EXPLOSIONS AND ARBITRAGE

IOANNIS KARATZAS

Department of Mathematics, Columbia University, New York
INTECH Investment Management LLC, Princeton

Joint work with Daniel FERNHOLZ and Johannes RUF

Talk at the Steven-Shreve-Fest, CMU

Pittsburgh, June 2015

For Information Purposes Only
PART ONE: A CLASSICAL SETTING

DISTRIBUTION OF THE TIME-TO-EXPLOSION FOR LINEAR DIFFUSIONS
I.1: STOCHASTIC DIFFERENTIAL EQUATION

\[dX(t) = s(X(t)) \left[dW(t) + b(X(t))dt \right], \quad X(0) = \xi \in \mathcal{I} \]

The state-space is an open subinterval \(\mathcal{I} = (\ell, r) \subseteq \mathbb{R} \) of the real line. Here \(W(\cdot) \) is standard Brownian motion, and \(b : \mathcal{I} \to \mathbb{R}, \ s : \mathcal{I} \to \mathbb{R} \setminus \{0\} \) are measurable functions.

Standing Assumption: The function \(1/s^2(\cdot) \) and the local mean/over/variance (or “signal-to-noise ratio”) function

\[f(\cdot) := \frac{b(\cdot)}{s(\cdot)} = \frac{b(\cdot)s(\cdot)}{s^2(\cdot)} \]

are locally integrable over \(\mathcal{I} \).
. Under these conditions, there exists a weak solution of the above SDE, defined up until the so-called “explosion time”

$$S := \lim_{n \to \infty} \uparrow S_n, \quad S_n = \inf \{ t \geq 0 : X(t) \notin (\ell_n, r_n) \}$$

for $\ell_n \downarrow \ell$, $r_n \uparrow r$. This solution is unique in distribution.

(ENGELBERT & SCHMIDT 1984, 1991.)

We know that $\mathbb{P}(S = \infty) = 1$ holds under the familiar linear growth conditions of the ITÔ theory, when $\mathcal{I} = \mathbb{R}$.

More generally, fixing a reference point \(c \in \mathcal{I} \) and introducing the “FELLER function”

\[
v(x) := \int_c^x \int_c^y \exp \left(-2 \int_z^y f(u) \, du \right) \frac{dz}{s^2(z)} \, dy, \quad x \in \mathcal{I},
\]

we have: \(\mathbb{P}(S = \infty) = 1 \) if and only if

\[
v(\ell+) = v(r-) = \infty.
\]

This is the classical FELLER test for explosions.

QUESTION (posed to us by Marc YOR):

If this condition fails and \(\mathbb{P}(S < \infty) > 0 \), what can we say about the distribution function \(\mathbb{P}(S \leq T), \ 0 < T < \infty \) of the explosion time?
I.2: A GENERALIZED GIRSANOV / McKEAN IDENTITY

Let us consider the diffusion in natural scale

\[dX^0(t) = \mathfrak{s}(X^0(t)) \, dW^\circ(t), \quad X(0) = \xi \in \mathcal{I} \]

with explosion time \(S^\circ \); clearly, \(Q(S^\circ = \infty) = 1 \) if \(\mathcal{I} = \mathbb{R} \). Here \(W^\circ(\cdot) \) is Brownian motion under another probability measure \(Q \) (possibly on a different probability space).

Suppose that the mean/variance function \(f(\cdot) \) is locally \textit{square-integrable} on \(\mathcal{I} \), and define the exponential \(Q \)–local martingale

\[
L(\cdot; X^0) := \exp \left\{ \int_0^\cdot b(X^0(t)) \, dW^\circ(t) - \frac{1}{2} \int_0^\cdot b^2(X^0(t)) \, dt \right\}
\]

\[
= \exp \left\{ \int_0^\cdot f(X^0(t)) \, dX^0(t) - \frac{1}{2} \int_0^\cdot b^2(X^0(t)) \, dt \right\} \quad \text{on} \ [0, S^\circ).
\]
Then for $T \in (0, \infty)$ and bounded, \mathcal{B}_T–measurable $h_T : \Omega \to \mathbb{R}$,

$$
\mathbb{E}^P[h_T(X) \cdot 1_{\{S>T\}}] = \mathbb{E}^Q[L(T; X^0) h_T(X^0) \cdot 1_{\{S^0>T\}}].
$$

A couple of early lessons from this identity. Suppose $X(\cdot)$ is non-explosive: $\mathbb{P}(S = \infty) = 1$.

Then

$$
\mathbb{E}^P[h_T(X)] = \mathbb{E}^Q[L(T; X^0) h_T(X^0) \cdot 1_{\{S^0>T\}}].
$$

In particular, the exponential process $L(\cdot; X^0) 1_{\{S^0>\cdot\}}$ is then a true \mathbb{Q}–martingale; and for every $T \in (0, \infty)$ we have

$$
\mathbb{E}^P\left(\frac{1}{L(T; X)} \right) = \mathbb{Q}(S^0 > T).
$$
\[
\frac{d\mathbb{P}}{d\mathbb{Q}} \bigg|_{\mathcal{F}(T)} = L(T; X^o) \cdot 1_{\{S^o > T\}}.
\]

Please also note that, always under \(\mathbb{P}(S = \infty) = 1\), the exponential process
\[
\frac{1}{L(\cdot; X)} = \exp \left\{ - \int_0^\cdot f(X(t)) \, dX(t) + \frac{1}{2} \int_0^\cdot b^2(X(t)) \, dt \right\}
\]
\[
= \exp \left\{ - \int_0^\cdot b(X(t)) \, dW(t) - \frac{1}{2} \int_0^\cdot b^2(X(t)) \, dt \right\}
\]
is a strictly positive \(\mathbb{P}\)-local martingale (and supermartingale).

