Application of Optimal Transport to Evolutionary PDEs

5 -Applications

Giuseppe Savaré
http://www.imati.cnr.it/~savare
Department of Mathematics, University of Pavia, Italy

2010 CNA Summer School
New Vistas in Image Processing and PDEs

Carnegie Mellon Center for Nonlinear Analysis, Pittsburgh, June 7–12, 2010
Outline

1. Thin film equation as the gradient flow of the Dirichlet functional
 - in collaboration with U. Gianazza, G. Toscani, D. Matthes, R. McCann
Outline

1 Thin film equation as the gradient flow of the Dirichlet functional
 ■ in collaboration with U. Gianazza, G. Toscani, D. Matthes, R. McCann

2 The L^2-gradient flow of the simplest polyconvex functional
 ■ in collaboration with L. Ambrosio, S. Lisini
Outline

1 Thin film equation as the gradient flow of the Dirichlet functional
 ■ in collaboration with U. Gianazza, G. Toscani, D. Matthes, R. McCann

2 The L^2-gradient flow of the simplest polyconvex functional
 ■ in collaboration with L. Ambrosio, S. Lisini

3 The sticky particle system
 ■ in collaboration with L. Natile
Outline

1. Thin film equation as the gradient flow of the Dirichlet functional
 ■ in collaboration with U. Gianazza, G. Toscani, D. Matthes, R. McCann

2. The L^2-gradient flow of the simplest polyconvex functional
 ■ in collaboration with L. Ambrosio, S. Lisini

3. The sticky particle system
 ■ in collaboration with L. Natile
Starting point: a family of 4th order equations in \mathbb{R}^d

We look for non-negative solutions to the nonlinear 4th order evolution PDEs

$$\partial_t u + \text{div} \left(u \ D(u^{\alpha-1}\Delta u^\alpha) \right) = 0 \quad \text{in } (0, +\infty) \times \mathbb{R}^d, \quad \alpha \in [1/2, 1],$$

with the initial condition

$$0 \leq u(0, \cdot) = u_0 \in L^1(\mathbb{R}^d), \quad \int_{\mathbb{R}^d} |x|^2 u_0 \, dx < +\infty.$$
Starting point: a family of 4th order equations in \mathbb{R}^d

We look for non-negative solutions to the nonlinear 4th order evolution PDEs

$$\partial_t u + \text{div} \left(u \ D(u^{\alpha-1} \Delta u^\alpha) \right) = 0 \quad \text{in } (0, +\infty) \times \mathbb{R}^d, \quad \alpha \in [1/2, 1],$$

with the initial condition

$$0 \leq u(0, \cdot) = u_0 \in L^1(\mathbb{R}^d), \quad \int_{\mathbb{R}^d} |x|^2 u_0 \, dx < +\infty.$$

$\alpha = 1$: thin film

$$\partial_t u + \text{div} \left(u \ D(\Delta u) \right) = 0$$
Starting point: a family of 4th order equations in \mathbb{R}^d

We look for non-negative solutions to the nonlinear 4th order evolution PDEs

$$\partial_t u + \text{div} \left(u \ D(u^{\alpha-1} \Delta u^\alpha) \right) = 0 \quad \text{in} \ (0, +\infty) \times \mathbb{R}^d, \quad \alpha \in [\frac{1}{2}, 1],$$

with the initial condition

$$0 \leq u(0, \cdot) = u_0 \in L^1(\mathbb{R}^d), \quad \int_{\mathbb{R}^d} |x|^2 u_0 \, dx < +\infty.$$

$\alpha = 1$: thin film

$$\partial_t u + \text{div} \left(u \ D(\nabla u) \right) = 0$$

$\alpha = 1/2$: quantum-drift diffusion

$$\partial_t u + \text{div} \left(u \ D \left(\frac{\Delta \sqrt{u}}{\sqrt{u}} \right) \right) = 0$$
Starting point: a family of 4th order equations in \mathbb{R}^d

We look for non-negative solutions to the nonlinear 4th order evolution PDEs

$$\partial_t u + \text{div} \left(\left[u \right] D \left(u^{\alpha-1} \Delta u^\alpha \right) \right) = 0 \quad \text{in} \ (0, +\infty) \times \mathbb{R}^d, \quad \alpha \in [1/2, 1],$$

with the initial condition

$$0 \leq u(0, \cdot) = u_0 \in L^1(\mathbb{R}^d), \quad \int_{\mathbb{R}^d} |x|^2 u_0 \, dx < +\infty.$$

$\alpha = 1$: thin film

$$\partial_t u + \text{div} \left(\left[u \right] D \left(\Delta u \right) \right) = 0$$

$\alpha = 1/2$: quantum-drift diffusion

$$\partial_t u + \text{div} \left(u \, D \left(\frac{\Delta \sqrt{u}}{\sqrt{u}} \right) \right) = 0$$

Here we focus on the thin film case $\alpha = 1$ with mobility/diffusion coefficient u.
Starting point: a family of 4th order equations in \mathbb{R}^d

We look for non-negative solutions to the nonlinear 4th order evolution PDEs

$$\partial_t u + \text{div} \left(u D \left(u^{\alpha - 1} \Delta u^{\alpha} \right) \right) = 0 \quad \text{in } (0, +\infty) \times \mathbb{R}^d, \quad \alpha \in [1/2, 1],$$

with the initial condition

$$0 \leq u(0, \cdot) = u_0 \in L^1(\mathbb{R}^d), \quad \int_{\mathbb{R}^d} |x|^2 u_0 \, dx < +\infty.$$

\[\alpha = 1: \text{ thin film}\]

$$\partial_t u + \text{div} \left(u D(\Delta u) \right) = 0$$

\[\alpha = 1/2: \text{ quantum-drift diffusion}\]

$$\partial_t u + \text{div} \left(u \frac{\Delta \sqrt{u}}{\sqrt{u}} \right) = 0$$

Here we focus on the thin film case $\alpha = 1$ with mobility/diffusion coefficient u. The more general equation

$$\partial_t u + \text{div}(m(u) \, D(\Delta u)) = 0,$$

where, e.g. $m(u) = u^m$

has been studied (mainly in dimension $d = 1, 2, 3$) by many authors:

[Bernis-Friedman ’90, Bertsch-Dal Passo-Garcke-Grüen ’98–’04; review: Becker-Grün ’05.; asymptotic behaviour: Carrillo-Toscani ’02, Carlen-Ulusoy ’07]
Starting point: a family of 4th order equations in \mathbb{R}^d

We look for non-negative solutions to the nonlinear 4th order evolution PDEs

$$\partial_t u + \text{div} \left(u^{\alpha-1} \Delta u^\alpha \right) = 0 \quad \text{in } (0, +\infty) \times \mathbb{R}^d, \quad \alpha \in [1/2, 1],$$

with the initial condition

$$0 \leq u(0, \cdot) = u_0 \in L^1(\mathbb{R}^d), \quad \int_{\mathbb{R}^d} |x|^2 u_0 \, dx < +\infty.$$

$\alpha = 1$: thin film

$$\partial_t u + \text{div} \left(u \, D(\Delta u) \right) = 0$$

$\alpha = 1/2$: quantum-drift diffusion

$$\partial_t u + \text{div} \left(u \, \frac{\Delta \sqrt{u}}{\sqrt{u}} \right) = 0$$

Here we focus on the thin film case $\alpha = 1$ with mobility/diffusion coefficient u. The more general equation

$$\partial_t u + \text{div}(m(u) \, D(\Delta u)) = 0, \quad \text{where, e.g. } m(u) = u^m$$

has been studied (mainly in dimension $d = 1, 2, 3$) by many authors: [Bernis-Friedman ’90, Bertsch-Dal Passo-Garcke-Grüner ‘98–’04; review: Becker-Grüner ’05.; asymptotic behaviour: Carrillo-Toscani ’02, Carlen-Ulusoy ’07] The quantum drift-diffusion equation has been introduced by Derrida-Lebowitz-Speer-Spohn ’91 [and studied by Bleher-Lebowitz-Speer ’94, Jüngel with Pinna ’00 and Matthes ’08]
Structure of the equation

In the **thin film case**

\[\partial_t u + \text{div} \left(u D(\Delta u) \right) = 0 \]
Structure of the equation

In the thin film case

$$\partial_t u + \text{div} \left(u \, D(\Delta u) \right) = 0$$

Continuity equation + nonlinear condition

$$\partial_t u + \text{div} \left(u \, v \right) = 0, \quad v = -D \left(\frac{\delta \Phi}{\delta u} \right)$$

where

$$\frac{\delta \Phi}{\delta u} = -\Delta u$$
Structure of the equation

In the thin film case

$$\partial_t u + \text{div} \left(u \, D(\Delta u) \right) = 0$$

Continuity equation + nonlinear condition

$$\partial_t u + \text{div} \left(u \, v \right) = 0, \quad v = -D \left(\frac{\delta \Phi}{\delta u} \right)$$

where

$$\frac{\delta \Phi}{\delta u} = -\Delta u$$

The generating functional is

$$\Phi(u) := \frac{1}{2} \int_{\mathbb{R}^d} |Du|^2 \, dx$$
The “Wasserstein gradient” of the Dirichlet functional

Standard technique: choose a vector field $\xi \in C_\infty_c(\mathbb{R}^d; \mathbb{R}^d)$ and the flow X

$$\frac{d}{dt} X_t(x) = \xi(X_t(x)), \quad X_0(x) = x; \quad M_\varepsilon := (X_\varepsilon)_\# M; \quad \sim \frac{d}{d\varepsilon} \Phi(M_\varepsilon)_{|\varepsilon=0}.$$

Wasserstein gradient $g = -v$:

$$\int_{\mathbb{R}^d} \langle g, \xi \rangle \, dM = \frac{d}{d\varepsilon} \Phi(M_\varepsilon)_{|\varepsilon=0}. $$

As usual $M \leftrightarrow u$, $M_\varepsilon \leftrightarrow u_\varepsilon$. In view of the continuity equation, we choose directly $\xi = \nabla \zeta:$
The “Wasserstein gradient” of the Dirichlet functional

Standard technique: choose a vector field \(\xi \in C^\infty_c(\mathbb{R}^d; \mathbb{R}^d) \) and the flow \(X \)

\[
\frac{d}{dt} X_t(x) = \xi(X_t(x)), \quad X_0(x) = x; \quad M_\varepsilon := (X_\varepsilon) \# M; \quad \mapsto \frac{d}{d\varepsilon} \Phi(M_\varepsilon)_{\varepsilon=0}.
\]

Wasserstein gradient \(g = -v : \quad \int_{\mathbb{R}^d} \langle g, \xi \rangle \, dM = \frac{d}{d\varepsilon} \Phi(M_\varepsilon)_{\varepsilon=0} \).

As usual \(M \leftrightarrow u, \ M_\varepsilon \leftrightarrow u_\varepsilon \). In view of the continuity equation, we choose directly \(\xi = \nabla \zeta \):

\[
\frac{d}{d\varepsilon} \Phi(M_\varepsilon)_{\varepsilon=0} = \frac{1}{2} \int_{\mathbb{R}^d} \Delta^2 \zeta u^2 - 2D^2 \zeta D u \cdot D u - \Delta \zeta |D u|^2 \, dx
\]
The “Wasserstein gradient” of the Dirichlet functional

Standard technique: choose a vector field $\xi \in C^\infty_c(\mathbb{R}^d; \mathbb{R}^d)$ and the flow X

$$\frac{d}{dt} X_t(x) = \xi(X_t(x)), \quad X_0(x) = x; \quad M_\varepsilon := (X_\varepsilon) \# M; \quad \sim \left. \frac{d}{d\varepsilon} \Phi(M_\varepsilon) \right|_{\varepsilon=0}.$$

Wasserstein gradient $g = -v : \quad \int_{\mathbb{R}^d} \langle g, \xi \rangle \, dM = \frac{d}{d\varepsilon} \Phi(M_\varepsilon)|_{\varepsilon=0}$.

As usual $M \leftrightarrow u$, $M_\varepsilon \leftrightarrow u_\varepsilon$. In view of the continuity equation, we choose directly $\xi = \nabla \zeta$:

$$\left. \frac{d}{d\varepsilon} \Phi(M_\varepsilon) \right|_{\varepsilon=0^+} = \frac{1}{2} \int_{\mathbb{R}^d} \Delta^2 \zeta \, u^2 - 2D^2 \zeta \nabla D u \cdot D u - \Delta \zeta \, |D u|^2 \, dx$$

Equation for the velocity: $v = -g$,

$$\int_{\mathbb{R}^d} \text{div}(u v) \zeta \, dx = -\int_{\mathbb{R}^d} \langle v, \nabla \zeta \rangle u \, dx = \frac{1}{2} \int_{\mathbb{R}^d} \Delta^2 \zeta \, u^2 - 2D^2 \zeta \nabla D u \cdot D u - \Delta \zeta \, |D u|^2 \, dx$$
The “Wasserstein gradient” of the Dirichlet functional

Standard technique: choose a vector field \(\xi \in C^\infty_c(\mathbb{R}^d; \mathbb{R}^d) \) and the flow \(X \)

\[
\frac{d}{dt} X_t(x) = \xi(X_t(x)), \quad X_0(x) = x; \quad M_\varepsilon := (X_\varepsilon)\# M; \quad \lim_{\varepsilon \to 0} \frac{d}{d\varepsilon} \Phi(M_\varepsilon) \big|_{\varepsilon=0}.
\]

Wasserstein gradient \(g = -v : \int_{\mathbb{R}^d} \langle g, \xi \rangle \, dM = \frac{d}{d\varepsilon} \Phi(M_\varepsilon) \big|_{\varepsilon=0}. \)

As usual \(M \leftrightarrow u, \ R_\varepsilon \leftrightarrow u_\varepsilon. \) In view of the continuity equation, we choose directly \(\xi = \nabla \zeta: \)

\[
\frac{d}{d\varepsilon} \Phi(M_\varepsilon) \big|_{\varepsilon=0} = \frac{1}{2} \int_{\mathbb{R}^d} \Delta^2 \zeta \left(\frac{u^2}{2} - 2D^2 \zeta D u \cdot D u - \Delta \zeta |D u|^2 \right) \, dx
\]

Equation for the velocity: \(v = -g, \)

\[
\int_{\mathbb{R}^d} \text{div} (u v) \zeta \, dx = -\int_{\mathbb{R}^d} \langle v, \nabla \zeta \rangle u \, dx = \frac{1}{2} \int_{\mathbb{R}^d} \Delta^2 \zeta \left(\frac{u^2}{2} - 2D^2 \zeta D u \cdot D u - \Delta \zeta |D u|^2 \right) \, dx
\]

It corresponds to the weak formulation of the thin film equation

\[
\partial_t u + \frac{1}{2} \Delta^2 (u^2) - \partial_{x_i} x_j (\partial_{x_i} u \partial_{x_j} u) - \frac{1}{2} \Delta |D u|^2 = 0 \quad \Leftrightarrow \quad \partial_t u + \text{div} (u D \Delta u) = 0
\]
The “Wasserstein gradient” of the Dirichlet functional

Standard technique: choose a vector field \(\xi \in C^\infty_c(\mathbb{R}^d; \mathbb{R}^d) \) and the flow \(X \)

\[
\frac{d}{dt} X_t(x) = \xi(X_t(x)), \quad X_0(x) = x; \quad M_\varepsilon := (X_\varepsilon)\# M; \quad \leadsto \frac{d}{d\varepsilon} \Phi(M_\varepsilon)_{|\varepsilon=0}.
\]

Wasserstein gradient \(g = -v : \int_{\mathbb{R}^d} \langle g, \xi \rangle \, dM = \frac{d}{d\varepsilon} \Phi(M_\varepsilon)_{|\varepsilon=0} \).

