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Perron’s method

Consider a PDE

L v = 0 + ”boundary conditions”

(having the meaning of averaging, i.e. satisfying a maximum
principle). For example, L v = ∆v .

1. Sub-solutions: L v ≥ 0 + ”boundary conditions”

2. Super-solutions: L v ≤ 0 + ”boundary conditions”.

Perron’s method:

1. v− = supremum of sub-solutions

2. v+ = infimum of super-solutions

General principle: v− = v+ is a solution.
Remark: the original meaning of sub and super-solutions was in
an averaging sense, without differentiability.



Perron and viscosity solutions

Ishii (87):

If we consider sub and super-solutions in the viscosity sense, then

v+ = v−

is a solution in the viscosity sense (a comparison principle is
needed).

I if the PDE is the HJB(I) associated to a control problem
(game) it is not clear that this viscosity solution is equal to
the value function, unless one has a separate proof of V being
a viscosity solution.

I using this route requires first a proof of the DPP (quite
delicate/maybe avoidable).



Some previous modification of Perron for HJB’s

(joint with E. Bayraktar, SICON 13).

The Control Problem (without technical conditions):
1. The state equation{

dXt = b(t,Xt , ut)dt + σ(t,Xt , ut)dWt ,
Xs = x ∈ Rd ,

starting at initial time s at position x , and which is controlled by
one player u ∈ U. The BM W is d ′-dimensional.

2. A reward: g(X s,x ;u
T ) at time T , g : Rd → R.

3. The value function

V (t, x) , sup
u

E[g(X s,x ;u
T )].



The HJB and Stochastic semi-solutions
Formal HJB (for the value function){

Vt + supu Lu
t V = 0

V (T , x) = g(x)

where Lu
t V = b(t, x , u)Vx + 1

2Tr(σ(t, x , u)σT (t, x , u)Vxx).
Idea: Use semi-solutions in the stochastic sense of
Stroock-Varadhan (adapted to the non-linear case).

Definition (Stochastic semi-solutions)

1. w : [0,T ]× Rd → R is a super-solution if, for each s, x and
each control u the process (w(t,X s,x ;u

t ))s≤t≤T , is a
super-martingale and w(T , ·) ≥ g .

2. w : [0,T ]× Rd → R is a sub-solution if, for each s, x there
exist a control u such that the process (w(t,X s,x ;u

t ))s≤t≤T is
a sub-martingale and w(T , ·) ≤ g .

Denote by U ,L the collections of super and sub-solutions in the
stochastic sense as above.



Perron’s method over stochastic solutions
Remark: by construction we have

1. if w ∈ U then w ≥ V
2. if w ∈ L then w ≤ V

Perron’s method:

1. v+ , infw∈U w ≥ V ,
2. v− , supw∈L w ≤ V ,

so
v− ≤ V ≤ v+.

Theorem (Bayraktar, S.)

Under some technical conditions, v+ is a USC viscosity
sub-solution and v− is a LSC viscosity super-solution.

Corollary

A comparison result for semi-continuous viscosity solutions implies

1. V the unique continuous viscosity solution of the HJB

2. the (DPP) holds, i.e. V (s, x) = supuE[V (τ,X s,x ;u
τ )]

for all stopping times τ ≥ s.



Some previous work on games

(S. SICON 14):

I model symmetric games over feedback strategies, but
rebalanced at discrete stopping rules (elementary feedback
strategies for both players)

I use a Perron construction over sub/super-martingales to treat
the case of zero-sum symmetric games (where DPP is known
to be particularty delicate)

I the definition of stochastic semi-solutions has to be changed
in a non-trivial way to account for the (dynamic) strategic
behavior

I upper and lower value functions are solutions of the Isaacs
equations

I (versions) of the (DPP) for games are obtained

More about games to follow.



Some comments (on previous work)

I the proofs are rather elementary. The analytical part mimics
the proof of Ishii and then we apply Itô to the (smooth) test
functions.

