [GGH] greatly facilitates the proof. The theorem in
[GGH] is actually that the pattern is persistent if and only if, for some �time� n0;
there is a cycle with non-zero winding number. For the three state case considered
here, all cycles immediately have a well-de�ned, and constant, winding number. It
is easily shown that in this case if there is any cycle with non-zero winding number,
then this can be �contracted� to one of the patterns described in the theorem. In
the general case of many states, we obtain an upper bound for the smallest n0 at
which we can examine the winding numbers of all cycles and deduce persistence or
non-persistence.
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