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The risk return relation is a staple of modern 
finance. When risk is measured by volatility, it 
is well known that option prices convey risk. One 
of the more inf luential ideas in the last twenty 
years is that the conditional volatility of an asset 
price can also be inferred from the market prices of 
options written on that asset. Under a Markovian 
restriction, it follows that risk-neutral transition 
probabilities can also be determined from option 
prices. Recently, Ross has shown that real-world 
transition probabilities of a Markovian state vari-
able can be recovered from its risk-neutral transition 
probabilities along with a restriction on preferences. 
In this article, we show how to recover real-world 
transition probabilities in a bounded diffusion con-
text in a preference-free manner. Our approach is 
instead based on restricting the form and dynamics 
of the numeraire portfolio.

Give me a lever long enough and a ful-
crum on which to place it, and I shall 
move the world.

—Archimides

Finance is ultimately the study of 
the relationship between risk and 
return. One of the most commonly 
accepted tenets of this relationship is 

that the expected return on an asset increases 
along with its risk. When risk is measured 
by volatility, it is widely agreed that option 
prices convey the degree of risk that the 

market forecasts. Yet when it comes to pre-
dicting the average return, the conventional 
wisdom is that option prices are silent in this 
respect.

Recently, Stephen Ross has written a 
working paper [2011], that challenges this con-
ventional wisdom. Under the assumptions of 
his model, option prices forecast not only the 
average return, but also the entire return dis-
tribution. Further tweaking the nose of con-
ventional wisdom, option prices even convey 
the conditional return distribution,when the 
conditioning variable is a Markovian state vari-
able that determines aggregate consumption.

Those of us raised on the Black–Merton–
Scholes (BMS) paradigm find Ross’s claims to 
be startling. If one can value options without 
knowledge of expected return, then how can 
one use option prices to infer expected return? 
On the other hand, if expected returns are 
increasing in volatility, then higher option 
prices imply higher volatility and higher 
expected return.

The authors of this article set out to get 
to the bottom of this conundrum. In trying to 
understand the foundations of Ross’s model, 
we discovered an alternative set of sufficient 
conditions that leads to the same startling 
conclusion. Our framework is not yet broad 
enough to encompass the unbounded dif-
fusions that describe a standard model such 
as BMS. Hence, it may well be that option 
prices are silent regarding expected return 
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in the BMS model. However, if one is willing to work 
with bounded diffusions, we discover that option prices 
can be very vocal about the return distribution of their 
underlyings.

While Ross’s conclusions do change our world 
view, there is a hitch. The main restriction on the output 
of Ross’s model is that the forecast pertains only to a stock 
market index, which is taken as a proxy for the holdings 
of the representative agent. If some unimportant asset 
such as soybeans could not possibly proxy for the entire 
holdings of the representative agent, then Ross’s model 
does not provide a forecast. Similarly, if the underlying of 
an option is regarded as being an asset in zero net supply 
(e.g., a futures or Chicago Board Options Exchange 
Volatility Index [VIX2]), then Ross’s model does not 
provide a forecast. Finally, if the underlying of a cash-
settled derivative is not a tradable (e.g., temperature), 
then forecasts of future values are outside the scope of 
Ross’s model.

While Ross’s model does not forecast all underly-
ings of options, it does provide a forecast of any index 
such as the S&P 500 Index, which both underlies options 
and could reasonably be assumed to determine aggregate 
consumption. This index forecast can be used to reduce 
prediction error when forecasting financial variables cor-
related with such an index. In particular, Ross’s approach 
can be used to forecast large drops in a broad stock market 
index and in assets positively correlated with it. As a result, 
the conclusions of Ross’s model have staggering implica-
tions for both financial theory and for the equity index 
options industry. As the late great economist Paul Samu-
elson famously said,“The stock market has forecast nine of 
the last five recessions.” It will certainly be interesting to 
see whether the stock index options market can produce 
a better record than its underlying stock market.

This article has three objectives. The first is to hone 
in on Theorems 1 and 2 in Ross’s paper and show exactly 
what has and has not been assumed. The second is to 
reconcile the standard intuition about the limited role 
of option prices with Ross’s conclusion that the real-
world mean is determined by option prices. The third 
is to show that one can in fact extend the domain of the 
forecast to the underlying of any derivative security, even 
if it is unimportant, not traded, or in zero net supply.

To accomplish the first objective, we provide a 
review of Ross’s Theorems 1 and 2 in the next section, 
clarifying both the assumptions and the derivation. In the 
entire article, we adopt Ross’s notation to ease the task of 

comparing results. To accomplish the second objective, 
we need to pin down the relationship between volatility 
and expected return. Since there is widespread agreement 
that option prices forecast volatility, a tight relationship 
between the spread of returns and the average return 
would imply the ability to forecast the latter as well.

In the capital asset pricing model (CAPM), the 
risk–return trade-off is formalized by the observation 
that in equilibrium, the risk premium on the market 
portfolio is proportional to its variance and to the risk 
aversion of the average investor. However, in arbitrage 
pricing theory, this risk–return trade-off can be formal-
ized even more concisely. A little more than 20 years 
ago, Long [1990] introduced the notion of a numeraire 
portfolio. As is well known, a numeraire is any self-fi-
nancing portfolio whose price is alway positive. Long 
showed that if any set of assets is arbitrage free, then there 
always exists a numeraire portfolio comprising just these 
assets. The defining property of this numeraire portfolio 
is the following surprising result.1 If the value of the 
numeraire portfolio is used to def late each asset’s dollar 
price, then each def lated price evolves as a martingale 
under the real-world probability measure.

There is an intuition as to why the choice of 
numeraire changes drift. Suppose the dollar price of 
an asset is drifting upward as compensation for bearing 
volatility. If we switch numeraires to the asset itself, then 
the new price is constant and hence has no drift. More 
generally, the more positive the correlation between the 
asset and the numeraire, the closer to zero is the drift. 
Long showed that one can find a single numeraire that 
zeros out drift in all relative prices.

Long’s discovery that the numeraire portfolio 
always exists in arbitrage-free markets allows one to 
replace the rather abstract probabilistic notion of an 
equivalent martingale measure with the more concrete 
and economically grounded notion of the numeraire 
portfolio. Long also showed that in a multivariate 
diffusion setting, the risk premium of the numeraire 
portfolio is its instantaneous variance rate. One could 
hardly imagine a simpler relationship between expected 
return and risk. This result is simpler than in the CAPM 
because no estimate of average risk aversion is required. 
For the constituents of the numeraire portfolio, the 
relationship between expected return and risk is only 
slightly more complex than for the numeraire portfolio 
itself. In the multivariate diffusion setting, the risk pre-
mium of any constituent of the numeraire portfolio is 
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the instantaneous covariance of the asset’s return with 
that of the numeraire portfolio. For further insights on 
these relations, see Bajeux-Besnainou and Portait [1997]. 
Note that in a complete market setting such as ours, 
the covariance of returns between a constituent and the 
numeraire portfolio is determined by the delta of the 
constituent w.r.t. the state variable, as we will show.

It follows that if one can determine the implied 
instantaneous variance of the numeraire portfolio, 
then one can at least determine its risk premium. If 
one also knows the risk-free rate, then one knows the 
expected return of the numeraire portfolio. If one can 
also determine the covariance of each asset’s return with 
the numeraire portfolio, then that asset’s expected return 
can be determined.

Although Ross does not focus on the numeraire 
portfolio per se, we argue that his assumptions conspire 
to determine the real-world dynamics of the numeraire 
portfolio value when one works in a bounded diffusion 
setting, and when the numeraire portfolio is required to 
involve all assets. The latter restriction is actually unnec-
essary when the goal is to forecast some strict subset of 
security prices. When Ross’s setting is examined in the 
bounded diffusion context, the value of the numeraire 
portfolio is uniquely determined implicitly along with 
the covariance of each asset’s return on the numeraire 
portfolio. It follows from the above considerations that 
each asset’s expected return is also determined in our 
bounded diffusion setting. Since the returns on each asset 
depend only on expected return and volatility in a dif-
fusion setting, the return distribution for each asset is 
determined. That Ross is moreover able to determine the 
real-world return distribution in his jump setting is a tes-
tament to the power of his restrictions on preferences.

In our continuous setting, we show that the vola-
tility of the numeraire portfolio is the market price of 
Brownian risk.2 Once this volatility process is determined, 
the market price of Brownian risk is also determined. 
Once the market price of Brownian risk is determined 
in our diffusive setting, we gain clarity on how the 
real-world dynamics of each asset become determined. 
The actual mechanics of figuring out the magnitude of 
instantaneous expected return on each asset is reduced to 
a straightforward application of Girsanov’s theorem.

To determine the volatility process of the numer-
aire portfolio, we must f irst determine its value pro-
cess. We follow Ross in assuming that there is a single 
Markov process X driving all asset prices under con-

sideration. For example, we might restrict ourselves to 
swaptions of different strikes and maturities and assume 
that the underlying swap rate drives all of their prices. 
Markov functional models are in fact commonly used in 
fixed income (e.g., Hunt, Kennedy, and Pelsser [2000]), 
although for realism, one usually assumes that two or 
three Markovian state variables drive some curve or sur-
face, rather than the one driving process that Ross uses 
for simplicity.

Technically, we depart from Ross in assuming 
that this Markov process is a time-homogeneous reg-
ular diffusion, living on a bounded interval of the real 
line. In contrast, Ross assumes that X is a discrete-time 
Markov chain with a finite number of states. The uni-
variate Markov assumption certainly restricts both of 
our analyses, but we are optimistic that our work can 
be extended to higher dimensions. It follows from our 
univariate diffusion assumption on X that the value of 
the numeraire portfolio L is also a continuous process 
under the risk-neutral measure Q. In fact, we will show 
that the pair (X, L) is a bivariate diffusion. However, we 
make the stronger assumption that this bivariate diffusion 
is time homogeneous. We then show that the value function 
of the numeraire portfolio is uniquely determined from 
the requirements that it be positive, self-financing, and 
stationary. This allows us to uniquely determine real-
world transition probabilities in our bounded diffusive 
setting.

Our approach is very similar to the benchmark 
approach popularized by Platen and co-authors in a 
series of papers beginning in 2003 (see the references). 
It turns out that in a wide variety of economic set-
tings including ours, the numeraire portfolio also maxi-
mizes the real world expected value of the logarithm of 
terminal wealth. Literature starting with Kelly [1956] 
and Latané [1959] has described the properties of this 
so-called “growth optimal” portfolio. Platen and his 
 co-authors advocate using the growth optimal portfolio 
as a numeraire, due to the martingale property that arises 
under F. As a result, readers who are familiar with the 
benchmark approach will likely find our results to be 
familiar.

