The cover time of the preferential attachment graph

Colin Cooper* Alan Frieze ${ }^{\dagger}$

May 2, 2006

Abstract

The preferential attachment graph $G_{m}(n)$ is a random graph formed by adding a new vertex at each time step, with m edges which point to vertices selected at random with probability proportional to their degree. Thus at time n there are n vertices and $m n$ edges. This process yields a graph which has been proposed as a simple model of the world wide web [2]. In this paper we show that if $m \geq 2$ then whp the cover time of a simple random walk on $G_{m}(n)$ is asymptotic to $\frac{2 m}{m-1} n \log n$.

1 Introduction

Let $G=(V, E)$ be a connected graph. A random walk $\mathcal{W}_{u}, u \in V$ on the undirected graph $G=(V, E)$ is a Markov chain $X_{0}=u, X_{1}, \ldots, X_{t}, \ldots \in V$ associated to a particle that moves from vertex to vertex according to the following rule: the probability of a transition from vertex i, of degree $d(i)$, to vertex j is $1 / d(i)$ if $\{i, j\} \in E$, and 0 otherwise. For $u \in V$ let C_{u} be the expected time taken for \mathcal{W}_{u} to visit every vertex of G. The cover time C_{G} of G is defined as $C_{G}=\max _{u \in V} C_{u}$. The cover time of connected graphs has been extensively studied. It is a classic result of Aleliunas, Karp, Lipton, Lovász and Rackoff [1] that $C_{G} \leq 2|E|(|V|-1)$. It was shown by Feige [8], [9], that for any connected graph G with $|V|=n$,

$$
(1-o(1)) n \log n \leq C_{G} \leq(1+o(1)) \frac{4}{27} n^{3} .
$$

The lower bound is achieved by (for example) the complete graph K_{n}, whose cover time is determined by the Coupon Collector problem.

[^0]In a previous paper [6] we studied the cover time of random graphs $G_{n, p}$ when $n p=c \log n$ where $c=O(1)$ and $(c-1) \log n \rightarrow \infty$. This extended a result of Jonasson, who proved in [12] that when the expected average degree $(n-1) p$ grows faster than $\log n$, whp a random graph has the same cover time (asymptoticaly) as the complete graph K_{n}, whereas, when $n p=\Omega(\log n)$ this is not the case.

Theorem 1. [6] Suppose that $n p=c \log n=\log n+\omega$ where $\omega=(c-1) \log n \rightarrow \infty$ and $c \geq 1$. If $G \in G_{n, p}$, then $\mathbf{w h p}^{1}$

$$
C_{G} \sim c \log \left(\frac{c}{c-1}\right) n \log n
$$

The notation $A_{n} \sim B_{n}$ means that $\lim _{n \rightarrow \infty} A_{n} / B_{n}=1$.
In another paper [7] we used a different technique to study the cover time of random regular graphs. We proved the following:

Theorem 2. Let $r \geq 3$ be constant. Let \mathcal{G}_{r} denote the set of r-regular graphs with vertex set $V=\{1,2, \ldots, n\}$. If G is chosen randomly from \mathcal{G}_{r}, then whp

$$
C_{G} \sim \frac{r-1}{r-2} n \log n .
$$

In this paper we turn our attention to the preferential attachment graph $G_{m}(n)$ introduced by Barabási and Albert [2] as a simplified model of the WWW. The preferential attachment graph $G_{m}(n)$ is a random graph formed by adding a new vertex at each time step, with m edges which point to vertices selected at random with probability proportional to their degree. Thus at time n there are n vertices and $m n$ edges. We use the generative model of [3] (see also [4]) and build a graph sequentially as follows:

- At each time step t, we add a vertex v_{t}, and we add an edge from v_{t} to some vertex u, where u is chosen at random according to the distribution:

$$
\operatorname{Pr}\left(u=v_{i}\right)= \begin{cases}\frac{d_{t-1}\left(v_{i}\right)}{22 t-1}, & \text { if } v_{i} \neq v_{t} \tag{1}\\ \frac{1}{2 t-1}, & \text { if } v_{i}=v_{t}\end{cases}
$$

where $d_{t-1}(v)$ denotes the degree of vertex v at the end of time step $t-1$.

- For some constant m, every m steps we contract the most recently added m vertices $v_{m(k-1)+1}, \ldots, v_{m k}$ to form a single vertex $k=1,2, \ldots$.

Let $G_{m}(n)$ denote the random graph at time step $m n$ after n contractions of size m. Thus $G_{m}(n)$ has n vertices and $m n$ edges and may be a multi-graph. It should be noted that without the vertex contractions, we generate $G_{1}(m n)$.

[^1]We will assume for the purposes of this paper that $m \geq 2$ is a constant.
This is a very nice clean model, but we warn the reader that it allows loops and multiple edges, although whp there will be relatively few of them.

We prove
Theorem 3. If $m \geq 2$ then $\mathbf{w h p}$ the preferential attachment graph $G=G_{m}(n)$ satisfies

$$
C_{G} \sim \frac{2 m}{m-1} n \log n .
$$

2 The first visit time lemma.

2.1 Convergence of the random walk

In this section G denotes a fixed connected graph with n vertices. Let u be some arbitrary vertex from which a walk \mathcal{W}_{u} is started. Let $\mathcal{W}_{u}(t)$ be the vertex reached at step t, let P be the matrix of transition probabilities of the walk and let $P_{u}^{(t)}(v)=\operatorname{Pr}\left(\mathcal{W}_{u}(t)=v\right)$. We assume the random walk \mathcal{W}_{u} on G is ergodic with steady state distribution π and note that $\pi_{v}=\frac{d(v)}{2 m n}$.

2.2 Generating function formulation

Fix two distinct vertices u, v. Let h_{t} be the probability $\operatorname{Pr}\left(\mathcal{W}_{u}(t)=v\right)=P_{u}^{(t)}(v)$, that the walk \mathcal{W}_{u} visits v at step t. Let $H(s)$ generate h_{t}.

Similarly, considering the walk \mathcal{W}_{v}, starting at v, let r_{t} be the probability that this walk returns to v at step $t=0,1, \ldots$ Let $R(s)$ generate r_{t}. We note that $r_{0}=1$.

Let $f_{t}(u \rightarrow v)$ be the probability that the first visit of the walk \mathcal{W}_{u} to v occurs at step t. Thus $f_{0}(u \rightarrow v)=0$. Let $F(s)$ generate $f_{t}(u \rightarrow v)$. Thus

$$
\begin{equation*}
H(s)=F(s) R(s) \tag{2}
\end{equation*}
$$

Let T be the smallest positive integer such that

$$
\begin{equation*}
\max _{x \in V}\left|P_{u}^{(t)}(x)-\pi_{x}\right| \leq n^{-3} \quad \text { for } t \geq T \tag{3}
\end{equation*}
$$

For $R(s)$ let

$$
\begin{equation*}
R_{T}(s)=\sum_{j=0}^{T-1} r_{j} s^{j} \tag{4}
\end{equation*}
$$

Thus $R_{T}(s)$ generates the probability of a return to v during steps $0, \ldots, T-1$ of a walk starting at v. Similarly for $H(s)$, let

$$
\begin{equation*}
H_{T}(s)=\sum_{j=0}^{T-1} h_{j} s^{j} \tag{5}
\end{equation*}
$$

2.3 First visit time: Single vertex v

The following lemma should be viewed in the context that G is an n vertex graph which is part of a sequence of graphs with n growing to infinity. We prove it in greater generality than is needed for the proof of Theorem 3.

Let T be as defined in (3) and

$$
\begin{equation*}
\lambda=\frac{1}{K_{1} T} \tag{6}
\end{equation*}
$$

for sufficiently large constant K_{1}.
Lemma 4. Suppose that for some constant $0<\theta<1$,
(a) $H_{T}(1)<(1-\theta) R_{T}(1)$.
(b) $\min _{|s| \leq 1+\lambda}\left|R_{T}(s)\right| \geq \theta$.
(c) $T \pi_{v}=o(1)$ and $T \pi_{v}=\Omega\left(n^{-2}\right)$.

Let

$$
\begin{align*}
p_{v} & =\frac{\pi_{v}}{R_{T}(1)\left(1+O\left(T \pi_{v}\right)\right)} \tag{7}\\
c_{u, v} & =1-\frac{H_{T}(1)}{R_{T}(1)\left(1+O\left(T \pi_{v}\right)\right)} \tag{8}
\end{align*}
$$

where the values of the $1+O\left(T \pi_{v}\right)$ terms are given implicitly in (15), (18) respectively. Then

$$
\begin{equation*}
f_{t}(u \rightarrow v)=c_{u, v} \frac{p_{v}}{\left(1+p_{v}\right)^{t+1}}+O\left(R_{T}(1) e^{-\lambda t / 2}\right) \quad \text { for all } t \geq T . \tag{9}
\end{equation*}
$$

Proof Write

$$
\begin{equation*}
R(s)=R_{T}(s)+\widehat{R}_{T}(s)+\frac{\pi_{v} s^{T}}{1-s} \tag{10}
\end{equation*}
$$

where $R_{T}(s)$ is given by (4) and

$$
\widehat{R}_{T}(s)=\sum_{t \geq T}\left(r_{t}-\pi_{v}\right) s^{t}
$$

generates the error in using the stationary distribution π_{v} for r_{t} when $t \geq T$. Similarly, let

$$
\begin{equation*}
H(s)=H_{T}(s)+\widehat{H}_{T}(s)+\pi_{v} \frac{s^{T}}{1-s} \tag{11}
\end{equation*}
$$

Note that for $Z=H, R$ and $|s| \leq 1+o(1)$,

$$
\begin{equation*}
|\widehat{Z}(s)|=o\left(n^{-2}\right) \tag{12}
\end{equation*}
$$

This is because the variation distance between the stationary and the t-step distribution decreases exponentially with t.