As usual \(M \leftrightarrow u, \ M_\varepsilon \leftrightarrow u_\varepsilon \). In view of the continuity equation, we choose directly \(\xi = \nabla \zeta \):

\[
\frac{d}{d\varepsilon} \Phi(M_\varepsilon)_{|\varepsilon=0^+} = \frac{1}{2} \int_{\mathbb{R}^d} \Delta^2 \zeta u^2 - 2D^2 \zeta D u \cdot D u - \Delta \zeta |D u|^2 \, dx
\]

Equation for the velocity: \(v = -g \),

\[
\int_{\mathbb{R}^d} \text{div} (u v) \zeta \, dx = - \int_{\mathbb{R}^d} \langle v, \nabla \zeta \rangle u \, dx = \frac{1}{2} \int_{\mathbb{R}^d} \Delta^2 \zeta u^2 - 2D^2 \zeta D u \cdot D u - \Delta \zeta |D u|^2 \, dx
\]

It corresponds to the weak formulation of the thin film equation

\[
\partial_t u + \frac{1}{2} \Delta^2 (u^2) - \partial_{x_i x_j} (\partial x_i u \partial x_j u) - \frac{1}{2} \Delta |D u|^2 = 0 \quad \Leftrightarrow \quad \partial_t u + \text{div} (u D \Delta u) = 0
\]

Discrete equation: \(M^n_\tau \leftrightarrow U^n_\tau \)

\[
\int_{\mathbb{R}^d} \zeta (U^n_\tau - U^{n-1}_\tau) \, dx + \frac{\tau}{2} \int_{\mathbb{R}^d} \Delta^2 \zeta (U^n_\tau)^2 - 2D^2 \zeta D U^n_\tau \cdot D U^n_\tau - \Delta \zeta |D U^n_\tau|^2 \, dx = o(\tau)
\]
Main problem

Discrete equation:

\[\int_{\mathbb{R}^d} \zeta \left(U^n_T - U^{n-1}_T \right) \, dx + \frac{\tau}{2} \int_{\mathbb{R}^d} \Delta^2 \zeta (U^n_T)^2 - 2D^2 \zeta \, \text{D} U^n_T \cdot \text{D} U^n_T - \Delta \zeta \, |\text{D} U^n_T|^2 \, dx = o(\tau) \]

Strong compactness in $W^{1,2}$ in order to pass to the limit in the quadratic term

\[\int_{\mathbb{R}^d} 2D^2 \zeta \, \text{D} U^n_T \cdot \text{D} U^n_T \, dx \]
First variation along auxiliary flows

MAIN IDEA: take the first variation of the minimum problem

\[U^n \in \arg\min_V \frac{W^2(V, U^{n-1})}{2\tau} + \Phi(V) \]

along the (Wasserstein) gradient flow \(S^\Psi \) generated by other "good" auxiliary functionals \(\Psi \).
First variation along auxiliary flows

MAIN IDEA: take the first variation of the minimum problem

$$U^n_\tau \in \arg\min_V \frac{W^2(V, U^{n-1}_\tau)}{2\tau} + \Phi(V)$$

along the (Wasserstein) gradient flow S^Ψ generated by other "good" auxiliary functionals Ψ.

HEURISTICS: in an euclidean space S^Φ, S^Ψ corresponds to

$$u_t := S_t^\Phi(u_0) \text{ solves } \frac{d}{dt} u = -\nabla \Phi(u), \quad w_t := S_t^\Psi(w_0) \text{ solves } \frac{d}{dt} w = -\nabla \Psi(w)$$
First variation along auxiliary flows

MAIN IDEA: take the first variation of the minimum problem

$$\mathbf{U} \in \arg\min_{\mathbf{V}} \left\{ \frac{W^2(\mathbf{V}, \mathbf{U}_{n-1})}{2\tau} + \Phi(\mathbf{V}) \right\}$$

along the (Wasserstein) gradient flow S^Ψ generated by other "good" auxiliary functionals Ψ.

HEURISTICS: in an euclidean space S^Φ, S^Ψ corresponds to

$$u_t := S^\Phi_t(u_0) \text{ solves } \frac{d}{dt} u = -\nabla \Phi(u), \quad w_t := S^\Psi_t(w_0) \text{ solves } \frac{d}{dt} w = -\nabla \Psi(w)$$

If $u_0 = w_0$ then we have the "commutation" identity

$$\frac{d}{d\varepsilon} \Phi(w_{\varepsilon})\big|_{\varepsilon=0^+} = \frac{d}{d\varepsilon} \Psi(u_{\varepsilon})\big|_{\varepsilon=0^+}$$
First variation along auxiliary flows

MAIN IDEA: take the first variation of the minimum problem

\[
U^n_\tau \in \arg \min_V \frac{W^2(V, U^{n-1}_\tau)}{2\tau} + \Phi(V)
\]

along the (Wasserstein) gradient flow \(S^\Psi \) generated by other "good" auxiliary functionals \(\Psi \).

HEURISTICS: in an euclidean space \(S^\Phi, S^\Psi \) corresponds to

\[
\begin{align*}
u_t := S^\Phi_t(u_0) & \text{ solves } \frac{d}{dt} u = -\nabla \Phi(u), & w_t := S^\Psi_t(w_0) & \text{ solves } \frac{d}{dt} w = -\nabla \Psi(w)
\end{align*}
\]

If \(u_0 = w_0 \) then we have the "commutation" identity

\[
\frac{d}{d\varepsilon} \Phi(w_\varepsilon) \bigg|_{\varepsilon=0^+} = \frac{d}{d\varepsilon} \Psi(u_\varepsilon) \bigg|_{\varepsilon=0^+} = -\langle \nabla \Phi(w_0), \nabla \Psi(u_0) \rangle
\]
First variation along auxiliary flows

MAIN IDEA: take the first variation of the minimum problem

\[
U^n_\tau \in \arg\min_V \frac{W^2(V, U^{n-1}_\tau)}{2\tau} + \Phi(V)
\]

along the (Wasserstein) gradient flow \(S^\Psi \) generated by other \textit{“good” auxiliary functionals} \(\Psi \).

HEURISTICS: in an euclidean space \(S^\Phi, S^\Psi \) corresponds to

\[
\begin{align*}
 u_t := S^\Phi_t(u_0) \text{ solves } &\frac{d}{dt} u = -\nabla \Phi(u), & w_t := S^\Psi_t(w_0) \text{ solves } &\frac{d}{dt} w = -\nabla \Psi(w)
\end{align*}
\]

If \(u_0 = w_0 \) then we have the \textit{“commutation”} identity

\[
\left. \frac{d}{d\epsilon} \Phi(w_\epsilon) \right|_{\epsilon=0^+} = \left. \frac{d}{d\epsilon} \Psi(u_\epsilon) \right|_{\epsilon=0^+} = -\langle \nabla \Phi(w_0), \nabla \Psi(u_0) \rangle
\]

RECIPE: if the derivative of the \textit{(main) functional} \(\Phi \) along the \textit{(auxiliary) flow} \(S^\Psi \) is negative

then \(\Psi \) is a \textbf{Lyapunov functional} for the \textbf{main flow} \(S^\Phi \)
First variation along auxiliary flows

MAIN IDEA: take the first variation of the minimum problem

\[U^n \tau \in \arg \min_V W^2(V, U^{n-1}) + \Phi(V) \]

along the (Wasserstein) gradient flow \(S^\Psi \) generated by other “good” auxiliary functionals \(\Psi \).

HEURISTICS: in an euclidean space \(S^\Phi, S^\Psi \) corresponds to

\[u_t := S^\Phi_t(u_0) \text{ solves } \frac{d}{dt} u = -\nabla \Phi(u), \quad w_t := S^\Psi_t(w_0) \text{ solves } \frac{d}{dt} w = -\nabla \Psi(w) \]

If \(u_0 = w_0 \) then we have the “commutation” identity

\[
\frac{d}{d\epsilon} \Phi(w_\epsilon)\bigg|_{\epsilon=0^+} = \frac{d}{d\epsilon} \Psi(u_\epsilon)\bigg|_{\epsilon=0^+} = -\langle \nabla \Phi(w_0), \nabla \Psi(u_0) \rangle
\]

RECIPE: if the derivative of the (main) functional \(\Phi \) along the (auxiliary) flow \(S^\Psi \) is negative

then \(\Psi \) is a Lyapunov functional for the main flow \(S^\Phi \)

Look for good flows \(S^\Psi \) having \(\Phi \) as Lyapunov functional
First variation along auxiliary flows

MAIN IDEA: take the first variation of the minimum problem

\[U^n_\tau \in \arg\min_V \frac{W^2(V, U^{n-1}_\tau)}{2\tau} + \Phi(V) \]

along the (Wasserstein) gradient flow \(S^\Psi \) generated by other \textit{“good” auxiliary functionals} \(\Psi \).

HEURISTICS: in an euclidean space \(S^\Phi, S^\Psi \) corresponds to

\[u_t := S^\Phi_t(u_0) \text{ solves } \frac{d}{dt} u = -\nabla \Phi(u), \quad w_t := S^\Psi_t(w_0) \text{ solves } \frac{d}{dt} w = -\nabla \Psi(w) \]

If \(u_0 = w_0 \) then we have the \textit{“commutation”} identity

\[\frac{d}{d\varepsilon} \Phi(w_\varepsilon) \bigg|_{\varepsilon=0^+} = \frac{d}{d\varepsilon} \Psi(u_\varepsilon) \bigg|_{\varepsilon=0^+} \quad \left(= -\langle \nabla \Phi(w_0), \nabla \Psi(u_0) \rangle \right) \]

RECIPE: if the derivative of the \textit{(main) functional} \(\Phi \) along the \textit{(auxiliary) flow} \(S^\Psi \) is negative (up to lower order terms)

then \(\Psi \) is a \textbf{Lyapunov functional} for the \textbf{main flow} \(S^\Phi \) (up to lower order terms).

Look for good flows \(S^\Psi \) having \(\Phi \) as Lyapunov functional.
A Lyapunov-type estimate at the discrete level in the Wasserstein space

Suppose that \(\Psi \) generates a good flow \(w_t = S_t^\Psi(w) \) satisfying the EVI:

\[
\frac{d}{dt} \frac{1}{2} W^2(S_t^\Psi(w), z) \leq \Psi(z) - \Psi(S_t^\Psi(w))
\]

(EVI)
A Lyapunov-type estimate at the discrete level in the Wasserstein space

Suppose that Ψ generates a good flow $w_t = S_t^{\Psi}(w)$ satisfying the EVI:

$$\frac{d}{dt} \frac{1}{2} W^2(S_t^{\Psi}(w), z) \leq \Psi(z) - \Psi(S_t^{\Psi}(w)) \quad \text{(EVI)}$$

We call \mathcal{D} the dissipation of Φ along S^{Ψ}

$$\mathcal{D}(w) := \left[- \frac{d}{d\varepsilon} \Phi(S_{\varepsilon}^{\Psi}(w)) \right]_{\varepsilon=0^+} = \limsup_{\varepsilon \downarrow 0} \frac{\Phi(w) - \Phi(S_{\varepsilon}^{\Psi}(w))}{\varepsilon}$$
A Lyapunov-type estimate at the discrete level in the Wasserstein space

Suppose that Ψ generates a good flow $w_t = S^\Psi_t(w)$ satisfying the EVI:

$$\frac{d}{dt} \frac{1}{2} W^2(S^\Psi_t(w), z) \leq \Psi(z) - \Psi(S^\Psi_t(w))$$

(EVI)

We call \mathcal{D} the dissipation of Φ along S^Ψ:

$$\mathcal{D}(w) := \limsup_{\varepsilon \downarrow 0} \frac{\Phi(w) - \Phi(S^\Psi_\varepsilon(w))}{\varepsilon}$$

Theorem (Discrete flow-interchange estimate)

If U^n_τ is a minimizer of $V \mapsto \frac{W^2(V, U^{n-1}_\tau)}{2\tau} + \Phi(V)$ then

$$\Psi(U^n_\tau) + \tau \mathcal{D}(U^n_\tau) \leq \Psi(U^{n-1}_\tau)$$
A Lyapunov-type estimate at the discrete level in the Wasserstein space

Suppose that Ψ generates a good flow $w_t = S^\Psi_t (w)$ satisfying the EVI:

$$\frac{d}{dt} \frac{1}{2} W^2 (S^\Psi_t (w), z) \leq \Psi (z) - \Psi (S^\Psi_t (w)) \quad \text{(EVI)}$$

We call \mathcal{D} the dissipation of Φ along S^Ψ

$$\mathcal{D} (w) := - \limsup_{\varepsilon \downarrow 0} \frac{\Phi (w) - \Phi (S^\Psi_{\varepsilon} (w))}{\varepsilon}$$

Theorem (Discrete flow-interchange estimate)

If U^n_τ is a minimizer of $V \mapsto \frac{W^2 (V, U^{n-1}_\tau)}{2\tau} + \Phi (V)$ then

$$\Psi (U^n_\tau) + \tau \mathcal{D} (U^n_\tau) \leq \Psi (U^{n-1}_\tau)$$

PROOF:

$$0 \leq \frac{d}{d\varepsilon} \left. W^2 (S^\Psi_{\varepsilon} (U^n_\tau), U^{n-1}_\tau) \right|_{\varepsilon = 0^+} + \Phi (S^\Psi_{\varepsilon} (U^n_\tau)) \quad \text{(by the minimality of } U^n_\tau)$$
A Lyapunov-type estimate at the discrete level in the Wasserstein space

Suppose that \(\Psi \) generates a good flow \(w_t = S_t^\Psi(w) \) satisfying the EVI:

\[
\frac{d}{dt} \frac{1}{2} W^2(w_t, z) \leq \Psi(z) - \Psi(S_t^\Psi(w))
\]

(EVI)

We call \(D \) the dissipation of \(\Phi \) along \(S^\Psi \)

\[
D(w) := \limsup_{\varepsilon \downarrow 0} \frac{\Phi(w) - \Phi(S^\Psi_\varepsilon(w))}{\varepsilon}
\]

Theorem (Discrete flow-interchange estimate)

If \(U^*_n \tau \) is a minimizer of \(V \mapsto \frac{W^2(V, U^{n-1}_\tau)}{2\tau} + \Phi(V) \) then

\[
\Psi(U^*_n) + \tau D(U^*_n) \leq \Psi(U^{n-1}_\tau)
\]