I amounts to verification for non smooth solutions

I proving a DPP is particularly complicated for games
(Fleming-Souganidis)



Perron’s method over asymptotic semi-solutions

Goal: design a modification of Perron’s method that works well
with discretized Markov controls/strategies (in a similar elementary
way).



Simple Markov strategies (in one player problems)
Fix 0 ≤ s ≤ T . A path of the state equation is a y ∈ C [s,T ].

Definition (time grids, simple Markov strategies)

1. A time grid for [s,T ] is a finite sequence π of
s = t0 < t1 < · · · < tn = T .

2. Fix a time grid π as above. A feedback strategy

α : [s,T ]× C [s,T ]→ U,

is called simple Markov over π if there exist some measurable
functions αk : Rd → U, k = 1, . . . , n such that

α(t, y(·)) =
n∑

k=1

1{tk−1<t≤tk}αk(y(tk−1)).

I A M(s, π): simple Markov strategies over π

I A M(s) ,
⋃
π A M(s, π) all simple Markov strategies



Use only simple Markov strategies
Define

Vπ(s, x) , sup
α∈A M(s,π)

E[g(X s,x ;α,v
T )] ≤ V (s, x).

and the value function over all simple Markov strategies

VM(s, x) , supα∈A M(s)E[g(X s,x ;α
T )] = supπVπ(s, x) ≤ V (s, x).

Natural question: can the value function be approximated by
discretized Markov strategies, i.e. VM = V ?

Under some technical conditions, Krylov has proved this property
using PDE arguments and regularity properties of the value
function (obtaining the DPP also).
Some Perron-type construction may be simpler (work for games?)

I the previous method cannot show that. Why? Because, if
w ∈ L then we do not know that w ≤ V M

I if we use simple Markov strategies in the Def of L the Perron
Construction does not work anymore.



Need for new concept of sub-solution of the HJB
Modify the definition of sub-solutions (only) such that

1. sub-solutions w stay below VM

2. w− , sup w ≤ VM is still a viscosity super-solution

Intuition: consider a (strict) smooth sub-solution of the HJB{
wt + supu Lu

t w > 0
V (T , x) ≤ g(x).

Start at time s at position x with the feedback control attaining
the sup above (argmax u∗ = u∗(s, x)) and hold it constant until
T . The process

(w(t,X s,x ;u∗

t ))s ≤ t ≤ T

is a sub-martingale until the first time τ when wt + Lu∗
t w ≤ 0.

However,
P(τ ≤ t) = o(t − s).

In between s and t we have a sub-martingale property plus an
o(t − s) correction.



Asymptotic sub-solutions, precise definition

Take the previous observation and make it (more) dynamic.

Definition (Asymptotic Stochastic Sub-Solutions)

w : [0,T ]× Rd → R is called an asymptotic sub-solution if it is
(bounded), continuous and satisfies w(T , ·) ≤ g(·).
There exists a gauge function ϕ = ϕw : (0,∞)→ (0,∞),
depending on w such that

1. limε↘0 ϕ(ε) = 0,

2. for each s, and for each time s ≤ r ≤ T , there exists a
measurable function α : Rd → U such that, for each ξ ∈ Fr ,
if we start at the time r at the (random) condition ξ and keep
the feedback control α(ξ) constant on [r ,T ] we have

w(r , ξ) ≤ E[w(t,X
s,ξ;α(ξ)
t )|Fr ] + (t − r)ϕ(t − r) a.s.

Denote by La the set of asymptotic sub-solutions.



Important property of asymptotic sub-solutions

Lemma
Any w ∈ La satisfies w ≤ VM ≤ V .

Proof:

1. Fix ε, then fix δ such that ϕ(δ) ≤ ε. Choose ‖π‖ ≤ δ
2. construct, recursively, going from time tk−1 to time tk , some

measurable αk : Rd → U satisfying the Definition 5.

3. for α(t, y(·)) =
∑n

k=1 1{tk−1<t≤tk}αk(y(tk−1)) we have

w(tk−1,X
s,x ;α
tk−1

) ≤ E[w(tk ,X
s,x ;α
tk )|Ftk−1

] + ε(tk − tk−1)

Telescoping sum: w(s, x) ≤ E[w(T ,X s,x ;α
T )] + ε(T − s).