It is a true \(\mathbb{P}\)-martingale, if and only if we have, in addition, \(\mathbb{Q}(S^o = \infty) = 1\).
. When $f(\cdot)$ is actually continuous and continuously differentiable on \mathcal{I}, the above expression gives

$$P_\xi(S > T) = E^Q \left[\exp \left(\int_\xi^{X^o(T)} f(z) \, dz - \int_0^T V(X^o(t)) \, dt \right) \cdot 1\{S^o > T\} \right]$$

where

$$V(x) := \frac{1}{2} s^2(x) \left(f^2(x) + f'(x) \right).$$

. And in a totally "symmetrical" fashion:

$$Q_\xi(S^o > T) = E^P \left[\exp \left(- \int_\xi^{X(T)} f(z) \, dz + \int_0^T V(X(t)) \, dt \right) \cdot 1\{S > T\} \right].$$
I.3: RESULTS: We have the following, general results.

PROPOSITION 1: Positivity, Full Support. The function

\[[0, \infty) \times I \ni (T, \xi) \mapsto U(T, \xi) := \mathbb{P}_\xi(S > T) \in (0, 1] \]

is (strictly positive and) continuous;
as well as strictly decreasing in \(T \) (***) , when \(\mathbb{P}_\xi(S < \infty) > 0 \).

(***) Last result – strict decrease – needs the
local square-integrability of \(1/\xi^2(\cdot) \) on \(I \)
(with the possible exception of finitely many points).
This assumption guarantees that “the diffusion can
reach far away points fast, with positive probability”.

. It has been removed very recently, in work of
Cameron BRUGGEMAN and Johannes RUF.
PROPOSITION 2: The continuous function $U(\cdot, \cdot)$ of

$$[0, \infty) \times \mathcal{I} \ni (T, \xi) \mapsto U(T, \xi) := \mathbb{P}_\xi(S > T) \in (0, 1]$$

is dominated by every nonnegative, classical (super)solution of the Cauchy problem

$$\begin{align*}
\frac{\partial U}{\partial \tau}(\tau, x) &= \frac{s^2(x)}{2} \frac{\partial^2 U}{\partial x^2}(\tau, x) + b(x)s(x) \frac{\partial U}{\partial x}(\tau, x), \quad \tau > 0, \ x \in \mathcal{I} \\
U(0+, x) &= 1, \quad x \in \mathcal{I}.
\end{align*}$$

. Please note that this characterization is impervious to the boundary behavior of the diffusion $X(\cdot)$ at the endpoints of its state-space $\mathcal{I} = (\ell, r)$.
PROPOSITION 3: Minimality. Suppose that both functions $s(\cdot), b(\cdot)$ are locally Hölder-continuous on I.

Then $U(\cdot, \cdot)$ solves this Cauchy problem, and is its smallest nonnegative classical (super)solution.

And if $U(\cdot, \cdot) \equiv 1$ (i.e., if our SDE is non-explosive), then the above Cauchy problem has a unique bounded classical solution, namely, $U(\cdot, \cdot) \equiv 1$.

RECENT WORK: Important generalizations of these results in the viscosity and generalized solution framework, when the functions $s(\cdot), b(\cdot)$ are simply continuous, have been carried out – and in several dimensions – by Ms. Yinghui WANG (2014).
PROPOSITION 4: A Generalized FELLER Test.
The following conditions are equivalent:

(i) The diffusion $X(\cdot)$ has no explosions, i.e., $\mathbb{P}(S = \infty) = 1$;
(ii) $v(\ell+) = v(r-) = \infty$ hold for the “Feller test” function;
(iii) The truncated exponential \mathbb{Q}-supermartingale

$$L^b(\cdot; X^o) = \exp \left(\int_0^\cdot b(X^o(t))dW^o(t) - \frac{1}{2} \int_0^\cdot b^2(X^o(t))dt \right) 1_{\{S^o > \cdot\}}$$

is a true \mathbb{Q}-martingale.

. If the functions $s(\cdot)$ and $b(\cdot)$ are locally Hölder-continuous on I, then the conditions (i)–(iii) are equivalent to:

(iv) The smallest nonnegative classical solution of the above Cauchy problem is $U(\cdot, \cdot) \equiv 1$;
(iv)' The unique bounded classical solution of the Cauchy problem is $U(\cdot, \cdot) \equiv 1$.
I.4: AN EXAMPLE: Bessel Process in dimension $\delta \in (1, 2)$.

$$dX(t) = \frac{\delta - 1}{2X(t)} \, dt + dW(t), \quad X(0) = \xi \in \mathcal{I} = (0, \infty).$$

The solution of this equation does not explode to infinity, but reaches the origin in finite time: $\mathbb{P}(S < \infty) = 1$. We have

$$f(x) = \frac{1/2 - \nu}{x}, \quad V(x) = \frac{\nu^2 - 1/4}{2 x^2}$$

for $\nu = 1 - (\delta/2)$. With

$$X^o(t) = \xi + W(t), \quad S^o = \inf\{t \geq 0 : X^o(t) = 0\},$$

the representation

$$\mathbb{P}_\xi(S > T) = \mathbb{E}_Q^\xi\left[\exp\left(\int_{\xi}^{X^o(T)} f(z) \, dz - \int_0^T V(X^o(t)) \, dt\right) \cdot 1_{\{S^o > T\}}\right]$$

\[P(S > T) = \mathbb{E}^Q \left[\left(\frac{X^0(T)}{\xi} \right)^{-2\nu} \cdot \left(\frac{X^0(T)}{\xi} \right)^{\nu + 1/2} \exp \left(\frac{1/4 - \nu^2}{2} \int_0^T \frac{dt}{(X^0(t))^2} \right) \cdot 1_{\{S^0 > T\}} \right] \]

\[= \mathbb{E}^{Q^\nu} \left[\left(\frac{X^0(T)}{\xi} \right)^{-2\nu} \right]. \]

