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Abstract

We prove that almost every digraph Ds ;n2 oyt is Hamiltonian. As a corollary
we obtain also that almost every graph G4—oy: is Hamiltonian.

1 Introduction

The random digraph Dy_;n¢—ou is defined as follows: It has vertex set V = [n| where
[n] = {1,2,...,n} and each v € [n] chooses a set in(v) of k random edges directed into v
and a set out(v) of £ random edges directed out of v. We call such a digraph a k-in, f-out
digraph. For our purposes it is not important if v chooses edges with or without replacement
and we shall assume that they are chosen without replacement. Thus Dy, ¢—out has (k+€)n
edges. The probability space for Dy_;y, s—ou: Will be denoted by Dy_in ¢—out- This model was
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introduced by Fenner and Frieze [7] who discussed the strong connectivity of Dy_in k—out
for k > 2. The remaining case, where k = 1 was discussed by Cooper and Frieze [3], and by
McDiarmid and Reed [17]. In an earlier paper Cooper and Frieze [4] proved that D3_n 3 out
is Hamiltonian whp, with high probability i.e., probability 1 — o(1) as n — oo.

The main result of this paper is an improvement of this to

Theorem 1
Dy _in2—out 15 Hamiltonian whp.

This result is best possible since
Pr(D1_in 2 out is Hamiltonian) = o(1).

This follows from the fact that whpD;_;;, 2o contains 2 vertices of indegree 1 sharing a
common in-neighbour.

If £ = 0 then we write Dy_,,;. If we drop the orientation in Dj_,,; then we obtain the
underlying undirected graph Gj_,.. This has been the object of considerable study, and
the main outstanding question, is how large should k£ be for Gy_,.;: to have a Hamilton
cycle whp.

It was previously known that k > 5 is sufficient, (Frieze and Luczak [8]), and it is conjec-
tured that the correct lower bound for k is 3. By ignoring orientation in Theorem 1 we
obtain an improvement on [8]:

Corollary 2
G4 our 18 Hamiltonian whp.

From now on we use D, to denote Da_;, 2 ous-

A permutation digraph is a set of vertex disjoint directed cycles that cover all n vertices.
Its size is the number of cycles.

To prove the theorem, we will use a three phase method as outlined below, where we prove
that each phase succeeds whp.

Phase 1. We show that D,, contains a permutation digraph II; of size at most 2logn.

Phase 2. We increase the minimum cycle length in the permutation digraph to at least

o = |'11000n
ogn

Phase 3. We convert the Phase 2 permutation digraph to a Hamilton cycle.



1.1 Chernoff bounds and some notation

Let B(n, p) denote the Binomial random variable with parameters n, p. We use the following
well known inequalities for the tails of the binomial distribution:

2P 0<e<1, (1)

(e/a)™®. (2)

Throughout the paper inequalities are only claimed to hold for n sufficiently large.

Pr(|B(n,p) — np| > enp)

<
Pr(B(n,p) > anp) <

In addition to the notation whp referring to a sequence of events &, we will use the
following:

o wlp(z) or with logarithmic probability stands for Pr(€,) = O((logn)~®).
e wpp(z) or with polynomial probability stands for Pr(€,) = O(n~?).

e qs or quite surely stands for Pr(&,) = O(n~®) for any fixed z.

2 Phase 1. Making a permutation digraph with at
most 2logn cycles

With any digraph D on n vertices there is an associated bipartite graph BIP(D) with
n + n vertices, which contains an edge (u,v) iff D contains the directed edge (u,v). It is
well known that perfect matchings in BIP(D) are in 1-1 correspondence with permutation
digraphs of D. Let BIP(D,) be denoted by BIP.

Lemma 3 Whp D,, contains a permutation digraph I1; with at most 2logn cycles.

Proof Walkup [18] has shown that whp BIP contains a perfect matching {(z, (7)), ¢
=1,2,...,n}. We can argue by symmetry (as in [8]) that we can take ¢ to be a random
permutation. It is well known (e.g. Feller [6]), that whp a random permutation contains
at most 2logn cycles, and thus the permutation digraph has size at most 2logn. O

As we use some edges of D,, in Phases 2 and 3, we will need to understand the distribution
of the edges not contained in II;. To do this we will consider a constructive version of
Walkup’s result. Karp, Rinnooy-Kan and Vohra [13] have described an algorithm for
finding a perfect matching in BI P whp. The next sub-section describes the algorithm and
subsequent sub-sections help us to understand the conditioning problems.



2.1 The matching algorithm

Let us write A = {a1, az,...,a,} and B = {by, bs, ..., b, } for the two parts of the vertex par-
tition of BIP. The edge set of BIP is OUT UIN where OUT = {out(a;), i =1,2,...,n}.
Here if out(i) = {k, £} then out(a;) = {bx,be}. IN = U in(b;) is defined similarly.

We next consider two edge labeled multigraphs IG = (A, {e; : b € B}) and OG = (B,{f, :
a € A}) where e, = (b,in(b)) and f, = (a,out(a)). Hence for example e, is a pair (b, {z,y})
where b € B is the edge label and z,y € A are the endpoints of the edge.

We note that IG and OG are very close in distribution to G, 5.
Informal description of Algorithm PAIR:

Let H;y = IG and Hy = (B, 0). Consider an isolated tree T of H;. Choose any vertex z as
root. Orient the edges of T towards z. Let the directed edges of T' now be e; = (b;, {a;, a}})
for 1 < i < t. If we match (a;,b;) together for 1 < i < ¢ then only the root z is not
matched. To deal with this we consider matching = with one of b, b’ where f, = {b,b'}. But
if we match x with b then, to avoid later conflicts we should delete e, from H;. We thus
go to and fro between H; and Hj, rooting trees in H;, adding edges to Hy and deleting
edges in H;. If successful, the algorithm transforms H; and Hs into graphs in which every
component is either a tree or unicyclic. A perfect matching M can be constructed from
the rooted trees (and unicyclic components) as described previously. The roots of trees in
H, will be marked and the non-roots of trees in Hy will be checked.

The following conditions will be observed by the algorithm.

e In H;, marked vertices appear in isolated trees only. An isolated tree contains at
most one marked vertex.
A* = {marked vertices}.

e H, contains no complex components. (A complez component is one with more edges
than vertices.) The algorithm fails if one is created. An isolated tree contains a
unique unchecked vertex. All vertices of unicyclic components are checked.

B* = {checked vertices}.

Whp IG consists of a unique giant (size 2(n)) connected component GIANT plus no
other complex components. We only consider running PAIR if a GIANT exists. In fact
Karp, Rinnooy-Kan and Vohra described their algorithm with GIANT replaced by the
2-CORE. However, their calculations were made in terms of GIANT.

It will be necessary for us to carry out PAIR in rounds, something not considered in [13].



Algorithm PAIR

The algorithm returns a perfect matching M of the input BIP(D,) whp.