Using (10), (11) we rewrite $F(s)=H(s) / R(s)$ from (2) as $F(s)=B(s) / A(s)$ where

$$
\begin{align*}
& A(s)=\pi_{v} s^{T}+(1-s)\left(R_{T}(s)+\widehat{R}_{T}(s)\right) \tag{13}\\
& B(s)=\pi_{v} s^{T}+(1-s)\left(H_{T}(s)+\widehat{H}_{T}(s)\right) \tag{14}
\end{align*}
$$

For real $s \geq 1$ and $Z=H, R$, we have

$$
Z_{T}(1) \leq Z_{T}(s) \leq Z_{T}(1) s^{T}
$$

Let $s=1+\beta \pi_{v}$, where $\beta>0$ is constant. Since $T \pi_{v}=o(1)$ we have

$$
Z_{T}(s)=Z_{T}(1)\left(1+O\left(T \pi_{v}\right)\right) .
$$

$T \pi_{v}=o(1)$ and $T \pi_{v}=\Omega\left(n^{-2}\right)$ and $R_{T}(1) \geq 1$ implies that

$$
A(s)=\pi_{v}\left(1-\beta R_{T}(1)\left(1+O\left(T \pi_{v}\right)\right)\right)
$$

It follows that $A(s)$ has a real zero at s_{0}, where

$$
\begin{equation*}
s_{0}=1+\frac{\pi_{v}}{R_{T}(1)\left(1+O\left(T \pi_{v}\right)\right)}=1+p_{v} \tag{15}
\end{equation*}
$$

say. We also see that

$$
\begin{equation*}
A^{\prime}\left(s_{0}\right)=-R_{T}(1)\left(1+O\left(T \pi_{v}\right)\right) \neq 0 \tag{16}
\end{equation*}
$$

and thus s_{0} is a simple zero (see e.g. [5] p193). The value of $B(s)$ at s_{0} is

$$
\begin{equation*}
B\left(s_{0}\right)=\pi_{v}\left(1-\frac{H_{T}(1)}{R_{T}(1)\left(1+O\left(T \pi_{v}\right)\right)}+O\left(T \pi_{v}\right)\right) \neq 0 \tag{17}
\end{equation*}
$$

Thus, from (7), (8)

$$
\begin{equation*}
\frac{B\left(s_{0}\right)}{A^{\prime}\left(s_{0}\right)}=-p_{v} c_{u, v} \tag{18}
\end{equation*}
$$

Thus (see e.g. [5] p195) the principal part of the Laurent expansion of $F(s)$ at s_{0} is

$$
\begin{equation*}
f(s)=\frac{B\left(s_{0}\right) / A^{\prime}\left(s_{0}\right)}{s-s_{0}} \tag{19}
\end{equation*}
$$

Note that s is a complex variable in the above equation.
To approximate the coefficients of the generating function $F(s)$, we now use a standard technique for the asymptotic expansion of power series (see e.g.[14] Th 5.2.1).

We prove below that $F(s)=f(s)+g(s)$, where $g(s)$ is analytic in $C_{\lambda}=\{|s|=1+\lambda\}$ and that $M=\max _{s \in C_{\lambda}}|g(s)|=O\left(R_{T}(1)\right)$.
Let $a_{t}=\left[s^{t}\right] g(s)$, then (see e.g.[5] p143), $a_{t}=g^{(t)}(0) / t$!. By the Cauchy Inequality (see e.g. [5] p130) we have that $\left|g^{(t)}(0)\right| \leq M t!/(1+\lambda)^{t}$ and thus

$$
\left|a_{t}\right| \leq \frac{M}{(1+\lambda)^{t}}=O\left(R_{T}(1) e^{-t \lambda / 2}\right) .
$$

As $\left[s^{t}\right] F(s)=\left[s^{t}\right] f(s)+\left[s^{t}\right] g(s)$ and $\left[s^{t}\right] 1 /\left(s-s_{0}\right)=-1 /\left(s_{0}\right)^{t+1}$ we have

$$
\begin{equation*}
\left[s^{t}\right] F(s)=\frac{-B\left(s_{0}\right) / A^{\prime}\left(s_{0}\right)}{s_{0}^{t+1}}+O\left(R_{T}(1) e^{-t \lambda / 2}\right) \tag{20}
\end{equation*}
$$

Thus, we obtain

$$
\left[s^{t}\right] F(s)=c_{u, v} \frac{p_{v}}{\left(1+p_{v}\right)^{t+1}}+O\left(R_{T}(1) e^{-t \lambda / 2}\right),
$$

which completes the proof of (9).
Now $M=\max _{s \in C_{\lambda}}|g(s)| \leq \max |f(s)|+\max |F(s)|=o(1)+\max |F(s)|$. Furthermore, as $F(s)=B(s) / A(s)$ on C_{λ} we have that

$$
|F(s)| \leq \frac{H_{T}(1)(1+\lambda)^{T}+O\left(T \pi_{v}\right)}{\left|R_{T}(s)\right|-O\left(T \pi_{v}\right)} \leq \frac{R_{T}(1) e^{1 / K_{1}}+o(1)}{\theta-o(1)}=O\left(R_{T}(1)\right) .
$$

We now prove that s_{0} is the only zero of $A(s)$ inside the circle C_{λ}. We use Rouché's Theorem (see e.g. [5]), the statement of which is as follows: Let two functions $\phi(z)$ and $\gamma(z)$ be analytic inside and on a simple closed contour C. Suppose that $|\phi(z)|>|\gamma(z)|$ at each point of C, then $\phi(z)$ and $\phi(z)+\gamma(z)$ have the same number of zeroes, counting multiplicities, inside C.
Let the functions $\phi(s), \gamma(s)$ be given by $\phi(s)=(1-s) R_{T}(s)$ and $\gamma(s)=\pi_{v} s^{T}+(1-s) \widehat{R}_{T}(s)$.

$$
|\gamma(s)| /|\phi(s)| \leq \frac{\pi_{v}(1+\lambda)^{T}}{\lambda \theta}+\frac{\left|\widehat{R}_{T}(s)\right|}{\theta}=o(1) .
$$

As $\phi(s)+\gamma(s)=A(s)$ we conclude that $A(s)$ has only one zero inside the circle C_{λ}. This is the simple zero at s_{0}.

Corollary 5. Let $\boldsymbol{A}_{t}(v)$ be the event that \mathcal{W}_{u} has not visited v by step t. Then under the same conditions as those in Lemma 4, for $t \geq T$,

$$
\operatorname{Pr}\left(\boldsymbol{A}_{t}(v)\right)=\frac{c_{u, v}}{\left(1+p_{v}\right)^{t}}+O\left(R_{T}(1) \lambda^{-1} e^{-\lambda t / 2}\right)
$$

Proof We use Lemma 4 and

$$
\operatorname{Pr}\left(\boldsymbol{A}_{t}(v)\right)=\sum_{\tau>t} f_{\tau}(u \rightarrow v)
$$

Note that $R_{T}(1)=O(1)$ in our applications of this corollary. In any case $R_{T}(1) \leq T$.
As we leave this section we introduce the notation R_{v}, H_{v} to replace $R_{T}(1), H_{T}(1)$ (which are not attached to v).

3 The random graph $G_{m}(n)$

In this section we prove some properties of $G_{m}(n)$. We first derive crude bounds on degrees.
Lemma 6. For $k \leq \ell$, let $d_{\ell}(k)$ denote the degree of vertex k in $G_{m}(\ell)$. For sufficiently large n, we have:
(a)

$$
\operatorname{Pr}\left(\exists(k, \ell), 1 \leq k \leq \ell \leq n: d_{\ell}(k) \geq(\ell / k)^{1 / 2}(\log n)^{3}\right)=O\left(n^{-3}\right)
$$

(b)

$$
\operatorname{Pr}\left(\exists k \leq n^{1 / 8}: d_{n}(k) \leq n^{1 / 4}\right)=O\left(n^{-1 / 17}\right)
$$

Proof

We consider the model $G_{1}(N)$, where $1 \leq N \leq m n$. As discussed in [4], in $G_{m}(\nu), d_{\nu}(s)$ has the same distribution as $d_{N}(m(s-1)+1)+\cdots+d_{N}(m s)$ in $G_{1}(N)$ when $N=m \nu$.

Let $D_{k}=d_{N}(1)+\cdots+d_{N}(k)$ be the sum of the degrees of the vertices v_{1}, \ldots, v_{k} in the graph $G_{1}(N)$, where $D_{k} \geq 2 k$. The following is a slight extension of (3) of [4]:
Assume $A \geq 1, k \geq 1$, then

$$
\begin{equation*}
\operatorname{Pr}\left(\left|D_{k}-2 \sqrt{k N}\right| \geq 3 A \sqrt{N \log N}\right) \leq N^{-2 A} . \tag{21}
\end{equation*}
$$

We also need (4) from the same paper: Assume $0 \leq d<N-k-s$, then

$$
\begin{align*}
\operatorname{Pr}\left(d_{N}(k+1)=d+1 \mid D_{k}-2 k=s\right) & =(s+d) 2^{d} \frac{(N-k-s)_{d}}{(2 N-2 k-s)_{d+1}} \tag{22}\\
& =\frac{s+d}{2 N-2 k-s-d} \prod_{i=0}^{d-1}\left(1-\frac{s+i}{2 N-2 k-s-i}\right)(23) \\
& \leq \exp \left\{-\frac{d(s+(d-1) / 2)}{2 N}\right\} . \tag{24}
\end{align*}
$$

(a): Let $N=\ell m$, and $k \leq N$. We first consider the case $1 \leq k \leq 100(\log n)^{3}$. In order to consider the degree of vertex 1 , we additionally allow $k=0$ and $\operatorname{Pr}\left(D_{0}=0\right)=1$.
Let $\lambda=100(N /(k+1))^{1 / 2}(\log n)^{2}$ then

$$
\begin{align*}
\operatorname{Pr}\left(d_{N}(k+1) \geq \lambda\right) & \leq \sum_{\substack{0 \leq s \leq N-k \\
d+1 \geq \lambda}} \operatorname{Pr}\left(d_{N}(k+1)=d+1 \mid D_{k}-2 k=s\right) \\
& \leq N^{2} \exp \left\{-\frac{2400(\log n)^{4}}{k+1}\right\} \leq n^{-20} \tag{25}
\end{align*}
$$

after using (24).
For fixed ℓ, and $N=m \ell$, define $k_{0}=k_{0}(N)=N / \log N$. Assume $100(\log n)^{3}<k \leq k_{0}$. We use (21) with $A=3 \log _{\ell} n$ to argue that

$$
\begin{equation*}
\operatorname{Pr}\left(D_{k} \leq 2 \sqrt{k N}-9 \log _{\ell} n \sqrt{N \log N}\right) \leq n^{-6} \tag{26}
\end{equation*}
$$