Our results provide an alternative set of sufficient 
conditions that lead to the same qualitative conclusion 
as in Theorem 1 in Ross [2011]. The common conclu-
sion of both articles is that real-world transition prob-
abilities are uniquely determined, whether the driver X 
is a bounded diffusion, as we assume, or a finite-state 
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Markov chain, as Ross [2011] assumes. Ross’s Theorem 
1 assumes complete markets and the existence of a rep-
resentative agent whose utility function has a certain 
structure described below. Ross’s Theorem 1 does not 
explicitly assume no arbitrage, but Dybvig and Ross 
[1987, 2003] argue that the absence of arbitrage is equiv-
alent to the existence of a representative agent in a par-
ticular economic setting. If markets are also complete, then 
this representative agent is unique. For a description 
of the economic setting that leads to the existence of a 
unique representative agent, we quote Ross [2011]:

In a multiperiod model with complete markets 
and state-independent intertemporally additively 
separable utility, there is a unique representative 
agent utility function that satisf ies the above 
optimum condition and determines the kernel 
as a function of aggregate consumption (Dybvig 
and Ross [1987, 2003].

The optimum condition that Ross refers to is 
Equation (8) below, which will be a major focus of this 
article. From Ross’s quote above, the economic setting 
that leads to the existence of a unique representative 
agent is one with complete markets and multiple indi-
viduals whose utility functions are state independent 
and intertemporally additive separable. Hence, Ross 
formally derives the conclusion of his Theorem 1 by 
assuming the existence of a unique representative agent 
who solves a particular optimization problem described 
in detail below, but this assumption is itself derived by 
complete markets and a restriction on preferences of the 
inhabitants of the economy. If one further assumes that 
the state variable is a time homogeneous Markov process 
X with a finite discrete state space, then Theorem 1 in 
Ross [2011] shows that one can recover the real-world 
transition probability matrix of X from an assumed 
known matrix of Arrow–Debreu state prices.

While we have emphasized the staggering implica-
tions of this conclusion for equity derivatives, the par-
ticular assumptions made in Theorem 1 have several 
drawbacks. First, Ross is implicitly relying on the Von 
Neumann–Morgenstern axioms that lead to the con-
clusion that all individuals behave as if they maximize 
expected utility. These axioms have been the subject of 
much debate. It is difficult to test either the assumptions 
or the conclusions of the expected utility theorem. The 
tests that have been done generally conclude that individ-

uals do not behave as if they maximize expected utility, 
leaving one free to argue that markets behave as if they 
do. However, empirical tests of stock markets relying 
on the existence of a representative agent maximizing 
expected utility (e.g., Hansen and Singleton [1983] and 
Mehra and Prescott [1985]) have not performed well. We 
will not attempt to summarize this lengthy debate here, 
but we refer the interested reader to the Wikipedia entry 
called “Von Neumann–Morgenstern utility theorem” 
and the references contained therein. A second draw-
back of Ross’s assumptions is the use of an additively 
separable utility, which rules out both satiation effects 
and habit formation. One’s utility from consuming sushi 
for dinner is independent of whether one had sushi at 
lunch. Likewise, one’s utility from smoking a cigarette 
is independent of whether one has smoked before. These 
observations have led to the development of alternative 
preference specifications (e.g., Kreps and Porteus [1978] 
and Epstein and Zin [1989]). Indeed, Ross [2011] shows 
how a recovery theorem in the multinomial context can 
be developed for Epstein–Zin recursive preferences.

A third drawback of Ross’s assumptions is the use 
of state-independent utility. While one can aggregate 
multiple state-independent utility functions into a single 
state-independent utility function, further restrictions 
on beliefs or preferences are required in order for this 
aggregation to occur. When individuals are sufficiently 
diverse in terms of their probabilities and/or state-in-
dependent utilities, it can be impossible to aggregate 
their preferences into those of a representative agent with 
state-independent utility (see Mongin [1997]).

While denying the antecedent need not negate the 
conclusion, there is a more pragmatic reason for seeking a 
version of Ross’s conclusion that is not based on restricting 
preferences. The use of the representative agent’s utility 
function forces the driving process X to be interpreted as 
a state variable, which by definition includes all random 
processes that affect aggregate consumption (see Ross’s 
quote above). This requirement makes it difficult to go 
from market prices of a particular set of derivatives (e.g., 
swaptions) to the entire matrix of Arrow–Debreu state 
prices defined over aggregate consumption.

We accomplish our third objective by replacing 
Ross’s restrictions on the form of preferences with our 
restrictions on the form of beliefs (i.e., time-homoge-
neous diffusion). To be more specific, let F be the real-
world probability measure (as a mnemonic, F denotes 
frequencies). From the first fundamental theorem of asset 
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pricing, no arbitrage implies the existence of a positive F 
local martingale M, which can be used to create a new 
probability measure Q equivalent to F via:

d

d
M

T T

Qdd
Fdd

| =FT

Equivalently, the real-world probability density 
function (PDF) is given by:

d
M

e

M
d

T TM

T

t

T
T

r dt t

T

F Qdd dd Pdd| =
∫

|F FMT TM
Q

M
d | FT

1 0∫∫

where d
T

tr dt t
P Qd ed ddt∫−

 is the state pricing density.
If we know the state pricing density dP, then we 

just need to determine the random variable e
M

T rtrr dt

T

0∫  in order 
to determine the real-world PDF dF. We will show that 
this random variable is just the value of Long’s numeraire 
portfolio at T. We will impose structure on the real-world 
dynamics of this numeraire portfolio in order to identify 
it. In theory, one can identify F either by placing structure 
on the M and r processes or by placing structure on the 
numeraire portfolio that Long introduced. Ross takes 
the former route by linking M to the utility function of 
the representative agent and by restricting the form of the 
latter. We take the latter route by placing structure on 
the dynamics of the numeraire portfolio. We find it easier 
to assess the reasonableness of a set of restrictions when 
they are placed on an asset price rather than on one or 
more utility functions. Besides sample path continuity 
and a one-dimensional uncertainty, our main restriction 
on the numeraire portfolio’s returns is that the real-world 
dynamics are time homogeneous and Markov.

Due to our emphasis on the properties of the numer-
aire portfolio, we can take a bottom-up approach to recov-
ering F, rather than a top-down approach. We start by 
identifying an observable (e.g., a swap rate), which enters 
the payoff of multiple related derivative securities (e.g., 
swaptions at different strikes). The underlying observable 
need not determine aggregate consumption, need not be 
traded, and need not be in positive net supply. We sup-
pose that one can also observe prices of a set of derivatives 
written on this observable underlying. We then suppose 
that a single Markov process X drives all of these observ-
ables. The Markov process X is not required to drive other 
securities (e.g., stocks). In other words, our Markov pro-
cess X need not be a state variable for the entire economy. 

Our only requirement on the Markovian driver X is that 
it affects and determines the valuation of a set of derivative 
securities whose market prices are known. To the extent 
that utility functions of investors exist, our only require-
ment on them is that more be preferred to less. To the 
extent that the utility function of the representative agent 
exists, we allow it to be state dependent, we allow it to not 
separate across time, and we allow it to be non-stationary. 
We illustrate our alternative approach by determining the 
real-world transition probabilities of an interest rate in a 
single country, when that country has other domestic 
assets and is part of a multicountry economy.

To summarize, we differ from the Ross paper in 
two ways. First, on the technical side, we describe the 
risk-neutral dynamics of the driver by a bounded diffusion 
rather than a finite state Markov chain. This choice does 
not affect the qualitative nature of the results: Ross con-
clusions also apply in the bounded diffusion setting, and 
perhaps to some unbounded diffusions as well. Second, 
and more importantly, we use different sufficient condi-
tions to derive the same qualitative conclusion. We place 
structure on the dynamics of the numeraire portfolio 
rather than on the preferences of the representative agent. 
While we grant that this structure can be interpreted as an 
implicit restriction of preferences, the main point is that 
the numeraire portfolio need only be composed of assets 
for which the data are available and the assumptions are 
appropriate, while the representative agent must always 
hold all assets in positive net supply. This difference allows 
us to target our forecast to a wider set of underlyings, 
while Ross’s forecast is specific to a broad market aggre-
gate. We believe that this observation further extends 
the already substantive impact of Ross’s conclusions con-
cerning the informativeness of derivative security prices. 
Since the forecast applies only out to the longest maturity 
that one is willing to guess at Arrow–Debreu security 
prices, one could imagine that the demand for longer-
maturity derivatives markets will increase.

An overview of this article is as follows. First, we 
review the mathematics that Ross uses, in particular, the 
Perron-Frobenius theorem. We then review Theorems 1 
and 2 in Ross. We also review results on regular Sturm—
Liouville problems, which we need to convert results on 
Markov chains to bounded diffusions. Our assumptions 
are stated in the following section. The subsequent sec-
tion shows how we uniquely determine the real-world 
probability measure from these assumptions. The pen-
ultimate section contains an explicit illustration of our 
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diffusion-based results in a stochastic interest rate setting. 
We begin the section with a mathematical preliminary 
concerning spherical harmonics. We end the section by 
illustrating how the Ross recovery theorem works when 
the short rate is a simple positive function of a bounded 
diffusion. The concluding section summarizes the paper 
and includes suggestions for future research.

MATHEMATICAL PRELIMINARY 
AND ROSS RECOVERY THEOREM

 Mathematical Preliminary: 
The Perron-Frobenius Theorem

The Perron-Frobenius theorem is a major result 
in linear algebra that was proved by Oskar Perron and 
Georg Frobenius. This subsection highlights some of the 
results and is heavily indebted to the excellent Wikipedia 
entry “Perron-Frobenius theorem.” Consider the clas-
sical eigenvalue problem, where the goal is to find vectors 
x and scalars λ that solve the system of linear equations:

Ax x= λ

for a given square matrix A. In 1907, Perron proved that 
if the square matrix A has only strictly positive entries, 
then there exists a positive real eigenvalue called the 
principal root, and all other eigenvalues are smaller in 
absolute value. Corresponding to the principal root is an 
eigenvector, which has strictly positive components and 
is unique up to positive scaling. All of the other corre-
sponding eigenvectors are not strictly positive (i.e., each 
one must have entries that are either zero, negative, or 
complex). In 1912, Frobenius was able to prove similar 
statements for certain classes of nonnegative matrices 
called irreducible matrices.