Hl :=IG and H2 = (B,(Z))
A* .= B* := ()
If IG does not have a unique component GIANT of size > n/1000 then FAIL.
E, := {edges of GIANT in H,};
By :={b: ey, € Eg};
For t =1,2,... do [Round {]

Begin
If every isolated tree of H; contains a marked vertex, go to SUCCESS; otherwise
A; = B} =

For every isolated tree T of H; in which all vertices are unmarked do
Begin
Randomly choose vertex a € T,
A} .= Ay U {a}; i.e. mark a. MARK STEP
End
A= A" U Ay
Arbitrarily order A} = {f1, f2,.--};
For j =1,2,... do
Begin
Add the edge f; to Hy. Let K be the component of H, containing f;.
If K is complex then FAIL.
Else
If K is unicyclic, choose the one remaining unchecked vertex of K.
X  If K is a tree, there are two unchecked vertices. Choose one of them. Give preference
to vertices in By, choosing randomly if this does not yield a unique choice.
Let b be the vertex chosen at this step.

By := Bf U {b}; i.e. check b CHECK STEP
End
B* := B*U By;
Delete the edges e, b € B} from Hj; DELETION STEP
End of round t.;
Next t;

SUCCESS Get the output matching M using the following rules;
Isolated trees: Orient the edges of the isolated trees of Hy, Hy so that all directed paths
lead to the unique marked vertex (H;) or to the unique unchecked vertex (Ha).
If a € T,a ¢ A* for some tree T of H; then add (a,b) to M where e, is the unique
edge of T which has been oriented out of a. Call this an I N-edge.
If b€ T,b € B* for some tree T of Hy then add (a,b) to M where f, is the unique
edge of T which has been oriented out of b. Call this an OUT-edge.
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Unicyclic components: Deal with similarly, i.e. randomly orient their cycles and then
orient the edges towards the cycles.
End of Algorithm PAIR.

Let the final value of H; (resp. Hs) be denoted by Hyy (resp. Hoyr) and the value of Hy
(resp. Hs) at the end of round ¢t by Hy(t) (resp. Ha(t)). If we want to keep the orientations
given at the end of PAIR then we refer to them as H IN, ﬁOUT respectively. Note that it
is legitimate to say:

The matching M produced by PAIR is defined by H;nx and Hopr. (3)

For input I to PAIR we will let p = p(I) denote the number of rounds executed. Fur-
thermore, in order to be specific, we will make all random choices in the Algorithm PAIR
according to the following rule.

Rule (R1). Selection rule for random choices

We choose two random permutations a € Sy and 5 € Sp. (Here the set of permutations
of a finite set X is denoted by Sx.) Assuming A is ordered a; < a3 < --- < a, we find
that o induces an ordering <, on A where a <, o' iff a(a) < a(a’). Similarly for B and £.
Choices are made according to the orderings <,, <g. Thus in a MARK STEP we mark the
first vertex under ordering <, which is in tree 7. In a CHECK STEP, if we have to choose
between two vertices, we take the first one under the ordering <g. Finally, to orient a cycle
after a SUCCESSFUL termination, we (i) choose the first vertex z of the cycle (under <,
or <g) and (ii) orient the edges so that the edge out of = points to its lowest neighbour
(under <, or <g).

We refer the reader to [13] for an elegant analysis of Algorithm PAIR and the proof of the
following theorem. Let

p
B = B;.
t=1
Theorem 4 [18] PAIR whp ends successfully with .1n < |A*| = |B*| < .49n.

2.2 An equivalence relation on the input

We regard Da_ip 2—out @ Da_in, X Dy_oyus. The probability space of inputs to PAIR is thus
Do_in X Da_our X S4 X Sp with uniform measure.

Let S denote the subset of the input space for which Algorithm PATR terminates success-
fully.

We now prove a lemma showing that the matching M produced by PAIR is random, and
that the set A* is independent of M. The result is intuitively obvious, but important
enough to demand a detailed proof.



Lemma 5 (a) Let My, My be perfect matchings of A with B. Then
Pr(M = M;) = Pr(M = M,).
(b) Let S,S" C A be of the same cardinality. Then

Pr(A* = S | M) = Pr(A* = §' | M).

Proof (a) Let M; = {(a;,b;) : i € [n]} and My = {(a;,7(b;)) : ¢ € [n]} where
7 is a permutation of B. It is enough to consider this case. Consider an input Z; =
(DL, D! . o1,B3) to PAIR that yields M = M;.

in’ out?
To obtain D?, the instance of D,, in the input Z, = (D2, D? ., as = oy, 3, = Bim ') which

leads to M = M, we make the following substitutions in D?.

A1l If out(a) = {b1, b2} in Z; then let out(a) = {n(b1), 7(b2)} in I;.

A2 If in(b) = {a1,az} in Z; then let in(mw(d)) = {a1, a2} in Zs.

With these substitutions IG is unchanged except for a permutation of edge labels and OG
is unchanged except for a permutation of vertex labels. In Z,, 7(b) takes on the role of b in
Z,. Conditions A1 and A2 enforce this in terms of edge and vertex labels and B, = 37 ?
ensures that the position of 7(b) under ordering <g, is that of b in <g,. The set By of Z; is
replaced by 7(B,) in Z,; so if a unique choice to check b € B; exists for Z; at Step X then

Z, checks 7(b) € m(B,). The mapping from inputs Z; to inputs Z, is measure preserving,
and so (a) follows.

(b) Let My, M, be as in (a). We first argue that
Pr(A*=S|M=M)=Pr(A*=S | M = M,). (4)

Let Z; denote an input which produces A* =S and M = M;. If 7, is constructed from Z;
as in (a) then PAIR will yield A* = S and M = M. This proves (4). Thus

Pr(A*=S| M)=Pr(A*=09).
We just have to show that

Pr(A*=5)=Pr(4*=39").

Now let 7 be any permutation of A for which 7(S) = S’. Let Zg = (D5, D5 ., a, 8) be an
input which produces A* = S. Let Zg = (DS, DS, an™!, 3) where instead of al and a2

we make the substitutions given below to transform the input graph.
A3 If out(a) = {b1,b2} in Zg then let out(n(a)) = {b1,b2} in Zg.
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A4 If in(b) = {a1,a2} in Zg then let in(b)) = {n(a1),m(az2)} in Zg.

The substitutions ensure that m(a) takes on the role of a at each step of the algorithm.
Thus A* = S’, and we have defined a measure preserving map from inputs for which A* = §
to those for which A* = §'. a

We need the following notation for I € §: Here each piece of notation implicitly depends
on the input e.g. DEL = DEL(I).

e DFEL denotes the set of edges of IG that are deleted by PAIR on instance I.

e ¢ € DEL consists of a pair (E(e), endpts(e)) where =: DEL — B* is a bijection.

e DEL,; ={ec DEL: Z(e) € ByNB}} fort=1,2,...,p.

o DEL,y={e€ DEL: Z(e) € Bf\ B,} fort =1,2,...,p.

e ENDPTS,; = {endpts(e) : e € DEL;;} as multi-sets for i = 1,2,t =1,2,...p.
e Bfy =B;fNB,and Bf, = Bf \ By fort =1,2,...p.

e Bi, = B,\ B*and B, = B\ (B,UB").