PROOF:

\[
0 \leq \frac{d}{d\varepsilon} \left[\frac{W^2(S^\Psi_\varepsilon(U^n_\tau), U^{n-1}_\tau)}{2\tau} + \Phi(S^\Psi_\varepsilon(U^n_\tau)) \right]_{\varepsilon=0^+} \tag{by the minimality of \(U^n_\tau \)}
\]

\[
\leq \frac{\Psi(U^{n-1}_\tau) - \Psi(U^n_\tau)}{\tau} - D(U^n_\tau) \tag{by the EVI, with \(z = U^{n-1}_\tau, \ w = U^n_\tau \)}
\]
A Lyapunov-type estimate at the discrete level in the Wasserstein space

Suppose that Ψ generates a good flow $w_t = S^\Psi_t(w)$ satisfying the EVI:

$$\frac{d}{dt} \frac{1}{2} W^2(S^\Psi_t(w), z) \leq \Psi(z) - \Psi(S^\Psi_t(w)) - \frac{\kappa}{2} W^2(w_t, z) \quad \text{(EVI)}$$

We call D the dissipation of Φ along S^Ψ

$$D(w) := \left[- \frac{d}{d\varepsilon} \Phi(S^\Psi_\varepsilon(w)) \right]_{\varepsilon=0^+} = \limsup_{\varepsilon \downarrow 0} \frac{\Phi(w) - \Phi(S^\Psi_\varepsilon(w))}{\varepsilon}$$

Theorem (Discrete flow-interchange estimate)

If U^n_τ is a minimizer of $V \mapsto \frac{W^2(V, U^{n-1}_\tau)}{2\tau} + \Phi(V)$ then

$$\Psi(U^n_\tau) + \tau D(U^n_\tau) \leq \Psi(U^{n-1}_\tau) - \frac{\kappa}{2} W^2(U^n_\tau, U^{n-1}_\tau).$$

PROOF:

$$0 \leq \frac{d}{d\varepsilon} \frac{W^2(S^\Psi_\varepsilon(U^n_\tau), U^{n-1}_\tau)}{2\tau} + \Phi(S^\Psi_\varepsilon(U^n_\tau))) \bigg|_{\varepsilon=0^+} \quad \text{(by the minimality of } U^n_\tau)$$

$$\leq \frac{\Psi(U^{n-1}_\tau) - \Psi(U^n_\tau)}{\tau} - D(U^n_\tau) \quad \text{(by the EVI, with } z = U^{n-1}_\tau, w = U^n_\tau)$$
Auxiliary flows for the thin film equation (II)

\[\Phi(u) = \frac{1}{2} \int_{\mathbb{R}^d} |Du|^2 \, dx \] decays on the heat flow

\[\partial_t w - \Delta w = 0 \]

with

\[D(w) = -\frac{d}{d\varepsilon} \Phi(S^\varepsilon(w)) \bigg|_{\varepsilon=0} = \int_{\mathbb{R}^d} |\Delta w|^2 \, dx = \int_{\mathbb{R}^d} |D^2 w|^2 \, dx \]
Auxiliary flows for the thin film equation (II)

\[\Phi(u) = \frac{1}{2} \int_{\mathbb{R}^d} |Du|^2 \, dx \] decays on the heat flow

\[\partial_t w - \Delta w = 0 \quad \iff \quad \partial_t w - \text{div} \left(w \, D \log w \right) = 0 \]

with

\[D(w) = -\frac{d}{d\varepsilon} \Phi(S^\varepsilon(w)) \bigg|_{\varepsilon=0} = \int_{\mathbb{R}^d} |\Delta w|^2 \, dx = \int_{\mathbb{R}^d} |D^2 w|^2 \, dx \]

The heat equation is the Wasserstein gradient flow of the relative entropy functional \(\mathcal{H}(w) := \int_{\mathbb{R}^d} w \log w \, dx \).
Auxiliary flows for the thin film equation (II)

\[\Phi(u) = \frac{1}{2} \int_{\mathbb{R}^d} |Du|^2 \, dx \] decays on the heat flow

\[\partial_t w - \Delta w = 0 \iff \partial_t w - \text{div} (w D \log w) = 0 \]

with

\[D(w) = - \frac{d}{d \varepsilon} \Phi(S^\varepsilon(w)) \bigg|_{\varepsilon=0} = \int_{\mathbb{R}^d} |\Delta w|^2 \, dx = \int_{\mathbb{R}^d} |D^2 w|^2 \, dx \]

The heat equation is the Wasserstein gradient flow of the relative entropy functional \(\mathcal{H}(w) := \int_{\mathbb{R}^d} w \log w \, dx \).

The discrete flow-interchange estimates shows that \(\mathcal{H} \) is a Lyapunov functional and satisfies

\[\mathcal{H}(U^n_\tau) + \tau \int_{\mathbb{R}^d} |D^2 U^n_\tau|^2 \, dx \leq \mathcal{H}(U^{n-1}_\tau). \]
Auxiliary flows for the thin film equation (II)

\[\Phi(u) = \frac{1}{2} \int_{\mathbb{R}^d} |Du|^2 \, dx \] decays on the heat flow

\[\partial_t w - \Delta w = 0 \quad \Leftrightarrow \quad \partial_t w - \text{div} \left(w \, D \log w \right) = 0 \]

with

\[D(w) = -\frac{d}{d\varepsilon} \Phi(S^\Psi(w)) \bigg|_{\varepsilon=0} = \int_{\mathbb{R}^d} |\Delta w|^2 \, dx = \int_{\mathbb{R}^d} |D^2 w|^2 \, dx \]

The heat equation is the Wasserstein gradient flow of the relative entropy functional \(\mathcal{H}(w) := \int_{\mathbb{R}^d} w \log w \, dx \).

The discrete flow-interchange estimates shows that \(\mathcal{H} \) is a Lyapunov functional and satisfies

\[\mathcal{H}(U^n_\tau) + \tau \int_{\mathbb{R}^d} |D^2 U^n_\tau|^2 \, dx \leq \mathcal{H}(U^{n-1}_\tau). \]

In term of \(U_\tau \) it corresponds to

\[\int_0^T \int_{\mathbb{R}^d} |D^2 U_\tau|^2 \, dx \, dt \leq C. \]
Main result

Assume that the non-negative initial condition $u_0 \in L^1(\mathbb{R}^d)$ satisfies

$$\int_{\mathbb{R}^d} |x|^2 u_0(x) \, dx < +\infty, \quad \mathcal{H}(u_0) = \int_{\mathbb{R}^d} u_0 \log u_0 \, dx < +\infty.$$
Main result

Assume that the non-negative initial condition $u_0 \in L^1(\mathbb{R}^d)$ satisfies

$$\int_{\mathbb{R}^d} |x|^2 u_0(x) \, dx < +\infty, \quad \mathcal{H}(u_0) = \int_{\mathbb{R}^d} u_0 \log u_0 \, dx < +\infty.$$

Theorem

There exists an infinitesimal subsequence of time steps $\tau_k \downarrow 0$ such that

$$U_{\tau_k} \to u \text{ pointwise in } L^1(\mathbb{R}^d) \text{ and in } L^2(0,T;W^{1,2}(\mathbb{R}^d)) \text{ as } k \uparrow \infty.$$
Main result

Assume that the non-negative initial condition $u_0 \in L^1(\mathbb{R}^d)$ satisfies

$$
\int_{\mathbb{R}^d} |x|^2 u_0(x) \, dx < +\infty, \quad \mathcal{H}(u_0) = \int_{\mathbb{R}^d} u_0 \log u_0 \, dx < +\infty.
$$

Theorem

There exists an infinitesimal subsequence of time steps $\tau_k \downarrow 0$ such that

$$
U_{\tau_k} \rightarrow u \quad \text{pointwise in } L^1(\mathbb{R}^d) \text{ and in } L^2(0,T; W^{1,2}(\mathbb{R}^d)) \quad \text{as } k \uparrow \infty
$$

$u \in C^0([0, +\infty); L^1(\mathbb{R}^d)) \cap L^2_{\text{loc}}([0, +\infty); W^{2,2}(\mathbb{R}^d))$ is a non-negative global solution of the weak formulation of thin film equation

$$
\partial_t u + \frac{1}{2} \Delta^2(u^2) - \partial_{x_i x_j}(\partial_{x_i} u \partial_{x_j} u) - \frac{1}{2} \Delta |D u|^2 = 0
$$
Outline

1. Thin film equation as the gradient flow of the Dirichlet functional
 - in collaboration with U. Gianazza, G. Toscani, D. Matthes, R. McCann

2. The L^2-gradient flow of the simplest polyconvex functional
 - in collaboration with L. Ambrosio, S. Lisini

3. The sticky particle system
 - in collaboration with L. Natile
Polyconvex functionals

\[\mathcal{F}(u) = \int_{\Omega} F(Du) \, dx \]

where

\[F(A) = \Phi(A, M_2(A), \cdots, M_{d-1}(A), \det A), \quad \text{and } \Phi \text{ is convex}; \]

\[M_2(A), \cdots, M_{d-1}(A), M_d(A) = \det A \quad \text{are the minors of } A. \]
Polyconvex functionals

\[\mathcal{F}(u) = \int_{\Omega} F(Du) \, dx \]

where

\[F(A) = \Phi(A, M_2(A), \cdots, M_{d-1}(A), \det A), \quad \text{and } \Phi \text{ is convex}; \]

\[M_2(A), \cdots M_{d-1}(A), M_d(A) = \det A \quad \text{are the minors of } A. \]

If \(\Phi \) is superlinear then the functional \(\mathcal{F} \) is lower semicontinuous in \(L^2(\Omega; \mathbb{R}^d) \) [J. Ball].

Well posedness of the variational problems

\[\min_U \frac{1}{2\tau} \int_{\Omega} |U - U^{n-1}_\tau|^2 \, dx + \mathcal{F}(U) \]
Polyconvex functionals

\[\mathcal{F}(u) = \int_{\Omega} F(Du) \, dx \]

where

\[F(A) = \Phi(A, M_2(A), \ldots, M_{d-1}(A), \det A), \quad \text{and } \Phi \text{ is convex;} \]
\[M_2(A), \ldots, M_{d-1}(A), M_d(A) = \det A \quad \text{are the minors of } A. \]

If \(\Phi \) is superlinear then the functional \(\mathcal{F} \) is lower semicontinuous in \(L^2(\Omega; \mathbb{R}^d) \) [J. Ball].

Well posedness of the variational problems

\[\min_U \frac{1}{2\tau} \int_{\Omega} |U - U_{n-1}^\tau|^2 \, dx + \mathcal{F}(U) \]

Nevertheless, no general results are known for gradient flows of polyconvex functionals and for their variational approximation.
The “simplest” polyconvex functional

\[F(A) := \Phi(\det A), \quad \mathcal{F}(u) := \int_{\Omega} \Phi(\det D u(x)) \, dx \]

under the additional constraint that

- \(u \) is a \textbf{diffeomorphism} between \(\Omega \) and \(u(\Omega) \), \(\det D u(x) > 0 \),
- \(u(\Omega) \) is contained in a target open set \(\mathcal{U} \).
The “simplest” polyconvex functional

\[F(A) := \Phi(\det A), \quad \mathcal{F}(u) := \int_{\Omega} \Phi(\det Du(x)) \, dx \]

under the additional constraint that

- \(u \) is a \textbf{diffeomorphism} between \(\Omega \) and \(u(\Omega) \), \(\det Du(x) > 0 \),
- \(u(\Omega) \) is contained in a target open set \(U \).
The “simplest” polyconvex functional

\[\mathcal{F}(u) := \int_{\Omega} \Phi(\det D\mathbf{u}(x)) \, dx \]

under the additional constraint that
\[\mathbf{u} \] is a diffeomorphism between \(\Omega \) and \(\mathbf{u}(\Omega) \), \(\det D\mathbf{u}(x) > 0 \),
\(\mathbf{u}(\Omega) \) is contained in a target open set \(\mathcal{U} \).

Difficulties (besides polyconvexity):

- lack of coercivity (\(\mathcal{F} \) controls only \(\det D\mathbf{u} \))
- lack of lower semicontinuity in \(L^2(\Omega; \mathcal{U}) \).
The form of the PDE

\[F(A) = \Phi(\det A), \quad DF(A) = (\text{cof } A)^T \Phi'(\det A), \]

since

\[\frac{\partial \det A}{\partial A^i_{\alpha}} = (\text{cof } A)_{\alpha}^i \quad \text{where} \quad \sum_{\alpha} A^i_{\alpha} (\text{cof } A)_{\alpha}^j = \det A \delta_{i,j} \quad \forall i, j. \]

\[\delta \mathcal{F}(u, \xi) = \int_{\Omega} \Phi'(\det Du) \text{cof } Du \cdot D\xi \, dx \]
The form of the PDE

\[F(A) = \Phi(\det A), \quad DF(A) = (\text{cof } A)^T \Phi'(\det A), \]

since

\[\frac{\partial \det A}{\partial A_{i\alpha}} = (\text{cof } A)_{\alpha}^i \quad \text{where} \quad \sum_{\alpha} A_{i\alpha}^i (\text{cof } A)_{\alpha}^j = \det A \delta_{ij} \quad \forall i, j. \]

\[\delta \mathcal{F}(u, \xi) = \int_\Omega \Phi'(\det Du) \text{cof } Du \cdot D\xi \, dx \]

Gradient flow

\[\partial_t u - \text{div} \left(\Phi'(\det Du) \text{cof } Du \right) = 0 \]
A differential approach [Evans, Gangbo, Savin]

Make the transformation

\[y = u(x), \quad \rho(y) := \frac{1}{\det Du(x)} = \frac{1}{\det Du \circ u^{-1}(y)} = u#(L^d_{|\Omega}) \]
A differential approach [Evans, Gangbo, Savin]

Make the transformation

\[y = u_t(x), \quad \rho_t(y) := \frac{1}{\det D u_t(x)} = \frac{1}{\det D u_t} \circ u_t^{-1}(y) = u_\#(L^d_{|\Omega}) \]
A differential approach [Evans, Gangbo, Savin]

Make the transformation

\[y = u_t(x), \quad \rho_t(y) := \frac{1}{\det D u_t(x)} = \frac{1}{\det D u_t} \circ u^{-1}(y) = u_#(\mathcal{L}^d|\Omega) \]

\(\rho \) solves the nonlinear diffusion PDE

\[\begin{aligned}
 \partial_t \rho - \text{div}(\rho D\phi'(\rho)) &= 0 \quad \text{in} \; \mathcal{U} \times (0, +\infty), \\
 \rho(x, 0) &= \rho_0(x) \quad \text{in} \; \mathcal{U}; \\
 \partial_n \rho &= 0 \quad \text{on} \; \partial \mathcal{U} \times (0, +\infty)
\end{aligned} \]

where \(\phi(\rho) := \rho \Phi(1/\rho) \)
Recovering \(u \)

Step 1: put

\[\phi(\rho) := \rho \Phi(1/\rho) \]
Recovering u

Step 1: put

$$\phi(\rho) := \rho \Phi(1/\rho)$$

$$\begin{cases}
\partial_t \rho - \text{div}(\rho \nabla \phi'(\rho)) = 0 \quad \text{in } \mathcal{U}, \\
\rho(\cdot, 0) = \rho_0, \quad \partial_n \rho = 0 \quad \text{on } \partial \mathcal{U}
\end{cases}$$