A standard reference to the PF theorem is Meyer 
[2000], who writes:

In addition to saying something useful, the Per-
ron-Frobenius theory is elegant. It is a testament 
to the fact that beautiful mathematics eventually 
tends to be useful and useful mathematics eventu-
ally tends to be beautiful.

Indeed, the Perron-Frobenius theorem has impor-
tant applications to probability theory (ergodicity of 
Markov chains) and to economics (e.g., Leontief ’s input-
output model and Hansen and Scheinkman [2009]’s 

long-run economy). In the next subsection, we show 
how Ross applies the Perron-Frobenius theorem to 
mathematical finance.

The Ross Recovery Theorem

The goal of the Ross paper is to determine real-
world transition probabilities of a Markovian state vari-
able X that determines aggregate consumption. Using a 
snapshot of market prices of derivatives on X, Ross shows 
how to use time homogeneity of the risk-neutral pro-
cess of X, so as to uniquely determine a positive matrix 
whose elements are Arrow–Debreu security prices. Ross 
then places sufficient structure on preferences, that is, 
that there exists a representative agent when utilities 
are state independent and additively separable, so as to 
uniquely determine real-world transition probabilities. 
This last step makes novel use of the Perron-Frobenius 
theorem covered in the last subsection.

Ross assumes a discrete-time economy, which is 
described by a finite number n of states of the world. 
Once one conditions on a state occurring, there is no 
residual uncertainty. Let F denote the n × n real-world 
transition matrix, whose entries are the frequencies with 
which the X process moves from one state to another. 
As a first cut, Ross requires that from any state, the state 
variable X must be able to eventually reach any other 
state. As a result, the matrix F is said to be irreducible and 
hence amenable to the contribution of Frobenius. Ross 
also allows the existence of a single absorbing state.

Given that he interprets X as a stock index, this 
complication is needed to embrace limited liability. 
However, it is easier to gain intuition on a f irst pass 
though Ross’s results if we let X be able to exit every 
state. In fact, it is even easier if the Markovian state vari-
able X can transition from any one of the n states in just 
a single period. In this case, the real-world transition 
matrix F has only positive entries. In the Ross setup, 
the magnitude of these positive entries is unknown. All 
that is known ex ante is that the sum of the n entries 
in each of the n rows is one. The matrix F is said to 
be a stochastic matrix, even though the entries are not 
random variables. In the 2 by 2 case, the output of Ross 
analysis would be an F matrix such as:

F =
. .
. .

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

4 6.
3 7.
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However, ex ante, all we can say is that:

F
f f

f f
=

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎝⎝

⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎠⎠

⎟⎟
11ff 12ff

21ff 22ff

where f
11
 > 0, f

12
 > 0, f

21
 > 0, f

22
 > 0, f

11
 + f

12
 = 1, and 

f
21

 + f
22

 = 1.
To begin identifying these entries, consider a 

second square matrix P whose elements contain prices 
of single period Arrow-Debreu securities, indexed by 
both starting state and ending state. In the 2 by 2 case, 
a typical matrix could look like:

P =
. .
. .

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

4 5.
2 6.

The first row of this matrix indicates that if X starts 
in state 1, the price of a claim paying $1 if X stays in state 1 
is 40 cents, while the price of a claim paying $1 if X instead 
transitions to state 2 is 50 cents. If X starts in state 1, the 
price of a zero-coupon bond paying $1 in one period is 
90 cents, the sum of the two Arrow–Debreu prices. The 
second row indicates that if X starts in state 2, the price of 
this bond is instead 80 cents, the sum of the two Arrow–
Debreu state prices indexed by starting state 2.

However, suppose ex ante that we don’t know 
these AD prices. Then all we can say is that:

P
p p

p p
=

⎛

⎝

⎜
⎛⎛

⎜
⎜⎜

⎜
⎝⎝

⎜⎜

⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎠⎠

⎟⎟
11 12

21 22

where p
11 

> 0, p
12

 > 0, and p
22 

> 0. Suppose we do not 
require that interest rates be nonnegative, so we are not 
requiring that row sums be ≤1. All we require is that the 
P matrix have strictly positive entries, which is exactly 
the type of matrix that Perron analyzed. To summarize, 
P is a positive pricing matrix, while F is a frequency 
matrix.

Now suppose that we know that X is in state 1 and 
that we are given a pair of spot prices of single period 
claims. While this information determines p

11
 and p

12
, 

say p
11
 = k

11
 and p

12
 = k

12
, the entries p

21
 and p

22
 remain 

undetermined. However, suppose we are also given a 
pair of spot prices of two-period Arrow–Debreu secu-
rites, for examples (b

1
, b

2
) with both prices in (0, 1). 

Suppose we also assume that the risk-neutral process for 

X is time homogeneous and that interest rates depend 
only on X. We then have two linear equations in the 
two unknowns p

21
 and p

22
:

k k p b11
2

12 21 1k p12

and:

k k k p b11 12 12 22 2+ =k p22

Solving for the unknowns gives:

 
p

b k

k

p
b k k

k

21
1 1k 1

2

12

22
2 1k 1 1k 2

12

=

=
 (1)

Unfortunately, these solutions can lie outside [0, 1] 
if X is not time homogeneous in reality. For example, sup-
pose interest rates vanish and that the first-period transi-
tion matrix is:

P1PP
9 1

9 1
=

. .9

. .9

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

Suppose X is actually time inhomogeneous, so that 
the second-period transition matrix is:

P2PP
5 5

5 5
=

. .5

. .5

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

Multiplying the two matrices results in:

P P1 2P PP P
5 5

5 5
=

. .5

. .5

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

An observer in state 1 at time 0 sees just the first 
row of P

1
, (k

11
, k

12
) = (.9, .1) and the first row of P

1
 P

2
, 

(b
1
, b

2
) = (.5, .5). If the observer assumes that X is time 

homogeneous, then the calculation in (1) is:

p21

25

1
0=

. −5

.
<

( )9.

JOD-CARR-CS3.indd   44JOD-CARR-CS3.indd   44 8/23/12   5:34:17 PM8/23/12   5:34:17 PM

T
he

 J
ou

rn
al

 o
f 

D
er

iv
at

iv
es

 2
01

2.
20

.1
:3

8-
59

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.ii

jo
ur

na
ls

.c
om

 b
y 

PE
T

E
R

 C
A

R
R

 o
n 

09
/0

7/
12

.
It

 is
 il

le
ga

l t
o 

m
ak

e 
un

au
th

or
iz

ed
 c

op
ie

s 
of

 th
is

 a
rt

ic
le

, f
or

w
ar

d 
to

 a
n 

un
au

th
or

iz
ed

 u
se

r 
or

 to
 p

os
t e

le
ct

ro
ni

ca
lly

 w
ith

ou
t P

ub
lis

he
r 

pe
rm

is
si

on
.



THE JOURNAL OF DERIVATIVES   4520TH ANNIVERSARY ISSUE

The implied risk-neutral transition probability is 
negative.

Fortunately, much work has been done on infer-
ring a positive risk-neutral transition matrix from option 
prices. Suppose one starts by assuming that the risk-neu-
tral process for the underlying is a time-homogeneous 
Markov process evolving in continuous time and with a 
continuous state space. There are two basic approaches 
for determining these risk-neutral dynamics from a finite 
set of option prices. The classical approach assumes that 
the number of parameters describing the underlying is 
fixed over time. The fixed number of free parameters 
is typically exceeded by the number of option prices 
one is trying to fit. Examples include purely continuous 
processes such as Bachelier [1900], Black and Scholes 
[1973], Cox [1975], Vasicek [1977], and Cox, Ingersoll, 
and Ross [1985], pure jump models such as Carr et al. 
[2002] and Eberlein and Keller [1995], and jump dif-
fusions such as Merton [1976] and Kou [2002]. From a 
finite set of option prices, one does a least-squares fit of 
the parameters. It is unlikely that the fit is perfect, but 
the hope is that the error is noise, not a signal that the 
market is using some other process.

The second approach for determining a time-ho-
mogeneous Markov process for the underlying matches 
the number of parameters with the number of options 
written on that underlying at the calibration time. These 
market option prices are assumed to be free of both noise 
and arbitrage. For example, Carr and Nadtochiy [2012] 
show how to construct a time-homogeneous Markov 
process called local variance gamma, which fits a finite 
number of co-terminal option prices exactly.

Both of the above approaches uniquely determine 
a time-homogeneous Markov process evolving in con-
tinuous time and with a continuous state space. With this 
risk-neutral process determined, one can then discretize 
time and space and also truncate the state space. If X is 
the price of a stock index, then the truncation will be 
arbitrage free under some mild conditions on carrying 
cost. If X is the price of a stock index, then arbitrage is 
avoided at the lowest possible discrete value, if dividend 
yields are lower than the short rate there. Likewise, if 
X is the price of a stock index, then arbitrage is avoided 
at the largest possible discrete value, if dividend yields 
exceed the short rate there. Fortunately, it is actually 
realistic to assume that the dividend yield is below the 
short rate at low prices, while the dividend yield is above 
the short rate at high prices.

If the dividend on the stock index doesn’t meet these 
conditions, then avoiding arbitrage makes it necessary to 
either change the Markov chain to a regular diffusion 
with inaccessible boundaries, or to change the driver so 
that it is either the price of some other asset with appro-
priate dividends or some function of prices of traded assets 
(e.g., an interest rate). For example, suppose for simplicity 
that X is a one-period interest rate, evolving in discrete 
time as a time-homogeneous two-state Markov chain. 
If we don’t require that interest rates be positive, then 
the four unknown elements of the P matrix just need to 
be positive. There is no martingale condition on a one-
period interest rate, so one does not need to restrict car-
rying costs as one must do if X is an asset price.

Given these considerations, we are going to just 
assume that the elements of the pricing matrix P are 
known and that they are all positive. In the authors’ 
opinion, the main contribution of the Ross paper is in 
converting knowledge of a P matrix into knowledge 
of the F matrix. The main assumptions that allow this 
identification are complete markets and the existence 
of a unique representative agent who, in maximizing 
expected utility f inds it optimal to hold all of the 
(Arrow–Debreu) securities that trade and engages in 
exogenous consumption in each period. Quoting from 
the Ross paper:

The existence of such a representative agent will be 
a maintained assumption of our analysis below.