Given a perfect matching M, the matching function p : A — B is defined by M =
{(a,u(a)) : a € A}. Note that
u(A*) = B*. (5)

For if a € A* then f, is an edge of Hoyr and a will be matched to a checked vertex as
described at the final SUCCESS phase of Algorithm PAIR.

We now define an equivalence relation ~ on the set S of inputs I leading to a successful
completion of the Algorithm PATR. We define it by starting with a fixed representative I
and then describing all inputs which are related to it.

Our idea is to condition the input to be a random member of a fixed equivalence class.
Within an equivalence class M will be invariant. The structure of the class will be suffi-
ciently simple that we can analyse the distribution of edges not contained in M.

We will use ~ to denote quantities associated with I. We start with the digraphs Dy =
Hin(I), D2 = Hoyr(I).

D+, D, together contain n edges E = E; U~E2.~ Let 7 be an arbitrary bijection between E
and M. We use 7 to relabel the edges of Dy, D, as follows:

Labels of edges and non-roots of trees: If e = (a@1,a) € E; and 7(e) = (a,b)
then vertex label a; of e is replaced by a and the edge label b of e is replaced by b. If



e = (by,by) € E, and 7(e) = (a,b) then vertex label b, of e is replaced by b and the edge
label a of e is replaced by a. We see immediately from this that two labelled digraphs
D1, Dy » produced by this process will also define the matching M, in the sense of (3).

The first part of our procedure for randomly sampling from £ is then:
G: Construct a random bijection 7 from E to M.

So far we have shown how 7 produces new random labels for all edges of H IN, ﬁOUT and
for some of the vertices. We need to describe how to put in new labels for the roots of
trees. We will need to further fill in the missing parts of instance I and then show that the
digraphs H iv(I), Houyr (I) produced by PAIR. are the same as the ones produced by our
relabelling.

Labels~of roots of trees If Z is the label of the root of a tree in 1~)1 (resp. D2) then D2
(resp. D;) contains an edge with label Z. If = changes this to a € A (resp. b € B) then
the vertex label Z of the root will be replaced by a (resp. b).

Construction of I: We have now partially specified a new instance I.

1. If Dy, contains an edge (a1, az) with edge label b = p(aq) then in(b) = {a1, a2}

2. Similarly, if Dy, contains an edge (b1, b2) with edge label a = p~'(b1) then out(a) =
{b1, b2}

We let A* be those elements of A which have out specified in 2. and let B* be those
elements of B which have not had in specified in 1. (We confirm the consistency of this
notation later). Note that

|A*| = |B*| = |A*(I)| is independent of .

(a): out(a),a ¢ A*: Since these sets are not exposed by PAIR they do not affect the
construction of H;n, Hoyr and are unconditioned by PAIR. So in our equivalence class
we leave them unconditioned as well.

G,: For a ¢ A* choose out(a) = {b, by} randomly and independently.

7 induces a permutation 74 € S4 as follows: If e = (@,d') € E, and (e ) = (a,b) then
ma(a) = a. If e € Ey and e has edge label @ and 7(e) = (a,b) then m4(a) =

(b): in(b),b € B*: These edges do not produce edges of Hyy but nevertheless they do
have an effect on its construction. If b € B* then (1~ '(b),b) is the image under 7 of some
edge e = (b,b') of Dy. If b € Bf, then we place b into Bf;. In this way we define By, for
t=1,2,...,p,i=12

Gs: Fort=1,2,...,p,1=1,2 let ¢;; be a random bijection between B}, and
{{ma(a1),ma(az)} : {a1,a2} € ENDPTSt,i(f)}. Then in(b) = ¢ ;(b) for b € Bf,.
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We let 75 = pmap~", By = n5(B,) and a = ar' and B = Brgl. Ifb € By, then there is
an edge e = (b,0') € E, where b € Bt*z and 75(b) = b showing that
np(B;;) =By fort=1,2,...,5,i=1,2,

and so ~
wa(A*) = A"

This completes our description of an equivalence class. We must show that the definition
is consistent. To go from I to I we have made the following replacements:

b ¢ B*, in(b) = {1, a2} = in(rp(b)) = {ma(@1), 7a(as)}
The edge (@1,3dz) with label b is replaced by the edge (m4(a1), m4(dz)) with label 75(b).
i€ A% ing(@) = {by, by} = ina(wa(a)) = {mp(b1), 75(b2)}.
The edge (b1, by) with label @ is replaced by the edge (m5(by), 75(bs)) with label 74(a).
Furthermore,
4 <g Gy ¢ ma(d) <q ma(@2) and b <z by ¢ ma(b) <g 7B (by).
Suppose that in addition we add
b e B*, in(b) = {a1,d:} = in(m5(b)) = {ma(@1), 7a(as)}. (6)

Then as far as PAIR is concerned 74(a), 7(b) are just “new names” for @, b and so PAIR
will produce the labelled digraph given in the description of the equivalence class.

If (6) does not hold then we are just changing the bijections ¢;;. But changing such a
bijection does not change the final digraphs H IN Hoyr. This is because in the DELETION
STEP of round ¢ we delete the edges ey, b € B} and changing ¢,; changes the edge labels
around but does not change the endpoints of the edges that are deleted.

In our analysis of Phase 2 we will condition on our input being chosen randomly from
some fixed equivalence class €. To facilitate working in this model we assume that we have
chosen a fixed representative I € £. We will continue to use a tilde to refer to quantities
associated with I.

Let B; = |By;| fori =1,2,t=0,1,...,p and let 8f = B, + Bfy for t =0.1,..., p.

2.3 Sizes

In this section we prove some facts about the sizes of various objects in Hyxn, Hoyr-
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Lemma 6 There is an absolute constant 0 < vy < 1/2 such that whp

ﬁtz
B ﬂt

9/10

-7
stmultaneously for all t,i such that Bf > n

Proof Suppose that Hs(t) has ayn/2 edges. Here oy < .98 whp, see Theorem 4. Let
an isolated tree of Hs(t) be a g-tree if all of its vertices are in B,. Note that as observed

in [13], at the end of a round, the number of g-trees is precisely the number of edges left
in GIANT. Next let

e’} xkkk—Z L
Y(z,y) = Ty’“ levk,
k=1 °

The number of isolated trees contained in a fixed set of size zn in G, /2 is qs equal to
Y(z,y) + o(n®*). A calculation involving known results on the size of the giant component
yields that there is a constant .75 < £, < .8. such that gs |B,|/n = &, + o(1).

Now we have
ﬁt* = (at - at_l)n (7)

and by the above gs
5:,1 = (Y&, 1) — (&, au))n + 0(n3/4)
= (w1 — ) f'(n)n + o(n**) (8)

where f(a) = ¥(&y, ) and a1 <7 < .