Now

$$
\frac{k N}{81\left(\log _{\ell} n\right)^{2} N \log N} \geq \frac{100(\log n)^{3}(\log \ell)^{2}}{81(\log n)^{2}(\log \ell+\log m)}>\log n
$$

and

$$
N \geq k \log N \geq k \log k \geq k \log \log n
$$

and so (26) implies

$$
\operatorname{Pr}\left(D_{k}-2 k \leq 3 \sqrt{k N} / 2\right) \leq n^{-6}
$$

and thus $s>3 \sqrt{k N} / 2 \mathbf{w h p}$. Arguing as in (25) we deduce that
$\operatorname{Pr}\left(d_{N}(k+1) \geq 10 \sqrt{N / k}(\log n)^{2}\right) \leq n^{-6}+N^{2} \exp \left\{-\frac{\left(10 \sqrt{N / k}(\log n)^{2}\right)(3 \sqrt{k N} / 2)}{2 N}\right\} \leq 2 n^{-6}$.
When $k_{0}<k \leq N$, let $N^{\prime}=2 N \log N$ and $n^{\prime}=\max \left\{n, N^{\prime} / m\right\}$, and now assume that $N^{\prime} /\left(2\left(\log N^{\prime}\right)^{2} \leq k<N<k_{0}\left(N^{\prime}\right)\right.$. We use (26), (27) evaluated at N^{\prime} together with the fact that $d_{N}(k)$ is stochastically dominated by $d_{2 N \log N}(k)$ to obtain

$$
\operatorname{Pr}\left(d_{N}(k+1) \geq 10 \sqrt{N^{\prime} / k}\left(\log n^{\prime}\right)^{2}\right)=O\left(n^{\prime-6}\right) .
$$

Using the relationship between $G_{m}(n)$ and $G_{1}(N)$, part (a) now follows.
(b): Here $N=n m$, and $k \leq m N^{1 / 8}$. Using (21) with $A=2$ we have

$$
\operatorname{Pr}\left(D_{k}-2 k \geq 8 \sqrt{k N \log N}\right) \leq N^{-4}
$$

We then use (23) to write

$$
\operatorname{Pr}\left(d_{N}(k) \leq N^{1 / 4}\right) \leq N^{-4}+\sum_{d=0}^{N^{1 / 4}} \frac{d+8 \sqrt{k N \log N}}{2 N-2 k-8 \sqrt{k N \log N-d}}=O\left(\frac{\sqrt{k \log n}}{n^{1 / 4}}\right) .
$$

Summing the RHS of the above inequality over $k \leq m N^{1 / 8}$ accounts for the possible values of k and completes the proof of the lemma.

Let

$$
\begin{equation*}
\omega=(\log n)^{1 / 3} . \tag{28}
\end{equation*}
$$

Let a cycle C be small if $|C| \leq 2 \omega+1$. Let a vertex v be locally-tree-like if the sub-graph G_{v} induced by the vertices at distance 2ω or less is a tree. Thus a locally-tree-like vertex is at distance at least 2ω from any small cycle.

Lemma 7. Whp $G_{m}(n)$ does not contain a set of vertices S such that (i) $|S| \leq 100 \omega$, (ii) the sub-graph H induced by S has minimum degree at least 2 and (iii) H contains a vertex $v \geq n^{1 / 10}$ of degree at least 3 in H.

Proof Let Z_{1} denote the number of sets S described in Lemma 7, and let $s=|S|$. Then

$$
\begin{align*}
\mathbf{E}\left(Z_{1}\right) & \leq o(1)+\sum_{3 \leq s \leq 100 \omega} \sum_{H} \prod_{(v, w) \in E(H)} \frac{(\log n)^{3}}{(v w)^{1 / 2}} \tag{29}\\
& \leq o(1)+\sum_{3 \leq s \leq 100 \omega} \sum_{H}(\log n)^{3|E(H)|} \prod_{v \in S} v^{-d_{H}(v) / 2} \\
& \leq o(1)+\sum_{3 \leq s \leq 100 \omega}\left(1+(\log n)^{3}\right)^{\binom{s}{2}} n^{-1 / 20} \prod_{v \in S} \frac{1}{v} \\
& \leq o(1)+\sum_{3 \leq s \leq 100 \omega}\left(1+(\log n)^{3}\right)^{\binom{s}{2}} n^{-1 / 20} H_{n}^{s} \\
& \leq o(1)+100 \omega(\log n)^{20000(\log n)^{2 / 3}} n^{-1 / 20} \\
& =o(1) .
\end{align*}
$$

where $H_{n}=\sum_{v=1}^{n} \frac{1}{v}$.
Explanation of (29): Suppose that $1 \leq \alpha<\beta \leq n$. Then

$$
\begin{equation*}
\left.\operatorname{Pr}\left(G_{m}(n) \text { contains edge }(\alpha, \beta)\right) \mid d_{\beta}(\alpha) \leq(\beta / \alpha)^{1 / 2}(\log n)^{3}\right) \leq \frac{(\log n)^{3}}{(\alpha \beta)^{1 / 2}} \tag{30}
\end{equation*}
$$

This is because when β chooses its neighbours, the probability it chooses α is at most $\frac{m(\log n)^{3}(\beta / \alpha)^{1 / 2}}{2 m(\beta-1)}$. Here the numerator is a bound on the degree of α in $G_{m}(\beta-1)$. We are using Lemma 6 here and the $o(1)$ term accounts for the failure of this bound. Furthermore, this remains an upper bound if we condition on the existence of some of the other edges of H.

This lemma is used to justify the following corollary: A small cycle is light if it contains no vertex $v \leq n^{1 / 10}$ (it has no "heavy" vertices), otherwise it is heavy.

Corollary 8. Whp $G_{m}(n)$ does not contain a small cycle within 10ω of a light cycle.

We need to deal with the possibility that $G_{m}(n)$ contains many cycles.
Lemma 9. Whp $G_{m}(n)$ contains at most $(\log n)^{10 \omega}$ vertices or edges on small cycles.
Proof Let Z be the number of vertices/edges on small cycles in $G_{m}(n)$ (including parallel edges). Then

$$
\begin{align*}
\mathbf{E}(Z) & \leq o(1)+\sum_{k=2}^{2 \omega+1} k \sum_{a_{1}, \ldots, a_{k}} \prod_{i=1}^{k} \frac{(\log n)^{3}}{\left(a_{i} a_{i+1}\right)^{1 / 2}} \tag{31}\\
& \leq o(1)+\sum_{k=2}^{2 \omega+1} k(\log n)^{3 k} H_{n}^{k} \\
& =O\left((\log n)^{9 \omega}\right)
\end{align*}
$$

and the result follows from the Markov inequality.
Explanation of (31): We sum over the choices $a_{1}, a_{2}, \ldots, a_{k}$ for the vertices of the cycle. The term $(\log n)^{3} /\left(a_{i} a_{i+1}\right)^{1 / 2}$ bounds the probability of edge $\left(a_{i}, a_{i+1}\right)$ and comes from the RHS of (30). The $o(1)$ term accounts for the probability it is.

We estimate the number of non-locally-tree-like vertices.
Lemma 10. Whp there are at most $O\left(n^{1 / 2+o(1)}\right)$ non-locally-tree-like vertices.
Proof A non-locally-tree-like vertex v is within ω of a small cycle. So the expectation of the number Z of such vertices satisfies

$$
\begin{aligned}
\mathbf{E}(Z) & \leq o(1)+\sum_{\substack{0 \leq r \leq \omega \\
3 \leq s \leq 2 \omega+1 \\
1 \leq i \leq s}} \sum_{\substack{a_{0}, \ldots, a_{r} \\
b_{1} \ldots, b_{s}}} \frac{(\log n)^{3}}{\left(a_{0} b_{1}\right)^{1 / 2}} \prod_{k=1}^{r-1} \frac{(\log n)^{3}}{\left(a_{k} a_{k+1}\right)^{1 / 2}} \prod_{l=1}^{s} \frac{(\log n)^{3}}{\left(b_{l} b_{l+1}\right)^{1 / 2}} \\
& =O\left(n^{1 / 2+o(1)}\right) .
\end{aligned}
$$

The result follows from the Markov inequality.
Here $a_{0}, a_{1}, \ldots, a_{r}$ are the choices for the vertices of a path from v to a small cycle. The path ends at b_{1} and the cycle is through $b_{1}, b_{2}, \ldots, b_{s}$.
Lemma 11. Whp there are at most $n(\log n)^{-\omega}$ vertices $v \geq n / 2$ which have more than $(\log n)^{11 \omega}$ vertices at distance 3ω or less from them.

Proof For a fixed vertex v, the expected number of paths of length $\leq 3 \omega$ and endpoint v is bounded by

$$
\sum_{1 \leq r \leq 3 \omega} \sum_{a_{1}, \ldots, a_{r}} \frac{(\log n)^{3}}{a_{r}^{1 / 2} v^{1 / 2}} \prod_{k=1}^{r-1} \frac{(\log n)^{3}}{\left(a_{k} a_{k+1}\right)^{1 / 2}} \leq(\log n)^{10 \omega}
$$

The result now follows from the Markov inequality.
Let

$$
\begin{equation*}
\omega_{0}=\log \log \log n \tag{32}
\end{equation*}
$$

We say that v is locally regular if it is locally tree-like and the first $2 \omega_{0}$ levels of G_{v} form a tree of depth $2 \omega_{0}$, rooted at v, in which every non-leaf has branching factor m.
For $j \in[n]$ we let $X(j)$ denote the set of neighbours of j in $[j-1]$ i.e. the vertices "chosen" by j, although not including j; recall that loops are allowed in the scale-free construction. We regard X as a function from $[n]$ to the power set of $[n]$ and so X^{-1} is well defined. The constraint that $X^{-1}(i)=\{j\}$, means j is the only vertex $v>i$ that chooses i.