Step 2: solve the PDE

Step 3: build the vector field

$$V(t, y) = -\nabla \phi'\left(\rho(t, y)\right)$$

Step 4: compute the flow

$$\dot{Y}(t, y) = V(t, Y(t, y))$$

$Y(0, y) = y$

Step 5: $u(t, x) = Y(t, u_0(x))$

Main problem: Prove that the L^2-Minimizing Movement scheme converges to this solution
Recovering u

Step 1: put

\[\phi(\rho) := \rho \Phi(1/\rho) \]

\[\begin{aligned} \partial_t \rho - \text{div}(\rho \nabla \phi'(\rho)) &= 0 \quad \text{in } \mathcal{U}, \\ \rho(\cdot, 0) &= \rho_0, \quad \partial_n \rho = 0 \quad \text{on } \partial \mathcal{U} \end{aligned} \]

Step 2: solve the PDE

Step 3: build the vector field

\[V(t, y) = -\nabla \phi'(\rho_t(y)) \]

Step 4: compute the flow

\[Y(t, y) = \phi'(\rho_t(y)) \]

Step 5: $u(t, x) = Y(t, u_0(x))$
Recovering u

Step 1: put

$$\phi(\rho) := \rho \Phi(1/\rho)$$

$$\frac{\partial \rho}{\partial t} - \text{div}(\rho \nabla \phi'(\rho)) = 0 \quad \text{in } \mathcal{U},$$

$$\rho(\cdot, 0) = \rho_0, \quad \partial_n \rho = 0 \quad \text{on } \partial \mathcal{U}$$

Step 2: solve the PDE

$$V(t, y) = -\nabla \phi'(\rho_t(y))$$

Step 3: build the vector field

$$\dot{Y}(t, y) = V(t, Y(t, y))$$

$$Y(0, y) = y$$

Step 4: Compute the flow

$$u(t, x) = Y(t, u_0(x))$$

Main problem:

Prove that the L^2-Minimizing Movement scheme converges to this solution
Recovering u

Step 1: put

$$\phi(\rho) := \rho \Phi(1/\rho)$$

$$\begin{cases} \partial_t \rho - \text{div}(\rho \nabla \phi'(\rho)) = 0 & \text{in } \mathcal{U}, \\ \rho(\cdot, 0) = \rho_0, \quad \partial_n \rho = 0 & \text{on } \partial \mathcal{U} \end{cases}$$

$$V(t, y) = -\nabla \phi'(\rho_t(y))$$

Step 2: solve the PDE

$$\begin{cases} \dot{Y}(t, y) = V(t, Y(t, y)) \\ Y(0, y) = y \end{cases}$$

Step 3: build the vector field

$$u(t, x) = Y(t, u_0(x))$$

Step 4: Compute the flow

Step 5
Recovering u

Step 1: put

$$\phi(\rho) := \rho \Phi(1/\rho)$$

$$\begin{cases}
\partial_t \rho - \text{div}(\rho \nabla \phi'(\rho)) = 0 & \text{in } \mathcal{U}, \\
\rho(\cdot, 0) = \rho_0, & \partial_n \rho = 0 & \text{on } \partial \mathcal{U}
\end{cases}$$

Step 2: solve the PDE

$$V(t, y) = -\nabla \phi'(\rho_t(y))$$

$$\begin{cases}
\dot{Y}(t, y) = V(t, Y(t, y)) \\
Y(0, y) = y
\end{cases}$$

$$u(t, x) = Y(t, u_0(x))$$

Step 3: build the vector field

Step 4: Compute the flow

Step 5

Main problem:

Prove that the L^2-Minimizing Movement scheme converges to this solution
Transporting the functional \mathcal{F}

$$
\mathcal{F}(u) = \int_\Omega \Phi(\det Du(x)) \, dx = \int_\mathcal{U} \Phi(\det D(u^{-1}(y))) \rho(y) \, dy
$$

$$
= \int_\mathcal{U} \Phi\left(\frac{1}{\rho(y)}\right) \rho(y) \, dy = \int_\mathcal{U} \phi(\rho(y)) \, dy = \mathcal{G}(\rho)
$$
Transporting the functional \mathcal{F}

$$
\mathcal{F}(u) = \int_{\Omega} \Phi(\det D\mathbf{u}(x)) \, dx = \int_{\mathcal{U}} \Phi(\det D\mathbf{u}(\mathbf{u}^{-1}(y))) \rho(y) \, dy
$$

$$
= \int_{\mathcal{U}} \Phi \left(\frac{1}{\rho(y)} \right) \rho(y) \, dy = \int_{\mathcal{U}} \phi(\rho(y)) \, dy = \mathcal{G}(\rho)
$$

$\Phi(s) = 1/s$

$\phi(\rho) = \rho^2$

$\partial_t \rho - \Delta \rho^2 = 0$ Porous media equation
Transporting the functional \mathcal{F}

$$\mathcal{F}(u) = \int_{\Omega} \Phi(\det Du(x)) \, dx = \int_{\mathcal{U}} \Phi(\det Du(u^{-1}(y))) \rho(y) \, dy$$

$$= \int_{\mathcal{U}} \Phi \left(\frac{1}{\rho(y)} \right) \rho(y) \, dy = \int_{\mathcal{U}} \phi(\rho(y)) \, dy = \mathcal{G}(\rho)$$

$\Phi(s) = -\log s$

$\phi(\rho) = \rho \log \rho$

$\partial \rho - \Delta \rho = 0$ Heat equation
Transporting the functional \mathcal{F}

$$\mathcal{F}(u) = \int_\Omega \Phi(\det Du(x)) \, dx = \int_\mathcal{U} \Phi(\det Du(u^{-1}(y))) \rho(y) \, dy$$

$$= \int_\mathcal{U} \Phi\left(\frac{1}{\rho(y)}\right) \rho(y) \, dy = \int_\mathcal{U} \phi(\rho(y)) \, dy = \mathcal{G}(\rho)$$

$\Phi(s) = s \log s$

$\phi(\rho) = -\log \rho$

$\partial_t \rho - \Delta \log \rho = 0$
Transporting the functional \mathcal{F}

\[
\mathcal{F}(u) = \int_{\Omega} \Phi(\det Du(x)) \, dx = \int_{\mathcal{U}} \Phi(\det Du(u^{-1}(y))) \rho(y) \, dy
\]

\[
= \int_{\mathcal{U}} \Phi\left(\frac{1}{\rho(y)}\right) \rho(y) \, dy = \int_{\mathcal{U}} \phi(\rho(y)) \, dy = \mathcal{G}(\rho)
\]

$\Phi(s) = 1/s + s^2$

$\phi(\rho) = 1/\rho + \rho^2$
Transporting the variational problem

\[U \rightsquigarrow R = \frac{1}{\det D U} \circ U^{-1} , \quad \begin{cases} \mathcal{F}(U) = \int_{\Omega} \Phi(\det D U) \, dx = \\ \mathcal{G}(R) = \int_{\Omega} \phi(R) \, dy \end{cases} \]
Transporting the variational problem

\(U \mapsto R = \frac{1}{\det D\mathbf{U}} \circ \mathbf{U}^{-1}, \)

\[
\begin{aligned}
\mathcal{F}(\mathbf{U}) &= \int_{\Omega} \Phi(\det D\mathbf{U}) \, dx = \\
\mathcal{G}(R) &= \int_{\Omega} \phi(R) \, dy
\end{aligned}
\]

Given \(U_{\tau}^{n-1} \mapsto R_{\tau}^{n-1} \) find \(U^n \in \text{Diff}(\Omega; \mathcal{U}) \) solution of

\[
\min_{\mathbf{U}} \mathcal{F}(\mathbf{U}) + \frac{1}{2\tau} \| \mathbf{U} - U_{\tau}^{n-1} \|^2_{L^2(\Omega; \mathbb{R}^d)}
\]
Transporting the variational problem

\[
U \rightsquigarrow R = \frac{1}{\det DU} \circ U^{-1}, \quad \begin{cases}
F(U) &= \int_{\Omega} \Phi(\det DU) \, dx = \\
G(R) &= \int_{\Omega} \phi(R) \, dy
\end{cases}
\]

Given \(U^{n-1}_\tau \rightsquigarrow R^{n-1}_\tau \) find \(U^n \in \text{Diff}(\Omega; \mathcal{U}) \) solution of

\[
\min_{U} \mathcal{F}(U) + \frac{1}{2\tau} \left\| U - U^{n-1}_\tau \right\|_{L^2(\Omega; \mathbb{R}^d)}^2
\]

\[
\min_{R} \left(\min_{U} \mathcal{F}(U) + \frac{1}{2\tau} \left\| U - U^{n-1}_\tau \right\|_{L^2(\Omega; \mathbb{R}^d)}^2 \right)
\]
Transporting the variational problem

\[U \sim \Rightarrow R = \frac{1}{\det D(U)} \circ U^{-1}, \quad \begin{cases} \mathcal{F}(U) = \int_{\Omega} \Phi(\det D(U)) \, dx = \\ \mathcal{G}(R) = \int_{\Omega} \phi(R) \, dy \end{cases} \]

Given \(U^{n-1}_\tau \sim \Rightarrow R^{n-1}_\tau \) find \(U^n \in \text{Diff}(\Omega; \mathcal{U}) \) solution of

\[
\min_U \mathcal{F}(U) + \frac{1}{2\tau} \left\| U - U^{n-1}_\tau \right\|_{L^2(\Omega; \mathbb{R}^d)}^2
\]

\[
\min_R \left(\min_U \mathcal{F}(U) + \frac{1}{2\tau} \left\| U - U^{n-1}_\tau \right\|_{L^2(\Omega; \mathbb{R}^d)}^2 \right)
\]

\[
\min_R \left(\mathcal{G}(R) + \min_U \frac{1}{2\tau} \left\| U - U^{n-1}_\tau \right\|_{L^2(\Omega; \mathbb{R}^d)}^2 \right)
\]
Transporting the variational problem

\[
U \leadsto R = \frac{1}{\det DU} \circ U^{-1}, \quad \left\{ \begin{array}{l}
\mathcal{F}(U) = \int_{\Omega} \Phi(\det DU) \, dx = \\
\mathcal{G}(R) = \int_{\Omega} \phi(R) \, dy
\end{array} \right.
\]

Given \(U^{n-1}_\tau \leadsto R^{n-1}_\tau \) find \(U^n \in \text{Diff}(\Omega; \mathcal{U}) \) solution of

\[
\min_U \mathcal{F}(U) + \frac{1}{2\tau} \| U - U^{n-1}_\tau \|^2_{L^2(\Omega; \mathbb{R}^d)}
\]

\[
\min_R \left(\min_U \mathcal{F}(U) + \frac{1}{2\tau} \| U - U^{n-1}_\tau \|^2_{L^2(\Omega; \mathbb{R}^d)} \right)
\]

\[
\min_R \left(\mathcal{G}(R) + \min_U \frac{1}{2\tau} \| U - U^{n-1}_\tau \|^2_{L^2(\Omega; \mathbb{R}^d)} \right)
\]

Problem: given a density \(R \) in \(\mathcal{U} \) and \(U^{n-1}_\tau \leadsto R^{n-1}_\tau \) solve

\[
\min_{U \leadsto R} \| U - U^{n-1}_\tau \|^2_{L^2(\Omega; \mathbb{R}^d)}
\]
Optimal transportation

Minimize \(\int_{\Omega} |U - U^{n-1}_\tau|^2 \, dx \) under the constraint \(U \leadsto R \).
Optimal transportation

Minimize $\int_\Omega |U - U_{\tau}^{n-1}|^2 \, dx$ under the constraint $U \sim R$.

Write $U = T \circ U_{\tau}^{n-1}$, $T : \mathcal{U} \to \mathcal{U}$, $T_\#(R_{\tau}^{n-1}) = R$.
Optimal transportation

Minimize \(\int_{\Omega} |U - U_{\tau}^{n-1}|^2 \, dx \) under the constraint \(U \sim R \).

Write \(U = T \circ U_{\tau}^{n-1}, \ T : \mathcal{U} \to \mathcal{U}, \ T_{\#}(R_{\tau}^{n-1}) = R \)

\[
\int_{\Omega} |U - U_{\tau}^{n-1}|^2 \, dx = \int_{\Omega} |T(U_{\tau}^{n-1}) - U_{\tau}^{n-1}|^2 \, dx \\
= \int_{\mathcal{U}} |T(y) - y|^2 \, R_{\tau}^{n-1}(y) \, dy
\]
A Wasserstein gradient flow

The piecewise constant interpolant $R_τ$ of the discrete solution of the variational algorithm

$$\min_U \mathcal{F}(U) + \frac{1}{2τ} \|U - U_τ^{n-1}\|^2_{L^2(Ω;\mathbb{R}^d)} = \min_R \mathcal{G}(R) + \frac{1}{2τ} W^2(R, R_τ^{n-1})$$
A Wasserstein gradient flow

The piecewise constant interpolant R_τ of the discrete solution of the variational algorithm

$$
\min_U \mathcal{F}(U) + \frac{1}{2\tau} \| U - U^{n-1}_\tau \|_{L^2(\Omega;\mathbb{R}^d)}^2 = \min_R \mathcal{G}(R) + \frac{1}{2\tau} W^2(R, R^{n-1}_\tau)
$$

converge to the solution of the nonlinear PDE

$$
\begin{cases}
\partial_t \rho + \text{div}(\rho \mathbf{v}) = 0 & \text{in } \mathcal{U} \times (0, +\infty) \quad \text{(continuity equation)} \\
\mathbf{v} = - \nabla \phi'(\rho) & \text{(Nonlinear condition)} \\
\rho(y, 0) = \rho_0(y), \quad \partial_n \rho = 0 & \text{on } \partial\mathcal{U} \times (0, +\infty).
\end{cases}
$$
A Wasserstein gradient flow

The piecewise constant interpolant R_τ of the discrete solution of the variational algorithm

$$\min_U \mathcal{F}(U) + \frac{1}{2\tau} \|U - U_{\tau}^{n-1}\|_{L^2(\Omega; \mathbb{R}^d)}^2 = \min_R \mathcal{G}(R) + \frac{1}{2\tau} W^2(R, R_{\tau}^{n-1})$$

converge to the solution of the nonlinear PDE

$$\begin{cases}
\partial_t \rho + \text{div}(\rho \mathbf{v}) = 0 & \text{in } \mathcal{U} \times (0, +\infty) \quad \text{(continuity equation)} \\
\mathbf{v} = -\nabla \phi' (\rho) & \text{(Nonlinear condition)} \\
\rho(y, 0) = \rho_0(y), \quad \partial_n \rho = 0 & \text{on } \partial \mathcal{U} \times (0, +\infty).
\end{cases}$$