But
fkkk 2( 1) L oo fkkk_l L
f’(n) _ nz—nk 1, nk_Zngk 1,k
k=1 k=1
= n CI_CZ
where

n¢1 + o(n) = the expected number of edges of isolated trees of G,/ in [{n].

n(s + o(n) = the expected number of vertices of isolated trees of G/, in [{n)].

Assuming n < 1 we have
G =n&; /2 and & =&, (9)
The lemma follows from (7)—(9) with v = (£, — %f;)/2 a

Lemma 7 There exists an absolute constant kK > 0 such that whp, on termination of
PAIR, the graph Hoyr:
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1. Contains no complexr components.
2. Has at most klogn vertices on unicyclic components.

3. Has maximum component size at most klogn.

4. Has at most n/(logn)?® vertices in components of size > rkloglogn.

Proof We know from Theorem 4 that whp Hopyr will be composed of an, a < .49,
random edges. Erd8s and Rényi [5] show that whp such a graph satisfies 1,2,3 above.
We have to account for repeated edges since [5] deals with G, ,,. But whp there will be

O(logn) such edges and they will not upset the desired conclusion.

A simple calculation verifies 4. Indeed, if @ < .49 and Z is the number of vertices on
isolated trees of size k € [kg = kloglogn, k; = klogn] and

-0

then
k] an
1\, ps(@N)k_1 k(n—k)
E(Z) < k=2 1—
(Z2) < k;ﬂ <k>k Nk-1 ( (n)
=ko 2
k1
S afl Z n(2a6172a)k
k=kgo
< n/(logn)®
for large enough k. So Property 4 follows from the Markov inequality. O

We now do a similar analysis of H;y. Observe first that after ¢ < p rounds of PAIR we
find that Hy(t) = H{(t) U H,?(t) where the superscript g will denote the subgraph induced
by GIANT and the superscript —g will denote the subgraph induced by the remaining
vertices. More precisely

H{(t) is IGY after the deletion of 5}, + --- + B, random edges. (Note that there is some
implied conditioning viz. that after the deletion of this number of random edges there is
still at least one complex component.)

H{?(t) is IG™ after the deletion of B}, + - - - + Bf, random edges.

To better understand Hjy we imagine a graph process Go, G1,...,Gn = ([n], En),--.
where E;;; is obtained from E; by adding a random edge e;;;. (Note that e;;; € E; is
allowed here.) Thus IG can be identified with G,,. Now define

m; = max{m: GJ has exactly 8], +--- + (;; fewer edges than GY}

and
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Also let
m* = max{m : GJ, has no complex components}.

Then my > mgy > --- > m, = m* and Hfy = G5,.. We cannot claim that H;y = G, since
the former will tend to have more edges outside of GIANT. In general

Hy(t) = G%, UG;S (10)

where G ;7 has the same number of edges as H;?(t).

We note next that Luczak, Pittel and Wierman [15] have shown that whp
%n+n2/3/logn<m* < %n+n2/3logn. (11)

In the following lemma we will define € = ¢(m) by

m_l—i—en
2

where n71/3 /logn < € < 1. We let €* = ¢(m*).

The function 7 = 7(e€) is defined by 0 < 7 < 1 and
(1—7)e 0" = (1 + €)e (19,

A simple calculation yields
2
n=¢€— 562 + O(é%).

We also need the following notation: T}, denotes the number of edges of G,, which lie in
isolated trees containing at least k vertices. U,, is the number of edges lying in unicyclic
components, C,, is the number of edges which lie in complex components. The edges
of a complex component are divided into mantle edges and 2-core edges. The former are
distinguished by their deletion producing an isolated tree. C,n is the number of edges which
are mantle edges of a complex component of G,,.

The lemma is not meant to be best possible, but merely sufficient to our purposes. Property
(c¢) is particularly “crude”. It is possible that what is needed could be gleaned from papers
dealing with the fine detail of the growth of the giant component e.g. Bollobés [2], Luczak,
Pittel and Wierman [15], Janson, Knuth, Luczak and Pittel [11]. The reader who is happy
with this statement is encouraged to skip the proof.
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Lemma 8 Whp the following conditions hold for G,, in the specified ranges: Let ky =
[1000e2logn].

(@) : Tkom =0, n~13/logn <e< 1.
(b) : T < 1, n13/logn <e<1,
1<k<n'/

(€): Unm <n¥4 n1/10 < e < 1.
@) : Cm= (45— ) n+O(n™°W) & (2¢ — S + O(e¥))n n0 < e < 1.
(€: Cn=@-n)(1-5)+0@™ M)~ 2~ §e+0()n  n0<e<L
Proof When € is constant we can find these results in [5]. We have to account for

repeated edges since [5] deals with G, ,,. But whp there will be O(logn) such edges and
they will not upset the desired conclusion.

So for the rest of the proof assume that € < ¢y where ¢ is a sufficiently small absolute
constant.

Let X}, denote the number of edges of G,,, contained in trees with k vertices. Then

B0 = () - o2 (1= ) (12)

where a = k(n — k) + ('2“) and N = (g)

We use the following estimates:

() = Tl S o leta
%3&;1__ <1Z€)k1emg{ §§t@ﬁ%: +()< +- k)} (14)

(1—%>m_k+1 _ exp{—(m—kﬂ);(%_k—z (nﬁ» } (15)

It follows from (12)—(15) that

k—1)kk2 k 1
E(Xim) = n%(l + €)k1edlbnse) (1 +0 <ﬁ t o k)) (16)

where

2 3 4 3
o(k,n,€) = —k—ek+(e—2e2+0(e3))k— L +0 (k—+ek—) )

For constant € we know from [5] that gs G,, has a giant component of size

S
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The remaining parts of the lemma also follow from [5] when e is constant. So for ¢

sufficiently small we can restrict our attention to k < ¢yn and then we can assume that
. o . 3

the terms — 5 + O ( +€ 2) in the definition of ¢ are bounded above by —7% and that

€— 2€2+O( ) < e. So we write

kK* K3
k, <—-k—€ek+e———.
d(k,n,€) ekt+es —% 3
Going back to (16) and using Stirling’s approximation we have

€

n 62 3 k2 k?’
< N r _
B(Xin) < oram P { ( 2 3) Ft om 7n2}

o ¢ Kk k\’

C \27k3/? P13 56n2 2 \°  on

< n exp {36k — 3 2k} k<en
—— X

T V2mk3/2 exp {363k — —e2k} k> en

= o(n7?),
for k > ko. Property (a) follows immediately.
We see next that since Ty m = Xigm + Xpy1im + -+,

E(Tym) < Z \/ﬁﬁ?’/? <1+ 0(1))\/%%

Now changing one edge of G,, can only change T} ,, by at most 2k and so applying the
Azuma-Hoeffding martingale tail inequality we obtain that for any u > 0

2u?
Pr(|Ty m» — E(T; >u) <2 — = —2
F(Ton ~ BT 2 ) < 2000 { - 25— o)

if u = {547 and (b) follows.