Lemma 12. Whp, $G_{m}(n)$ contains at least $n^{1-o(1)}$ locally regular vertices $v \geq n / 2$.
Proof Let $I_{k}=\left[n\left(1-\frac{1}{2^{k}}\right), n\left(1-\frac{1}{2^{k+1}}\right)\right)$ for $1 \leq k \leq \omega_{0}$. Let

$$
J_{2}=\left\{j \in I_{2}: X(j) \subseteq I_{1},|X(j)|=m \text { and } X^{-1}(i)=\{j\} \text { for } i \in X(j)\right\} .
$$

We require $|X(j)|=m$ so that there are no parallel edges originating from j.
Then for $2<k \leq \omega_{0}$ we let

$$
J_{k}=\left\{j \in I_{k}: X(j) \subseteq J_{k-1},|X(j)|=m \text { and } X^{-1}(i)=\{j\} \text { for } i \in X(j)\right\} .
$$

For $j \in I_{2}$, define $i_{m+1}=j-1$, then

$$
\begin{align*}
& \operatorname{Pr}\left(j \in J_{2}\right)= \\
& \quad \sum_{\left\{i_{1}<\cdots<i_{m}\right\} \subseteq I_{1}} \prod_{k=1}^{m} \prod_{\tau=m i_{k}+1}^{m i_{k+1}}\left(1-\frac{k m}{2 \tau-1}\right) \prod_{\tau=m j+1}^{m n}\left(1-\frac{m^{2}}{2 \tau-1}\right) \cdot m!\prod_{i=1}^{m} \frac{m}{2 m j+2 i-1} \tag{33}\\
& \sim \sum_{\left\{i_{1}<\cdots<i_{m}\right\} \subseteq I_{1}}\left(\prod_{k=1}^{m} \frac{i_{k}}{j}\right)^{m / 2} \cdot \frac{j^{m^{2} / 2}}{n^{m^{2} / 2}} \cdot \frac{m!}{(2 j)^{m}} \\
& \sim \frac{m!}{(2 j)^{m} n^{m^{2} / 2}} \sum_{\left\{i_{1}<\cdots<i_{m}\right\} \subseteq I_{1}} \prod_{k=1}^{m} i_{k}^{m / 2} \\
& \geq(1-O(1 / n)) \frac{1}{(2 j)^{m} n^{m^{2} / 2}}\left(\sum_{i \in I_{1}} i^{m / 2}\right)^{m} \tag{34}\\
& \geq \frac{\left|I_{1}\right|^{m}}{2^{m+m^{2} / 2} n^{m}} . \tag{35}
\end{align*}
$$

Explanation of (33)-(35): We sum over the choices $i_{1}<i_{2}<\cdots<i_{m}$ for $X(j)$. The double product followed by the single product is the probability that the vertices in set $i_{1}, i_{2}, \ldots, i_{m}$ are chosen by j and j alone. The term m ! counts the order in which j chooses these vertices and the final product gives the probability that these choices are made.

To see the derivation of (34) we note that for $b_{j} \geq 0$

$$
\left(b_{1}+\cdots+b_{t}\right)^{m}-\left(b_{1}^{2}+\cdots+b_{t}^{2}\right)\binom{m}{2}\left(b_{1}+\cdots+b_{t}\right)^{m-2} \leq m!\sum_{i_{1}<\cdots<i_{m}} \prod_{k=1}^{m} b_{i_{k}}
$$

The line (35) follows by putting $i=n / 2$ and $j=n$.
So

$$
\mathbf{E}\left(\left|J_{2}\right|\right) \geq \frac{n}{2^{3 m+m^{2} / 2}}
$$

We use a martingale argument to prove that $\left|J_{2}\right|$ is concentrated around its mean.
We work in $G_{1}(m n)$. Let $Y_{1}, Y_{2}, \ldots, Y_{m n}$ denote the sequence of choices of edges added. When vertex i chooses its neighbour, it does so according to the model (1), and thus selects one of the existing $2 i-1$ edge-endpoints uar.

Fix $Y_{1}, Y_{2}, \ldots, Y_{i}$, let $Y_{i}=(i, v)$ and let $\hat{Y}_{i}=(i, \hat{v})$ denote an alternative choice of edgeendpoint \hat{v} at step i. For each complete outcome $\mathbf{Y}=Y_{1}, Y_{2}, \ldots, Y_{i-1}, Y_{i}, \ldots, Y_{m n}$ we define a corresponding outcome $\hat{\mathbf{Y}}=Y_{1}, Y_{2}, \ldots, Y_{i-1}, \hat{Y}_{i}, \ldots, \hat{Y}_{m n}$. Let $S(i)=\{i\}$. For $j>i, \hat{Y}_{j}$ is obtained from Y_{j} as follows: If Y_{j} creates a new edge (j, v) by choosing one of the $|S(j-1)|$ edge-endpoints at v arising from edges with labels in $S(j-1)$, ie. edges generated directly or indirectly from the edge-endpoint of Y_{i}, then \hat{Y}_{j} chooses the corresponding edge-endpoint \hat{v} to create edge (j, \hat{v}). If this occurs then $S(j)=S(j-1) \cup\{j\}$. In all other cases $\hat{Y}_{j}=Y_{j}$ and $S(j)=S(j-1)$.
We consider the martingale $Z_{0}, Z_{1}, \ldots, Z_{m n}$ where

$$
Z_{t}=\mathbf{E}\left(\left|J_{2}\right| \mid Y_{1}, Y_{2}, \ldots, Y_{t}\right)-\mathbf{E}\left(\left|J_{2}\right| \mid Y_{1}, Y_{2}, \ldots, Y_{t-1}\right)
$$

The map $\mathbf{Y} \rightarrow \hat{\mathbf{Y}}$ is measure preserving. In going from \mathbf{Y} to $\hat{\mathbf{Y}},\left|J_{2}\right|$, changes by at most 2 , according to the in-degree of the vertices v, \hat{v}.

The Azuma-Hoeffding martingale inequality then implies that

$$
\begin{equation*}
\operatorname{Pr}\left(\left|\left|J_{2}\right|-\mathbf{E}\left(\left|J_{2}\right|\right)\right| \geq u\right) \leq \exp \left\{-\frac{u^{2}}{2 m n}\right\} \tag{36}
\end{equation*}
$$

It follows that qs^{2}

$$
\begin{equation*}
\left|\left|J_{2}\right|-\mathbf{E}\left(\left|J_{2}\right|\right)\right| \leq n^{1 / 2} \log n \tag{37}
\end{equation*}
$$

Thus qs we have

$$
\left|J_{2}\right| \geq \frac{n}{2^{3 m+1+m^{2} / 2}}=A_{2} n,
$$

which defines the constant A_{2}.

[^2]Repeating the argument given for $\operatorname{Pr}\left(j \in J_{2}\right)$, we see that for $j \in I_{3}$

$$
\begin{aligned}
& \operatorname{Pr}\left(j \in J_{3} \mid J_{2}\right)= \\
& \quad \sum_{\left\{i_{1}<\cdots<i_{m}\right\} \subseteq J_{2}} \prod_{k=1}^{m} \prod_{\tau=m i_{k}+1}^{m i_{k+1}}\left(1-\frac{k m}{2 \tau-1}\right) \prod_{\tau=m j+1}^{m n}\left(1-\frac{m^{2}}{2 \tau-1}\right) \cdot m!\prod_{i=1}^{m} \frac{m}{2 m j+2 i-1} \\
& \sim \frac{1}{(2 j)^{m} n^{m^{2} / 2}}\left(\sum_{i \in J_{2}} i^{m / 2}\right)^{m} \\
& \geq \frac{\left|J_{2}\right|^{m}}{2^{m+m^{2} / 2} n^{m}} .
\end{aligned}
$$

Thus,

$$
\mathbf{E}\left(\left|J_{3}\right| \mid J_{2}\right) \geq \frac{\left|J_{2}\right|^{m}}{2^{m+m^{2} / 2} n^{m}}\left|I_{3}\right|
$$

and given J_{2}, qs $\left|J_{3}\right|$ will be concentrated around its mean to within $n^{1 / 2} \log n$.
Proceeding in this way we find that for $2 \leq k \leq \omega_{0}$ we have qs

$$
\left|J_{k}\right| \geq A_{k} n
$$

where for $k \geq 2$,

$$
A_{k+1}=\frac{A_{k}^{m}}{2^{m+k+3+m^{2} / 2}},
$$

and (inductively) $A_{k} \geq 2^{-10 k m^{k}}$. It follows that $\left|J_{k}\right| \geq 2^{-10 k m^{k}} n$ and that $\left|J_{\omega_{0}}\right|=n^{1-o(1)}$.
By construction, any locally tree-like vertex of $J_{\omega_{0}}$ is locally regular. The lemma follows from the bound on the number of non locally tree-like vertices in Lemma 10.

3.1 Mixing time

The conductance Φ of the walk \mathcal{W}_{u} is defined by

$$
\Phi=\min _{\pi(S) \leq 1 / 2} \frac{e(S: \bar{S})}{d(S)} .
$$

Mihail, Papadimitriou and Saberi [13] proved that the conductance Φ of the walks \mathcal{W} are bounded below by some absolute constant. Now it follows from Jerrum and Sinclair [10] that

$$
\begin{equation*}
\left|P_{u}^{(t)}(x)-\pi_{x}\right| \leq\left(\pi_{x} / \pi_{u}\right)^{1 / 2}\left(1-\Phi^{2} / 2\right)^{t} . \tag{38}
\end{equation*}
$$

For sufficiently large t, the RHS above will be $O\left(n^{-10}\right)$ at τ_{0}. We remark that there is a technical point here. The result of [10] assumes that the walk is lazy, and only makes a move
to a neighbour with probability $1 / 2$ at any step. This halves the conductance but we still have

$$
\begin{equation*}
T=O(\log n) \tag{39}
\end{equation*}
$$

in (3). The cover time is doubled. Asymptotically the values R_{v} are doubled too. Otherwise, it has a negligible effect on the analysis and we will ignore this for the rest of the paper and continue as though there are no lazy steps.
Notice that Lemma 6 implies $\pi_{v}=O\left((\log n)^{2} n^{-1 / 2}\right)$ and so together with (39) we see that

$$
\begin{equation*}
T \pi_{v}=o(1) \text { and } T \pi_{v}=\Omega\left(n^{-2}\right) \tag{40}
\end{equation*}
$$

for all $v \in V$, as required by Lemma 4 .