Summary: if |π| ≤ δ(ε) there exists α ∈ A M(s, π) such that

w(s, x) ≤ E[g(X s,x ;α
T )] + ε× (T − s) ≤ Vπ(s, x) + ε(T − s).

Letting ε↘ 0 we obtain the conclusion.



Perron method over asymptotic sub-solutions
Define

w− , sup
w∈La

w ≤ VM ≤ V .

Theorem (Perron over asymptotic sub-solutions, HJB)

The function w− is an LSC viscosity super-solution of the HJB.

I the proof is (again) based on the analytic construction of Ishii

I negating the viscosity super-solution property, the test
function is a strict classic sub-solution (locally)

I apply Itô to the test function, together with a very similar
observation we made for strict classic sub-solution, i.e.
sub-martingale property plus an o(t − r) correction.

Corollary

A comparison result (which holds under some technical
assumptions) implies that VM = V and, actually, Vπ ↗ V as
‖π‖ ↘ 0 uniformly on compacts.



Overview of the method

I adding a correction to the sub-martingale property (over
feedback controls), we have a (rather elementary) tool to
approach Dynamic Programing over simple Markov strategies
for control problems.

I we can apply it to games, where the Dynamic Programming
arguments are more difficult



Zero-sum differential games

1. The state equation{
dXt = b(t,Xt , ut , vt)dt + σ(t,Xt , ut , vt)dWt ,
Xs = x ∈ Rd ,

starting at initial time s at position x , and which is controlled by
both players.

2. A penalty/reward: (if a genuine game) the second player (v)
pays to the first player (u) the amount g(X s,x ;u,v

T ) at time T .

Formal zero-sum game

sup
u

inf
v
E[g(X s,x ;u,v

T )], inf
v

sup
u

E[g(X s,x ;u,v
T )].



Inputs of the game

I the coefficients of the state equation b, σ

I the sets where the two players can take action: u ∈ U, v ∈ V

I for each initial time s, a (fixed) probability space (Ω,F ,P)
and a Brownian motion W with respect to the filtration
(F s

t )s≤s≤T . Allow the filtration to be larger than the ones
generated by W .



Standing assumptions

I g is continuous and bounded,

I b and σ are continuous on their whole corresponding domains
and (locally) uniformly Lipschitz in x and have linear growth.

I U,V are compact



Objective
Look at

I modeling of such games
I apply the Asymptotic Perron tool to the dynamic

programming analysis:
I relate the value functions to Dynamic Programming

Equation(s)
I (more important) study existence of value for the game:

sup inf = inf sup

Why?

I Unlike one player (control) problem, it is unclear what to use
for u, v . There is no widely accepted notion of
strategy/control, so no ”canonical” formulation anyway
(Cardaliaguet lecture notes).

I the dynamic programming analysis (i.e. relation to Isaacs
equation) is significantly more complicated (see
Fleming-Souganidis, for an Elliott-Kalton formulation of the
game)



Some literature on games

Very selective list of works

I Isaacs: deterministic case over (heuristically) feedback
strategies

I Krasovskii-Subbotin: engineering-type literature, very
interesting modeling over feedback strategies and
counter-strategies

I Elliott-Kalton: deterministic case, use so called strategies for
the stronger player, (open loop) controls for weaker player (no
symmetric formulation)

I Fleming-Souganidis: use Elliott-Kalton strategies in stochastic
games. Prove the value functions are viscosity solutions of
DPE (Bellman-Isaacs equations). No symmetric formulation.

I large interesting literature on games studied using BSDE’s:
Hamadene and Lepeltier, El Karoui-Hamadene, Buckdahn-Li
(more others)



Literature cont’d

1. Most of the mathematical literature uses an Elliott-Kalton
formulation. Value functions do not compare by definition, but
after complicated analysis. Actually, the value functions belong to
different games, depending on one player or another having an
informational advantage.