Optimal error estimate:

$$\sup_t W^2(R_\tau(t), \rho(t)) \leq \tau \mathcal{G} (\rho_0)$$
Iterated optimal transport maps

\[U^n = Y^n \circ U^0 \]

\[\min_R \int_{\mathcal{U}} \phi(R) \, dy + \frac{1}{2\tau} W^2(R, R^{n-1}_\tau) \sim R^n_\tau \]
Iterated optimal transport maps

\[
\begin{align*}
U_n &= Y_n \circ U_0 \\
\min \int_R \phi(R) \, dy + \frac{1}{2\tau} W^2(R, R^{n-1}_\tau) &\Rightarrow R^n_	au \\
R^n_\tau, \ Y^n_\tau &\text{ solve the PDE.}
\end{align*}
\]

\[
\frac{Y^n_\tau - Y^{n-1}_\tau}{\tau} = V^n_\tau(Y^n_\tau), \quad V^n_\tau = -\nabla \phi'(R^n_\tau)
\]
Iterated optimal transport maps

\[
\begin{align*}
\min_{R} \int_{\mathcal{U}} \phi(R) \, dy + \frac{1}{2\tau} W^2(R, R^{n-1}_\tau) & \quad \sim \quad R^n_	au \\
U^0 \quad \Omega \quad U^n = Y^n \circ U^0
\end{align*}
\]

\(R^n_	au, Y^n_	au\) solve the PDE. How to pass to the limit?

\[
\frac{Y^n_	au - Y^{n-1}_\tau}{\tau} = V^n_	au (Y^n_	au), \quad V^n_	au = -\nabla \phi'(R^n_{\tau})
\]
Convergence of the iterated maps

Main problem:

\[
\frac{d}{dt} Y_\tau(t, y) = V_\tau(t, Y_\tau(t, y)), \quad V_\tau(t, y) = -\nabla \phi'(R_\tau(t, y))
\]

as \(\tau \to 0 \)

\[
\frac{d}{dt} Y(t, y) = V(t, Y(t, y)), \quad V(t, y) = -\nabla \phi'(\rho(t, y))
\]
Convergence of the iterated maps

Main problem:

\[
\frac{d}{dt} Y_\tau(t, y) = V_\tau(t, Y_\tau(t, y)), \quad V_\tau(t, y) = -\nabla \phi'(R_\tau(t, y))
\]

as \(\tau \to 0 \) \(\downarrow \) ?

\[
\frac{d}{dt} Y(t, y) = V(t, Y(t, y)), \quad V(t, y) = -\nabla \phi'(\rho(t, y))
\]

Difficulties:

- No regularity estimate for \(V_\tau \)
Convergence of the iterated maps

Main problem:

\[
\frac{d}{dt} Y_\tau(t, y) = V_\tau(t, Y_\tau(t, y)), \quad V_\tau(t, y) = -\nabla \phi'(R_\tau(t, y))
\]

as \(\tau \to 0 \) \(\downarrow \) \(\downarrow \) \(\downarrow \) \(\downarrow \) \(? \)

\[
\frac{d}{dt} Y(t, y) = V(t, Y(t, y)), \quad V(t, y) = -\nabla \phi'(\rho(t, y))
\]

Difficulties:

- No regularity estimate for \(V_\tau \)
- No lower density bound for \(R_\tau \).
Convergence of the iterated maps

Main problem:

\[
\frac{d}{dt} Y_\tau(t, y) = V_\tau(t, Y_\tau(t, y)), \quad V_\tau(t, y) = -\nabla \phi'(R_\tau(t, y))
\]

as \(\tau \to 0 \) ↓ ↓ ↓ ↓ ?

\[
\frac{d}{dt} Y(t, y) = V(t, Y(t, y)), \quad V(t, y) = -\nabla \phi'(\rho(t, y))
\]

Difficulties:

- No regularity estimate for \(V_\tau \)
- No lower density bound for \(R_\tau \).
- Only weak convergence of \(V_\tau R_\tau \) to \(V\rho \) (DiPerna-Lions, Ambrosio-theory cannot be applied)
Convergence of the iterated maps

Main problem:

\[\frac{d}{dt} Y_\tau(t, y) = V_\tau(t, Y_\tau(t, y)), \quad V_\tau(t, y) = -\nabla \phi'(R_\tau(t, y)) \]

as \(\tau \to 0 \)

\[\frac{d}{dt} Y(t, y) = V(t, Y(t, y)), \quad V(t, y) = -\nabla \phi'(\rho(t, y)) \]

Difficulties:

- No regularity estimate for \(V_\tau \)
- No lower density bound for \(R_\tau \).
- Only weak convergence of \(V_\tau R_\tau \) to \(V \rho \) (DiPerna-Lions, Ambrosio-theory cannot be applied)
- convergence of the energy:

\[
\lim_{\tau \downarrow 0} \int_0^T \int_{\mathcal{U}} |V_\tau(t, y)|^2 \, R_\tau(t, y) \, dy \, dt = \int_0^T \int_{\mathcal{U}} |V(t, y)|^2 \, \rho(t, y) \, dy \, dt
\]
A first result: convergence of flows

Suppose that $V_\tau, Y_\tau, \mu_\tau = \rho_\tau \mathcal{L}^d$ are given with

$$\frac{d}{dt} Y_\tau(t, y) = V_\tau(t, Y_\tau(t, y)), \quad \mu_{\tau, t} = (Y_\tau(t, \cdot)) \# \mu_{\tau, 0}$$
A first result: convergence of flows

Suppose that \(V_\tau, Y_\tau, \mu_\tau = \rho_\tau \mathcal{L}^d \) are given with

\[
\frac{d}{dt} Y_\tau(t, y) = V_\tau(t, Y_\tau(t, y)), \quad \mu_{\tau,t} = (Y_\tau(t, \cdot)) \# \mu_{\tau,0}
\]

- \(\mu_{\tau,t} \rightharpoonup \mu_t \) narrowly,

\[
\lim_{\tau \downarrow 0} \int_0^T \int_U \left(Y_\tau(t, y) - \frac{d}{dt} Y_\tau(t, y) \right)^2 \, d\mu_{\tau,t}(y) = 0.
\]
A first result: convergence of flows

Suppose that $V_\tau, Y_\tau, \mu_\tau = \rho_\tau \mathcal{L}^d$ are given with

$$\frac{d}{dt} Y_\tau(t, y) = V_\tau(t, Y_\tau(t, y)), \quad \mu_{\tau,t} = (Y_\tau(t, \cdot)) \# \mu_{\tau,0}$$

- $\mu_{\tau,t} \rightharpoonup \mu_t$ narrowly,
- $V_\tau \mu_\tau \rightharpoonup V \mu$ in the distribution sense
A first result: convergence of flows

Suppose that $V_\tau, Y_\tau, \mu_\tau = \rho_\tau \mathcal{L}^d$ are given with

$$\frac{d}{dt} Y_\tau(t, y) = V_\tau(t, Y_\tau(t, y)),$$

$$\mu_{\tau, t} = (Y_\tau(t, \cdot)) \# \mu_{\tau, 0}$$

- $\mu_{\tau, t} \to \mu_t$ narrowly,
- $V_\tau \mu_\tau \to V \mu$ in the distribution sense

$$\lim_{\tau \downarrow 0} \int_0^T \int_{\mathcal{U}} |V_\tau(t, y)|^2 \, d\mu_{\tau, t}(y) \, dt = \int_0^T \int_{\mathcal{U}} |V(t, y)|^2 \, d\mu_t(y) \, dt$$
A first result: convergence of flows

Suppose that \(V_\tau, Y_\tau, \mu_\tau = \rho_\tau \mathcal{L}^d \) are given with

\[
\frac{d}{dt} Y_\tau(t, y) = V_\tau(t, Y_\tau(t, y)), \quad \mu_\tau, t = (Y_\tau(t, \cdot)) \# \mu_\tau, 0
\]

- \(\mu_\tau, t \to \mu_t \) narrowly,
- \(V_\tau \mu_\tau \to V \mu \) in the distribution sense

\[
\lim_{\tau \downarrow 0} \int_0^T \int_U |V_\tau(t, y)|^2 d\mu_\tau, t(y) dt = \int_0^T \int_U |V(t, y)|^2 d\mu_t(y) dt
\]

- \(V \) is a “tangent vector field”, i.e. \(V \in \{ \nabla \psi : \psi \in C^\infty_c(U) \} \)
A first result: convergence of flows

Suppose that $V_\tau, Y_\tau, \mu_\tau = \rho_\tau \mathcal{L}^d$ are given with

$$\frac{d}{dt} Y_\tau(t, y) = V_\tau(t, Y_\tau(t, y)), \quad \mu_{\tau,t} = (Y_\tau(t, \cdot)) \# \mu_{\tau,0}$$

- $\mu_{\tau,t} \rightharpoonup \mu_t$ narrowly,
- $V_\tau \mu_\tau \rightharpoonup V \mu$ in the distribution sense
- $\lim_{\tau \downarrow 0} \int_0^T \int_{\mathcal{U}} \left| V_\tau(t, y) \right|^2 d\mu_{\tau,t}(y) dt = \int_0^T \int_{\mathcal{U}} \left| V(t, y) \right|^2 d\mu_t(y) dt$

- V is a “tangent vector field”, i.e. $V \in \{\nabla \psi : \psi \in C^\infty(\mathcal{U})\}$
- The limit ODE admits a unique solution for μ_0-a.e. $y \in \mathcal{U}$.
A first result: convergence of flows

Suppose that $V_\tau, Y_\tau, \mu_\tau = \rho_\tau \mathcal{L}^d$ are given with

$$\frac{d}{dt} Y_\tau(t, y) = V_\tau(t, Y_\tau(t, y)), \quad \mu_{\tau, t} = (Y_\tau(t, \cdot)) \# \mu_{\tau, 0}$$

- $\mu_{\tau, t} \rightharpoonup \mu_t$ narrowly,
- $V_\tau \mu_\tau \rightharpoonup V \mu$ in the distribution sense

$$\lim_{\tau \downarrow 0} \int_0^T \int_U |V_\tau(t, y)|^2 d\mu_{\tau, t}(y) dt = \int_0^T \int_U |V(t, y)|^2 d\mu_t(y) dt$$

- V is a “tangent vector field”, i.e. $V \in \{ \nabla \psi : \psi \in C_\infty(U) \}$
- The limit ODE admits a unique solution for μ_0-a.e. $y \in U$.

Then there exists a unique flow Y solving

$$\dot{Y}(t, y) = V(t, Y(t, y)), \quad Y(0, y) = y$$

$$\lim_{\tau \downarrow 0} \int_0^T \max_t |Y_\tau(t, y) - Y(t, y)|^2 d\mu_0(y) = 0.$$
Reconstruction of the gradient flow of \mathcal{F}

Suppose that $\rho_0 \in C^\alpha(\mathcal{U})$, $\mathcal{J}(\rho_0) = \int_{\mathcal{U}} \phi(\rho_0) \, dy < +\infty$.

- The discrete transports Y_τ converge to Y in the sense of $L^2(\mathcal{U}; L^\infty(0, T))$

$$\lim_{\tau \downarrow 0} \int_0^T \max_t \left| Y_\tau(t, y) - Y(t, y) \right|^2 \rho_0(y) \, dy = 0.$$

and the discrete solutions $U_\tau(t, x) = Y_\tau(t, u_0(x))$ converge to $u(t, x) = Y(t, u_0(x))$.

Reconstruction of the gradient flow of \mathcal{F}

Suppose that $\rho_0 \in C^\alpha(U)$, $J(\rho_0) = \int_U \phi(\rho_0) \, dy < +\infty$.

- The discrete transports Y_τ converge to Y in the sense of $L^2(U; L^\infty(0, T))$

$$\lim_{\tau \downarrow 0} \int_0^T \max_t \left| Y_\tau(t, y) - Y(t, y) \right|^2 \rho_0(y) \, dy = 0.$$

and the discrete solutions $U_\tau(t, x) = Y_\tau(t, u_0(x))$ converge to $u(t, x) = Y(t, u_0(x))$.

- The limit flow Y solves the ODE

$$\begin{cases}
 \dot{Y}(t, y) = V(t, Y(t, y)) \\
 Y(0, y) = y
\end{cases}$$

where $V(t, y) = -\nabla \phi'(\rho_t(y))$.
Reconstruction of the gradient flow of \mathcal{F}

Suppose that $\rho_0 \in C^\alpha(\mathcal{U})$, $\mathcal{G}(\rho_0) = \int_{\mathcal{U}} \phi(\rho_0) \, dy < +\infty$.

- The discrete transports Y_τ converge to Y in the sense of $L^2(\mathcal{U}; L^\infty(0, T))$

$$\lim_{\tau \downarrow 0} \int_0^T \max_t \left| Y_\tau(t, y) - Y(t, y) \right|^2 \rho_0(y) \, dy = 0.$$

and the discrete solutions $U_\tau(t, x) = Y_\tau(t, u_0(x))$ converge to $u(t, x) = Y(t, u_0(x))$.

- The limit flow Y solves the ODE

$$\begin{cases}
\dot{Y}(t, y) = V(t, Y(t, y)) \\
Y(0, y) = y
\end{cases}$$

where $V(t, y) = -\nabla \phi'(\rho_t(y))$

- ρ is the unique solution of the nonlinear diffusion equation

$$\begin{cases}
\partial_t \rho - \text{div}(\rho D\phi' (\rho)) = 0 \quad \text{in } \mathcal{U}, \\
\rho(y, 0) = \rho_0(y), \quad \partial_n \rho = 0 \quad \text{on } \partial \mathcal{U}
\end{cases}$$
Outline

1 Thin film equation as the gradient flow of the Dirichlet functional
 in collaboration with U. Gianazza, G. Toscani, D. Matthes, R. McCann

2 The L^2-gradient flow of the simplest polyconvex functional
 in collaboration with L. Ambrosio, S. Lisini

3 The sticky particle system
 in collaboration with L. Natile
Starting point: motion of a finite number of particles.

Discrete particle model

N particles $P_i := (m_i, x_i, v_i)$, $i = 1, \ldots, N$,
with positive mass m_i satisfying $\sum_{i=1}^{N} m_i = 1$
ordered positions $x_1 < x_2 < \ldots < x_{N-1} < x_N$,

\[P_1 \quad P_2 \quad P_3 \quad P_4 \]
Starting point: motion of a finite number of particles.

Discrete particle model

N particles $P_i := (m_i, x_i, v_i), \ i = 1, \ldots, N,$
with positive mass m_i satisfying $\sum_{i=1}^{N} m_i = 1$
ordered positions $x_1 < x_2 < \ldots < x_{N-1} < x_N,$
and velocities v_i.

At the initial time $t = 0$ the particles are disjoint and start to move freely with constant velocity:

\[
x_i(t) := x_i(0) + v_i(0)t, \quad v_i(t) := v_i.
\]
Starting point: motion of a finite number of particles.

Discrete particle model

- **N particles** $P_i := (m_i, x_i, v_i), \quad i = 1, \ldots, N$, with positive mass m_i satisfying $\sum_{i=1}^{N} m_i = 1$
- Ordered positions $x_1 < x_2 < \ldots < x_{N-1} < x_N$, and velocities v_i.

At the initial time $t = 0$ the particles are disjoint and start to move freely with constant velocity:

\[x_i(t) := x_i(0) + v_i(0)t, \quad v_i(t) := v_i. \]
Starting point: motion of a finite number of particles.

Discrete particle model

N particles $P_i := (m_i, x_i, v_i), \ i = 1, \ldots, N,$

with positive mass m_i satisfying $\sum_{i=1}^{N} m_i = 1$

ordered positions $x_1 < x_2 < \ldots < x_{N-1} < x_N,$

and velocities v_i.