4 Cover time of $G_{m}(n)$

4.1 Parameters

Recall that the values of ω, ω_{0} are given by (28), (32) respectively.
Assume now that $G_{m}(n)$ has the following properties: (i) there are $n^{1-o(1)}$ locally regular vertices, (ii) $d(s) \geq n^{1 / 4}$ for $s \leq n^{1 / 10}$, (iii) no small cycle is within distance 10ω of a light cycle, (iv) there are at most $(\log n)^{10 \omega}$ vertices on small cycles and (v) there are at most $n(\log n)^{-\omega}$ vertices $v \geq n / 2$ which have more than $(\log n)^{11 \omega}$ vertices at distance 3ω or less from them.
Consider first a locally regular vertex v. It was shown in [7] (Lemma 6) that $R_{v}=\frac{r-1}{r-2}+o\left(\omega^{-1}\right)$ for a locally-tree-like vertex w of an r-regular graph. We obtain the same result for v by putting $r=m+1$. Note that the degree of v is irrelevant here. It is the branching factor of the rest of the tree G_{v} that matters.

Lemma 13. Suppose that v is locally-tree-like. Then
(a) $R_{v} \leq \frac{d(v)}{m-1}+o(1)$.
(b) $d(v) \geq m+1$ implies $R_{v} \leq \frac{d(v)\left(m+m^{-1}-1\right)}{d(v)\left(m+m^{-1}-2\right)-m^{-1}+1}+o(1)$
(c) If v is locally regular then $R_{v}=\frac{m}{m-1}+o(1)$.

Proof We first define an infinite tree T_{v}^{*} by taking the tree T_{v}^{\prime} defined by the first $\omega+1$ levels of G_{v} and then rooting a copy of the infinite tree T_{m}^{∞} which has branching factor m from each leaf of T_{v}^{\prime}. This construction is modified in the case that v is locally regular. We now let T_{v}^{\prime} be made up from the first ω_{0} levels. Thus if v is locally regular, T_{v}^{*} is an infinite tree with branching factor m, rooted at v.

Let R_{v}^{*} be the expected number of visits to v for an infinite random walk \mathcal{W}_{v}^{*} on T_{v}^{*}, started at v. We argue first that

$$
\begin{equation*}
\left|R_{v}-R_{v}^{*}\right|=o(1) \tag{41}
\end{equation*}
$$

Let $r_{t}^{*}=\operatorname{Pr}\left(\mathcal{W}_{v}^{*}(t)=v\right)$. Then

$$
\begin{array}{rlr}
\left|R_{v}-R_{v}^{*}\right| & \leq \sum_{t=\omega+1}^{T} r_{t}+\sum_{t=\omega+1}^{\infty} r_{t}^{*} & \\
& \leq o(1)+\sum_{t=\omega+1}^{\infty} e^{-\alpha t} \quad \text { for some constant } \alpha>0 \tag{42}\\
& =o(1) &
\end{array}
$$

(When v is locally regular, the sums are from $\omega_{0}+1$.)
Explanation of (42): We prove that $\sum_{t=\omega+1}^{T} r_{t}=o(1)$ via (38); replace r_{t} by $\pi_{v}+O\left(\zeta^{t}\right)$ for some constant $\zeta<1$. For the second sum we project the walk \mathcal{W}_{v}^{*} onto $\{0,1,2, \ldots$,$\} by$ letting $\mathcal{X}(t)$ be the distance of $\mathcal{W}_{v}^{*}(t)$ from v. The degree of every vertex in T_{v}^{*} is at least m and if a vertex has degree exactly m then its immediate descendants have degree at least $m+1$ and so we see that for any positive $\lambda<1 / 2$ and $t \geq 0$ we have

$$
\begin{align*}
\mathbf{E}\left(e^{-\lambda(\mathcal{X}(2 t+2)-\mathcal{X}(2 t))} \mid \mathcal{X}(2 t)\right) & \leq \frac{m-1}{m+1} e^{-2 \lambda}+\frac{2 m-1}{m(m+1)}+\frac{1}{m(m+1)} e^{2 \lambda} \tag{43}\\
& \leq \frac{1}{3} e^{-2 \lambda}+\frac{1}{2}+\frac{1}{6} e^{2 \lambda} \\
& \leq \frac{1}{3}\left(1-2 \lambda+4 \lambda^{2}\right)+\frac{1}{2}+\frac{1}{6}\left(1+2 \lambda+4 \lambda^{2}\right) \\
& \leq e^{-\lambda(1-6 \lambda) / 3} . \tag{44}
\end{align*}
$$

We take $\lambda=1 / 12$ and $\alpha=\lambda(1-6 \lambda) / 3=1 / 72$.
Explanation of (43) If $\mathcal{W}_{v}^{*}(t)=w$ and the degree of w is m then all of w 's neighbours in T_{v}^{*} have degree at least $m+1$. The expression on the RHS of (43) gives the exact expectation if either (i) the degree of w is m and all its neighbours have degree $m+1$ or (ii) the degree of w is $m+1$ and all neighbours have degree m. This situation minimizes the expectation, since the higher the degree the more likely it is that \mathcal{X} increases.

It follows from (44) that

$$
\begin{aligned}
\mathbf{E}\left(e^{-\lambda \mathcal{X}(2 t)}\right) & =\mathbf{E}\left(\prod_{\tau=0}^{t-1} e^{-\lambda(\mathcal{X}(2 \tau+2)-\mathcal{X}(2 \tau))}\right) \\
& =\mathbf{E}\left(\mathbf{E}\left(e^{-\lambda(\mathcal{X}(2 t)-\mathcal{X}(2 t-2))} \mid \mathcal{X}(2 t-2)\right) \prod_{\tau=0}^{t-2} e^{-\lambda(\mathcal{X}(2 \tau+2)-\mathcal{X}(2 \tau))}\right) \\
& \leq e^{-\alpha} \mathbf{E}\left(\prod_{\tau=0}^{t-2} e^{-\lambda(\mathcal{X}(2 \tau+2)-\mathcal{X}(2 \tau))}\right) \\
& \leq e^{-\alpha t}
\end{aligned}
$$

Thus

$$
r_{2 t}^{*}=\operatorname{Pr}(\mathcal{X}(2 t)=0)=\operatorname{Pr}\left(e^{-\mathcal{X}(2 t)} \geq 1\right) \leq \mathbf{E}\left(e^{-\mathcal{X}(2 t)}\right) \leq e^{-\alpha t}
$$

and (42) follows.
Let $b_{w}, w \in T_{v}^{*}$ be the branching factor at w i.e. $b_{v}=d_{v}$ and $b_{w}=d_{w}-1$ if w is not the root.
Let \widehat{T}_{w} be the sub-tree of T_{v}^{*} rooted at vertex w. (Thus $\widehat{T}_{v}=T_{v}^{*}$). Let ρ_{w} denote the probability that a random walk on \widehat{T}_{w} which starts at w ever returns to w. Our aim is to estimate ρ_{v} and use

$$
\begin{equation*}
R_{v}^{*}=\frac{1}{1-\rho_{v}} \tag{45}
\end{equation*}
$$

Let $C(w)$ denote the children of w in T_{v}^{*}. We use the following recurrence: The parameter k counts the number of returns to x, for $x \in C(w)$.

$$
\begin{align*}
\rho_{w} & =1-\frac{1}{b_{w}} \sum_{x \in C(w)} \sum_{k \geq 0}\left(1-\frac{1}{d_{x}}\right)\left(\rho_{x}\left(1-\frac{1}{d_{x}}\right)\right)^{k}\left(1-\rho_{x}\right) \tag{46}\\
& =1-\frac{1}{b_{w}} \sum_{x \in C(w)} \frac{\left(1-\frac{1}{d_{x}}\right)\left(1-\rho_{x}\right)}{1-\rho_{x}\left(1-\frac{1}{d_{x}}\right)} \\
& =1-\frac{1}{b_{w}} \sum_{x \in C(w)} \frac{b_{x}-b_{x} \rho_{x}}{b_{x}+1-\rho_{x} b_{x}} \\
& =\frac{1}{b_{w}} \sum_{x \in C(w)} \frac{1}{b_{x}+1-\rho_{x} b_{x}} . \tag{47}
\end{align*}
$$

Explanation of (46): For each $x \in C(w), 1 / b_{w}$ gives the probability that the walk moves to x in the first step. The term $1-1 / d_{x}$ is the probability that the first step from x is away from w. Then the term $\rho_{x}\left(1-1 / d_{x}\right)$ is the probability that the walk returns to x and does not visit w in its first move from x. We sum over the number of times, k, that this happens. The final factor $1-\rho_{x}$ is the probability of no return for the $k+1$ th time.

We see immediately that if T_{v}^{*} is a regular tree with branching factor $m \geq 2$ then, with $\rho_{w}=\rho$ for all w,

$$
\rho=\frac{1}{m+1-\rho m} \text { and hence } \rho=\frac{1}{m}
$$

and this deals with the locally regular case. (The solution $\rho=1$, which implies $R_{v}^{*}=\infty$ is ruled out by (42) which implies $R_{v}^{*}<\infty$).