To prove (c) we use Rényi’s formula

Ry ~ y/m/8kF1/2

for the number Ry, of unicyclic connected graphs with vertex set [k].

If Y, denotes the number of edges in unicyclic components of G,, (including trees with
one edge doubled) then arguing as for (16) we obtain

kk+1/2
k!

E(Yim) = 0( (1+6)ke¢(k’"’e))
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We deduce that

and that

Let

Then wpp(10) we have

Pr(3k > ko: Yim #0)=0(n"
ﬁm = }/;c,m + + Yko,m
Up =Upn

We see from (18) and (19) that

E(0,,) = O(c2).

(18)

(19)

(20)

(21)

Applying the Azuma-Hoeffding martingale tail inequality we see that, since changing one
edge changes U,, by at most ky,

Pr(|Us — E(Um)| > u) < 2exp {—

2u?
mk?

}

(22)

for any u > 0. Putting u = n'/?kylogn we see that with probability wpp(10) U,, will
not deviate from its mean by more than n'/2ky(logn)? = o(n%*) which together with (21)

implies (c).

To prove (d) we go back to (16) and write

E(Tl,m)

(1+o(n¥1) 3 " (b~ k"

i 1te k!
s k— 1)kk_2
1 *3/4 n (
(1+o(n ”,; 1te &
_ 1—7
1 /Ay _— T g

(14 €)e~ 1Tk

((

(The final equation follows indirectly from the fact that almost all edges of G, (1_y)/n are

in trees.)

Putting Tl,m = Xgm + -+ + Xky,m We see that wpp(10) we have

Tl,m - Tl,m-
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Applying the Azuma-Hoeffding martingale tail inequality we see that, since changing one
edge changes T} ,,, by at most ko,

. « 2u?
Pr(|Tim — E(Tim)| > u) < 2exp {—%} (23)
mkg
for any u > 0. Putting u = n'/2kylogn we see that with probability 1 — O(n~1°) T, will
not deviate from its mean by more than n'/2ky(logn)? = o(e?n). Property (d) now follows
from this and (c).

To prove (e) observe that e,, is a mantle edge iff one of its endpoints is a complex component
of G,,—1 and its other endpoint is in an isolated tree of G,,_1. By a similar argument as to
that given for (d) we can prove that the LHS expression (17) for the number of vertices in

the giant component of G,,_; remains whp (1 — 11;4;1) n~+0(n5+°(1)), This gives the correct

estimate for the expectation of C,,. Concentration follows from the fact that changing one
edge of G,, can only change C,n by 2k, assuming there are no isolated or mantle trees of
size greater than ky. This is true whp and we can now use a martingale tail inequality as
in (c), (d). O

Let LC1(I,m) denote the subset of A appearing in G,,, (i) as vertex labels in tree com-
ponents of size greater than (logn)'/? or (ii) in unicyclic components. Let LCi(I) =
LC:(I,m*). The above lemma and (11) imply that for 1n +n?2/logn < m <n, whp

|LCy(I,m)| < 2n/(ogn)Y*. (24)
Note that the sizes of LC(I,m) are invariants of the equivalence class £.

Next let LB}, = {b € B}, : in(b) N LCy # 0}.

Lemma 9 Letvy be as in Lemma 6. Conditional on (24), qs for allt,i such that Bf; > nd/10
we have
|LB;(,i| < 107521'/(10% n)1/4.

Proof Let Epy s = {€m—st1---,€n} and for m < m' —slet Ep s = {€ € Epp s :
eNLCi(m) # 0}. E,, and E,, s are independently chosen when m < m'—s. Also, assuming
the condition in (24) holds we see that |E,, s .| is stochastically dominated by the binomial
B(s,5/(logn)'/*) and s0 if By, s m' denotes the event {|Ey, s m'| > 10s/(logn)*/*} we see that

Pr(Bmsm’) < efs/(logn)1/4.
To complete the proof note that the event of the lemma is contained in U,/ s.m Bm.s.m/
m',s,m 8, )

s> n9/10, O
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Now let
B*(s) = U Bt*,i

t,i: ﬂzi<s

and let A*(s) = u~(B*(s)).

Lemma 10 Suppose 0 < § = O(logloglogn). Then conditional on |A*| < .49n, wpp(10)

n
B*(n/(logn)¥ )| < ————

B (0 logm) )| < T,

Proof Observe first that 3} is monotone decreasing with ¢. This is because the deletion
of an edge creates at most one tree with an unmarked vertex. On the other hand if
€ > n~/1% and B > n®'° then gs

Bia < (1= 2vef + O(€)) B (25)

where 7 is as in Lemma 6. To see this consider the deletion of e, b € B} during algorithm
PAIR. §f — Bf,, is precisely the number of b € By, such that in(b) lies in the 2-core of a
current complex component. Thus qgs

|Crme| = |Come|

Mig

Bf =B = Bty + O(nt°M)

where m; 4 is the number of edges of G,,, which are contained in GIANT. A calculation
based on known results about the size of the giant component shows that gs mg, > .95n
and so my, > .46n for 1 <t < p. (25) now follows from Lemma 8 and Lemma 6.

Let s = n/(logn)? and s’ = n/(logn)?™. Let t;, = max{t : 3F > s}, t; = max{t : B} >
s'/v} and ty = max{t: ¢ > s/(nlogn)}. Note that Lemma 6 implies that gs

[B*(s)[ < > 6
t=t1+1
Furthermore gqs
p
Z ﬂt S my, — ln < i

oyt 1 ~ 2logn’

So we are done if t5 < t;. Assume therefore that ¢, > ¢;. Then applying (25)

t2 2\ *
> B < ﬁmlz(l— <n10gn>>

t=t1+1
< s_’ nlogn
s
< .
— 3logn
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Finally, for this section we have the following simple lemma.

Lemma 11 Qs IG does not contain a set S C A, |S| > ng = n(logn) 1008loen gych that
S is incident with > |S|(loglogn)? edges.

Proof The expected number of sets violating the condition is at most

n s(loglogn)? n (loglogn)?\ *
£ ) ) 7 ()™ -
= \ s/ \s(loglogn) n = \ s \(loglogn)

for any constant K > 0. O

3 Phase 2. Removing small cycles

We condition on I € £. We assume that we have a permutation digraph II; containing at
most 2logn cycles and that the likely events of Lemmas 6, 7, 8 9, 10 and 11 hold. We note
that the discussion of the previous sections is in terms of A and B, but the vertex set of
D, is V. Elements a,a;,a’ € V etc. will simultaneously refer to elements a,a;,a’ € A as
well. Similarly for elements of B. We hope that this does not lead to confusion.

We say that a cycle C of II; is small if |C| < ng = [%1 and large otherwise. The set
of vertices on small cycles is denoted by SMALL and the remaining vertices are placed in
LARGE. It is easy to see that E(|]SMALL|) = ng — 1. We will therefore assume from now
on that £ is such that

|[SMALL| < ngloglogn.
This is true whp.