Here \(Q^\nu \) is the probability measure under which the auxiliary diffusion \(X^0(\cdot) = \xi + W(\cdot) \) is Bessel process in dimension \(2\nu + 2 = 4 - \delta > 2 \).
With the modified Bessel function of the second type

\[I_\nu(u) := \sum_{n \in \mathbb{N}_0} \frac{(u/2)^{\nu+2n}}{n! \Gamma(n + \nu + 1)} \]

this gives

\[
\mathbb{P}(S > T) = \frac{1}{T} \xi^\nu \exp\left(\frac{-\xi^2}{2T}\right) \int_0^\infty x^{1-\nu} \exp\left(\frac{-x^2}{2T}\right) I_\nu \left(\frac{\xi x}{T}\right) \, dx.
\]

Algebraic manipulation leads now to a simple proof of

\[
U(T, \xi) = \mathbb{P}_\xi(S > T) = \mathbb{P}\left(\xi < \frac{\xi^2}{2T}\right) = H\left(\frac{\xi^2}{2T}\right),
\]

a result of Ronald GETOOR (1979), where

\[
H(u) := \frac{1}{\Gamma(\nu)} \int_0^u t^{\nu-1} \exp(-t) \, dt.
\]
The resulting function

\[U(T, \xi) = P_\xi(S > T) = \frac{1}{\Gamma(\nu)} \int_0^{\xi^2/(2T)} t^{\nu-1} \exp(-t) \, dt \]

is the smallest nonnegative classical solution of the Cauchy problem

\[
\frac{\partial U}{\partial T}(T, \xi) = \frac{1}{2} \frac{\partial^2 U}{\partial \xi^2}(T, \xi) + \frac{\delta - 1}{2 \xi} \frac{\partial U}{\partial \xi}(T, \xi), \quad (T, \xi) \in (0, \infty) \times \mathcal{I},
\]

\[U(0^+, \xi) = 1, \quad \xi \in \mathcal{I}. \]

Many more such (one-dimensional) examples are possible; a small parlor game.
PART TWO: A MORE ELABORATE SETTING

OPTIMAL ARBITRAGE RELATIVE TO THE MARKET PORTFOLIO
II.1: PRELIMINARIES

Filtered probability space $\left(\Omega, \mathcal{F}, P\right)$, $\mathcal{F} = \{\mathcal{F}(t)\}_{0 \leq t < \infty}$. Vector $\mathbf{x}(\cdot) = (X_1(\cdot), \cdots, X_n(\cdot))'$ of strictly positive and continuous semimartingales; these represent the capitalizations of assets in a large equity market, say $n = 8,000$.

Then

$$X(\cdot) := X_1(\cdot) + \cdots + X_n(\cdot)$$

is the total capitalization, and

$$Z_1(\cdot) := \frac{X_1(\cdot)}{X(\cdot)}, \quad \cdots, \quad Z_n(\cdot) := \frac{X_n(\cdot)}{X(\cdot)},$$

the corresponding relative market weights.
The vector $\mathcal{Z}(\cdot) = (Z_1(\cdot), \cdots, Z_n(\cdot))^\prime$ of these weights is a semimartingale with values in the interior Δ^0 of the simplex

$$\Delta := \left\{ (z_1, \cdots, z_n)^\prime \in [0,1]^n : \sum_{i=1}^{n} z_i = 1 \right\};$$

$\Gamma := \Delta \setminus \Delta^0$ will be the boundary of Δ. We shall denote $(z_1, \cdots, z_n)^\prime =: \mathbf{z}$.

II.2: PORTFOLIO \(\pi(\cdot) = (\pi_1(\cdot), \cdots, \pi_n(\cdot))^\prime\) is an \mathcal{F}−progr. measurable process, such that \((\pi_i/X_i)(\cdot) \in \mathcal{L}(X_i), i = 1, \cdots, n\).

We call this portfolio **strict**, if \(\sum_{i=1}^{n} \pi_i(\cdot) \equiv 1\).

We denote the resulting collections by Π (resp., Π_{str}).

Here $\pi_i(t)$ stands for the proportion of wealth \(V^{\pi}(t)\) that gets invested at time $t > 0$ in the i^{th} asset, for each $i = 1, \cdots, n$.
Dynamics of wealth corresponding to portfolio $\pi(\cdot)$ is multiplicative in the initial wealth, and is given by

$$\frac{\mathrm{d} V^\pi(t)}{V^\pi(t)} = \sum_{i=1}^{n} \pi_i(t) \frac{\mathrm{d} X_i(t)}{X_i(t)}, \quad V^\pi(0) = 1.$$

Scaling: If we start instead with initial capital $\nu > 0$, then the corresponding wealth is $\nu V^\pi(\cdot)$.

A strict portfolio will be called “long-only”, if $\pi_1(\cdot) \geq 0, \ldots, \pi_n(\cdot) \geq 0$.

The most conspicuous strict long-only portfolio is the **Market Portfolio** $Z(\cdot) = (Z_1(\cdot), \ldots, Z_n(\cdot))'$ itself. This takes values in Δ^0, and generates wealth proportional to the total market capitalization at all times:

$$V^Z(\cdot) = X(\cdot)/X(0).$$
II.3: ARBITRAGE

Given a horizon $T \in (0, \infty)$ and two portfolios $\pi(\cdot)$ and $\rho(\cdot)$, we say that $\pi(\cdot)$ is arbitrage relative to $\rho(\cdot)$ over $[0, T]$, if

$$\mathbb{P}(V^\pi(T) \geq V^\rho(T)) = 1 \quad \text{and} \quad \mathbb{P}(V^\pi(T) > V^\rho(T)) > 0.$$

• When in fact $\mathbb{P}(V^\pi(T) > V^\rho(T)) = 1$, we call such relative arbitrage **strong**.