We now explore in detail exactly what is presumed 
by this statement. Just above his Equation (8), Ross for-
mally considers an intertemporal model with additively 
time-separable preferences and a constant discount factor 
δ > 0. Ross lets the function c(x) denote consumption at 
time t as a function of the state x that the state variable 
X

t
 is in at time t. Letting f(x, y) denote the single-period 

real-world transition PDF for the Markov process X, 
Ross’s Equation (9) reads:

 
max {aa ( ( )) ( ( )) }

{ ( ) ( )}x( c y(
U( x U)) y( f (f ( y d) yd( ( ))U y( f (∫δ

s.t.:

c y p y dy wd( )x )y( ) ( yp+ c( )y (x∫

JOD-CARR-CS3.indd   45JOD-CARR-CS3.indd   45 8/23/12   5:34:18 PM8/23/12   5:34:18 PM

T
he

 J
ou

rn
al

 o
f 

D
er

iv
at

iv
es

 2
01

2.
20

.1
:3

8-
59

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.ii

jo
ur

na
ls

.c
om

 b
y 

PE
T

E
R

 C
A

R
R

 o
n 

09
/0

7/
12

.
It

 is
 il

le
ga

l t
o 

m
ak

e 
un

au
th

or
iz

ed
 c

op
ie

s 
of

 th
is

 a
rt

ic
le

, f
or

w
ar

d 
to

 a
n 

un
au

th
or

iz
ed

 u
se

r 
or

 to
 p

os
t e

le
ct

ro
ni

ca
lly

 w
ith

ou
t P

ub
lis

he
r 

pe
rm

is
si

on
.



46   RISK, RETURN, AND ROSS RECOVERY 20TH ANNIVERSARY ISSUE

where w clearly denotes aggregate initial wealth.
We find this equation confusing for two reasons:

1. Ross’s later invocation of the Perron-Frobenius 
theorem for finite matrices requires that the state 
space be finite, while the two integrals above imply 
a continuum state space.

2. The constrained maximization appears to be over 
two identical functions.

The first-order condition (8) in Ross that we will 
derive requires partially differentiating with respect to 
each function. Since the other function is being held 
constant in this process, the maximization is clearly over 
two functions, which can differ ex ante.

Anticipating the invocation of the Perron-Frobe-
nius theorem for finite matrices, suppose we discretize 
the domain into a finite number of states, n. Suppose we 
let c

0i
 denote consumption at time t = 0, given that X

0
 = i, 

and we let c
1j
 denote consumption at time t = 1, given 

that X
1
 = j. In this case, Ross’s (9) above becomes:

 x (aa ) ( )
{ } i

j

n

j i) ji
i j

c( c( f ii
0 i

0
1

1
=

⎧
⎨
⎧⎧
⎨⎨
⎧⎧⎧⎧

⎩⎩⎩
⎨⎨⎨⎨

⎫
⎬
⎫⎫
⎬⎬
⎫⎫⎫⎫

⎭
∑δ ⎬⎬⎬⎬

⎭⎭⎭⎭
⎬⎬⎬⎬⎬⎬⎬  (2)

s.t.:

 c c wi
j

n

j ip ji0
1

1 =c pj p+ 1
=

∑∑  (3)

Now the constrained maximization is over two 
vectors, rather than one function. Define the Lagran-
gian as:

L U c pi
j

n

j j
j

n

j ip jiU
=j=

∑c i∑ j j∑ −w +( )c ic0
1

ccj iff j wiff ww
1

1δ∑U c f +c ff jiff +
⎡⎡

⎣

⎤

⎦
⎥
⎤⎤

⎦⎦

⎧⎧⎧

⎩⎩⎩

⎫
⎬
⎪⎫⎫
⎬⎬
⎭⎪
⎬⎬
⎭⎭

 (4)

Partially differentiating with respect to each scalar 
c
0i
 leads to the first-order conditions:

 ′ − = , , ,U ′ …, ni( )c i0 0 1, =i =λ  (5)

Hence, a necessary condition for optimality is that 
marginal utility from time zero consumption is invariant 
to the initial state.

Partially differentiating (4) with respect to each 
scalar c

1j
 leads to more first-order conditions:

 δ λ = , = , ,pλλ j, … n,j iff j ipλiff ji( j1 0 1, =i j,  (6)

Partially differentiating (4) with respect to λ and 
setting this result to zero recovers the budget condition 
(3). Solving (5) for λ and substituting into (6) yields:

 
p

f

U

U
i j … nij

ijff
j

i

=
′
′

, i = , ,δ
( )c j

( )c i

1

0

1  (7)

This equation constrains the state price per unit of 
probability on the left-hand side (LHS) by the structure 
that Ross has imposed on preferences. Ross writes his 
Equation (8) as.:3

 p x y

f x y

U y

U x
x y

( )x y

)x y

( (c ))

( (c ))
= ′

′
, x ∈δ R  (8)

The finite state analog of Ross’s (8), needed to 
invoke Perron-Frobenius, is:

 
p

f

U

U
i j … nij

ijff
j

i

=
′
′

, i = , , .nδ
( )c j

( )ci

1  (9)

There is an important difference between (7) and 
(9). Our Equation (7) describes the state price per unit 
probability as a matrix parametrized by the positive scalar 
δ and two positive vectors U ′(c

1
) and U ′(c

0
). In contrast, 

Equation (9) describes this kernel as a matrix param-
etrized by the positive scalar δ and the single positive 
vector U ′(c). Just below his Equation (9), Ross writes:

Equation (8) for the kernel is the equilibrium solu-
tion for an economy with complete markets:

If we interpret the word equilibrium as meaning 
“steady state,” then we may set the vector c

1
 = c

0
, that is:

 c c j … nj j1 0cj c 1jc ,…for  (10)

By imposing (10), we reconcile (7) with (9).4 As 
Ross shows, the key to achieving identification of real-
world probabilities is to parametrize the kernel p

f
ij

ijff
 by 

a positive scalar and a single positive vector as in (9), 
rather than by the parametrization in (7). Hence, the 
derivation of Ross’s conclusion from his restrictions on 
the preferences of the representative agent does require 
the stationarity condition (10) on the optimizers.
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While it is reasonable to believe that the func-
tion relating aggregate consumption to state would be 
stationary, the argument leading to the crucial Equa-
tion (9) would be more satisfactory if this stationarity 
property were derived from prior considerations, rather 
than imposed as an ad hoc constraint.

Besides stationarity, there is another condition that 
is being imposed before the validity of Ross’s (8) can be 
assured. Ross makes explicit that the utility function of 
the representative agent is state independent. Granting 
both stationarity and additive separability, we take this to 
mean that the utility in each period has the form U(c(x)) 
rather than U(c(x), x). Hence, two states that happen to 
have the same consumption result in the same utility, 
regardless of how different the two states are. Kreps 
and Porteus [1978] show how this leads to indifference 
toward the timing of the resolution of uncertainty.

We claim that another condition besides state 
independence is being imposed implicitly. This addi-
tional condition is that the optimizing function c(y) is 
independent of the initial state x of the state variable X 
determining aggregate consumption. There is nothing 
in the problem setup that guarantees this kind of state 
independence. To illustrate, suppose we substitute the 
stationarity condition (10) into (4):

L ≡ +
⎡

⎣

⎤

=
∑ ∑− +

⎡
⎢
⎡⎡

U c∑+ pi
j

n

j j
⎣⎣
⎢
⎣⎣ j

n

j ip ji( )ci δ∑ ++
1 1⎣ =⎣ j ⎦⎦

⎥
⎤⎤

⎦⎦⎦⎦

⎧⎧⎧

⎩⎩⎩

⎫
⎬
⎪⎫⎫
⎬⎬
⎭⎪
⎬⎬
⎭⎭

 (11)

Now write out the quantities being maximized 
when n = 2. If the initial state i = 1, then the Lagrangian 
being maximized is:

 
L1 1LL 1 11 2 12

1 1 11

≡ +
+
U c f U11 c f2 1

p1

( )11 [ (U ) (f U11 + ]12f1

{ [

δ
λ +1 11+c c p1{ [−w − ++ c p2 1p 2 ]}  (12)

If the initial state i = 2 instead, then the Lagrangian 
being maximized is:

 
L2 2LL 1 21 2 22

2 1 21

≡ +
+
U c f U21 c f2 2

p1

( )22 [ (U ) (f U21 + ]22f 2

{ [

δ
λ +2 21+c c p1{ [−w − +++ c p2 2p 2 ]}  (13)

Since different Lagrangians are being maximized, 
the maximizers would depend in general on the initial 
state. The implicit assumption in Ross’s (8) is that they 
do not.

Our analysis in the next section is designed to 
address precisely these issues. Before we proceed with 
that analysis, we need to show how Ross is able to 
uniquely determine all of the real-world transition 
probabilities from the finite-state analog (9) of his key 
Equation (8). Let:

 πi
iU

i … n≡
′

, =i , ,…
1

1
( )ic

 (14)

be the elements of a positive column vector π. Substi-
tuting (14) in (9) implies that:

 
f

p
i j … nijff

ij

j

i

= , =j , ,…
1

1
δ

π
π

 (15)

As we will see, any set of assumptions that lead to 
the form on the right-hand side (RHS) of (15) also imply 
uniqueness of the real-world transition probabilities f

ij
. 

For this reason, we refer to (15) as Ross’s fundamental 
form. This structure is imposed on the LHS of (15), 
which is the expected gross return starting from state 
i of an investment in an Arrow–Debreu security and 
paying off in state j. In general, this conditional mean 
return can depend on both the state i that we condition 
on starting in and on the state j with a positive payoff for 
an AD security. Hence, if no structure is imposed, one 
is faced with the gargantuan task of hoping to identify 
n2 conditional mean returns. If these n2 means could be 
somehow identified, then each unknown f

ij
 frequency 

could be determined from each corresponding p
ij
 price, 

since the latter are assumed to be known. Unfortunately, 
the fact that probabilities sum to one imposes only n 
linear equations on the n2 unknowns. However, the RHS 
of (15) indicates that the unknown matrix with entries 
f

p
ijff

ij
 is parametrized by a positive unknown scalar δ and a 

positive unknown n × 1 vector π. Hence, the number of 
unknowns is reduced by the structure on the RHS from 
n2 to n + 1, and this is before we impose the requirement 
that probabilities sum to one.

If we now impose these n summing up conditions, 
it appears that we fall short of our degrees of freedom 
by a tantalizing single degree. However, it needs to be 
remembered that all of the n + 1 unknowns on the 
RHS of (15) are known ex ante to be positive. As 
Ross shows, this extra set of inequalities are sufficient 
to uniquely determine the kernel by an appeal to the 
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Perron- Frobenius theorem. We now show how Ross 
pulls the rabbit out of his hat.