If w is in the first ω levels let $b_{w}=b_{w}^{+}+b_{w}^{-}$where b_{w}^{+}is the number of children w^{\prime} of w in T_{v} with $w>w^{\prime}$ i.e. w chose w^{\prime} in the construction of $G_{m}(n)$. If w is at a higher level, we take $b_{w}=b_{w}^{+}=m$ and $b_{w}^{-}=0$.
We will now prove the following by induction on $\omega+1-\ell_{w}$, where $\ell_{w} \leq \omega+1$ is the level of w in the tree.:
(a) $b_{w}=m-1$ implies $\rho_{w} \leq \frac{1}{m}$.
(b) $b_{w}^{+}=m, b_{w}^{-} \geq 1$ implies $\rho_{w} \leq \frac{1}{b_{w}}\left(1+\frac{b_{w}-m}{m+m^{-1}-1}\right)$.
(c) $b_{w}=b_{w}^{+}=m$ implies $\rho_{w} \leq \frac{1}{m}$.
(d) $b_{w}^{+}=m-1, b_{w}^{-} \geq 1$ implies $\rho_{w} \leq \frac{1}{b_{w}}\left(\frac{m-1}{m}+\frac{b_{w}^{-}}{m+m^{-1}-1}\right)$

The base case will be $\ell_{w}=\omega+1$. For which, Case (c) applies and the induction hypothesis holds from the locally regular case.
The lemma follows from this since only cases (b),(c) can apply to the root v, in which case $b_{v}=d(v)$.

Let us now go through the inductive step. Let us assume these conditions apply to $x \in C(w)$. Then case by case, the following inequalities will hold:
(a) $b_{x}+1-b_{x} \rho_{x} \geq m+\frac{1}{m}-1$.
(b) $b_{x}+1-b_{x} \rho_{x} \geq m+\left(b_{x}-m\right)\left(1-\frac{1}{m+m^{-1}-1}\right) \geq m$.
(c) $b_{x}+1-b_{x} \rho_{x} \geq m$.
(d) $b_{x}+1-b_{x} \rho_{x} \geq m+\frac{1}{m}-1+b_{x}^{-}\left(1-\frac{1}{m+m^{-1}-1}\right) \geq m+\frac{1}{m}-1$.

Case (a): In this case $b_{w}=b_{w}^{+}$and only cases (b),(c) are possible for $x \in C(w)$. In which case $b_{x}+1-b_{x} \rho_{x} \geq m$ for $x \in C(w)$ and then (47) implies that $\rho_{w} \leq 1 / m$.
Case (b): In $C(w)$ we have $b_{w}^{+}=m$ cases of (b) or (c) and b_{w}^{-}cases of (a) or (d). In the first case we have $b_{x}+1-b_{x} \rho_{x} \geq m$. In the second case we have $b_{x}+1-b_{x} \rho_{x} \geq m+m^{-1}-1$. Thus

$$
\rho_{w} \leq \frac{1}{b_{w}}\left(1+\frac{b_{w}-m}{m+m^{-1}-1}\right) .
$$

Case (c): This follows as in Case (a).
Case (d): In $C(w)$ we have $m-1$ cases of (b) or (c) and b_{w}^{-}cases of (a) or (d). Thus

$$
\rho_{w} \leq \frac{1}{b_{w}}\left(\frac{m-1}{m}+\frac{b_{w}^{-}}{m+m^{-1}-1}\right)
$$

as is to be shown.
We deal with non-locally-tree like vertices in a somewhat piece-meal fashion: We remind the reader that if G_{v} is not tree-like, then it consists of a breadth-first tree T_{v} of depth ω plus extra edges E_{v}. Each $e \in E_{v}$ lies in a small cycle σ_{e}. If one of these cycles is light, then G_{v} must be a tree plus a single extra edge, see Corollary 8. Otherwise, all the cycles σ_{e} are heavy. G_{v} may of course contain other cycles, but these will play no part in the proof.

Lemma 14. Suppose that either
(i) G_{v} contains a unique light cycle C_{v}, that $v \notin C_{v}$ and that the shortest path $P=\left(w_{0}=\right.$ $\left.v, w_{1}, \ldots, w_{k}\right)$ from v to C_{v} is such that $\max \left\{d\left(w_{1}\right), \ldots, d\left(w_{k}\right)\right\} \geq \omega^{3}$, or
(ii) the small cycles of G_{v} are all heavy cycles. Then
(a) $\left.R_{v} \leq \frac{d(v)}{m-1}+o(1)\right)$.
(b) $d(v) \geq m+1$ implies $R_{v} \leq \frac{d(v)\left(m+m^{-1}-1\right)}{d(v)\left(m+m^{-1}-2\right)+m^{-1}-1}+o(1)$

Proof

(a) Let w be the first vertex on the path from v to C_{v} which has degree at least ω^{3}. Let G_{v}^{\prime} be obtained from G_{v} by deleting those vertices, other than w, all of whose paths to v in G_{v} go through w.(By assumption there are one or two paths). Let R_{v}^{\prime} be the expected number of returns to v in a random walk of length ω on G_{v}^{\prime} where w is an absorbing state. We claim that

$$
\begin{equation*}
R_{v} \leq R_{v}^{\prime}+O\left(\omega^{-2}\right) \tag{48}
\end{equation*}
$$

Once we verify this, the proof of (a) follows from the proof of Lemma 13 i.e. embed the tree $H^{\prime} v$ in an infinite tree by rooting a copy of T_{m}^{∞} at each leaf. To verify (48) we couple random walks on G_{v}, G_{v}^{\prime} until w is visited. In the latter the process stops. In the former, we find that when at w, the probability we get closer to v in the next step is at most ω^{-3} and so the expected number of returns from now on is at most $\omega \times \omega^{-3}$ and (48) follows.
(b) Now consider the case where the small cycles of G_{v} are all heavy. We argue first that a random walk of length ω that starts at v might as well terminate if it reaches a vertex $w \leq n^{1 / 10}, w \neq v$. By the assumptions made at the start of Section 4.1 we can assume $d(w) \geq n^{1 / 4}$. Now we can assume from Lemma 9 at least $n_{0}=n^{1 / 4}-(\log n)^{10 \omega}$ of the T_{v} edges incident with w are not in any cycle σ_{e} contained in G_{v}. But then if a walk arrives at w, it has a more than $\frac{n_{0}}{n^{1 / 4}}$ chance of entering a sub-tree T_{w} of G_{v} rooted at w for which every vertex is separated from v by w. But then the probability of leaving T_{w} in ω steps is
$O\left(\omega(\log n)^{10 \omega} / n^{1 / 4}\right)$ and so once a walk has reached w, the expected number of further returns to v is $o\left(\omega^{-1}\right)$. We can therefore remove T_{w} from G_{v} and then replace an edge (x, w) by an edge $\left(x, w_{x}\right)$ and make all the vertices w_{x} absorbing. Repeating this argument, we are left with a tree to which we can apply the argument of Lemma 13.

Note that if $v \in V_{B}$ then no bound on R_{v} has been established:
$V_{B}=\left\{v: G_{v}\right.$ contains a unique light cycle C_{v} and the path from v to C_{v}
contains no vertex of degree at least $\left.\omega^{3}\right\}$

However, for these it suffices to prove
Lemma 15. If $v \in V_{B}$ then $R_{v} \leq 2 \omega$.
Proof We write, for some constant $\zeta<1$,

$$
\begin{aligned}
R_{v} & =\sum_{t=1}^{\omega} r_{t}+\sum_{t=\omega+1}^{T}\left(\pi_{v}+O\left(\zeta^{t}\right)\right) \\
& \leq \omega+o(\omega)
\end{aligned}
$$

and the lemma follows.
We remind the reader that in the following lemma, λ is defined in (6) and $R_{T}(s)$ is defined in (4).

Lemma 16. There exists a constant $0<\theta<1$ such that if $v \in V$ then $\left|R_{T}(s)\right| \geq \theta$ for $|s| \leq 1+\lambda$.

Proof Assume first that v is locally tree-like. We write

$$
\begin{align*}
R_{T}(s) & =A(s)+Q(s) \\
& =\frac{1}{1-B(s)}+Q(s) \tag{49}
\end{align*}
$$

Here $A(s)=\sum a_{t} s^{t}$ where $a_{t}=r_{t}^{*}$ is the probability that the random walk \mathcal{W}_{v}^{*} is at v at time t (see Lemma 13 for the definition of \mathcal{W}_{v}^{*}). $B(s)=\sum b_{t} s^{t}$ where b_{t} is the probability of a first return at time t. Then $Q(s)=Q_{1}(s)+Q_{2}(s)$ where

$$
\begin{aligned}
& Q_{1}(s)=\sum_{t=\omega+1}^{T}\left(r_{t}-a_{t}\right) s^{t} \\
& Q_{2}(s)=-\sum_{t=T+1}^{\infty} a_{t} s^{t}
\end{aligned}
$$

Here we have used the fact that $a_{t}=r_{t}$ for $0 \leq t \leq \omega$.
We now justify equation (49). For this we need to show that

$$
\begin{equation*}
|B(s)|<1 \quad \text { for }|s| \leq 1+\lambda \tag{50}
\end{equation*}
$$

We note first that, in the notation of Lemma $13, B(1)=\rho_{v}<1$. Then observe that $b_{t} \leq a_{t} \leq$ $e^{-\alpha t}$. The latter inequality is proved in Lemma 13 , see (42). Thus the radius of convergence ρ_{B} of $B(s)$ is at least $e^{\alpha}, B(s)$ is continuous for $0 \leq|s|<\rho_{B},|B(s)| \leq B(|s|)$ and $B(1)<1$. Thus there exists a constant $\epsilon>0$ such that $B(s)<1$ for $|s| \leq 1+\epsilon$. We can assume that $\lambda<\epsilon$ and (50) follows. We will use

$$
\left|R_{T}(s)\right| \geq \frac{1}{1+B(|s|)}-|Q(s)| \geq \frac{1}{1+B(1+\lambda)}-|Q(s)| \geq \frac{1}{2}-|Q(s)|
$$

The lemma for locally tree-like vertices will follow once we show that $|Q(s)|=o(1)$. But, using (38),

$$
\begin{aligned}
\left|Q_{1}(s)\right| & \leq(1+\lambda)^{T} \sum_{t=\omega+1}^{T}\left(\pi_{v}+e^{-\Phi^{2} t / 2}+e^{-\alpha t}\right)=o(1) \\
\left|Q_{2}(s)\right| & \leq \sum_{t=T+1}^{\infty}\left(e^{-\alpha}(1+\lambda)\right)^{t}=o(1)
\end{aligned}
$$

For non tree-like vertices we proceed more or less as in Lemma 14. If $v \notin V_{B}$ then we truncate G_{v} at vertices of degree more than $n^{1 / 4}$, add copies of T_{m} at leaves and then proceed as above.