2. Ekaterinburg school of games (mainly Krasovskii-Subbotin): use
(discretized) feedback strategies (mostly in) deterministic games.
Recently, symmetric formulation of games where both players use
strategies based only on the knowledge of the past of the state
have been re-considered:

I Cardaliaguet-Rainer ’08 (strong formulation, path-wise
feedback strategies with delay)

I Pham -Zhang ’12 (path-wise feedback strategies, discretized
in time and space, called ”feedback controls”)



The model(s) we use for games

We continue the line of modeling with feedback strategies and
counter-strategies in Krasovskii-Subbotin and recently in
Fleming-Hernandez-Hernandez.



The lower Isaacs equation

Formal equation: {
Vt + supu infv Lu,v

t V = 0
V (T , x) = g(x)

where
Lu,v
t V = b(t, x ; u, v)Vx + 1

2Tr(σ(t, x ; u, v)σT (t, x ; u, v)Vxx).

I analytic representation of a game where v has an
informational advantage over u

I would like to model this situation using feedback strategies



Feedback strategies

(Krasovskii-Subbotin, Cardaliaguet-Rainer, Pham-Zhang)
The player using such strategy

I observes the state only

I does not observe the other player’s actions

I do not observe the noise

Therefore, if C ([s,T ]) is the path-space for the state, we can
consider

α : (s,T ]× C [s,T ]→ U

OR
β : (s,T ]× C [s,T ]→ V

adapted to the filtration B = (Bt)s≤t≤T defined by

Bs
t , σ(y(u), s ≤ u ≤ t), 0 ≤ t ≤ T .

As for one player, we denote by y the paths of the state equation.



Feedback counter-strategies for v

(following Krasovskii-Subbotin)

I player u can only see the state

I the player v observes the state, and, in addition, the control u
(in real time)

Intuition: the advantage of the player v actually comes only from
the local observation of ut . A counter-strategy for v depends on

1. the whole past of the state process X up to the present time t

2. (only) the current value of the adverse control ut .

Definition (Feedback Counter-Strategies)

Fix a time s. A feedback counter-strategy for the player v is a
mapping

γ : [s,T ]× C [s,T ]× U → V ,

which is measurable with respect to Ps ⊗U b/V . The action of
the player v is vt = γ(t,X·, ut).



More ways to think about the game

where v has an advantage over player u:

1. the lower value of a symmetric game over feedback strategies
i.e. u announces the strategy to v (Pham-Zhang, S.)

2. the value function of a robust control problem where u is an
intelligent maximizer (using feedback strategies) and v is a
possible worst case scenario modeling Knigthian uncertainty
(see S.), or

3. the genuine value of a sup-inf/inf-sup non symmetric game
over feedback strategies vs. feedback counter-strategies
(Krasovskii-Subbotin, Fleming -Hernandez -Hernandez).



Strategies/counter-strategies and open-loop controls

Well-posedness of the state eq with feedback strategies or
counter-strategies is important, but we disregard it here.

Denote by U (s) and V (s) the set of open-loop controls for the
u-player and the v -player, respectively. Precisely,

V (s) , {v : [s,T ]×Ω→ V | predictable w.r.t Fs = (F s
t )s≤t≤T},

and a similar definition is made for U (s).

Notation/symbols

1. α, β for the feedback strategies of players u and v ,

2. u, v for the open loop controls,

3. γ for the feedback counter-strategy of the second player v .



Value functions
1. lower value function for the symmetric game in between two
feedback players:

V−(s, x) , sup
α∈A (s)

(
inf

β∈B(s)
E[g(X s,x ;α,β

T )]

)
.

2. the value of a robust control problem where the intelligent
player u uses feedback strategies and the open-loop controls v
parametrize worst case scenarios/Knightian uncertainty:

V−rob(s, x) , sup
α∈A (s)

(
inf

v∈V (s)
E[g(X s,x ;α,v

T )]

)
.

3. Lower and upper values of a non-symmetric game over
strategies α vs counter-strategies γ

W−(s, x) , sup
α∈A (s)

(
inf

γ∈C (s)
E[g(X s,x ;α,γ

T )]

)
≤

inf
γ∈C (s)

(
sup

α∈A (s)
E[g(X s,x ;α,γ

T )]

)
, W +(s, x).