At the initial time $t = 0$ the particles are disjoint and start to move freely with constant velocity:

$$x_i(t) := x_i(0) + v_i(0)t, \quad v_i(t) := v_i.$$
Starting point: motion of a finite number of particles.

Discrete particle model

N particles $P_i := (m_i, x_i, v_i), \ i = 1, \ldots, N,$

with positive mass m_i satisfying $\sum_{i=1}^{N} m_i = 1$

ordered positions $x_1 < x_2 < \ldots < x_{N-1} < x_N,$

and velocities $v_i.$

At the initial time $t = 0$ the particles are disjoint and start to move freely with constant velocity:

$x_i(t) := x_i(0) + v_i(0)t, \ v_i(t) := v_i.$
Starting point: motion of a finite number of particles.

Discrete particle model

\(N \) particles \(P_i := (m_i, x_i, v_i), \ i = 1, ..., N, \)
with positive mass \(m_i \) satisfying \(\sum_{i=1}^{N} m_i = 1 \)
ordered positions \(x_1 < x_2 < ... < x_{N-1} < x_N, \)
and velocities \(v_i. \)

At the initial time \(t = 0 \) the particles are disjoint and start to move freely with constant velocity:

\[x_i(t) := x_i(0) + v_i(0)t, \quad v_i(t) := v_i. \]
Starting point: motion of a finite number of particles.

Discrete particle model

N particles $P_i := (m_i, x_i, v_i)$, $i = 1, \ldots, N$,
with positive mass m_i satisfying $\sum_{i=1}^{N} m_i = 1$
ordered positions $x_1 < x_2 < \ldots < x_{N-1} < x_N$,
and velocities v_i.

At the initial time $t = 0$ the particles are disjoint and start to move freely with constant velocity:

\[x_i(t) := x_i(0) + v_i(0)t, \quad v_i(t) := v_i. \]
Starting point: motion of a finite number of particles.

Discrete particle model

N particles $P_i := (m_i, x_i, v_i), \ i = 1, \ldots, N,$
with positive mass m_i satisfying $\sum_{i=1}^{N} m_i = 1$
ordered positions $x_1 < x_2 < \ldots < x_{N-1} < x_N,$
and velocities $v_i.$

At the initial time $t = 0$ the particles are disjoint and start to move freely with constant velocity:

$$x_i(t) := x_i(0) + v_i(0)t, \quad v_i(t) := v_i.$$

The first collision time $t = t^1$ correspond to

$$x_j(t^1) = x_{j+1}(t^1) = \ldots = x_k(t^1) \quad \text{for some indices } j < k.$$

The particles $P_j, P_{j+1}, \ldots, P_k$ collapse and stick in a new particle P
with mass $m := m_j + \ldots + m_k$ and

“barycentric” velocity $v := \frac{m_j v_j(t^1) + m_{j+1} v_{j+1}(t^1) + \ldots + m_k v_k(t^1)}{m}$
Starting point: motion of a finite number of particles.

Discrete particle model

N particles $P_i := (m_i, x_i, v_i)$, $i = 1, \ldots, N$, with positive mass m_i satisfying $\sum_{i=1}^{N} m_i = 1$ ordered positions $x_1 < x_2 < \ldots < x_{N-1} < x_N$, and velocities v_i.

At the initial time $t = 0$ the particles are disjoint and start to move freely with constant velocity:

$$x_i(t) := x_i(0) + v_i(0)t, \quad v_i(t) := v_i.$$

The first collision time $t = t^1$ correspond to

$$x_j(t^1) = x_{j+1}(t^1) = \ldots = x_k(t^1) \quad \text{for some indices } j < k.$$

The particles $P_j, P_{j+1}, \ldots, P_k$ collapse and stick in a new particle P with mass $m := m_j + \ldots + m_k$ and

"barycentric" velocity $v := \frac{m_j v_j(t^1) + m_{j+1} v_{j+1}(t^1) + \ldots + m_k v_k(t^1)}{m}$
Starting point: motion of a finite number of particles.

Discrete particle model

\(N \) particles \(P_i := (m_i, x_i, v_i), \ i = 1, \ldots, N, \)
with positive mass \(m_i \) satisfying \(\sum_{i=1}^{N} m_i = 1 \)
ordered positions \(x_1 < x_2 < \ldots < x_{N-1} < x_N, \)
and velocities \(v_i.\)

At the initial time \(t = 0 \) the particles are disjoint and start to move freely with constant velocity:

\[x_i(t) := x_i(0) + v_i(0)t, \quad v_i(t) := v_i. \]

The **first collision time** \(t = t^1 \) correspond to

\[x_j(t^1) = x_{j+1}(t^1) = \ldots = x_k(t^1) \quad \text{for some indices} \ j < k. \]

The particles \(P_j, P_{j+1}, \ldots, P_k \) collapse and stick in a new particle \(P \)
with mass \(m := m_j + \ldots + m_k \) and

\[
\text{“barycentric” velocity} \quad v := \frac{m_j v_j(t^1) + m_{j+1} v_{j+1}(t^1) + \ldots + m_k v_k(t^1)}{m}
\]
Starting point: motion of a finite number of particles.

Discrete particle model

\(N \) particles \(P_i := (m_i, x_i, v_i), \ i = 1, \ldots, N, \)
with positive mass \(m_i \) satisfying \(\sum_{i=1}^{N} m_i = 1 \)
ordered positions \(x_1 < x_2 < \ldots < x_{N-1} < x_N, \)
and velocities \(v_i. \)

At the initial time \(t = 0 \) the particles are disjoint and start to move freely with constant velocity:

\[
x_i(t) := x_i(0) + v_i(0)t, \quad v_i(t) := v_i.
\]

The first collision time \(t = t^1 \) correspond to

\[
x_j(t^1) = x_{j+1}(t^1) = \ldots = x_k(t^1) \quad \text{for some indices} \ j < k.
\]

The particles \(P_j, P_{j+1}, \ldots, P_k \) collapse and stick in a new particle \(P \) with mass \(m := m_j + \ldots + m_k \) and

\[
\text{“barycentric” velocity} \quad v := \frac{m_j v_j(t^1) + m_{j+1} v_{j+1}(t^1) + \ldots + m_k v_k(t^1)}{m}
\]
Starting point: motion of a finite number of particles.

Discrete particle model

N particles $P_i := (m_i, x_i, v_i), \quad i = 1, \ldots, N,$

with positive mass m_i satisfying $\sum_{i=1}^{N} m_i = 1$

ordered positions $x_1 < x_2 < \ldots < x_{N-1} < x_N,$

and velocities $v_i.$

At the initial time $t = 0$ the particles are disjoint and start to move freely with constant velocity:

$$x_i(t) := x_i(0) + v_i(0)t, \quad v_i(t) := v_i.$$

The first collision time $t = t^1$ correspond to

$$x_j(t^1) = x_{j+1}(t^1) = \ldots = x_k(t^1) \quad \text{for some indices } j < k.$$

The particles $P_j, P_{j+1}, \ldots, P_k$ collapse and stick in a new particle P with mass $m := m_j + \ldots + m_k$ and

\[
\text{	extit{“barycentric” velocity}} \quad v := \frac{m_j v_j(t^1) + m_{j+1} v_{j+1}(t^1) + \ldots + m_k v_k(t^1)}{m}
\]
Measure-theoretic description

We thus have:

a (finite) sequence of collision times $0 < t^1 < t^2 < \ldots$
in each interval $[t^h, t^{h+1})$ a finite number N^h of (suitably relabelled)particles $P_1(t), \ldots, P_{N^h}(t)$, $P_i(t) := (m_i, x_i(t), v_i(t))$.
Measure-theoretic description

We thus have:

a (finite) sequence of collision times $0 < t^1 < t^2 < \ldots$
in each interval $[t^h, t^{h+1})$ a finite number N^h of (suitably relabelled)
particles $P_1(t), \ldots, P_{N^h}(t)$, $P_i(t) := (m_i, x_i(t), v_i(t))$.

We can introduce the measures

$$
\rho_t := \sum_{i=1}^{N^h} m_i \delta_{x_i(t)} \in \mathcal{P}(\mathbb{R}) \quad (\rho v)_t := \sum_{i=1}^{N^h} m_i v_i \delta_{x_i(t)} \in \mathcal{M}(\mathbb{R}) \quad \text{if } t \in [t^h, t^{h+1}).
$$
Measure-theoretic description

We thus have:

a **finite** sequence of collision times $0 < t^1 < t^2 < \ldots$

in each interval $[t^h, t^{h+1})$ a finite number N^h of (suitably relabelled) particles $P_1(t), \ldots, P_{N^h}(t)$, $P_i(t) := (m_i, x_i(t), v_i(t))$.

We can introduce the measures

$$\rho_t := \sum_{i=1}^{N^h} m_i \delta_{x_i(t)} \in \mathcal{P}(\mathbb{R}) \quad (\rho v)_t := \sum_{i=1}^{N^h} m_i v_i \delta_{x_i(t)} \in \mathcal{M}(\mathbb{R}) \quad \text{if } t \in [t^h, t^{h+1})$$

They satisfy the **1-dimensional pressureless Euler system** in the sense of distributions

$$\begin{cases}
\partial_t \rho + \partial_x (\rho v) = 0, & \text{in } \mathbb{R} \times (0, +\infty); \quad \rho|_{t=0} = \rho_0, \quad v|_{t=0} = v_0, \\
\partial_t (\rho v) + \partial_x (\rho v^2) = 0, & \text{in } \mathbb{R} \times (0, +\infty).
\end{cases}$$
Measure-theoretic description

We thus have:

- a \textbf{(finite) sequence of collision times} $0 < t^1 < t^2 < \ldots$
- in each interval $[t^h, t^{h+1})$ a finite number N^h of (suitably relabelled) particles $P_1(t), \ldots, P_{N^h}(t), P_i(t) := (m_i, x_i(t), v_i(t))$.

We can introduce the measures

$$\rho_t := \sum_{i=1}^{N^h} m_i \delta_{x_i(t)} \in \mathcal{P}(\mathbb{R}) \quad (\rho v)_t := \sum_{i=1}^{N^h} m_i v_i \delta_{x_i(t)} \in \mathcal{M}(\mathbb{R}) \quad \text{if } t \in [t^h, t^{h+1}).$$

They satisfy the \textbf{1-dimensional pressureless Euler system} in the sense of distributions

$$\begin{cases}
\partial_t \rho + \partial_x (\rho v) = 0, \\
\partial_t (\rho v) + \partial_x (\rho v^2) = 0,
\end{cases} \quad \text{in } \mathbb{R} \times (0, +\infty); \quad \rho|_{t=0} = \rho_0, \quad v|_{t=0} = v_0,$$

and the \textbf{OLEINIK entropy condition}

$$v_t(x_2) - v_t(x_1) \leq \frac{1}{t} (x_2 - x_1) \quad \text{for } \rho_t\text{-a.e. } x_1, x_2 \in \mathbb{R}, \ x_1 \leq x_2.$$
Main problem: continuous limit

Consider a sequence of discrete initial data $\mu^n_0 := (\rho^n_0, \rho^n_0 v^n_0)$ converging to $\mu_0 = (\rho_0, \rho_0 v_0)$ in a suitable measure-theoretic sense and let $\mu^n_t = (\rho^n_t, \rho^n_t v^n_t)$ be the (discrete) solution of SPS.
Main problem: continuous limit

Consider a sequence of discrete initial data $\mu^n_0 := (\rho^n_0, \rho^n_0 v^n_0)$ converging to $\mu_0 = (\rho_0, \rho_0 v_0)$ in a suitable measure-theoretic sense and let $\mu^n_t = (\rho^n_t, \rho^n_t v^n_t)$ be the (discrete) solution of SPS.

Problem

- Prove that the limit $\mu_t = (\rho_t, \rho_t v_t)$ of the SPS $\mu^n_t = (\rho^n_t, \rho^n_t v^n_t)$ as $n \uparrow +\infty$ exists.
Main problem: continuous limit

Consider a sequence of discrete initial data \(\mu^n_0 := (\rho^n_0, \rho^n_0 v^n_0) \) converging to \(\mu_0 = (\rho_0, \rho_0 v_0) \) in a suitable measure-theoretic sense and let \(\mu^n_t = (\rho^n_t, \rho^n_t v^n_t) \) be the (discrete) solution of SPS.

Problem

- Prove that the limit \(\mu_t = (\rho_t, \rho_t v_t) \) of the SPS \(\mu^n_t = (\rho^n_t, \rho^n_t v^n_t) \) as \(n \uparrow +\infty \)
 exists.
 - Find a suitable characterization of \(\mu_t \)
Main problem: continuous limit

Consider a sequence of discrete initial data $\mu_0^n := (\rho_0^n, \rho_0^n v_0^n)$ converging to $\mu_0 = (\rho_0, \rho_0 v_0)$ in a suitable measure-theoretic sense and let $\mu_t^n = (\rho_t^n, \rho_t^n v_t^n)$ be the (discrete) solution of SPS.

Problem

- Prove that the limit $\mu_t = (\rho_t, \rho_t v_t)$ of the SPS $\mu_t^n = (\rho_t^n, \rho_t^n v_t^n)$ as $n \to +\infty$ exists.
- Find a suitable characterization of μ_t
- Show that $(\rho_t, \rho_t v_t)$ solves the pressureless Euler system

\[
\begin{align*}
\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x} (\rho v) &= 0, & \text{in } \mathbb{R} \times (0, +\infty); \quad \rho|_{t=0} = \rho_0, \quad v|_{t=0} = v_0, \\
\frac{\partial (\rho v)}{\partial t} + \frac{\partial}{\partial x} (\rho v^2) &= 0,
\end{align*}
\]

and satisfy Oleinik entropy condition.
Main contributions

- Existence and convergence:
 - Grenier ’95, E-Rykov-Sinai ’96: first existence and convergence result.
 - Brenier-Grenier ’96: Characterization of the limit in terms of a suitable scalar conservation law, uniqueness.
Main contributions

- Existence and convergence:
 - Grenier ’95, E-Rykov-Sinaï ’96: first existence and convergence result.
 - Brenier-Grenier ’96: Characterization of the limit in terms of a suitable scalar conservation law, uniqueness.
 - Huang-Wang ’01, Nguyen-Tudorascu ’08, Moutsinga ’08: further refinements.

- Pioneering ideas which lies (more or less explicitly) at the core of the papers by E-Rykov-Sinaï and Brenier-Grenier have been introduced by Shnirelman ’86 and further clarified by Andrievsky-Gurbatov-Sobolevski˘ı’07 in a formal way.

- Different approaches and models:
 - Bouchut-James ’95, Poupaud-Rascle ’97, Sobolevski˘ı’97, Boudin ’00: viscous regularization.
 - Wolansky ’07: particles with finite size.
Main contributions

• Existence and convergence:
 ▶ Grenier ’95, E-Rykov-Sinai ’96: first existence and convergence result.
 ▶ Brenier-Grenier ’96: Characterization of the limit in terms of a suitable scalar conservation law, uniqueness.
 ▶ Huang-Wang ’01, Nguyen-Tudorascu ’08, Moutsinga ’08: further refinements.