At the start of Phase 2 we choose a set X = {1, s, ..., T2} where (i) each e; = (z2;_1, Z2;)
is an edge of II, (ii) each small cycle C contains one such edge (|C| < 7,) or 7;/2 such
edges (|C| > ~v4), (iii) the z; are distinct except for those on cycles of length one. Here 7,
is an even positive integer defined in Section 3.2.1.

We define a Near Permutation Digraph (NPD) to be a digraph obtained from a permutation
digraph by removing one edge. Thus an NPD I' consists of a path P(T") plus a permutation
digraph PD(T') which covers [n] \ V(P(T')). In the associated bipartite graph BIP it
cooresponds to a matching of size n — 1.

We describe a process which removes a small cycle C' from a permutation digraph II. We
start by choosing an edge (a(®,b(?)) of C' and deleting it to obtain an NPD I'®© with
Py = P(T®) € P(b©,a®), where P(z,y) denotes the set of paths from z to y in D,,. Here
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(a®,5®) = ¢; for some 1 < i < r. The aim of the process is to produce a large set S of
NPD’s such that for each T" € S, (i) P(T') has a least ng edges and (ii) the small cycles of
NPD(T) are a subset of the small cycles of II. We will then show that whp the endpoints
of one of the P(T")’s can be joined by an edge to create a permutation digraph with (at
least) one less small cycle. The process consists of a single Out-Phase followed by a set of
In-Phases.

If this process succeeds then we remove another small cycle, if necessary. Otherwise, if C
is not too small we try again with a different starting edge of X for (a(®,b5(®). Indeed, if
|C| > -y, then we will try a number of times with a different edge before giving up.

3.1 Out-Phase

The basic step in an Out-Phase of this process is to take an NPD T' with P(I") € P(b, a)
and to examine the edges out(a) of D, leaving (i.e. edges going out from) the end of the
path. Let b be the terminal vertex of such an edge and assume that I'" contains an edge
(a',b). ThenI" =T U{(a,b)} \ {(a',b)} is also an NPD. We will find use for the notation
I = NPD(T;a,b,a’) and describe this basic step as bs(I;a,b,a’). Note that in BIP it
also means adding one edge (a,b) and deleting edge (a',b) and so represents the use of an
alternating path of length 2. We use a sequence of such paths to build up longer alternating
paths.

I is acceptable if:

(C1) P(I") contains least ng edges.

(C2) Any new cycle created (i.e. in I and not I') also has at least ny edges.

If T' contains no edge (a/,b) then b = b(®) and we could close the cycle provided the cycle
produced has at least ng edges. We will not accept the edge in the interest of making a
simple uniform definition of acceptance. It is anyway, an unlikely event.

As mentioned previously, we create our first NPD by deleting an edge (a(?, b)) of a small
cycle C. We create a collection of NPD’s by repeatedly making basic steps. This leads
naturally to a tree 7 of NPD’s where the children of a node are those NPD’s obtainable
by making an acceptable basic step. We let

I'® denote the root of T~

and
a(T) denote the endpoint of P(I') other than 5.

Ignoring acceptability, a node I" of 7 has one or two descendants. T" has one descendant
whenever a(I') € A*. (Now and again an NPD T for which a(I") ¢ A* could have only one
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descendant due to one basic step being acceptable and the other not. To simplify matters
we make the other step unacceptable so that I is a leaf of T

Let Z be the root of 7 plus the set of nodes with two descendants plus the leaves. Now
contract any path in 7 joining two nodes of Z to get another tree 7 where every internal
vertex has exactly two descendants. If T" is the parent of I in 7 then we say that I" is
obtained from I" by a composite step.

We now examine a composite step I' — I in detail. Suppose first that I' # I'®. Then
a = a(T") ¢ A*, (as will be evident from the following construction). Let out(a) = {b,'}.
We will use the notation
out(T") = {b,b'}.

Suppose b lies in a tree T of the graph D,. Let the path from b to the root of T be
b=by,by,...,bkr1 where by, b, ..., by € B* and b1 ¢ B*. Let the edge label of (b;, b;11)
be a; for i = 1,2,...,k. Thus b; = p(a;) and out(a;) = {b;,b;11} for 1 < i < k. If we
restrict ourselves to adding and removing OUT-edges then we remove the edges (a;, b;)
from M and replace them by (a;,b;;1) for 1 < i < k. Let apy; = pu *(bpy1) & A*. We
remove the edge (agi1,bk+1) from M as well. Thus we make the sequence of basic steps

bs(T';a,b,a1),bs(Ty; a5, bi1,0i41) for 1 <i <k

where

Fi = NP.D(Fz_l, ai,bi+1,ai+1) for 1 S 1 S k and FO =T.
Finally let

out(ax1) = {8, 6'}.

If the composite step is successful then IV = I'y will be a descendant of T in T and we
will have out(I") = {3,0'}. At this point we see that a(I') = a1 ¢ A* justifying our
previous assumption a(T') ¢ A* (modulo dealing with the descendants of I'®)). The other
descendant I'" will be obtained from b'.

If T =T© and a(® ¢ A* then we carry on as above with out(T'©)) = {b,b'} = out(a®). If
' =T and a® € A* then out(a®) = {b(*®), b} and we continue as above, working through
the tree T containing vertex b. In this case we let out(I'®) = {b}.

We build 7 in a breadth-first fashion and each non-leaf vertex T’ (other than possibly the
root T'(®)) gives rise to two NPD children I'",I" by composite steps. The set of nodes at

depth t is denoted by L;. The construction of 7 ends when we first have v = [\/nlog n-l

leaves. We show subsequently that we achieve this goal whp. The construction of T
constitutes an Out-Phase of our procedure to eliminate small cycles. Having constructed
T we need to do a further In-Phase, which is similar to a set of Out-Phases.
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3.1.1 Probabilistic analysis of a composite step in an Out-Phase

The algorithm requires us to expose some of the random choices in G, G5, G5 which define
our instance. These exposures will fix parts of 7 and the mappings ¢, ; etc.. We follow the
method of deferred decisions [14], and generate the necessary parts of them as we go.

The history H of Phase 2 consists of sets (i) My = {e € M such that 77!(e) has been
specified}, (ii) B}, = {b € B}, for some t,i such that ¢,;(b) has been specified},and (iii)
Ay = {a ¢ A* such that out(a) has been specified}. We will whp manage to keep
(H| = |My| + | By| + |Az| < n¥F°) throughout Phase 2.

In what follows our probabilities are all implicitly computed conditional on the current
value of H.

We start Phase 2 with M and the digraphs Dl, D2 As we learn more about the instance
I € &£, we will change some of the labels on Dy, Dy and let us write DZ{, D” to indicate
that changes that have been made.

A component of D or D} is clean if none of its labels have been changed by Phase 2 and
dirty otherwise.

Let I' € 7. We estimate the probability that I" has 2 children. First consider the case
[ #T©. Let a = a(T) and out(I') = {b,b'}. From the description of a composite step we
see that b, b’ were chosen randomly through G,.