Solving (15) for each frequency implies:

 f p i j … nijff j

i
ij ,pij =j , ,…

1
1

δ
π
π

 (16)

Summing over the j index implies:

 
j

n

j
i j

n

j ijipj … n
=

∑ ∑ijf ij =p , i , ,…
1 1i j=i j

1
1 1i, i

δπ
 (17)

since the probabilities sum to one. Re-arranging allows 
us to write:

 
j

n

j ij ii iij ii … n
=

∑ i = , ,
1

1π δj piji
 (18)

Let P be the n × n matrix with the known elements 
p

ij
 > 0, and let π be the n × 1 column vector with the 

unknown elements π
i
 > 0. Then (18) can be succinctly 

re-expressed as:

Pπ δπ

Here, P is a known positive matrix, while π is an 
unknown positive vector and δ is an unknown positive 
scalar.

By the Perron-Frobenius theorem, there exists 
exactly one positive eigenvector, which is unique up to 
positive scaling. Corresponding to this eigenvector is the 
principal eigenvalue, which is positive. We set the rep-
resentative agent’s discount factor δ equal to this prin-
cipal root. We note that PF theory does not guarantee 
that the so-called discount factor is below one. If we set 
the π vector equal to any positive multiple of the prin-
cipal eigenvector, then (16) implies that the real-world 
transition probabilities f

ij
 become uniquely determined, 

since the arbitrary scaling factor divides out. In short, 
PF theory allows one to uniquely determine F from P, 
once the structure in (15) is imposed. In the rest of the 
article, we will focus on a preference-free way to derive 
this structure.

Before we proceed with that derivation, it needs 
to be remarked that PF theory has a surprising implica-
tion for the determination of F if the single-period bond 
price pijj

n

=∑ 1
 is independent of the state i that X is ini-

tially in. While the assumption that summing out j leads 
to independence from i seems strained from this per-
spective, it needs to be recalled that this independence 
is equivalent to deterministic interest rates, which is a 
standard simplifying assumption of well-known equity 
derivatives pricing models such as Black–Scholes [1973] 
and Heston [1993].

Whether or not interest rates are deterministic, 
knowledge of the pricing matrix P implies knowledge of 
the risk-neutral transition probability matrix Q since:

q p p i j i … nij ij
j

n

ij

⎛

⎝⎜
⎛⎛

⎝⎝

⎞

⎠⎠⎠
, j , ,…

=
∑

1

As Ross shows in his Theorem 2, deterministic 
interest rates imply that the real-world transition prob-
ability matrix F obtained via PF theory is equal to this 
risk-neutral transition probability matrix Q. In other 
words, the surprising implication is that deterministic 
interest rates lead to a zero risk premium for all securi-
ties.5 Under deterministic interest rates, the P matrix is 
just the product of the X0−invariant bond price and the 
stochastic matrix Q. The uniqueness of the principal 
eigenvalue and the positive eigenvector forces the latter 
to be a positive multiple of one.

If real-world probabilities must differ from their 
risk-neutral counterparts, then interest rates must depend 
on X. When X is forced to be the sole determinant of 
the representative investor’s consumption, one is forced 
into building a dependency between interest rates and 
aggregate consumption that may not exist in reality. 
This observation makes the development of a theory in 
which X need not have such a specific role all the more 
compelling. In the rest of the article, we will focus on 
a more f lexible theory in which the role of X can be 
defined according to the derivative security prices that 
one has on hand.

MATHEMATICAL PRELIMINARY: REGULAR 
STURM—LIOUVILLE PROBLEM

In this section, we establish a purely mathematical 
preliminary that allows us to derive Ross’s conclusion 
from a restriction on beliefs in a diffusion setting. We 
merely highlight some of the relevant results. This sec-
tion is heavily indebted to the excellent Wikipedia entry 
“Sturm—Liouville Theory.”
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We suppose that X is a bounded univariate dif-
fusion with drift function b(x) and variance rate a2(x). 
Using the language of stochastic differential equations 
(SDEs), X solves the following SDE:

 dX b X dt a dWt tb t tdWW+dt= bb , ≥t)t )XXtX ( )Xt 0  (19)

where W is a standard Brownian motion. The process starts 
at X

0
 ∈(�, u), where � and u are both finite. We assume 

that a2(x) > 0 on this interval. As a result, the extended 
generator of X, G I∂

∂
∂

∂x x

2 2

22
( ) ( ) ( ) , can always be 

rewritten in self-adjoint  form as G I∂
∂

∂
∂x∂ x

2

2
( )
( )x ( ) ( )π

, 

where π( )
)

( )e)
x b y(

a y(
dy

≡ ∫�∫
2
2

 is a positive function. Consider 
the Sturm—Liouville problem that arises if we search 
for functions y(x) and scalars λ that solve:

 Gy xG y x( )x ( )x ( )u= − , ∈xλ �  (20)

Dividing out the positive function a2

2
( )x
( )xπ

, this eigen 
problem has the form:

∂
∂

∂
∂

− , ∈
x x

q y y x w x ∈π λ
∂

∂
− = −q y( )x )x )x ( )x ( )x ( ),( u,�  (21)

where q x V

a
( )x ( )x ( )x

( )x
≡ 2

2

π  is a real-valued function and 
w

a
( )x ( )x

( )x
≡ 2

2

π  is a positive function. Suppose we further 
require that π(x), π′(x), q(x), and w(x) be continuous 
functions over the interval [�,u] and that we have sepa-
rated boundary conditions of the form:

 α α α1 2 1
2

2
20 0α α2
2
2y2α( ( )� �α yα2α) (′ = 0α2  (22)

 β β β β1 2β 1
2

2
20 0β β2
2y u( )u′ = 0β  (23)

Then (21), (22), and (23) are said to be a regular 
Sturm—Liouville problem.

The main implications of Sturm—Liouville theory 
for regular Sturm—Liouville problems are:

• The spectrum is discrete and the eigenvalues λ
1
, 

λ
2
, λ

3
, … of the regular Sturm—Liouville problem 

(21), (22), and (23) are real and can be ordered such 
that:

λ λ λ λ1 2λ 3<λ2λ < → ∞λ <n

• Corresponding to each eigenvalue λ
n
 is a unique 

(up to a normalization constant) eigenfunction 
y

n
(x) which has exactly n−1 zeros in (�,u). The 

eigenfunction y
n
(x) is called the nth fundamental 

solution satisfying the regular Sturm—Liouville 
problem (21), (22), and (23). In particular, the first 
fundamental solution has no zeros in (�,u) and can 
always be taken to be positive.

• The normalized eigenfunctions form an ortho-
normal basis:

u

n m mnyn y xm w dx∫� =( )x ( )x ( )x δ

 in the Hilbert space L2([�,u], w(x)dx). Here, δ
mn

 is 
a Kronecker delta.

ASSUMPTIONS OF THE MODEL

In this section, we state our assumptions and the 
implications that each additional assumption has for 
our analysis. Once all of the assumptions are stated, we 
derive our main result in the next section.

Our analysis is conducted over a probability space 
(Ω, F, F) but the probability measure F is not known 
ex ante. The goal behind the following assumptions is 
to place restrictions on the measurable space (Ω, F ), on 
the probability measure F, and on financial markets such 
that F becomes uniquely identified.

We start by assuming the existence of a money 
market account:

A1: There exists an asset called a money market account 
(MMA) whose balance at time t, S

0t
, grows at a stochastic 

(short) interest rate r
t
 ∈ R:

 S et

r dsdd
t

s

0
0 0,

∫0 , ≥t  (24)

The growth rate r is formally allowed to be real-
valued, but in what follows, we will always restrict r to 
the positive reals. In the language of stochastic differen-
tial equations (SDEs), the MMA balance S

0t
 solves:

 r S dt tt0 0t t 0, ,0t t= ,r S dtt0r Str ≥  (25)

subject to the initial condition:

 S0 0 1, =  (26)

JOD-CARR-CS3.indd   49JOD-CARR-CS3.indd   49 8/23/12   5:34:20 PM8/23/12   5:34:20 PM

T
he

 J
ou

rn
al

 o
f 

D
er

iv
at

iv
es

 2
01

2.
20

.1
:3

8-
59

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.ii

jo
ur

na
ls

.c
om

 b
y 

PE
T

E
R

 C
A

R
R

 o
n 

09
/0

7/
12

.
It

 is
 il

le
ga

l t
o 

m
ak

e 
un

au
th

or
iz

ed
 c

op
ie

s 
of

 th
is

 a
rt

ic
le

, f
or

w
ar

d 
to

 a
n 

un
au

th
or

iz
ed

 u
se

r 
or

 to
 p

os
t e

le
ct

ro
ni

ca
lly

 w
ith

ou
t P

ub
lis

he
r 

pe
rm

is
si

on
.



50   RISK, RETURN, AND ROSS RECOVERY 20TH ANNIVERSARY ISSUE

In the language of semi-martingales, S
0
 is a semi-

martingale whose local martingale part vanishes. For this 
reason, the MMA is also referred to as a riskless asset.

We also assume that one or more risky assets trade 
at t = 0 and afterwards. Just as the MMA does not emit 
any cash f lows, positive or negative, we assume that each 
risky asset has zero dividends and holding costs.

A2: There exists one or more risky securities whose 
spot prices S

1
, …, S

n
 evolve as continuous real-valued semi-

martingales over a finite time interval [0, T ]. For each risky 
security, the initial spot price is observed, there are no dividends 
or holding costs, and the local martingale part is non-trivial.

So far, the above two assumptions allow a secu-
rity’s price to dominate the price of some other security 
over time, but the following assumption rules out such 
dominance:

A3: There is no arbitrage between the MMA and the 
n risky securities.

Assumptions A1-A3 imply the existence of a mar-
tingale measure Q, equivalent to F, under which each 

r− discounted security price, e S
t

sr dsdd

it

− ∫ , evolves as a mar-
tingale, that is.

 E
S

S

S

S
tiT

T
t

it

t

Q

0 0ST

| =t , ∈t
⎧

⎨
⎪
⎧⎧
⎪
⎨⎨
⎪⎪

⎩
⎪
⎨⎨

⎪⎩⎩
⎪⎪

⎫
⎪
⎫⎫
⎪⎪

⎭
⎪
⎪⎭⎭
⎪⎪
Ft [ ] 0T i0, ,T = 100, ,1 ,… n,  (27)

In other words, the martingale measure that arises 
when the MMA is taken as numeraire is the risk-neutral 
probability measure Q. The time interval [0, T ] would 
be the longest time interval over which one is willing 
to specify risk-neutral dynamics.