Basic assumptions:

\[\rho^n_0 \to \rho_0 \text{ in the } L^2\text{-Wasserstein distance}, \]
\[v^n_0 = v_0 \text{ is given by a continuous function with (at most) linear growth.} \]

In particular the result cover the case when \(\rho^n_0, \rho_0 \) have a common compact support and \(\rho^n_0 \to \rho_0 \) weakly in the sense of distribution (or, equivalently, in the duality with continuous functions).

• Different approaches and models:
 ▶ Bouchut-James ’95, Poupaud-Rascle ’97
 ▶ Sobolevskii ’97, Boudin ’00: viscous regularization.
 ▶ Wolansky ’07: particles with finite size.
Main contributions

- Existence and convergence:
 - Grenier ’95, E-Rykov-Sinai ’96: first existence and convergence result.
 - Brenier-Grenier ’96: Characterization of the limit in terms of a suitable scalar conservation law, uniqueness.
 - Huang-Wang ’01, Nguyen-Tudorascu ’08, Moutsinga ’08: further refinements.

Basic assumptions:

\[\rho^n_0 \to \rho_0 \text{ in the } L^2\text{-Wasserstein distance}, \]
\[v^n_0 = v_0 \text{ is given by a continuous function with (at most) linear growth.} \]

In particular the result cover the case when \(\rho^n_0, \rho_0 \) have a common compact support and \(\rho^n_0 \to \rho_0 \) weakly in the sense of distribution (or, equivalently, in the duality with continuous functions).

- Pioneering ideas which lies (more or less explicitly) at the core of the papers by E-Rykov-Sinai and Brenier-Grenier have been introduced by
 - Shnirelman ’86 and further clarified by
 - Andrievvsky-Gurbatov-Soboelvskiǐ ’07 in a formal way.

- Different approaches and models:
 - Bouchut-James ’95, Poupaud-Rascle ’97
 - Sobolevskiǐ ’97, Boudin ’00: viscous regularization.
 - Wolansky ’07: particles with finite size.
The Brenier-Grenier formulation

For every probability measure $\rho \in \mathcal{P}(\mathbb{R})$ we introduce the cumulative distribution function

$$M_\rho(x) := \rho((\infty, x]), \quad x \in \mathbb{R},$$

so that $\rho = \partial_x M_\rho$ in $\mathcal{D}'(\mathbb{R})$.

(Clause 40)
The Brenier-Grenier formulation

For every probability measure $\rho \in \mathcal{P}(\mathbb{R})$ we introduce the cumulative distribution function

$$M_\rho(x) := \rho((\infty, x]), \quad x \in \mathbb{R},$$

so that $\rho = \partial_x M_\rho$ in $\mathcal{D}'(\mathbb{R})$.

Main idea: study the evolution of $M_t := M_{\rho_t}$, where ρ_t is the solution of the SPS.
The Brenier-Grenier formulation

For every probability measure $\rho \in \mathcal{P}(\mathbb{R})$ we introduce the cumulative distribution function

$$M_\rho(x) := \rho((\infty, x]), \quad x \in \mathbb{R}, \text{ so that } \rho = \partial_x M_\rho \text{ in } \mathcal{D}'(\mathbb{R}).$$

Main idea: study the evolution of $M_t := M_{\rho_t}$, where ρ_t is the solution of the SPS.

Theorem (Brenier-Grenier ’96)

M is the unique entropy solution of the scalar conservation law

$$\partial_t M + \partial_x A(M) = 0 \quad \text{in } \mathbb{R} \times (0, +\infty)$$

where $A : [0, 1] \to \mathbb{R}$ is a continuous flux function depending only on the initial data ρ_0 and v_0.
The Brenier-Grenier formulation

For every probability measure \(\rho \in \mathcal{P}(\mathbb{R}) \) we introduce the **cumulative distribution function**

\[
M_\rho(x) := \rho((-\infty, x]), \quad x \in \mathbb{R}, \quad \text{so that } \rho = \partial_x M_\rho \quad \text{in } \mathcal{D}'(\mathbb{R}).
\]

Main idea: study the evolution of \(M_t := M_{\rho_t} \), where \(\rho_t \) is the solution of the SPS.

Theorem (Brenier-Grenier ’96)

\(M \) is the unique entropy solution of the scalar conservation law

\[
\partial_t M + \partial_x A(M) = 0 \quad \text{in } \mathbb{R} \times (0, +\infty)
\]

where \(A : [0, 1] \rightarrow \mathbb{R} \) is a continuous flux function depending only on the initial data \(\rho_0 \) and \(v_0 \). It is characterized by

\[
A'(M_0(x)) = v_0(x).
\]
Monotone rearrangement

Point of view of 1-dimensional optimal transport: instead of using the cumulative distribution function \(M_\rho(x) = \rho((\infty, x]) \), we represent each probability measure \(\rho \) by its monotone rearrangement \(X_\rho : (0, 1) \rightarrow \mathbb{R} \)

\[
X_\rho(w) := \inf \left\{ x \in \mathbb{R} : M_\rho(x) > w \right\} \quad w \in (0, 1)
\]

which is the so-called pseudo-inverse of \(M_\rho \).
Monotone rearrangement

Point of view of 1-dimensional optimal transport: instead of using the cumulative distribution function $M_\rho(x) = \rho\left((-\infty, x]\right)$, we represent each probability measure ρ by its monotone rearrangement $X_\rho : (0, 1) \to \mathbb{R}$

$$X_\rho(w) := \inf \left\{ x \in \mathbb{R} : M_\rho(x) > w \right\} \quad w \in (0, 1)$$

which is the so-called pseudo-inverse of M_ρ.

The map X_ρ is **nondecreasing and right-continuous** and it pushes the Lebesgue measure $\lambda := \mathcal{L}^1|_{(0,1)}$ on $(0, 1)$ onto ρ.
Wasserstein distance and the L^2 isometry

The map $\rho \mapsto X_\rho$ is a **one-to-one correspondence** between

the space $\mathcal{P}_2(\mathbb{R})$ of probability measures with finite quadratic moment

$$m_2(\rho) = \int_{\mathbb{R}} |x|^2 \, d\rho(x) < +\infty$$

and
Wasserstein distance and the L^2 isometry

The map $\rho \mapsto X_\rho$ is a **one-to-one correspondence** between

the space $\mathcal{P}_2(\mathbb{R})$ of probability measures with finite quadratic moment

$$m_2(\rho) = \int_{\mathbb{R}} |x|^2 \, d\rho(x) < +\infty$$

and

the closed convex cone \mathcal{K} of all the nondecreasing function in $L^2(0,1)$ (among which we can always choose the right-continuous representative).
Wasserstein distance and the L^2 isometry

The map $\rho \mapsto X_\rho$ is a **one-to-one correspondence** between

the space $\mathcal{P}_2(\mathbb{R})$ of probability measures with finite quadratic moment

$$m_2(\rho) = \int_{\mathbb{R}} |x|^2 \, d\rho(x) < +\infty$$

and

the closed convex cone \mathcal{K} of all the nondecreasing function in $L^2(0,1)$ (among which we can always choose the right-continuous representative).

L^2-Wasserstein distance

$W_2(\rho^1, \rho^2)$ between $\rho^1, \rho^2 \in \mathcal{P}_2(\mathbb{R})$:

$$W_2^2(\rho^1, \rho^2) := \int_0^1 |X_{\rho^1}(w) - X_{\rho^2}(w)|^2 \, dw = \|X_{\rho^1} - X_{\rho^2}\|_{L^2(0,1)}^2$$
Wasserstein distance and the L^2 isometry

The map $\rho \mapsto X_\rho$ is a one-to-one correspondence between

the space $\mathcal{P}_2(\mathbb{R})$ of probability measures with finite quadratic moment

$$m_2(\rho) = \int_{\mathbb{R}} |x|^2 \, d\rho(x) < +\infty$$

and

the closed convex cone \mathcal{K} of all the nondecreasing function in $L^2(0,1)$ (among which we can always choose the right-continuous representative).

L^2-Wasserstein distance

$W_2(\rho^1, \rho^2)$ between $\rho^1, \rho^2 \in \mathcal{P}_2(\mathbb{R})$:

$$W_2^2(\rho^1, \rho^2) := \int_0^1 |X_{\rho^1}(w) - X_{\rho^2}(w)|^2 \, dw = \|X_{\rho^1} - X_{\rho^2}\|^2_{L^2(0,1)}$$

In this way $\rho \leftrightarrow X_\rho$ is an isometry between $(\mathcal{P}_2(\mathbb{R}), W_2)$ and $(\mathcal{K}, \| \cdot \|_{L^2(0,1)})$.
A metric space for the measure-momentum couples \((\rho, \rho v)\)

We consider the space of couples \((\rho, \rho v)\), with \(\rho \in \mathcal{P}_2(\mathbb{R})\) and \(v \in L^2_\rho(\mathbb{R})\):

\[
\mathcal{V}_2(\mathbb{R}) := \left\{ \mu = (\rho, \rho v) \subset \mathcal{P}_2(\mathbb{R}) \times \mathcal{M}(\mathbb{R}) : v \in L^2_\rho(\mathbb{R}) \right\}.
\]

thus \(\rho\) is a probability measure and \(\eta = \rho v\) is a finite signed measure in \(\mathcal{M}(\mathbb{R})\) with \(\int_{\mathbb{R}} |v(x)|^2 \, d\rho(x) < +\infty\).
A metric space for the measure-momentum couples $(\rho, \rho v)$

We consider the space of couples $(\rho, \rho v)$, with $\rho \in \mathcal{P}_2(\mathbb{R})$ and $v \in L^2_\rho(\mathbb{R})$:

$$\mathcal{V}_2(\mathbb{R}) := \left\{ \mu = (\rho, \rho v) \subset \mathcal{P}_2(\mathbb{R}) \times \mathcal{M}(\mathbb{R}) : v \in L^2_\rho(\mathbb{R}) \right\}.$$

thus ρ is a probability measure and $\eta = \rho v$ is a finite signed measure in $\mathcal{M}(\mathbb{R})$ with $\int_{\mathbb{R}} |v(x)|^2 \, d\rho(x) < +\infty$.

We can introduce a **semi-distance** U_2 in $\mathcal{V}_2(\mathbb{R})$:

$$U_2^2(\mu^1, \mu^2) := \int_{\mathbb{R}} |v^1(X_\rho^1(w)) - v^2(X_\rho^2(w))|^2 \, dw = \|v^1 \circ X_\rho^1 - v^2 \circ X_\rho^2\|_{L^2(0,1)}^2$$

and a **distance** D_2

$$D_2^2(\mu^1, \mu^2) := W_2^2(\rho^1, \rho^2) + U_2^2(\mu^1, \mu^2).$$
A metric space for the measure-momentum couples \((\rho, \rho v)\)

We consider the space of couples \((\rho, \rho v)\), with \(\rho \in \mathcal{P}_2(\mathbb{R})\) and \(v \in L^2_\rho(\mathbb{R})\):

\[
\mathcal{V}_2(\mathbb{R}) := \left\{ \mu = (\rho, \rho v) \in \mathcal{P}_2(\mathbb{R}) \times \mathcal{M}(\mathbb{R}) : v \in L^2_\rho(\mathbb{R}) \right\}.
\]

thus \(\rho\) is a probability measure and \(\eta = \rho v\) is a finite signed measure in \(\mathcal{M}(\mathbb{R})\) with \(\int_\mathbb{R} |v(x)|^2 \ d\rho(x) < +\infty\).

We can introduce a semi-distance \(U_2\) in \(\mathcal{V}_2(\mathbb{R})\):

\[
U_2^2(\mu^1, \mu^2) := \int_\mathbb{R} \left| v^1(X_{\rho^1}(w)) - v^2(X_{\rho^2}(w)) \right|^2 \ dw = \|v^1 \circ X_{\rho^1} - v^2 \circ X_{\rho^2}\|_{L^2(0,1)}^2
\]

and a distance \(D_2\)

\[
D_2^2(\mu^1, \mu^2) := W_2^2(\rho^1, \rho^2) + U_2^2(\mu^1, \mu^2).
\]

Theorem (Ambrosio-Gigli-S. ’05)

\((\mathcal{V}_2(\mathbb{R}), D_2)\) is a metric space whose topology is stronger than the one induced by the weak convergence of measures.
A metric space for the measure-momentum couples \((\rho, \rho v)\)

We consider the space of couples \((\rho, \rho v)\), with \(\rho \in \mathcal{P}_2(\mathbb{R})\) and \(v \in L^2_\rho(\mathbb{R})\):

\[
\mathcal{V}_2(\mathbb{R}) := \left\{ \mu = (\rho, \rho v) \in \mathcal{P}_2(\mathbb{R}) \times \mathcal{M}(\mathbb{R}) : v \in L^2_\rho(\mathbb{R}) \right\}.
\]

thus \(\rho\) is a probability measure and \(\eta = \rho v\) is a finite signed measure in \(\mathcal{M}(\mathbb{R})\) with \(\int_{\mathbb{R}} |v(x)|^2 \, d\rho(x) < +\infty\).

We can introduce a semi-distance \(U_2\) in \(\mathcal{V}_2(\mathbb{R})\):

\[
U^2_2(\mu^1, \mu^2) := \int_{\mathbb{R}} |v^1(X_{\rho^1}(w)) - v^2(X_{\rho^2}(w))|^2 \, dw = \|v^1 \circ X_{\rho^1} - v^2 \circ X_{\rho^2}\|_{L^2(0,1)}^2
\]

and a distance \(D_2\)

\[
D^2_2(\mu^1, \mu^2) := W_2^2(\rho^1, \rho^2) + U^2_2(\mu^1, \mu^2).
\]

Theorem (Ambrosio-Gigli-S. '05)

\((\mathcal{V}_2(\mathbb{R}), D_2)\) is a metric space whose topology is stronger than the one induced by the weak convergence of measures.

The collection \(\mathcal{V}_{\text{discr}}(\mathbb{R})\) of all the discrete measures \(\mu = \left(\sum_{i=1}^N m_i \delta_{x_i}, \sum_{i=1}^N m_i v_i \delta_{x_i} \right)\) is a dense subset of \(\mathcal{V}_2(\mathbb{R})\).
A metric space for the measure-momentum couples \((\rho, \rho v)\)

We consider the space of couples \((\rho, \rho v)\), with \(\rho \in \mathcal{P}_2(\mathbb{R})\) and \(v \in L^2_\rho(\mathbb{R})\):

\[
\mathcal{V}_2(\mathbb{R}) := \left\{ \mu = (\rho, \rho v) \subset \mathcal{P}_2(\mathbb{R}) \times \mathcal{M}(\mathbb{R}) : v \in L^2_\rho(\mathbb{R}) \right\}.
\]

thus \(\rho\) is a probability measure and \(\eta = \rho v\) is a finite signed measure in \(\mathcal{M}(\mathbb{R})\) with \(\int_\mathbb{R} |v(x)|^2 \, d\rho(x) < +\infty\).