Let a; = p~'(b) and a} = p~*(V'), e = (a1,b) and €' = (a},b"). Focusing on e we see that

Pr(e € My) = — 2 = O(n~5W), (26)
Assume e ¢ My. Then we choose 77! (e) randomly from 7~(M \ My) and relabel D}
accordingly. Let K be the component of D containing 7 !(e). Then by Lemma 7
Pr(|K| > kloglogn or K is unicyclic) = O((logn)~?°). (27)
There are at most O(|My|loglogn + n(logn) 2°) vertices on dirty components and so
Pr(K is dirty) = O((logn)~%). (28)

We can assume therefore that (i) e ¢ My, (ii) K is a tree, (iii) |K| < loglogn, and (iv) K
is clean. Also

Pr(bs(T'; a,b,a;) is not successful | (i) — —(iv)) = O(1/logn).

This is mainly the probability that adding the edge (a,b) creates a short path or cycle.
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We now have to expose the path b = by, b, ..., b1 from b to the root of K along with the
matching edges (ai, b;),7 = 1,2,...,k. Assume that we have chosen (a;,b;),7 = 1,2,...,1.
We have already dealt with the case ¢ = 1. We now choose (a;;1,b;+1) randomly from
M \ Mj,. Then for the basic step bs(T'; a;,b;11,a;11) we have

Pr(—C1 or =C2) = O(ng/n) (29)

and so
Pr(3i: bs(T;a;,bit1,a:4+1) is not acceptable) = O(loglogn/logn).

Also, out(T" = I'y) will be a random pair since axy1 ¢ A*.

In summary, if I' # I'®), then under the assumption that out(T) is a random pair,
Pr(T does not have two children I, T") = O(loglogn/logn). (30)

Furthermore, out(T"), out(I') will both be random pairs.

Now consider the case I' = I'®). Assume that (a(®), b)) ¢ M,;,. We discuss the probability
of this later. We need to know whether or not a(®) € A*. Up to this point we have decided
on v < n®t°(t) members of A as to whether or not they are in A*. To decide if a(®) € A* we
need to compute 7 !(a(®,b(®). We don’t necessarily need this much information. So we

flip a biassed coin and with probability p = A= we decide a® € A* and with probability

n—|My|
1 — p we decide a(®) ¢ A*.

If a® ¢ A* then out(T'®) = {b,b'} is a random pair and we can proceed as above to
show that I'® has two descendants with probability bounded below as in (30). In this
calculation we take account of the following: The first basic steps of the Out-phase will be
unacceptable if b or b’ lie on a small cycle. But

Pr({b,b'} NSMALL # 0) = O (log log n)

logn
and only the first basic steps from {b, b’} have to take this into account.

If al® € A* then we first choose 7 *(a(®, () randomly from E, \ 7~ !(Mjy,). (We remind
the reader that E, is the edge set of D,). Taking a; = a(o), b = b0 we proceed as in the
paragraph just before equation (29). Thus we see that in this case

I'® has one descendant with probability 1 — O(loglogn/logn). (31)
We can now discuss the expected growth rate of T.
Lemma 12 Let C be a small cycle and let v = [\/nlog n-‘ Assume, |H| < n3t°() and
condition on its value at the start of the construction of T. Then with conditional probability

1 - O(1/(logn)'~*M)

23



(a) There ezists t such that v < |L;| < 2v.

(b) In the process H grows by at most n>+°(),

Proof (a) We consider the following three events: Here ¢y = 1/ log, log, n,
& ={L, =0}.
& ={32 <t <tyg=[4log,logylog,n] : |Ls| < 2|Ly_1]}-
& ={Fto <t <t1=[logygee¥]: |Le| < (2— €0)|Le-1]}
We show that

Pr(é’ougl) = O(%) (32)
Pr(&) = O((logn)™®). (33)

Part (a) of the lemma follows from (32) and (33), for if neither £ nor & occur then
|Ly,| > 271 > (log, log, n)*/2 and then |L;| grows at a rate between 2 — ¢y and 2 until it
reaches the target size.

Equation (32) follows from (31) and (30) since the latter implies

log logn
to
Pr(&)=0 (2 log n ) )

Equation (33) also follows from (30) and Chernoff bounds for tails of the binomial. This is
because (30) implies that given |L;|, |L;;1| stochastically dominates 2B(|L;|, 1 — o(ep))-

(b) At the time when L, reaches its target size in [v, 2v], T will have O(v log n) nodes. Each

attempt at growing children increases H by at most O(logn) and clearly O(v(logn)?) =
n.5+0(1). 0

In summary, as long as |H| < n®°M)| if C is a small cycle and the Out-Phase starts
with X N My, = () then with probability 1 — O(1/(logn)'~°(")) we succeed in producing
v € [v,2v] NPD’s T, T®@ | T®) in which each path ends at a distinct vertex a ¢ A*
and out(a) is unexposed.

The total contribution to H from Out-Phases will be n5+t°(1) logn = n-*+°(). (We try this
process once for C € SMALL, |C| <, and up to v, /2 times for C € SMALL, |C| > ~,.)

3.2 In-Phase

A

After an Out-Phase we execute an In-Phase. This involves the construction of trees Ti,i=
1,2,...v;. Assume that P(T®) € P(b©® a()). We start with I'® and build 7; in a similar
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way to T except that here all paths generated end with a(®). This is done as follows: If a
current NPD T has P(I') € P(b,a®) then we consider adding an edge (a,b), a € in(b) and
deleting the edge (a,b') € T'. Thus our trees are grown by considering edges directed into
the start vertex of each P(T") rather than directed out of the end vertex.

We now examine a composite step I' — I in detail. Let
b(T) denote the endpoint of P(T') other than a(®.

Suppose first that I' # T'®. Then b = b(T') € B*, as will be evident from the following
construction. Let in(b) = {a, a’}. We will use the notation in(I') = {a, a’}. Suppose a lies in
a tree T of the graph D;. Let the path from a to the root of 7" be a = a1, as,. . ., axr1 where
ai,az,...,ax ¢ A* and a1 € A*. Let the edge label of (a;,a;11) be b; for i = 1,2,... k.
Thus b; = p(a;) and in(b;) = {a;, a;41} for 1 < ¢ < k. If we restrict ourselves to adding and
removing IN-edges then we remove the edges (a;, b;) from M and replace them by (a;,1, b;)
for 1 <i < k. Let bgy1 = u(ak+1) € B*. We have to remove the edge (agi1,bgr1) from M
as well. Thus we make the sequence of basic steps

bS(F;b, a, bl), bS(Fi; bi, ai+1,bi+1) for 1 S 1 S k

where
Fi = NPD(F,L_l, bi) ai+1,bi+1) for 1 S 1 S k and FO =T.