If $v \in V_{B}$ let T_{v}^{*} be the graph obtained by adding T_{m}^{∞} to all the leaves of G_{v}. Thus T_{v}^{*} contains a unique cycle $C=\left(x_{1}, x_{2}, \ldots, x_{k}, x_{1}\right)$. We can write an expression equivalent to (49) and then argument rests on showing that $B(1)<1$ and $a_{s} \leq \zeta^{s}$ for some $\zeta<1$. The latter condition can be relaxed to $a_{s} \leq e^{o(s)} \zeta^{s}$, allowing us to take less care with small s.
$\boldsymbol{B}(\mathbf{1})<1$: If $m \geq 3$ there is a $\geq 1-\frac{2}{m}$ probability of the first move of \mathcal{W}_{v}^{*} going into an infinite tree rooted at a neighbour of v and then the probability of return to v is bounded below by a positive constant. The same argument is valid for $m=2$ when $v \notin C$. So assume that $v \in C$ and that T_{v}^{*} consists of C plus a tree T_{i} attached to x_{i} for $i=1,2, \ldots, k$. Here T_{i} is empty (if degree of x_{i} is 2) or infinite. Furthermore, T_{i} empty, implies that T_{i-1}, T_{i+1} are both infinite. Thus the walk \mathcal{W}_{v}^{*} has a constant positive probability of moving into an infinite tree within 2 steps and then never returning to v.
$\boldsymbol{a}_{\boldsymbol{s}} \leq \boldsymbol{e}^{\boldsymbol{o (s)}} \boldsymbol{\zeta}^{\boldsymbol{s}}$: If C is an even cycle then we can couple the distance X_{t} of $W_{v}^{*}(t)$ to v with a random walk on $\{0,1,2, \ldots$,$\} as we did in Lemma 13. If C$ is an odd cycle let w_{1}, w_{2} be the vertices of C which are furthest from v in T_{v}^{*}. If $W_{v}^{*}(t) \neq w_{1}, w_{2}$ then $\mathbf{E}\left(X_{t+2}-X_{t}\right) \geq 1 / 6$ and otherwise $\mathbf{E}\left(X_{t+2}-X_{t}\right) \geq 0$. Thus $\mathbf{E}\left(X_{t+4}-X_{t}\right) \geq 1 / 6$ always and we can use Hoeffding's theorem.
Lemma 17. If $v \in V$ and its degree $d_{n}(v) \leq(\log n)^{2}$ then $H_{v}<C R_{v}+o(1)$ for some constant $C<1$.

Proof As in Section 2.1 let f_{t} be the probability that \mathcal{W}_{u} has a first visit to v at time t. As $H(s)=F(s) R(s)$ we have

$$
\begin{aligned}
H_{v} & \leq \operatorname{Pr}\left(\mathcal{W}_{u} \text { visits } v \text { by time } T-1\right) R_{v} \\
& =R_{v} \sum_{t=1}^{T} f_{t}
\end{aligned}
$$

We now estimate $\sum_{t=1}^{T} f_{t}$, the probability that \mathcal{W}_{u} visits v by time T. We first observe that (38) implies

$$
\sum_{t=\omega+1}^{T} f_{t} \leq \sum_{t=\omega+1}^{T}\left(\left((\log n)^{2} / m\right)^{1 / 2} e^{-\Phi^{2} t / 2}+\pi_{v}\right)=o(1)
$$

Thus it suffices to bound $\sum_{t=1}^{\omega} f_{t}$, the probability that \mathcal{W}_{u} visits v by time ω.
Let $v_{1}, v_{2}, \ldots, v_{k}$ be the neighbours of v and let w be the first neighbour of v visited by \mathcal{W}_{u}. Then

$$
\begin{aligned}
\operatorname{Pr}\left(\mathcal{W}_{u} \text { visits } v \text { by time } \omega\right) & =\sum_{i=1}^{k} \operatorname{Pr}\left(\mathcal{W}_{u} \text { visits } v \text { by time } \omega \mid w=v_{i}\right) \operatorname{Pr}\left(w=v_{i}\right) \\
& \leq \sum_{i=1}^{k} \operatorname{Pr}\left(\mathcal{W}_{v_{i}} \text { visits } v \text { by time } \omega\right) \operatorname{Pr}\left(w=v_{i}\right)
\end{aligned}
$$

So it suffices to prove the lemma when u is a neighbour of v.
Let the neighbours of u be $u_{1}, u_{2}, \ldots, u_{d}, d \geq m$ and $v=u_{d}$. If u is locally tree-like than we can write

$$
\begin{equation*}
\operatorname{Pr}\left(\mathcal{W}_{u} \text { does not visit } v \text { by time } \omega\right) \geq \rho \frac{d-1}{d}-o(1)>0 \tag{51}
\end{equation*}
$$

Here ρ is a lower bound on the probability of not returning to u in ω steps, given that $\mathcal{W}_{u}(1) \neq v$. We have seen in the previous lemma that this is at least some positive constant. If $u \notin V_{B}$ then we truncate H_{u} as we did in Lemma 14 and argue for (51).
If $u \in V_{B}$ and there exist neighbours u_{1}, \ldots, u_{k} say, which are not on the unique cycle C of H_{u} then there is a probability k / d that $\mathcal{W}_{u}^{*}(1)=u_{i}$ for some $i \leq k$ and then the probability that \mathcal{W}_{u} does not return to u_{i} in ω steps is bounded below by a constant. The final case is where $m=2, d_{n}(u)=2$ and u, u_{1}, v are part of the unique cycle of H_{u}. But then with probability $1 / 2 \mathcal{W}_{u}(1)=u_{1}$ and then with conditional probability at least $1 / 3 x=\mathcal{W}_{u}(2)$ is not on C and then the probability that \mathcal{W}_{u} does not return to x in ω steps is bounded below by a constant.

4.2 Upper bound on cover time

Let $t_{0}=\left\lceil\frac{2 m}{m-1} n \log n\right\rceil$. We prove that whp, for $G_{m}(n)$, for any vertex $u \in V, C_{u} \leq t_{0}+o\left(t_{0}\right)$.
Let $T_{G}(u)$ be the time taken to visit every vertex of G by the random walk \mathcal{W}_{u}. Let U_{t} be the number of vertices of G which have not been visited by \mathcal{W}_{u} at step t. We note the following:

$$
\begin{align*}
C_{u}=\mathbf{E}\left(T_{G}(u)\right) & =\sum_{t>0} \operatorname{Pr}\left(T_{G}(u) \geq t\right) \tag{52}\\
\operatorname{Pr}\left(T_{G}(u) \geq t\right)=\operatorname{Pr}\left(T_{G}(u)>t-1\right) & =\operatorname{Pr}\left(U_{t-1}>0\right) \leq \min \left\{1, \mathbf{E} U_{t-1}\right\} . \tag{53}
\end{align*}
$$

It follows from (52), (53) that for all t

$$
\begin{equation*}
C_{u} \leq t+1+\sum_{s \geq t} \mathbf{E}\left(U_{s}\right)=t+1+\sum_{v \in V} \sum_{s \geq t} \operatorname{Pr}\left(\boldsymbol{A}_{s}(v)\right) \tag{54}
\end{equation*}
$$

where $\boldsymbol{A}_{s}(v)$ is defined in Corollary 5.
For vertices v satisfying Corollary 5 we see that

$$
\begin{equation*}
\sum_{s \geq t} \operatorname{Pr}\left(\boldsymbol{A}_{s}(v)\right) \leq\left(1+O\left(T \pi_{v}\right)\right) \frac{R_{v}}{\pi_{v}} e^{-\left(1+O\left(T \pi_{v}\right)\right) t \pi_{v} / R_{v}}+O\left(\lambda^{-2} e^{-\lambda t / 2}\right) \tag{55}
\end{equation*}
$$

The second term arises from the sum of the error terms $O\left(\lambda^{-1} e^{-\lambda s / 2}\right)$ for $s \geq t$.
Recall that V_{B} is the set of vertices v such that G_{v} contains a unique light cycle C_{v} and the path from v to C_{v} contains no vertex of degree at least ω^{3}.

We write $V=V_{1} \cup V_{2} \cup V_{3}$ where $V_{1}=\left(V \backslash V_{B}\right) \cap\left\{d_{n}(v) \leq(\log n)^{2}\right\}, V_{2}=\left\{d_{n}(v) \geq(\log n)^{2}\right\}$ and $V_{3}=V_{B} \cap\left\{d_{n}(v) \leq(\log n)^{2}\right\}$.
Let $t_{1}=(1+\epsilon) t_{0}$ where $\epsilon=n^{-1 / 3}$ can be assumed by Lemma 6 to satisfy $T \pi_{v}=o(\epsilon)$ for all $v \in V-V_{2}$.