• We recover the “classical” notion of arbitrage (relative to cash) by taking $\rho(\cdot) \equiv 0$, thus $V^\rho(\cdot) \equiv 1$.

¶ We shall be interested in **performance with respect to the market**, so we consider for any given portfolio \(\pi(\cdot) \in \Pi \)

\[
Y^\pi(\cdot) := \frac{V^\pi(\cdot)}{V^Z(\cdot)}, \quad \text{with} \quad \frac{dY^\pi(t)}{Y^\pi(t)} = \sum_{i=1}^n \pi_i(t) \frac{dZ_i(t)}{Z_i(t)},
\]

its relative performance. Equivalently, write

\[
\frac{dY^\pi(t)}{Y^\pi(t)} = \sum_{i=1}^n \pi_i(t) \frac{dZ_i(t)}{Z_i(t)} = \sum_{i=1}^n \psi_i(t) dZ_i(t),
\]

with the portfolio proportions expressed as

\[
\pi_i(t) = Z_i(t) \psi_i(t), \quad i = 1, \ldots, n.
\]

The process \(\psi(\cdot) = (\psi_1(\cdot), \ldots, \psi_n(\cdot))' \) in this scheme of things “generates” the portfolio process \(\pi(\cdot) = (\pi_1(\cdot), \ldots, \pi_n(\cdot))' \).
II.4: RELATIVE ARBITRAGE FUNCTION

The smallest amount of relative initial wealth required at \(t = 0 \), in order to attain at time \(t = T \) relative wealth of (at least) 1 with respect to the market, \(\mathbb{P} \)-a.s.:

\[
U(T, z) := \inf \left\{ q \in (0, 1] : \exists \pi(\cdot) \in \Pi \text{ s.t. } \mathbb{P}\left(q \frac{V^\pi(T)}{V^Z(T)} \geq 1 \right) = 1 \right\}.
\]

Equivalently, \(1/U(T, z) \) gives the maximal relative amount by which the market portfolio can be outperformed over \([0, T]\).

We have: \(0 < U(T, z) \leq 1 \).

We shall try to characterize this function.
The strict inequality $U(T, z) > 0$ is a consequence of conditions to be imposed below. These amount to NUIP (No Unbounded Increasing Profits): “Absence of Egregious Arbitrages”.

- When $U(T, z) = 1$, it is not possible strongly to outperform (“beat”) the market strongly over $[0, T]$.

- When $U(T, z) < 1$, there exists for every $q \in [U(T, z), 1)$ a portfolio $\pi^q(\cdot) \in \Pi$ such that $q Y \pi^q(T) \geq 1$, i.e.,

$$\frac{V \pi^q(T)}{V Z(T)} \geq \frac{1}{q} > 1,$$

holds $\mathbb{P} – \text{a.s.}$

*Strong arbitrage relative to the market portfolio $Z(\cdot)$ exists then over the time-horizon $[0, T]$.\)

¶ In order to be able to say something about this function $U(\cdot, \cdot)$, we need a “Model”: I.e., some specification of dynamics.
II.5: MARKET WEIGHT “MODEL”

Hybrid MARKOV/ITO-process dynamics for the Δ^0–valued relative market weights $Z(\cdot) = \left(Z_1(\cdot), \cdots, Z_n(\cdot)\right)$, of the form

$$dZ(t) = s(Z(t)) \left(dW(t) + \vartheta(t) \, dt\right), \quad Z(0) = z \in \Delta^0.$$

Here $W(\cdot)$ is an n–dimensional \mathbb{P}–Brownian motion; the relative drift process $\vartheta(\cdot)$ is \mathbb{F}–progressively measurable and satisfies

$$\int_0^T \left\| \vartheta(t) \right\|^2 \, dt < \infty, \quad \mathbb{P} – \text{a.s.}$$

for every $T \in (0, \infty)$.
Whereas \(s(\cdot) = (s_{i\nu}(\cdot))_{1 \leq i, \nu \leq n} \) is a matrix-valued function with \(s_{i\nu} : \Delta \rightarrow \mathbb{R} \) continuous,

\[
\sum_{i=1}^{n} s_{i\nu}(\cdot) \equiv 0, \quad \nu = 1, \cdots, n.
\]

We shall assume that the corresponding covariance matrix

\[
a(z) := s(z)s'(z), \quad z \in \Delta
\]

has rank \(n - 1 \), \(\forall \ z \in \Delta^o \);

as well as rank \(k - 1 \) in the interior \(\Delta^o \) of every

sub-simplex \(\mathcal{D} \subset \Gamma \) in \(k \) dimensions, \(k = 1, \cdots, n - 1 \).

- The quantity \(U(T, z) \) is a number in the interval \((0,1] \).

So it is the probability of some event.