Letting M be the positive martingale used to 
create Q:

E
M

M

S

S

S

S
tT

t

iT

T
t

it

t

F

0 0ST

| =t , ∈t
⎧

⎨
⎪
⎧⎧
⎪
⎨⎨
⎪⎪

⎩
⎪
⎨⎨

⎪⎩⎩
⎪⎪

⎫
⎪
⎫⎫
⎪⎪

⎭
⎪
⎪⎭⎭
⎪⎪
Ft [ ]T0, ]], = , , ,i …= , n0 1,,  (28)

It is a mathematical fact that the positive martin-
gale M used to create Q from F has the property that its 
reciprocal 1

M
 is a positive local martingale under Q. Let 

L denote the product of the MMA and this reciprocal:

 L
S

M
tt

t

t

≡ ,
M

t0 for [ ]T,  (29)

L is clearly a positive stochastic process. Since L 
is just the product of the MMA and the Q martingale 
1
M

, L grows in Q expectation at the risk-free rate. As 
result, L is the value of some self-financing portfolio. 
Multiplying both sides of (2) by M

t
 and substituting (3) 

in the result implies that:

  E
S

L

S

L
tiT

T
t

it

t

F | =t , ∈t , = ,
⎧

⎨
⎪
⎧⎧

⎨⎨
⎪⎪
⎨⎨⎨⎨

⎩
⎪
⎨⎨

⎩⎩
⎪⎪
⎩⎩⎩⎩

⎫
⎪
⎫⎫
⎪⎪

⎭
⎪
⎭⎭
⎪⎪
⎭⎭⎭⎭

Ft [ ]T, 0i, =]T,T 11, ,… n,  (30)

In other words, L is the value of the numeraire 
portfolio that Long introduced. The martingale measure 
that arises when Long’s portfolio is taken as numeraire 
is the real-world probability measure F. The existence 
of the numeraire portfolio is just a simple consequence 
of the existence of Q. Put another way, any proof used 
to show that no arbitrage implies the existence of a risk-
neutral measure can be trivially adapted to show that 
no arbitrage also implies the existence of a numeraire 
portfolio. Whenever the numeraire portfolio exists, so 
does a risk-neutral measure. The choice of which one 
to use boils down to whether one prefers to introduce 
convexity effects6 via multiplying probabilities or via 
dividing prices. In what follows, we express our prefer-
ence for dividing prices by focusing on the numeraire 
portfolio.

Since (27) holds for all assets, it holds in particular 
for the MMA:

 E
S

L

S

L
tT

T
t

t

t

F 0 0ST | =t , ∈t
⎧

⎨
⎪
⎧⎧

⎨⎨
⎪⎪
⎨⎨⎨⎨

⎩
⎪
⎨⎨

⎩⎩
⎪⎪
⎩⎩⎩⎩

⎫
⎪
⎫⎫
⎪⎪

⎭
⎪
⎭⎭
⎪⎪
⎭⎭⎭⎭

t [ ]T0,  (31)

Assuming now that L is a continuous semi-mar-
tingale, let σ

t
 denote the lognormal volatility of L. Since 

S
0
 is of bounded variation, the martingale condition (27) 

implies that:

 
d S

dB tt

t
t tdB

( )S L

( )S L
[ ]T0

0

LL

LL
= − , ∈tσ  (32)

where B is a standard Brownian motion under F. Using 
Itô’s formula for the reciprocal of S

0
/L:

 
d L

d dB tt

t
t t t

( )L S

( )L S
[ ]T

S
= +dt , ∈t0

0

2σ σt dt +dtt dt  (33)
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As a result, the F dynamics of L are just given by:

 
dL

L
dt dB tt

t
t t t t= + ,dBt tdB ∈( )r(rt trrr [ ]T,dt)t

2  (34)

where r is the short rate. In other words, the risk pre-
mium of the numeraire portfolio is just its instanta-
neous variance σt

2. It follows that the market price of 
Brownian risk is just the instantaneous volatility σ

t
 of 

the numeraire portfolio. This is a remarkable result, 
due to Long (1990). The equality between the market 
price of Brownian risk and the volatility of the numer-
aire portfolio is a very precise and simple relationship 
between expected return and risk. If we can determine 
the numeraire portfolio’s volatility process from data, we 
can determine the real-world dynamics for any contin-
gent claim driven solely by B.

This link between risk and expected return has 
implications for optimal portfolio allocation. Suppose an 
investor is trying to determine what proportion of their 
wealth to allocate to the numeraire portfolio. Assume that 
the remaining fraction of their wealth must be held in the 
MMA. Suppose the investor has log utility of wealth and 
chooses the proportion to maximize the expected utility 
under F. Equation (34) implies that the optimal alloca-
tion will be 100% in the numeraire portfolio and 0% in 
the MMA. In a world of these two assets, this investor 
is the representative agent. In a world of more than two 
assets, an investor maximizing the F expectation of log 
wealth would also end up allocating 100% of wealth to 
the numeraire portfolio and 0% in the MMA. In other 
words, in our setting, the numeraire portfolio is also the 
growth optimal portfolio. The equality between the two 
portfolios extends beyond our setting but does not hold 
in complete generality (see Becherer [2001]). For more 
on the growth optimal portfolio, we refer the reader to 
Christensen [2005] and Platen [2005].

Returning to our original objective of determining 
F, we next assume a strong link between the n + 1 assets 
under consideration:

A4: There exists a univariate time-homogeneous bounded 
diffusion process X such that for i = 0, 1, …, n, S

it
 = S

i
(X

t
, t) 

for some value function S
i
(x, t), x ∈[�,u] × 0, T ] |→ R.

Ross [2011] assumed that all prices depend only on 
a single driver X. Since most contingent claims pay off 
at a fixed time, their price would also depend on time t. 
Besides requiring that the MMA and the risky securities 

be dividend free and arbitrage free, we have followed 
Ross [2011] in assuming the strong requirement that 
their prices depend on a single driver X and on time t. 
A4 further asserts that the driver is a bounded diffusion. 
The diffusion assumption is meant to focus the analysis 
in the traditional setting of option pricing.

Note that conditioning on the path of X still allows 
randomness in the prices of securities that are not among 
the n + 1 securities described above. We refer to X as the 
driver rather than the state variable, since the state of the 
entire economy is not determined by X. Our assumption 
that all of our n + 1 security prices depend only on X 
implies that this market is complete. Any risky security in 
the set can be replicated by dynamic trading in any other 
sufficiently long-lived risky security in the set, along with 
the MMA. The risk-neutral probabilities are unique.

Assumption A4 requires that the driver X be 
bounded, that is, confined to a spatial interval [�, u], 
where the lower bound � and the upper bound u are both 
finite. This assumption is not necessary since we know 
of examples where Ross recovery works on unbounded 
domains. Unfortunately, we also know of examples for 
which Ross recovery does not work on unbounded 
domains. We treat boundedness as a simplifying assump-
tion and look forward to the day when it can be replaced 
by an equally simple sufficient condition.

Depending on the context, imposing boundedness 
on the driver may or may not be realistic. If X is an interest 
rate, we believe it is realistic to further require that it is 
bounded by say ± 100%. While the numbers may differ, 
the same boundedness assertion holds for volatility, tem-
perature, or any other mean-reverting process. If X is the 
price of a bond with a finite maturity, then range-bound 
rates imply range-bound prices, so the boundedness 
restriction is also reasonable. Correlation swap rates are 
certainly bounded and the payoffs on variance swaps are 
usually capped, leading to bounded variance swap rates. 
The boundedness restriction starts to bite if X is taken 
either to be the price of a stock with unlimited upside 
or the price of, say, a written equity call with unlimited 
downside. As indicated above, we know of examples for 
which Ross Recovery works on unbounded domains, but 
the general theory for this problem is not yet available.

Since A4 governs the MMA balance, there also 
exists a function r(x, t), x ∈ [�, u] × [0, T ] |→ R such 
that r St( )x t l ( )x t)t ∂

∂ 0
 and r

t
 = r(X

t
, t) t ∈ [0, T]. Clearly, 

the function r(x, t) indicates the dependence of the short 
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risk-free rate r
t
 on the contemporaneous level of the dif-

fusion driver, X
t
, and on time, t.

Since the driver X evolves as a bounded univariate 
time-homogeneous diffusion under Q, there exists a Q 
standard Brownian motion W, a drift function b(x), x 
∈ [�, u], and a variance rate function a2(x), x ∈ [�, u] 
such that X solves the following SDE:

 dX b X dt a dWt tb t tdWW+dt= bb , ≥t)tX )XXtX ( )Xt 0  (35)

The generator of (X, t) has the form:

GxtGG t

a

x
b x

x
=

∂
∂

+
∂

∂
+

∂
∂

2 2∂
22

( )x
( )x

For each risky security, its value function solves 
the following linear parabolic partial differential equa-
tion (PDE):

 GxtGG i iSi r S x( )x t ( )x t ( )x t [ ] [ ]Tt iSi)t (x , ∈x ]u�  (36)

As first shown by Bergman [1981] in the context 
of the Black–Scholes model, this PDE is just a necessary 
condition for a portfolio to be self-financing. We may 
say that value functions S

i
(x, t) are space-time harmonic 

for the extended generator:

G IxtGG t

a

x x

∂
∂

∂
∂

∂
∂

2 2∂
22

( )x
( ) ( ),

In Theorem 1 of Ross, the matrix of Arrow– 
Debreu security prices is assumed to be known. In our 
setting, the analogous assumption is:

A5: The short interest rate function r(x,t), x ∈ (�, u), 
t $ 0, the risk-neutral drift function b(x), x ∈ (�, u), and the 
variance rate function a2(x), x ∈(�, u) are all assumed to be known 
ex ante. Furthermore, a(x) is known to be positive on (�, u).

Recall that Ross starts his analysis by imposing 
restrictions on the form of the representative investor’s 
utility function. Our main idea for bypassing these restric-
tions is to impose structure on the price and on the risk-
neutral price dynamics of Long’s numeraire portfolio.

A6: We assume that:

 L L tt tLL , ∈t( )X tt ,XtX [ ]T,  (37)

where L(x, t) is a positive function of x ∈ R and time t ∈ [0, 
T ]. We also assume that the risk-neutral drift r

i
 of L depends 

only on the driver X and is independent of time t:

 r r t( )x t ( )x [ ]u [ ]T)t , ∈x ,]u ∈[�  (38)

Finally, we assume that the volatility σ of returns on 
the numeraire portfolio depends only on the driver X and is 
independent of time t:

 
dL

L
r d X dW tt

t
t tdt tWW= +r dtdt , ∈t( )XtXt ( )XtX [ ]T,σ  (39)

where W is standard Brownian motion under Q. We assume 
that we know the function r(x) for example, r(x) = x

Knowledge of the functions r(x) and σ(x) implies 
knowledge of the drift and diffusion coefficients of the 
numeraire portfolio under both F and Q. Since the pair 
(X, L) will be shown to be a bivariate time-homoge-
neous diffusion under both probability measures, we are 
in effect assuming stationarity for them under F.