If $v \notin V_{B}$ then by Lemmas 13 (a) and $14(\mathrm{a})$,

$$
\begin{equation*}
t_{1}\left(1+O\left(T \pi_{v}\right)\right) \pi_{v} / R_{v} \geq \frac{2 m}{m-1} n \log n \cdot \frac{d(v)}{2 m n} \cdot \frac{m-1}{d(v)}=\log n \tag{56}
\end{equation*}
$$

Plugging (56) into (54) and using $R_{v} \leq 5$ (Lemmas 13 and 14) and $\pi_{v} \geq \frac{1}{2 n}$ for all $v \in V \backslash V_{B}$ we get

$$
\begin{equation*}
\sum_{v \in V_{1}} \sum_{s \geq t_{1}} \operatorname{Pr}\left(\boldsymbol{A}_{s}(v)\right) \leq 10 n . \tag{57}
\end{equation*}
$$

Suppose now that $v \in V_{2}$ ie. $d_{n}(v) \geq(\log n)^{2}$. After a walk of length T there is an $\Omega\left((\log n)^{2} / n\right)$ chance of being at v. Thus for some constant $c>0$ and $s \geq t_{1}$, we have

$$
\operatorname{Pr}\left(\boldsymbol{A}_{s}(v)\right) \leq\left(1-\frac{c(\log n)^{2}}{n}\right)^{\lfloor s / T\rfloor} \leq \exp \left\{-\frac{c s(\log n)^{2}}{2 T n}\right\}
$$

Thus

$$
\begin{align*}
\sum_{v \in V_{2}} \sum_{s \geq t_{1}} \operatorname{Pr}\left(\boldsymbol{A}_{s}(v)\right) & \leq n \sum_{s \geq t_{1}} \exp \left\{-\frac{c s(\log n)^{2}}{2 T n}\right\} \\
& \leq \frac{3 T n^{2}}{c(\log n)^{2}} \exp \left\{-\frac{c t_{1}(\log n)^{2}}{2 T n}\right\}=o(1) . \tag{58}
\end{align*}
$$

It remains to deal with $v \in V_{3}$. We first observe that

$$
\left|V_{B}\right| \leq(\log n)^{10 \omega} \omega^{3 \omega} \leq(\omega \log n)^{10 \omega}
$$

and from Lemma 15 and (55) we have

$$
\begin{align*}
\sum_{v \in V_{3}} \sum_{s \geq t_{1}} \operatorname{Pr}\left(\boldsymbol{A}_{s}(v)\right) & \leq(\omega \log n)^{10 \omega}\left(2 n \omega e^{-(1+o(1)) t_{1} \pi_{v} /(2 \omega)}+O\left(\lambda^{-2} e^{-\lambda t_{1} / 2}\right)\right) \\
& =o(n) . \tag{59}
\end{align*}
$$

Thus combining (57) with (58) and (59) gives

$$
C_{u} \leq t_{1}+O(n)=t_{0}+o\left(t_{0}\right),
$$

completing our proof of the upper bound on cover time.

4.3 Lower bound on cover time

For some vertex u, we can find a set of vertices S such that at time $t_{1}=t_{0}(1-\epsilon), \epsilon \rightarrow 0$, the probability the set S is covered by the walk \mathcal{W}_{u} tends to zero. Hence $T_{G}(u)>t_{1}$ whp which implies that $C_{G} \geq t_{0}-o\left(t_{0}\right)$.

We construct S as follows. Let S be some maximal set of locally regular vertices such that the distance between any two elements of S is least $2 \omega+1$. Thus $|S| \geq n e^{-e^{O\left(\omega_{0}\right)}}(\log n)^{-11 \omega} \geq$ $n(\log n)^{-12 \omega}$.

Let $S(t)$ denote the subset of S which has not been visited by \mathcal{W}_{u} after step t. Now, by Corollary 5 , provided $t \geq T$

$$
\mathbf{E}(|S(t)|) \geq(1-o(1)) \sum_{v \in S}\left(\frac{c_{u, v}}{\left(1+p_{v}\right)^{t}}+o\left(n^{-2}\right)\right) .
$$

Let u be a fixed vertex of S. Let $v \in S$ and let $H_{T}(1)$ be given by (5), then (38) implies that

$$
\begin{equation*}
H_{T}(1) \leq \sum_{t=\omega}^{T-1}\left(\pi_{v}+e^{-\Phi^{2} t / 2}\right)=o(1) \tag{60}
\end{equation*}
$$

$R_{v} \geq 1$ and so $c_{u v}=1-o(1)$. Setting $t=t_{1}=(1-\epsilon) t_{0}$ where $\epsilon=2 \omega^{-1}$, we have

$$
\begin{align*}
& \mathbf{E}\left(\left|S\left(t_{1}\right)\right|\right) \geq(1+o(1))|S| e^{-(1-\epsilon) t_{0} p_{v}} \\
& =(1+o(1)) \exp \left\{\log n-12 \omega \log \log n-(1+o(1))(1-\epsilon) \frac{2 m}{m-1} n \log n \cdot \frac{m}{2 m n} \cdot \frac{m-1}{m}\right\} \\
& \geq n^{1 / \omega} . \tag{61}
\end{align*}
$$

Let $Y_{v, t}$ be the indicator for the event $\boldsymbol{A}_{t}(v)$. Let $Z=\{v, w\} \subset S$. We will show (below) that that for $v, w \in S$

$$
\begin{equation*}
\mathbf{E}\left(Y_{v, t_{1}} Y_{w, t_{1}}\right)=\frac{c_{u, Z}}{\left(1+p_{Z}\right)^{t+2}}+o\left(n^{-2}\right) \tag{62}
\end{equation*}
$$

where $c_{u, Z} \sim 1$ and $p_{Z} \sim(m-1) /(m n) \sim p_{v}+p_{w}$. Thus

$$
\mathbf{E}\left(Y_{v, t_{1}} Y_{w, t_{1}}\right)=(1+o(1)) \mathbf{E}\left(Y_{v, t_{1}}\right) \mathbf{E}\left(Y_{w, t_{1}}\right)
$$

which implies

$$
\begin{equation*}
\mathbf{E}\left(\left|S\left(t_{1}\right)\right|\left(\left|S\left(t_{1}\right)\right|-1\right)\right) \sim \mathbf{E}\left(\left|S\left(t_{1}\right)\right|\right)\left(\mathbf{E}\left(\left|S\left(t_{1}\right)\right|\right)-1\right) \tag{63}
\end{equation*}
$$

It follows from (61) and (63), that

$$
\operatorname{Pr}\left(S\left(t_{1}\right) \neq \emptyset\right) \geq \frac{\mathbf{E}\left(\left|S\left(t_{1}\right)\right|\right)^{2}}{\mathbf{E}\left(\left|S\left(t_{1}\right)\right|^{2}\right)}=\frac{1}{\frac{\left.\mathbf{E}\left(\left|S\left(t_{1}\right)\right|| | S\left(t_{1}\right) \mid-1\right)\right)}{\mathbf{E}\left(\left|S\left(t_{1}\right)\right|\right)^{2}}+\mathbf{E}\left(\left|S\left(t_{1}\right)\right|\right)^{-1}}=1-o(1)
$$

Proof of (62). Let Γ be obtained from G by merging v, w into a single node Z. This node has degree $2 m$.

There is a natural measure preserving mapping from the set of walks in G which start at u and do not visit v or w, to the corresponding set of walks in Γ which do not visit Z. Thus the probability that \mathcal{W}_{u} does not visit v or w in the first t steps is equal to the probability that a random walk $\widehat{\mathcal{W}}_{u}$ in Γ which also starts at u does not visit Z in the first t steps.
We apply Lemma 4 to Γ. That $\pi_{Z}=\frac{1}{n}$ is clear, and $c_{u, Z}=1-o(1)$ is argued as in (60). The vertex Z is tree-like up to distance ω in Γ. The derivation of R_{Z} in Lemma 13(c) is valid. The fact that the root vertex of the corresponding infinite tree has degree $2 m$ does not affect the calculation of R_{Z}^{*}.

References

[1] R. Aleliunas, R.M. Karp, R.J. Lipton, L. Lovász and C. Rackoff, Random Walks, Universal Traversal Sequences, and the Complexity of Maze Problems. Proceedings of the 20th Annual IEEE Symposium on Foundations of Computer Science (1979) 218-223.
[2] A. Barabási and R. Albert, Emergence of scaling in random networks, Science 286 (1999) 509-512.
[3] B. Bollobás and O. Riordan, The diameter of a scale-free random graph, Combinatorica 24 (2004) 5-34.
[4] B. Bollobás and O. Riordan and J. Spencer and G. Tusnády, The degree sequence of a scale-free random graph process, Random Structures and Algorithms 182001 279-290.
[5] J. Brown and R. Churchill, Complex Variables and Applications, (Sixth Edition) McGrawHill (1996).
[6] C. Cooper and A. M. Frieze, The cover time of sparse random graphs, Proceedings of the 14th ACM-SIAM Symposium on Discrete Algorithms (2003) 140-147.
[7] C. Cooper and A. M. Frieze, The cover time of random regular graphs, SIAM Journal on Discrete Mathematics 18 (2005) 728-740.
[8] U. Feige, A tight upper bound for the cover time of random walks on graphs, Random Structures and Algorithms 6 (1995) 51-54.
[9] U. Feige, A tight lower bound for the cover time of random walks on graphs, Random Structures and Algorithms 6 (1995) 433-438.
[10] M. Jerrum and A. Sinclair. The Markov chain Monte Carlo method: an approach to approximate counting and integration. In Approximation Algorithms for NP-hard Problems. (D. Hochbaum ed.) PWS (1996) 482-520
[11] W. Hoeffding, Inequalities for sums of bounded random variables, Journal of the American Statistical Association 27, (1963) 13-30.
[12] J. Jonasson, On the cover time of random walks on random graphs, Combinatorics, Probability and Computing, 7 (1998), 265-279.
[13] M. Mihail, C. Papadimitriou, and A. Saberi, On Certain Connectivity Properties of the Internet Topology, Proceedings of the 44 th Symposium on Foundations of Computer Science (2003) 28-35.
[14] H. Wilf, Generatingfunctionology, Academic Press (1990).

[^0]: *Department of Computer Science, King's College, University of London, London WC2R 2LS, UK
 ${ }^{\dagger}$ Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh PA15213. Supported in part by NSF grant CCR-0200945.

[^1]: ${ }^{1} \mathrm{~A}$ sequence of events \mathcal{E}_{n} occurs with high probability whp if $\lim _{n \rightarrow \infty} \operatorname{Pr}\left(\mathcal{E}_{n}\right)=1$.

[^2]: ${ }^{2} \mathrm{~A}$ sequence of events \mathcal{E}_{n} occurs quite surely $(\mathbf{q s})$ if $\operatorname{Pr}\left(\mathcal{E}_{n}\right)=1-O\left(n^{-K}\right)$ for any constant $K>0$.