\textit{Which event? Under what probability measure?}

We shall try to answer these questions.
II.6: NUMÉRAIRE PORTFOLIO, LOG-OPTIMALITY

Recall the relative portfolio dynamics in the form
\[
\frac{d Y^\pi(t)}{Y^\pi(t)} = \sum_{i=1}^{n} \pi_i(t) \frac{dZ_i(t)}{Z_i(t)} = \sum_{i=1}^{n} \psi_i^{(\pi)}(t) dZ_i(t)
\]
where we are expressing the portfolio proportions as
\[
\pi_i(t) = Z_i(t) \psi_i^{(\pi)}(t), \quad i = 1, \ldots, n.
\]

The market portfolio \(\pi(\cdot) \equiv Z(\cdot) \) is generated by \(\psi^{(\pi)}(\cdot) \equiv 1 \).
Recall

\[d\mathbb{Z}(t) = s(\mathbb{Z}(t)) \left(dW(t) + \varphi(t) \, dt \right), \quad Z(0) = z \in \Delta^o. \]

- Now, for any two portfolios \(\pi(\cdot), \nu(\cdot) \) with corresponding scaled relative weights \(\psi_{i}^{(\pi)}(\cdot) \) and \(\psi_{i}^{(\nu)}(\cdot) \) as above, simple calculus gives

\[
d \left(\frac{Y^{\pi}(t)}{Y^{\nu}(t)} \right) = \left(\frac{Y^{\pi}(t)}{Y^{\nu}(t)} \right) \left(\psi^{(\pi)}(t) - \psi^{(\nu)}(t) \right)' \left[d\mathbb{Z}(t) - a(\mathbb{Z}(t)) \psi^{(\nu)}(t) \, dt \right].
\]

Thus, the finite-variation part of this expression vanishes, \textbf{IFF} the portfolio \(\nu(\cdot) \) has scaled relative weights that satisfy the “\textit{perfect balance}” condition

\[
(s(\mathbb{Z}(\cdot)))' \psi^{(\nu)}(\cdot) = \varphi(\cdot).
\]
With $\nu(\cdot) \equiv \nu^P(\cdot)$ selected this way, namely

$$(s(Z(\cdot)))' \psi(\nu)(\cdot) = \vartheta(\cdot) :$$

. For any given portfolio $\pi(\cdot) \in \Pi$, the ratio

$$Y^\pi(\cdot)/Y^\nu^P(\cdot) = V^\pi(\cdot)/V^\nu^P(\cdot)$$

is a positive local martingale – thus also a supermartingale.

- We say that this portfolio $\nu^P(\cdot)$ has the “numéraire property”, and that the ratio $1/Y^\nu^P(\cdot) \equiv VZ(\cdot)/V^\nu^P(\cdot)$ is a “deflator” in this market.

No arbitrage relative to a portfolio with the numéraire property is possible, over ANY finite time-horizon.
. And if \(\psi(\cdot) \equiv 0 \), i.e.,

\[
d\mathcal{Z}(t) = \mathcal{S}(\mathcal{Z}(t)) \, dW(t),
\]

then the **market portfolio** \(\mathcal{Z}(\cdot) \) **ITSELF** has the numéraire property.

Because then we can take \(\psi^{(\nu)}(\cdot) \equiv 1 \), thus \(\nu(\cdot) \equiv \mathcal{Z}(\cdot) \).

\[\blacksquare \] **Indeed:** “You cannot beat the market” portfolio, when it has the numéraire property.

But this property is (very) special.
Relative Log-Optimality of the numéraire portfolio $\nu^\mathbb{P} (\cdot)$:

For every portfolio $\pi (\cdot) \in \Pi$ and time-horizon $T \in (0, \infty)$, we have

$$\mathbb{E}^\mathbb{P} \left[\log Y^\pi (T) \right] \leq \mathbb{E}^\mathbb{P} \left[\log Y^{\nu^\mathbb{P}} (T) \right] = \frac{1}{2} \mathbb{E}^\mathbb{P} \int_0^T \| \vartheta (t) \|^2 dt .$$

Recall:

$$Y^\pi (\cdot) := \frac{V^\pi (\cdot)}{V Z (\cdot)} , \quad Y^{\nu^\mathbb{P}} (\cdot) := \frac{V^{\nu^\mathbb{P}} (\cdot)}{V Z (\cdot)}$$

keep track of the relative performance of $\pi (\cdot)$ (resp., $\nu^\mathbb{P} (\cdot)$) with respect to the market.
The “deflator” process

\[
\frac{1}{Y^{\nu^P}(\cdot)} \equiv \frac{1}{L(\cdot)} := \exp \left\{ - \int_0^\cdot \vartheta'(t) \, dW(t) - \frac{1}{2} \int_0^\cdot \|\vartheta(t)\|^2 \, dt \right\},
\]

i.e., the performance \(V^{\mathcal{Z}}(\cdot) / V^{\nu^P}(\cdot) \) of the market relative to the numéraire portfolio \(\nu^P(\cdot) \), is a strictly positive \(\mathbb{P} \)-local martingale and a supermartingale.

We need not assume – and are not assuming – \(a \ priori \), that this local martingale is a true martingale.

But we \(ARE \) assuming that it is strictly positive. This is guaranteed by the assumption that, for every \(T \in (0, \infty) \),

\[
\int_0^T \|\vartheta(t)\|^2 \, dt < \infty \quad \text{holds} \quad \mathbb{P} - \text{a.s.}
\]
Thanks to this assumption there is in this model, as we shall see, *No Unbounded Increasing Profit*.

“*No Arbitrage of the First Kind*”,
“*No Egregious Arbitrage*”,
“*No Scalable Arbitrage*”.
II.7: \(U(\cdot, \cdot) \) AND THE FÖLLMER “EXIT MEASURE”

Under “canonical” conditions on the filtered space \((\Omega, \mathcal{F}), \mathcal{F} = \{\mathcal{F}(t)\}_{0 \leq t < \infty}\), there exists a probability measure \(Q \), under which

\[
W^O(\cdot) := W(\cdot) + \int_0^\cdot \vartheta(t) \, dt
\]

is Brownian motion (the so-called FÖLLMER exit measure; I learned all I know about this from some beautiful notes of my student Gordan ZITKOVIC dated Thu. September 27, 2001.)