While we have assumed we know a(x) > 0, b(x), 
and r(x), we do not require knowledge ex ante of the 
volatility function σ(x). The goal of this analysis is, in 
fact, to show that this conditional volatility function is 
uniquely determined by knowledge of the risk-neutral 
dynamics of X and the foregoing assumptions. Hence, 
the effort in the next section is primarily devoted to an 
objective that has taken up much of the research effort 
in derivatives in the past 20 years. Specifically, we need 
to go from market option prices to the conditional vola-
tility of an asset, but with a twist. The twist is that the 
options are written on X or known functions of X, but 
the volatility we want is that of the numeraire portfolio. 
Hence, it will be necessary to determine the numeraire 
portfolio’s value function. The latter is determined by 
the requirements that the numeraire portfolio be self-
financing, that it be positive, and that it be time homo-
geneous. As we will see, these financial requirements, 
along with the assumed dependence on the bounded 
diffusion X, translate into a regular Sturm—Liouville 
problem, which can have only one positive eigenfunc-
tion, up to positive scaling.

Under the six assumptions of this section, the next 
section shows how to uniquely determine the value 
function L(x, t), up to positive scaling. We will also 
be able to determine the conditional volatility function 
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σ(x) uniquely. This implies that we uniquely determine 
both the market price of Brownian risk, which is σ(x), 
and the risk premium of the numeraire portfolio which 
is σ2(x). Finally, we uniquely determine the dynamics 
of X under F and the real-world probability measure 
F itself.

ANALYSIS

Imposing A6 on (34) implies that the F dynamics 
of L are given by:

 

dL

L
X X dt dB tt

t
t t t t= Xt + ,dBtdB ≥[ (rr ) + ( )] ( )XtXtdtXtX( )]2 0

where recall that B is a standard Brownian motion 
under F. Applying Itô’s formula to (37), the volatility 
of L is:

σ( )
( )

( ) ( ) ( ) ln ( )
L( x)

L( a) a)
x

L(≡
∂

∂
=) ( )a) )

∂
∂

1  (40)

From A5, a(x) is known to be positive on (�, u). 
Dividing by a(x) and integrating w.r.t. x:

ln ( , )
( )

( )
)L( t

a y(
dy f t(

x
= +

( )y
dy∫

σ

where f(t) is the constant of integration. Exponentiating 
implies that the value of the numeraire portfolio sepa-
rates multiplicatively into a positive function π(⋅) of the 
driver X and a positive function p(⋅) of time t:

 L p t( )x t ( )x ( )t)t π  (41)

where

π
σ

( )
( )
( )e)

x y
a y(

dy∫

and

p t e f t( )t )t=

Substituting (38) and (41) into the PDE (36) 
implies:

π π π( ) ( )
( )

( ) ( ) ( ) ( ) ( ) (p)
a (

x p) t b) π) ( p t( r′ + ′′ ′ =
2

2
x xxx p x) ( ) (p )

Dividing by π(x) p(t) implies:

a
b x r

p t

p

2

2

( )x ( )x

( )x
( )x

( )x

( )x
( )x( )x

( )t′′ + ′ − =r )x − ′π
π

π
π ( )((

( ) [ ]x t [

,

∈(( , ∈t�

The two sides can only be equal if they are each 
equal to a constant, say −λ ∈ R. In that case, we have 
two ordinary differential equations (ODE’s):

 ′ = ,
p t′
p t

t ∈
( );t
( );t

[ ],T,
λ
λ

λ  (42)

and:

a
b r x

2

2

( )x
( ) ( )x ( ) ( )x ( ) () −) =)π λ(x′′ π λ(x′ π λ(x λπ ; ,;;

∈

λ)

( ),,x ∈ �
 (43)

The general solution to (42) is:

 p t p e t( )t ))λ λp) (=) λ  (44)

Without loss of generality, we may set p(0) = 1 
so that:

 p t e t( )t =)λ λ  (45)

Substituting (45) in (41) implies that the form for 
the value function of the numeraire portfolio must be:

 L e t( )x t ( )x ( )u)t , ∈xπ λ �  (46)

where π (x) is a positive function solving the 
ODE (43).

This ODE can be regarded as a regular Sturm—
Liouville problem.7 One can numerically solve for all 
of the eigenfunctions and eigenvalues. From the sec-
tion before last, we know that the smallest eigenvalue is 
unique, and we will call it ρ. When the eigenvalues are 
ordered from smallest to largest, ρ is the first eigenvalue. 
Associated to ρ is an eigenfunction, which is unique up 
to positive scaling. We will call this f irst eigenfunc-
tion φ(x), understanding that the positive scale factor is 
indeterminate. This first eigenfunction is positive, that 
is, φ(x) > 0. All of the eigenfunctions associated to the 
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other eigenvalues switch signs at least once. Since the 
numeraire must be positive, the positive function π (x) 
in (46) has to be the first eigenfunction φ(x):

 ( ) ( )φ( x,φ( )φ( ∈((�  (47)

As a result, the eigenvalue λ in (46) has to be the 
first eigenvalue ρ:

 λ ρ  (48)

Substituting (47) and (48) in (46) implies that the 
value function of the numeraire portfolio is given by:

 L e tt( )x t ( )x ( )u [ ]T)t , ∈x ,)u ∈[φ ρ �  (49)

which is determined up to the positive scale factor in 
φ(x). Substituting (49) in (40), the volatility of the 
numeraire portfolio is uniquely determined as:

 σ φl ( ) ( )
x

)
∂

∂
, ∈x �  (50)

Since the risk premium of the numeraire portfolio 
is simply σ2(x), it is also uniquely determined. From Gir-
sanov’s theorem, the dynamics of X under F are uniquely 
determined as:

b X X X dt X dB tt tX t tX t tX= tX + ,a dBtdB ≥[bbbb ) (+ ) (aa )] (XtXt 0  (51)

where B is a standard Brownian motion under the real-
world probability measure F. Also from Girsanov’s the-
orem, the dynamics of the ith spot price S

it
 under F are 

uniquely determined as:

dS X X t X
x

X t Xit t i t tt X i tX t= ,X Xt t

∂
∂

,[ (rr ) (SiSiS ) ( ) (Si

∂
∂

) (a )]2 dtdd

x
S a X dB ti t t t+

∂
∂

,dBtdBa ∈( )X ttX ,t ( t(XXt [ ]T,  (52)

where S
i
(x, t) solves the following linear parabolic 

PDE:

∂
∂

+
∂

∂
∂

∂
,

t
S

a

x
S t b+

x
S x ti i+

∂
S i( ),x,x

( )x
( ),x ( )x (

2 2∂( )
22

) ()) ) ( )

( ) [ ]

,( ) ( ,

(∈( × [

x(( x(( t

x ∈(

i

�  
 (53)

subject to appropriate boundary and terminal condi-
tions. If S

it
 > 0, then (52) can be expressed as

 

dS

S
X X

x
X t X dtit

it
t tX i tX tXt=

∂
∂

,

+

[ (r[ (r ) (+ ) l
∂

∂
n (Si ) (a )]2

∂∂
∂

, ≥
x

S a X dB t,i t t tln ( ),X ttX (Xt 0  (54)

The instantaneous risk premium is just d S Li t
ln, , 

that is, the increment of the quadratic covariation of returns 
on S

i
 with returns on L.
We still have to uniquely determine the real-world 

transition density of X. Recall that from the change 
of numeraire theorem (see Géman et al. (1995)), the 
Radon–Nikodym derivative d

d
Fdd
Qdd  is:

 d

d

S

S

L

L
e

L

L XT

T r dt T

T

tFdd
Qdd

= = ∫
,

,

,

−0 0,

0 0LT, 0

0∫∫
0

( )Xt ( )X TT ,
( ))

 (55)

Evaluating (23) at t = T and then substituting in 
(29) implies:

 d

d
e e

T

tr dt T TFdd
Qdd

= ∫−
0∫∫

0

( )tX ( )XT

( )X 0

φ
φ

ρ  (56)

Letting d
T

r dt
P Qd ed ddt∫− ( )tXt  denote the state-pricing 

density, we recover Ross’s fundamental form (15):

 d

d
eT TFdd

Pdd
=

φ
φ

ρ( )XT

( )X 0

 (57)

We remark that this form arises naturally from 
the use of a numeraire (portfolio) used to def late prices 
at both time t and at time 0, along with the constraints 
in A6 that we have imposed on the numeraire’s value 
function and dynamics.

Solving (57) for the real-world PDF:

 d T r dt
T

F Qdd e e ddT T t∫−φ
φ

ρ( )XTXT

( )XX

( )Xtt

0

 (58)

As we know the state-pricing density e d
T

r dt− ∫ ( )tX
Qdd , 

we know all of the terms on the RHS of (58) and hence 
we know the real-world transition density of X.
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AN ILLUSTRATION

 Mathematical Preliminary: Spherical 
Harmonics

The objective of the Ross paper is to use deriva-
tive security prices to forecast. Historically, a crystal ball 
has been used for this purpose. It is entirely copacetic 
that the surface of a crystal ball furnishes a tractable toy 
model illustrating Ross Recovery.8 While the toy model 
will have no parameters as a pedagogical device, it’s 
clear how to add parameters and extend the toy model 
to multiple dimensions. In this subsection, we provide 
some well-known mathematical results on spherical har-
monics that are used in the next subsection to generate 
our toy model. This subsection is heavily indebted to 
the excellent Wikipedia entry “Associated Legendre 
polynomials.”

A classical problem in physics is to solve Laplace’s 
equation in three dimensions. The classical solution is 
to use spherical coordinates and separate variables. The 
colatitude angle θ and the longitude angle φ are referred 
to as spherical harmonics. These two functions are cen-
tral to the solution of the equation:

 ψ λ= − ψ  (59)

on the surface of a (3-)sphere. Here Δ denotes the Lapla-
cian, which in spherical coordinates is:

 
Δ =

∂
∂

+
∂
∂

+
∂
∂

ψ
ψ

θ
θ

ψ
θ

θ
ψ

φ

2

2
2

2

2
cot( ) csc ( )θ

 

When the PDE (59) is solved by separating vari-
ables, one gets a φ dependent part, sin(mφ) or cos(mφ), 
for integer m ≥ 0 and the following equation for the θ 
dependent part:

∂
∂

+
∂
∂

− − ,
2

2
2 2y y

+
∂

m y y
θ

θ
θ

θ λ= −y θ π∈cot( ) (θ ( ),π,0  (60)

The eigenvalues of this regular Sturm—Liouville 
problem are λ = �(� + 1) for � ≥ m. It is well known that 
the eigenfunctions solving this eigenvalue problem are 
the associated Legendre polynomials Pm

�PP ( )x , evaluated 
at x = cos θ.