We can introduce a semi-distance \(U_2\) in \(\mathcal{V}_2(\mathbb{R})\):

\[
U_2^2(\mu^1, \mu^2) := \int_\mathbb{R} \left| v^1(X_{\rho^1}(w)) - v^2(X_{\rho^2}(w)) \right|^2 \, dw = \left\| v^1 \circ X_{\rho^1} - v^2 \circ X_{\rho^2} \right\|^2_{L^2(0,1)}
\]

and a distance \(D_2\)

\[
D_2^2(\mu^1, \mu^2) := W_2^2(\rho^1, \rho^2) + U_2^2(\mu^1, \mu^2).
\]

Theorem (Ambrosio-Gigli-S. '05)

\((\mathcal{V}_2(\mathbb{R}), D_2)\) is a metric space whose topology is stronger than the one induced by the weak convergence of measures.

The collection \(\mathcal{V}_{\text{discr}}(\mathbb{R})\) of all the discrete measures

\[
\mu = \left(\sum_{i=1}^N m_i \delta_{x_i}, \sum_{i=1}^N m_i v_i \delta_{x_i} \right)
\]

is a dense subset of \(\mathcal{V}_2(\mathbb{R})\).

\(\mu_n = (\rho_n, \rho_n v_n)\) converges to \(\mu = (\rho, \rho v)\) in \(\mathcal{V}_2(\mathbb{R})\) if and only if

\[
W_2(\rho_n, \rho) \to 0, \quad \rho_n v_n \rightharpoonup \rho v \quad \text{weakly in} \ \mathcal{M}(\mathbb{R}), \quad \int_\mathbb{R} |v_n|^2 \, d\rho_n \to \int_\mathbb{R} |v|^2 \, d\rho.
\]
The fundamental estimate

Let $\mathcal{V}_{\text{discr}}(\mathbb{R})$ the collection of all the discrete measures in $\mathcal{V}_2(\mathbb{R})$ and let us denote by $\mathcal{S}_t : \mathcal{V}_{\text{discr}}(\mathbb{R}) \to \mathcal{V}_{\text{discr}}(\mathbb{R})$ the map associating to any discrete initial datum $(\rho_0, \rho_0 v_0) \in \mathcal{V}_{\text{discr}}$ the solution $(\rho_t, \rho_t v_t)$ of the (discrete) sticky-particle system. \mathcal{S}_t is a semigroup in $\mathcal{V}_{\text{discr}}(\mathbb{R})$.

Theorem (Stability with respect to the initial data)

Let $\mu^\cdot \in \mathcal{V}_2(\mathbb{R})$, $\mu^\cdot \in \mathcal{V}_2(\mathbb{R})$ be the solutions of the (discrete) sticky-particle system with initial data $\mu^0 \in \mathcal{V}_{\text{discr}}(\mathbb{R})$.

$\| \mu^1_t - \mu^2_t \|_2 \leq \| \mu^1_0 - \mu^2_0 \|_2 + \int_0^t U_x(\mu^1_r, \mu^2_r) \, dr \leq C(1 + t) \left[\| \mu^1_0 \|_2 + \| \mu^2_0 \|_2 \right]$, for a suitable "universal" constant C independent of t and the data.
The fundamental estimate

Let $\mathcal{V}_{\text{discr}}(\mathbb{R})$ the collection of all the discrete measures in $\mathcal{V}_2(\mathbb{R})$ and let us denote by $\mathcal{S}_t : \mathcal{V}_{\text{discr}}(\mathbb{R}) \to \mathcal{V}_{\text{discr}}(\mathbb{R})$ the map associating to any discrete initial datum $(\rho_0, \rho_0 v_0) \in \mathcal{V}_{\text{discr}}$ the solution $(\rho_t, \rho_t v_t)$ of the (discrete) sticky-particle system. \mathcal{S}_t is a **semigroup in** $\mathcal{V}_{\text{discr}}(\mathbb{R})$.

For $\mu \in \mathcal{V}_2(\mathbb{R})$ we set

$$[\mu]^2 := \int_{\mathbb{R}} \left(|x|^2 + |v(x)|^2 \right) d\rho(x) = D^2_2(\mu, (\delta_0, 0)).$$
The fundamental estimate

Let $\mathcal{V}_{\text{discr}}(\mathbb{R})$ the collection of all the discrete measures in $\mathcal{V}_2(\mathbb{R})$ and let us denote by $\mathcal{S}_t: \mathcal{V}_{\text{discr}}(\mathbb{R}) \to \mathcal{V}_{\text{discr}}(\mathbb{R})$ the map associating to any discrete initial datum $(\rho_0, \rho_0 v_0) \in \mathcal{V}_{\text{discr}}$ the solution $(\rho_t, \rho_t v_t)$ of the (discrete) sticky-particle system. \mathcal{S}_t is a **semigroup in** $\mathcal{V}_{\text{discr}}(\mathbb{R})$.

For $\mu \in \mathcal{V}_2(\mathbb{R})$ we set

$$[\mu]_2^2 := \int_{\mathbb{R}} \left(|x|^2 + |v(x)|^2 \right) d\rho(x) = D_2^2(\mu, (\delta_0, 0)).$$

Theorem (Stability with respect to the initial data)

Let $\mu^\ell_t = (\rho^\ell_t, \rho^\ell_t v^\ell_t) = \mathcal{S}_t[\mu^\ell_0]$, $\ell = 1, 2$, be the solutions of the (discrete) sticky-particle system with initial data $\mu^\ell_0 \in \mathcal{V}_{\text{discr}}(\mathbb{R})$.

$$W_2(\rho^1_t, \rho^2_t) \leq W_2(\rho^1_0, \rho^2_0) + tU_2(\mu^1_0, \mu^2_0),$$
The fundamental estimate

Let $\mathcal{V}_{\text{discr}}(\mathbb{R})$ the collection of all the discrete measures in $\mathcal{V}_2(\mathbb{R})$ and let us denote by $\mathcal{S}_t : \mathcal{V}_{\text{discr}}(\mathbb{R}) \to \mathcal{V}_{\text{discr}}(\mathbb{R})$ the map associating to any discrete initial datum $(\rho_0, \rho_0 v_0) \in \mathcal{V}_{\text{discr}}$ the solution $(\rho_t, \rho_t v_t)$ of the (discrete) sticky-particle system. \mathcal{S}_t is a semigroup in $\mathcal{V}_{\text{discr}}(\mathbb{R})$.

For $\mu \in \mathcal{V}_2(\mathbb{R})$ we set

$$[\mu]_2^2 := \int_{\mathbb{R}} \left(|x|^2 + |v(x)|^2 \right) d\rho(x) = D_2^2(\mu, (\delta_0, 0)).$$

Theorem (Stability with respect to the initial data)

Let $\mu_\ell = (\rho_\ell, \rho_\ell v_\ell) = \mathcal{S}_t[\mu_0^\ell], \ell = 1, 2$, be the solutions of the (discrete) sticky-particle system with initial data $\mu_0^\ell \in \mathcal{V}_{\text{discr}}(\mathbb{R})$.

$$W_2(\rho_1^t, \rho_2^t) \leq W_2(\rho_1^0, \rho_2^0) + tU_2(\mu_0^1, \mu_0^2),$$

$$\int_0^t U_2^2(\mu_1^r, \mu_2^r) dr \leq C(1 + t) \left([\mu_1]_2 + [\mu_2]_2 \right) \left(W_2(\rho_0^1, \rho_0^2) + U_2(\mu_0^1, \mu_0^2) \right),$$

for a suitable “universal” constant C independent of t and the data.
Evolution semigroup

Theorem (The evolution semigroup in $\mathcal{V}_2(\mathbb{R})$)

- The semigroup \mathcal{I}_t can be uniquely extended by density to a right-continuous semigroup (still denoted \mathcal{I}_t) of strongly-weakly continuous transformations in $\mathcal{V}_2(\mathbb{R})$, thus satisfying

$$\mathcal{I}_{s+t}[\mu] = \mathcal{I}_s[\mathcal{I}_t[\mu]] \quad \forall s, t \geq 0, \quad \lim_{t \downarrow 0} D_2(\mathcal{I}_t[\mu], \mu) = 0.$$

(2)

\mathcal{I}_t complies with the same discrete stability estimates of the previous Theorem.
Evolution semigroup

Theorem (The evolution semigroup in $\mathcal{V}_2(\mathbb{R})$)

- The semigroup \mathcal{I}_t can be uniquely extended by density to a right-continuous semigroup (still denoted \mathcal{I}_t) of strongly-weakly continuous transformations in $\mathcal{V}_2(\mathbb{R})$, thus satisfying

$$\mathcal{I}_{s+t}[\mu] = \mathcal{I}_s[\mathcal{I}_t[\mu]] \quad \forall s, t \geq 0, \quad \lim_{t \downarrow 0} D_2(\mathcal{I}_t[\mu], \mu) = 0. \quad (2)$$

\mathcal{I}_t complies with the same discrete stability estimates of the previous Theorem.

- $(\rho_t, \rho_t v_t) = \mathcal{I}_t[\mu], \mu \in \mathcal{V}_2(\mathbb{R})$, is a distributional solution of Euler system satisfying Oleinik entropy condition.
A gradient flow formulation in $\mathcal{P}_2(\mathbb{R})$

The semigroup \mathcal{S}_t can also be characterized by the (metric) gradient flow \mathcal{G}_τ of the (-1)-geodesically convex functional

$$\Phi(\rho) := -\frac{1}{2} W_2^2(\rho, \rho_0)$$

in $\mathcal{P}_2(\mathbb{R})$.
A gradient flow formulation in $\mathcal{P}_2(\mathbb{R})$

The semigroup \mathcal{S}_t can also be characterized by the (metric) gradient flow \mathcal{G}_τ of the (-1)-geodesically convex functional

$$\Phi(\rho) := -\frac{1}{2} W_2^2(\rho, \rho_0)$$

in $\mathcal{P}_2(\mathbb{R})$.

Theorem (The gradient flow of the opposite Wasserstein distance)

If $\mu_t = (\rho_t, \rho_t v_t) = \mathcal{S}_t(\rho_0, \rho_0 v_0)$ is a solution of SPS then the rescaling $\tau = \log t$, $\hat{\mu}_\tau = \mu_t$, $\hat{\rho}_\tau = \rho_t$ satisfy

$$\hat{\rho}_{\tau+\delta} = \mathcal{G}_\delta(\hat{\rho}_\tau) \quad \text{or, equivalently} \quad \rho_{t e^{\delta}} = \mathcal{G}_\delta(\rho_t).$$
A gradient flow formulation in $\mathcal{P}_2(\mathbb{R})$

The semigroup \mathcal{S}_t can also be characterized by the (metric) gradient flow \mathcal{G}_T of the (-1)-geodesically convex functional

$$\Phi(\rho) := -\frac{1}{2}W_2^2(\rho, \rho_0)$$

in $\mathcal{P}_2(\mathbb{R})$.

Theorem (The gradient flow of the opposite Wasserstein distance)

If $\mu_t = (\rho_t, \rho_t v_t) = \mathcal{S}_t(\rho_0, \rho_0 v_0)$ is a solution of SPS then the rescaling $\tau = \log t$, $\hat{\mu}_\tau = \mu_t$, $\hat{\rho}_\tau = \rho_t$ satisfy

$$\hat{\rho}_{\tau+\delta} = \mathcal{G}_\delta(\hat{\rho}_\tau) \quad \text{or, equivalently} \quad \rho_t e^\delta = \mathcal{G}_\delta(\rho_t).$$

The (rescaled) semigroup \mathcal{G} provides a displacement extrapolation, i.e. a canonical way to extend Wasserstein geodesics after collisions.
A simple example

\[\rho_0 \quad \rho_0 \quad \rho_0 \quad \rho_0 \]
A simple example
A simple example
A simple example

\[\rho_\varepsilon \]

\[\rho_0 \]

\[\rho_0 \]

\[\nu_\varepsilon \]
Non-local effects in the multi-dimensional case

Non-local interaction can be avoided only in the 1-dimensional case.
Non-local effects in the multi-dimensional case
Non-local effects in the multi-dimensional case

Non-local interaction can be avoided only in the 1-dimensional case.
Non-local effects in the multi-dimensional case

Non-local interaction can be avoided only in the 1-dimensional case.
Non-local effects in the multi-dimensional case

Non-local interaction can be avoided only in the 1-dimensional case.
Extensions

Extensions:

Adding a force induced by a potential V:

$$ \partial_t \rho + \partial_x (\rho v) = 0, $$

$$ \partial_t (\rho v) + \partial_x (\rho v^2) = -\rho \partial_x V. $$

Adding a force induced by a smooth interaction potential W:

$$ \partial_t \rho + \partial_x (\rho v) = 0, $$

$$ \partial_t (\rho v) + \partial_x (\rho v^2) = -\rho \partial_x W. $$

Adding a force induced by a non-smooth interaction potential, e.g. the Euler-Poisson system when $W(x) = \pm|x|$.

Open problems:

1. The SPS in the multidimensional case.
2. The displacement-extrapolation problem.
Extensions

Extensions:

- (in collaboration with W. Gangbo and M. Westdickenberg) Adding a force induced by a potential V

\[
\begin{align*}
\partial_t \rho + \partial_x (\rho v) &= 0, \\
\partial_t (\rho v) + \partial_x (\rho v^2) &= -\rho \partial_x V.
\end{align*}
\]
Extensions:

- (in collaboration with W. Gangbo and M. Westdickenberg) Adding a force induced by a potential \(V \)

\[
\begin{align*}
\partial_t \rho + \partial_x (\rho v) &= 0, \\
\partial_t (\rho v) + \partial_x (\rho v^2) &= -\rho \partial_x V.
\end{align*}
\]

- Adding a force induced by a smooth interaction potential

\[
\begin{align*}
\partial_t \rho + \partial_x (\rho v) &= 0, \\
\partial_t (\rho v) + \partial_x (\rho v^2) &= -\rho (\rho * \partial_x W).
\end{align*}
\]
Extensions

Extensions:

- (in collaboration with W. Gangbo and M. Westdickenberg) Adding a force induced by a potential V

\[
\begin{align*}
\partial_t \rho + \partial_x (\rho v) &= 0, \\
\partial_t (\rho v) + \partial_x (\rho v^2) &= -\rho \partial_x V.
\end{align*}
\]

- Adding a force induced by a smooth interaction potential

\[
\begin{align*}
\partial_t \rho + \partial_x (\rho v) &= 0, \\
\partial_t (\rho v) + \partial_x (\rho v^2) &= -\rho (\rho * \partial_x W).
\end{align*}
\]

- Adding a force induced by a non-smooth interaction potential, e.g. the Euler-Poisson system when $W(x) = \pm |x|$.
Extensions

Extensions:

- (in collaboration with W. Gangbo and M. Westdickenberg) Adding a force induced by a potential V

\[
\begin{align*}
\partial_t \rho + \partial_x (\rho v) &= 0, \\
\partial_t (\rho v) + \partial_x (\rho v^2) &= -\rho \partial_x V.
\end{align*}
\]

- Adding a force induced by a smooth interaction potential

\[
\begin{align*}
\partial_t \rho + \partial_x (\rho v) &= 0, \\
\partial_t (\rho v) + \partial_x (\rho v^2) &= -\rho \ast \partial_x W.
\end{align*}
\]

- Adding a force induced by a non-smooth interaction potential, e.g. the Euler-Poisson system when $W(x) = \pm |x|$.

Open problems:

- The SPS in the multidimensional case.
- The displacement-extrapolation problem.