And the performance of the numéraire portfolio \(\nu^\mathbb{P}(\cdot) \) relative to the market, i.e., the reciprocal

\[
\frac{V^{\nu^\mathbb{P}}(\cdot)}{V^\mathbb{Z}(\cdot)} = Y^{\nu^\mathbb{P}}(\cdot) \equiv L(\cdot) = \exp \left\{ \int_0^\cdot \vartheta'(t) \, dW^O(t) - \frac{1}{2} \int_0^\cdot \|\vartheta(t)\|^2 \, dt \right\}
\]
of our deflator process, is a \mathbb{Q}–martingale; indeed,

$$\mathbb{P}(A) = \int_A L(T) \, d\mathbb{Q}, \quad A \in \mathcal{F}(T); \quad \forall \ T \in (0, \infty).$$

• Whereas the market-weight process $\mathcal{Z}(\cdot)$ is a \mathbb{Q}–martingale and Markov process, with values in Δ and “purely diffusive” \mathbb{Q}–dynamics

$$d\mathcal{Z}(t) = s(\mathcal{Z}(t)) \, dW^o(t), \quad \mathcal{Z}(0) = z \in \Delta^o.$$

Thus, the market portfolio $\mathcal{Z}(\cdot)$ has the numéraire property under the exit measure \mathbb{Q}:

$$\mathcal{Z}(\cdot) \equiv \nu_{\mathbb{Q}}(\cdot).$$
• If we consider the first time ("explosion", or rather implosion)

\[S := \inf \{ t \geq 0 : \mathcal{Z}(t) \in \Gamma \} \]

\(\mathcal{Z}(\cdot) \) reaches the boundary \(\Gamma \) of the unit simplex \(\Delta \), the arbitrage function is represented in the already familiar form

\[
U(T, z) = \mathbb{E}_{P^z} \left[\frac{1}{L(T)} \right] = Q_z(S > T), \quad (T, z) \in (0, \infty) \times \Delta^o.
\]

The relative arbitrage function \(U(T, z) \) emerges as the probability under the FÖLLMER measure, that \(\mathcal{Z}(\cdot) \) has not reached the boundary \(\Gamma \) of the simplex by time \(t = T \), when started at initial configuration \(z \). Tail-distribution of the "explosion" time.
Please think of the passage from the original measure \mathbb{P} to the FÖLLMER measure \mathbb{Q}, as a Girsanov-like change of probability that “removes the drift” in the dynamics

$$d\mathcal{Z}(t) = s(\mathcal{Z}(t)) \left(dW(t) + \vartheta(t)\, dt \right),$$

when all we can say about the exponential (“deflator”) process

$$\frac{1}{L(\cdot)} = \exp \left\{ - \int_0^\cdot \vartheta'(t)\, dW(t) - \frac{1}{2} \int_0^\cdot \|\vartheta(t)\|^2 \, dt \right\} \equiv \frac{1}{Y^{\nu_P}(\cdot)}$$

is that it is a local martingale under \mathbb{P} (\textbf{strict}, when $U(T, z) < 1$).
The process \(L(\cdot) \) *can in principle* reach the origin with positive \(Q \)–probability, so this is in general *not* an equivalent change of measure:

We have \(P \ll Q \), **but not necessarily** \(Q \ll P \).

Nonetheless, the process \(Z(\cdot) \) of market weights is a *\(Q \)–martingale* with values in the unit simplex – and now with the possibility of reaching its faces.

(Thus, we can think of the FÖLLMER measure \(Q \) as an Ersatz “martingale measure” for the model under consideration.)
II.8: \(U(\cdot, \cdot) \) AS SMALLEST SUPERSOLUTION

Under regularity conditions on the covariance structure \(a(\cdot) \) and on the relative drift \(\vartheta(\cdot) \), the arbitrage function \(U(\cdot, \cdot) \) is of class \(C^{1,2} \) on \((0, \infty) \times \Delta^o\), and satisfies there the equation

\[
 D_\tau U(\tau, z) = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}(z) D_{ij}^2 U(\tau, z),
\]

or

\[
 D_\tau U = \frac{1}{2} \text{Tr}(a D^2 U).
\]

Further, \(U(\cdot, \cdot) \) is also the smallest nonnegative supersolution of this equation, subject to

\[
 U(0+, \cdot) \equiv 1.
\]
• Please note that this equation

\[D_\tau U = \frac{1}{2} \text{Tr}(a D^2 U) \]

involves only the covariance structure of the assets.

• The only rôle the relative drift \(\vartheta(\cdot) \) plays in this context, is to keep the market weight process \(\mathcal{Z}(\cdot) \) in the interior of the unit simplex, \(\mathbb{P}\)–a.e. (Once again, this characterization is completely impervious to boundary conditions on the faces of the simplex.)

• With Knightian uncertainty about the covariance \(a(\cdot) \) and the relative drift \(\vartheta(\cdot) \), this equation becomes fully nonlinear (of HJB-Pucci type), as in the work of Terry Lyons (1995).

• Great generalizations of these results, in the context of viscosity solutions of the fully nonlinear PDE’s, appear in very recent work by Ms. Yinghui Wang (2015).
II.9: CONDITIONING, CLASS \(\mathcal{P} \)

Let us consider the collection \(\mathcal{P} \) of probability measures \(P \ll Q \) with \(P(\mathcal{Z}(t) \in \Delta^o, \forall 0 \leq t \leq T) = 1 \). (Our original measure \(P \) belongs to this collection.) We single out an element of \(\mathcal{P} \) via

\[
P_*(A) := Q(A \mid S > T), \quad A \in \mathcal{F}(T).
\]

(1)

This is the conditioning of the FÖLLMERER measure \(Q \) on the set \(\{ \mathcal{Z}(\cdot) \text{ has not reached the boundary of the simplex by time } T \} \).