 Illustrating Ross Recovery in a Bounded 
Diffusion Setting

Suppose we set m = 1 in (60) and replace the 
dummy variable θ with x:

 ∂
∂

+
∂
∂

− = −
2

2
2y

x
x

y

x
x y y,cot( ) csc ( )x ( ),λ π∈y x, ( ,0  (61)

The first two terms on the LHS are recognized as 
the generator of a Brownian motion with volatility 2 , 
which has been conditioned to never exit the interval (0, 
π). Letting X denote this process, it solves the SDE:

 X x X dsddt

t

s tdsdd+x ,tWW ≥∫0∫∫ 2 0W t,WtWW ≥cot(  (62)

where the initial value x ∈ (0, π). Notice that X is a time-
homogeneous bounded diffusion. It is strongly mean 
reverting to the midpoint of its domain, since the drift, 
cot(X

s
), becomes infinite as X approaches zero and nega-

tively infinite as X approaches π. Starting from x ∈ (0, 
π), the boundaries 0 and π are inaccessible. Since 0 is an 
entrance boundary, if the process X starts there, it imme-
diately moves up and never returns to 0. Similarly, since 
π is an entrance boundary, if the process X starts there, it 
immediately moves down and never returns to π.

Suppose that the conditioned Brownian motion X 
is the driver determining the valuation of a set of assets. 
Suppose further that r(x) = csc2 (x) is the function relating 
the short interest rate to this driver. Then the process r

t
 = 

r(X
t
) is a time-independent continuous process. There is 

a standard Brownian motion relative to which r(X
t
) is a 

univariate diffusion. The support of the short-rate process 
is (1, ∞). Although the driver X is bounded, the short-
rate process is unbounded above. The short-rate process 
is bounded below by one. If we measure the short rate in 
basis points, this lower bound is realistic.

The eigenvalues solving the eigenvalue problem 
(61) are still λ = �(� + 1) for � ≥ m. The first few eigen-
functions solving this regular Sturm—Liouville problem 
on (0, π) are:

P x

P x x

P

1PP1

2PP1

3PP1

3

(cos )x sin

(cos )x cos sx i

(cos )x

=

=

=
33

2
1

5

2
3

2

4
1 35

( c5 )si

(cos ) ( c77 s )

x1)sin

P4
1(cos 3cos= (7 siss nx
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Notice that the nth eigenfunction has n–1 roots in 
the interval (0, π). In particular, the first eigenfunction, 
sin x, is positive for x ∈ (0, π). We take it as the positive 
harmonic function φ(x) used to identify the numeraire 
portfolio, that is.

 φ π)  (63)

The corresponding eigenvalue:

 ρ = 2  (64)

is the smallest of the eigenvalues, exactly as Sturm—
Liouville theory predicts. Substituting (63) and (64) 
in (49) implies that the numeraire portfolio has value 
function:

 L e t( )x t sin (x ))t x ,2 0 π  (65)

In this toy model. the value of the numeraire port-
folio L

t
 can be directly related to the contemporaneous 

short rate r
t
. Since r

x
( )x csc ( )x

sin ( )
= =csc ( )x2 1

2
, we have:

 sin( )
( )

( )x
r(

x= ∈x
1  (66)

Substituting (66) in (65) implies that:

 L
e

r

t

( )x t
( )x

( )=)t , ∈x
2

 (67)

Thus, when the short rate rises, the value of the 
numeraire portfolio falls and conversely:

L
e

r
tt

t

tr
= , ≥

2

0

The eigenvalue two is actually the limit to which 
the yield to maturity on a zero coupon bond approaches, 
as time to maturity becomes infinite. If we measure r in 
basis points so that one basis point is its minimum value, 
then this limiting yield is 2 basis points per year, which 
is independent of the initial short rate. Substituting (63) 
and (64) in (57), the Radon–Nikodym derivative is:

 d

d

X

X
eT TFdd

Pdd
=

sin( )

sin( )0

2  (68)

The dynamics of the driver X change as we switch 
probability measures from Q to F. Girsanov’s theorem 
implies that under F:

 X x d B tt

t

s t+x ,BtB ≥∫0∫∫ 2dsdddsddX3 0cot(  (69)

where B is a standard Brownian motion under F. This 
process is even more strongly mean reverting. Here, the 
probability measures F and Q are equivalent.

Since (65) gives us the value function for the 
numeraire portfolio, we can calculate its volatility:

σ( ) tx) cot2

Thus, the quadratic variation of ln L is given by:

lnL d
t

t

s ,s ≥∫∫ 0Xcot ds t,cot Xcot ds ≥2∫0∫∫
2

where the F dynamics of X are given in (69). Hence, the 
instantaneous risk premium for the numeraire portfolio 
is its infinitessimal variance rate:

 σt t
2 2 0X t2 2= ,t2 tXt ≥  (70)

The short-rate process under F is:

 r tt tr , ≥)t( )XXtX2 0  (71)

As a result, the real-world return dynamics of the 
numeraire portfolio are given by:

dL

L
dt d Tt

t
t t t tX= + ,[csc ]t ] t [X dB tt t ,X dBt tdB ∈ ]2 2XX 2dt +]XtX 0

 
(72)

Note that the real-world expected return on the 
numeraire portfolio is just the sum of the short rate in 
(71) and its infinitessimal variance rate in (70).

The market price of Brownian risk is the volatility 
of the numeraire portfolio, which is 2 cot Xt

. Note that 
the market price of Brownian risk and the volatility of the 
numeraire portfolio can both switch signs. In contrast, 
their product, which is both the risk premium and the 
instantaneous variance, is always positive. The sign indefi-
niteness of volatility is never an issue. The sign indefinite-
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ness of the risk premium is also not an issue, since X is not 
the price of a traded asset.

In this toy model, the dynamics of the ith spot price 
S

it
 under F are:

dS X t X
x

X dtit i t t
i t

t,XtX= +
∂ ,Si

∂

+

[ i[ (SSi )
)tt ,XtX
cot ]Xt

2 2 2

∂ ,∂∂
∂

,
x

di t
t

),tt [ ],T,2 , ∈dB t ∈t [  (73)

SUMMARY AND FUTURE RESEARCH

In this article, we reviewed Ross’s derivation of 
his Theorems 1 and 2. We then proposed an alternative 
preference-free way to derive the same financial con-
clusion. Our approach is based on imposing stationarity 
on the real-world dynamics of the numeraire portfolio 
when it is driven by a bounded diffusion. We illus-
trated our approach for gazing into crystal balls by using 
spherical harmonics.

We suggest the following extensions for future 
research. First, it would be straightforward to extend this 
work to two or more driving state variables. So long as 
each univariate Sturm—Liouille problem is regular, we 
have uniqueness of the positive eigenfunction. Second, it 
would be interesting to explore whether Ross recovery is 
possible on unbounded domains. We know of an example 
on an unbounded domain for which the uniqueness of 
positive eigenfunctions fails when the point spectrum is not 
countable. We also know of an example on an unbounded 
domain for which we have uniqueness of positive func-
tions and the point spectrum happens to be countable. 
We conjecture that the uniqueness of positive eigenfunc-
tions succeeds on unbounded domains if we restrict the 
function space in some way (e.g., bounded continuous 
functions), so that the point spectrum becomes count-
able. Third, it would be interesting to explore the extent 
to which Ross’s conclusions survive when the driving 
process X is generalized into a semi-martingale. Dropping 
the Markovian condition would mean that one is now 
searching for the three characteristics of a semi-martingale 
under F, given that they are known under Q. Methods 
used to prove the second fundamental theorem of asset 
pricing should be useful in proving uniqueness. Finally, 
it would be interesting to explore what restrictions on F 
can be obtained when markets are incomplete.

Clearly, Ross’s paper and this tweak of it present 
merely the theoretical foundations for the idea that the 
separation of variables can be used to separate beliefs 
from preferences. Much work remains to be done on 
the implementation and testing phase. In the interest of 
brevity, theoretical extensions, implementation strate-
gies, test designs, and empirical results are best left for 
future research.

ENDNOTES

The views repesented herein are the authors’ own views 
and do not necessarily represent the views of Morgan Stanley 
or its aff iliates and are not a product of Morgan Stanley 
research.

We are grateful to Aswath Damodoran, Darrell Duffie, 
Phil Dybvig, Bruno Dupire, Travis Fisher, Bjorn Flesaker, 
Gabor Fath, Benjamin Forestier, Will Goetzmann, Alan 
Moreira, Sergey Myagchilov, Steve Shreve, Bruce Tuckman, 
and especially, Steve Ross, Kevin Atteson, Steve Figlewski, 
and Zsolt Bihary for their comments. They are not responsible 
for any errors.

1Long proved this result in a sufficiently regular multi-
variate diffusion context. Becherer [2001] extends the result 
to the unbounded semi-martingale setting.

2To be precise, the market price of Brownian risk is the 
signed instantaneous lognormal volatility of the numeraire 
portfolio.

3The observant reader will notice the careful financial 
engineering that went into matching our equation number 
with Ross.

4When we consider that (10) is imposed in conjunction 
with (5), a consequence of this reconciliation is that at the 
optimum, marginal utility from time one consumption is also 
invariant to the initial state.

5The structure in (15) has several other surprising impli-
cations as well. For example, the bridge laws under F and 
Q are identical. Furthermore, Küchler [1982] uses (15) to 
identify a one-parameter exponential family. Finally, if X is 
a time-homogeneous diffusion, then one can characterize 
when its time inverse tX

1/t
 is also a time-homogeneous diffu-

sion. If X is time invertible under F, then under (15), it is also 
time invertible under Q, and the two time-inverted diffusions 
are identical (see Lawi [2008]).

6The term “convexity effect” is often used whenever 
Ef(X) ≠ f(EX); Here, X is in general a random vector, and 
the function f does not have to be convex or concave. In the 
authors’ experience, economists frequently attribute these 
convexity effects to risk aversion, while traders attribute them 
to “supply and demand.”
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7To the extent that boundary behavior can be imposed 
on the diffusion X, the corresponding boundary conditions 
on π are separable.

8Better yet, the final draft of this article was submitted 
on 22/7 ≈ π.
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