Value functions cont’d

For mathematical reasons, we define yet another value function

V +
rob(s, x) , inf

γ∈C (s)

(
sup

u∈U (s)
E[g(X s,x ;u,γ

T )]

)
≥W +(s, x). (1)

We attach to V +
rob the meaning of some robust optimization

problem, but this is not natural, since the intelligent optimizer v
can see in real time the “worst case scenario”.

By simple observation

V−rob ≤W− = V− ≤W + ≤ V +
rob.



Simple Markov strategies/counter-strategies definition

Recall we have defined Markov strategies already for one-player.

Definition (simple counter-strategies)

Fix 0 ≤ s ≤ T . Fix a time grid π as above.
A counter-strategy γ ∈ C (s) is called a simple Markov
counter-strategy over π if there exist some functions
ηk : Rd × U → V , k = 1, . . . , n measurable, such that

γ(t, y(·), u) =
n∑

k=1

1{tk−1<t≤tk}ηk(y(tk−1), u).

Notation:

I CM(s, π) is set of simple Markov counter strategies over π

I CM(s) ,
⋃
π CM(s, π) is the set of all simple Markov

counter-strategies.



State equation and value functions with Markov strategies

The state equation is well posed if one player is using simple
Markov strategies or counter-strategies and the opposing player is
using open-loop controls.

If we use Markov strategies or counter-strategies in the LHS, RHS
they are well defined.

V−M (s, x) , sup
α∈A M(s)

(
inf

v∈V (s)
E[g(X s,x ;α,v

T )]

)
≤ V−rob(s, x)

as well as

V +
M (s, x) , inf

γ∈CM(s)

(
sup

u∈U (s)
E[g(X s,x ;u,γ

T )]

)
≥ V +

rob(s, x).



Main result/games

Theorem (S.)

Under the standing assumptions

I all value functions are equal: V−M = V +
M = the uviscosity

solution of the lower Isaacs equation.

I the game α vs γ has ε-saddle points over simple Markov α’s
and γ’s.

(More) precisely: ∀ N, ε > 0, ∃ δ(N, ε) > 0 such that
∀s,∀ |π| ≤ δ, ∃ α̂ ∈ A M(s, π), γ̂ ∈ CM(s, π) for which

0 ≤W−(s, x)− inf
v∈V (s)

E[g(X s,x ;α̂,v
T )] ≤ ε

and
0 ≤ sup

u∈U (s)
E[g(X s,x ;u,γ̂

T )]−W +(s, x) ≤ ε.



Conclusions

I dynamic programming arguments (the proof of the DPP) are
clean only for discrete-time problems (Blackwell, Berstekas
and Shreve)

I the (direct) proof of the DPP is more delicate for
continuous-time problems

I Perron’s method and its modifications appear to be useful in
the dynamic programming analysis of continuous-time
optimization problems, allowing for a verification without
smoothness

I the asymptotic modification of Perron (adding a correction to
martingales) is the last step in the program. It provides the
strongest conclusion expected in a non-smooth case: cannot
get more without smoothness of the solutions of the HJB(I)

I the case of games is of particular interest, since usual dynamic
programming arguments run into even more difficulties there
(Fleming-Souganidis)



For games
There are three possible interpretations of the game that lead to
the lower Isaacs equation

1. lower value of a a symmetric over (restricted) feed-back
strategies

2. a control problem of model uncertainty
3. the true value of a game over strategies vs. counter-strategies

Using Perron method over asymptotic solutions, we connect (in a
unified way) all three problems.
More important: find an (approximate) saddle point over Markov
strategies and counter-strategies.
Remarks:

I it is important how we define both the game and the
semi-solutions (asymptotic correction)

I we have flexibility in defining semi-solutions (to make the
proofs work, but keep comparison with the value function
obvious)

I filtrations do not matter (just as if solutions to the Isaacs
equation were smooth).
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