Elementary computations give, \(Q \)-a.s.:

\[
\frac{d P_*}{d Q} \bigg|_{\mathcal{F}(t)} = \frac{U(T - t, \mathcal{Z}(t))}{U(T, z)} 1_{\{S > t\}} =: \frac{\hat{Y}(t)}{\hat{Y}(0)}, \quad 0 \leq t \leq T
\]
\[\frac{dP_*}{d\mathcal{Q}} \bigg|_{\mathcal{F}(t)} = \frac{U(T-t, Z(t))}{U(T, z)} 1_{\{S > t\}} =: \frac{\hat{Y}(t)}{\hat{Y}(0)}, \quad 0 \leq t \leq T \]

with the \(\mathcal{Q} \)-martingale

\[\hat{Y}(t) := U(T-t, Z(t)) 1_{\{S > t\}} \equiv q Y^{\hat{\pi}}(t) \quad \text{for} \quad q = U(T, z), \]

and with the \textit{functionally-generated} portfolio in \(\Pi_{str} \):

\[\hat{\pi}_i(t) = Z_i(t) \cdot D_i \log U(T-t, Z(t)). \quad (2) \]

- This portfolio has the numéraire property under the conditioning \(P_* \) of the FÖLLMER measure:

\[\hat{\pi}(\cdot) \equiv \nu^{P_*}(\cdot). \]
Whenever \(U(T, z) < 1 \), this portfolio implements the best achievable arbitrage under the original probability measure \(\mathbb{P} \); that is,

\[
\frac{V^{\hat{\pi}}(T)}{V^Z(T)} = \frac{1}{U(T, z)} > 1 \quad \text{holds } \mathbb{P} \text{ – a.s.}
\]

II.10: A RECIPE

We can characterize the portfolio \(\hat{\pi}(\cdot) \) of (2) that implements the optimal arbitrage over a given time-horizon \([0, T]\) as follows, given the market weight covariance structure under the original probability measure \(\mathbb{P} \) (and nothing else...):
• **FIRST**, find a probability measure \mathbb{Q} under which the market weights are martingales, as in

$$dZ(t) = s(Z(t)) \, dW^0(t), \quad Z(0) = z \in \Delta^o,$$

and compute the function $U(T, z) = \mathbb{Q}_z(S > T)$.

• **SECONDLY**, construct the measure \mathbb{P}_\star by conditioning \mathbb{Q} on the event $\{S > T\}$ as in $\mathbb{P}_\star(A) := \mathbb{Q}(A \mid S > T)$, $A \in \mathcal{F}(T)$.

• **FINALLY**, construct the portfolio $\hat{\pi}(\cdot)$ that maximizes expected log-return (equiv., has the numéraire property) under \mathbb{P}_\star.

This portfolio is generated by the vector process of log-derivatives, i.e., is given by the recipe

$$\hat{\pi}_i(t) = Z_i(t) \cdot D_i \log U(T - t, Z(t)), \quad i = 1, \ldots, n.$$
II.12: MINIMAL ENERGY AND ENTROPY

With

\[H_T(P | Q) := \mathbb{E}^P \left[\log \left(\frac{dP}{dQ} \right|_{\mathcal{F}(T)} \right) \right] = \frac{1}{2} \mathbb{E}^P \int_0^T \| \vartheta^P(t) \|^2 \, dt \]

we have the “minimum entropy and energy” properties

\[
\log \left(\frac{1}{U(T, z)} \right) = H_T(P^* | Q) = \min_{P \in \mathcal{P}} H_T(P | Q)
\]

\[= \frac{1}{2} \mathbb{E}^{P^*} \int_0^T \| \vartheta^{P^*}(t) \|^2 \, dt = \min_{P \in \mathcal{P}} \frac{1}{2} \mathbb{E}^P \int_0^T \| \vartheta^P(t) \|^2 \, dt. \]

We call \(P^* \) “minimal energy” measure in \(\mathcal{P} \).

Has relative risk process \(\vartheta^{P^*}(\cdot) \) that keeps the market weights strictly positive throughout \([0, T]\) by expending minimal energy.
This minimal entropy function

\[\mathcal{H}(\tau, z) := \log \left(\frac{1}{U(T, z)} \right) = H_T(\mathbb{P}_\tau | \mathbb{Q}) \]

solves the HJB equation for this problem

\[D_\tau \mathcal{H}(\tau, z) = \frac{1}{2} \text{Tr}(a(z) D^2 \mathcal{H}(\tau, z)) \]

\[+ \min_{\theta \in \mathbb{R}^n} \left[(D\mathcal{H}(\tau, z))' s(z) \theta + \frac{1}{2} \|\theta\|^2 \right], \]

which is of course a semilinear equation

\[D_\tau \mathcal{H}(\tau, z) = \frac{1}{2} \text{Tr}(a(z) D^2 \mathcal{H}(\tau, z)) - \frac{1}{2} (D\mathcal{H}(\tau, z))' s(z) (D\mathcal{H}(\tau, z)). \]
II.13: A STOCHASTIC GAME

The pair \((\mathcal{P}_*, \hat{\pi}(\cdot))\) of (1), (2) is a saddle point in \(\mathcal{P} \times \Pi\) for the zero-sum stochastic game with value

\[
\log \left(\frac{1}{U(T, z)} \right) = \mathbb{E}^{\mathbb{P}^*} \left[\log Y^{\hat{\pi}}(T) \right] =
\]

\[
= \min_{\mathbb{P} \in \mathcal{P}} \max_{\pi(\cdot) \in \Pi} \mathbb{E}^{\mathbb{P}} \left[\log Y^{\pi}(T) \right] = \max_{\pi(\cdot) \in \Pi} \min_{\mathbb{P} \in \mathcal{P}} \mathbb{E}^{\mathbb{P}} \left[\log Y^{\pi}(T) \right];
\]

and for every \((\mathbb{P}, \pi(\cdot)) \in \mathcal{P} \times \Pi\) we have the saddle

\[
\mathbb{E}^{\mathbb{P}} \left[\log Y^{\pi}(T) \right] \geq \mathbb{E}^{\mathbb{P}^*} \left[\log Y^{\hat{\pi}}(T) \right] =
\]

\[
= \log \left(\frac{1}{U(T, z)} \right) \geq \mathbb{E}^{\mathbb{P}^*} \left[\log Y^{\pi}(T) \right].
\]
II.14: A SUFFICIENT CONDITION AND A TOY MODEL

It can be shown that a sufficient condition for $U(T, z) < 1$ is that there exist a real constant $h > 0$ for which

$$
\sum_{i=1}^{n} z_i \left(\frac{a_{ii}(z)}{z_i^2} \right) \geq h, \quad \forall \ z \in \Delta^o.
$$

(3)

The weighted relative variance of log-returns in (3) is a measure of the market’s “intrinsic” (or “average relative”) variance; condition (3) posits a positive lower bound on this quantity as sufficient for $U(T, z) < 1$.

Under the condition (3), very simple long-only portfolios can be designed, that lead to arbitrage over sufficiently long horizons.
For instance, given any real number $T > (2 \log n)/h$, there is $c > 0$ sufficiently large, so that the portfolio

$$
\pi_i(t) = \frac{Z_i(t)(c - \log Z_i(t))}{\sum_{j=1}^{n} Z_j(t)(c - \log Z_j(t))}, \quad i = 1, \ldots, n
$$

is strong arbitrage relative to the market portfolio $\mathcal{Z}(\cdot)$ over the time-horizon $[0, T]$.

. OPEN QUESTION: Is arbitrage relative to the market possible under condition (3) over arbitrary time-horizons?

(A few additional examples exist, under different structural conditions, and with the equally-weighted portfolio playing a very important rôle. Would be nice to have more of them)

. Very recent development: Counterexample by Johannes RUF.
II.15: A CONCRETE TOY-EXAMPLE

A concrete example where the condition

$$\sum_{i=1}^{n} \frac{a_{ii}(z)}{z_i} \geq h, \quad \forall \ z \in \Delta^o$$

of (3) is satisfied concerns the “Volatility-Stabilized” Model

$$d \log X_i(t) = \left(\kappa/Z_i(t) \right) dt + \left(1/\sqrt{Z_i(t)} \right) dW_i(t), \quad i = 1, \ldots, n$$

with constant $\kappa \geq 1/2$, or equivalently for the market weights

$$dZ_i(t) = \kappa \left(1 - n Z_i(t) \right) dt + \sqrt{Z_i(t)} dW_i(t) - Z_i(t) \sum_{k=1}^{n} \sqrt{Z_k(t)} dW_k(t)$$

$$= \kappa \left(1 - n Z_i(t) \right) dt + \sqrt{Z_i(t)} \sqrt{1 - Z_i(t)} dW_i^\#(t).$$
The variances in this last diffusion equation

\[dZ_i(t) = \kappa \left(1 - n \, Z_i(t)\right) dt + \sqrt{Z_i(t)} \sqrt{1 - Z_i(t)} \, dW_i^\#(t) \]

(in which the \(W_i^\#(\cdot), \ i = 1, \cdots, n \) are correlated BM’s) are of \textit{WRIGHT-FISHER} type

\[a_{ii}(z) = z_i(1 - z_i); \]

so the condition

\[\sum_{i=1}^{n} \frac{a_{ii}(z)}{z_i} \geq h, \quad \forall \ z \in \Delta^o \]

of (3) holds as equality, in fact with \(h = n - 1 \geq 1. \)
Here, and indeed in any setting of the form
\[
d \log X_i(t) = \beta_i(t) \, dt + \left(1/\sqrt{Z_i(t)}\right) \, dW_i(t), \quad i = 1, \ldots, n,
\]
the market CAN be outperformed over arbitrary time horizons (A. BANNER & D. FERNHOLZ (2008), R. PICKOVÁ (2014)).

In this case, one can “compute” the relative arbitrage function
\[
U(T, z) = \mathbb{E}^p \left[\frac{z_1 \cdots z_n}{Z_1(T) \cdots Z_n(T)} \right] \cdot \mathbb{E}^p \left[e^{-(n-1)(\gamma T+W(T))} \right],
\]
because S. PAL (2011) has computed the joint distribution of the weights \(Z_1(T), \ldots, Z_n(T) \) fairly explicitly (Dirichlet). Here
\[
\gamma = \kappa n - \frac{1}{2}.
\]
• Under the FÖLLMER measure \mathbb{Q}, each weight $Z_i(\cdot)$ is a WRIGHT-FISHER diffusion in natural scale, and reaches an endpoint of $(0,1)$ in finite expected time $S_i = \inf\{t \geq 0 : Z_i(t) = 0\}$:

$$dZ_i(t) = \kappa (1 - n Z_i(t)) dt + \sqrt{Z_i(t)} \sqrt{1 - Z_i(t)} dW^\#_i(t)$$

$$= \sqrt{Z_i(t)} \sqrt{1 - Z_i(t)} dW^o_i(t).$$

For us, of course, the time of interest is

$$S = \min_{1 \leq i \leq n} S_i.$$

Eventually all but one of the $Z_i(\cdot)$’s “perish”, and one of them emerges as the survivor.

Think of a catalytic reaction involving n compounds with nucleation/condensation (very recent work of C.LANDIM et al., May 2015); or of a gladiatorial fight in the Colosseum.

FURTHER BIBLIOGRAPHY

THANK YOU FOR YOUR ATTENTION

HAPPY BIRTHDAY, STEVE !!!!

ΠΟΛΥΧΡΟΝΙΟΣ !!!!