Finally let

in(be+1) = {a, '} (34)
If the composite step is successful then I' = I'y, will be a descendant of I in 7: and we will
have in(I') = {a, a'}. At this point we see that b(I') = by; € B* justifying our previous
assumption b(I") € B* (modulo dealing with the descendants of I'™)). The other descendant
I will be obtained from &'. We use the notation

a; = a;(T). (35)

If ' = I'® and b® € B* then we carry on as above with in(I'®)) = {a,a'} = in(b®). If
' =T® and b® ¢ B* then in(b®) = {a®,a} and we continue as above, working through
the tree T containing vertex a. In this case we let in(T(®) = {a}.

3.2.1 Probabilistic analysis of a composite step in an In-Phase

We focus first on a fixed 7; e.g. ’f] Let T' € 71 First consider the case I' # ', We
estimate the probability that I" has 2 children. Let b € B* be the endpoint of P(I") other
than a®). We define b(T') = b and let in(T') = in(b) = {a,a'}. From the description of
a composite step we see that a,a’ were chosen randomly through G3. Thus a,a’ are not
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completely random but we will show that we can assume that they are always both chosen
randomly from a set of of n'=°(") pairs.

Let by = p(a) and b, = u(a'), f = (a,b1) and f' = (a},b’). Focusing on f we see that
| M|

Pr(f e Mu) = =

= O(n=5+°W), (36)

Assume f ¢ My. Then we choose 77'(f) randomly from n~'(M \ Mjy,) and relabel D}t
accordingly. Let K be the component of D3 containing 7=!(f). Then by (24) we see that

Pr(|K| > k(logn)'? or K is unicyclic) = O((logn) /4. (37)

Let DC denote the set of vertices lying in dirty components of f)z“. Then using Lemma 8
we can assume
|DC| S 3n.9 +n.75 _|_,n.875 +n.5+0(1)n.25 S 477/'9. (38)

We can do our calculations for G,, where € &~ n™! i.e. on a supergraph of H;. The first

term on the RHS of (38) bounds the number of vertices in complex components, the second
bounds the number of vertices in unicyclic components, the third bounds the number of
components in dirty trees of size at least n?> and the last bounds the number in trees of
size at most n-23.

So
Pr(K is dirty) = O(n™"). (39)

We can assume therefore that (i) e ¢ My, (ii) K is a tree, (iii) |K| < (logn)'/2, and (iv)
K is clean. Also

Pr(bs(T'; b, a,b;) is not successful | (i) — —(iv)) = O(1/logn).

This is the probability of creating a short path or cycle.

We now have to expose the path a = a4, as, ..., ar1 from a to the root of K along with the
matching edges (a;, b;),7 = 1,2,...,k. Assume that we have chosen (a;,b;),7 =1,2,...,1.
We have already dealt with the case ¢ = 1. We now choose (a;;1,b;11) randomly from
M \ Mj,. Then for the basic step bs(T'; a;, b;11,a;11) we have

Pr(—C1 or =C2) = O(ng/n) (40)

and so
Pr(3i : bs(T;a;,b;1,a:41) is not acceptable) = O(1/(logn)'/?).

Also, in(T" = T') will be a random pair chosen randomly from a set of n!=°() pairs as will
discussed shortly.
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In summary, if ' # I'™), then under the assumption that in(T") is chosen randomly from a
set of n'~°() pairs,

Pr(I" does not have two children I, ") = O(1/(logn)"*). (41)

Furthermore, in(I"),in(I") will both be chosen randomly from a set of n'~°() pairs.

Now consider the case I' = '), Assume once again that (a(®,b®) ¢ My. If 5® € B*
then in(T'") = {a,a'} is chosen randomly from a set of n!~°(}) pairs and we can proceed
as above to show that T'(®) has two descendants with probability bounded below as in (41).

If 5®) ¢ B* then we first choose 7 1(a(®, 5©®) randomly from E; \ 7~ '(My,). (This was not
done in the Out-phase!) Taking a; = a(®,b; = b® we proceed as in the paragraph just
before equation (40). Thus we see that in this case

T'® has one descendant with probability 1 — O(1/(logn)'/4). (42)

For S C A let comp(S) denote the set of vertices of D; which lie in components which
contain a member of § or a member of H. It follows from calculations similar to that for
(38) (once again deducing the result from € ~ n~!) that provided |S| > n%0,

lcomp(S)| < 3n®+n™+ % + |S|w
O(n*?|S|'?) (43)

on taking w = (n/|S])%® < n'/15. Next let @ be the root of the first component K examined
by the first composite step of the construction of 7:. We deduce from (43) and our random
choice of K through the random choice of 7 (a(®,b(®) that since |A*(n/(logn)*))| <
n/logn — Lemma 10 —

Pr(a € A*(n/(logn)*)) < 1/(logn)*/3. (44)

Now consider a general composite step. Suppose the root @ of K does not lie in A*(n/(logn)*)
for some k > 0. We argue next that with o/, @” as in (34) we have

Pr(a’ € A*(n/(logn)**1%)) = O((loglogn)?/logn). (45)

First of all Lemma 10 with # = 3k + 2 implies that

n

* 9x+10 <
4500/ logm)® )] < ey

Then, (43) implies that

|comp(A*(n/(logn)™*1%))| = O(n/(logn)""").
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Thus Lemmas 10 and 11 imply that there are at most O(n(loglogn)?/(logn)*™) edges
incident with comp(A4*(n/(logn)%*1%)). As a & A*(n/(logn)*)) step Gs in the generation
of instance I chooses the endpoints in(u(a)) randomly from a set of size Q(n/(logn)*).
This implies (45).

It follows from Lemma 9 that
Pr(in(u(@)) N LCy(T) # 0) = O((logn) /%),

where LC:(I) is defined just before equation (24). This (partially) confirms the proposi-
tion that we can assume in(T") is always chosen randomly from a set of of n'~°(!) pairs.
The problem at the moment is that the o(1) term grows with depth. We deal with this
subsequently. Call this the “o(1) problem”.

Let ¢y = [logloglogn]. We consider the probability that an In-Phase succeeds in producing
a complete £y-level binary tree below a given node I, given that b(T') ¢ LC;. By the above
analysis, this is

1 —0(2%/(logn)*) = 1 — O(loglog n/(log n)*/*).

Note that in this calculation we can assume by (45) that no root of any tree examined
in this process lies in A*(n/(logn)*) where kg = 10%. The important thing here is that
n/(logn)® = n'=°() > n%10 and we can use previous lemmas.

We now deal with the o(1) problem. Let us call the (attempted) construction of this £p-level
tree a superstep. Thus starting with b(I") ¢ LC; we succeed in a superstep with probability
1 — O(loglogn/(logn)'/4).

This is a rather pessimistic view of the process and it will suffice for ¢, iterations. We also
need the following;:

9/10
)

Lemma 13 There exists a constant 6 > 0 such that qs for each t,i with 5;; > n at

least 05;; of the sets in(b),b € Bf; contain a vertex which is not in comp(A*(n/logn)).

Proof Consider first the case when i = 2. Initially, qs IG contains (1 — o(1))e™*n

isolated edges Z. In the first round of PAIR each such edge will have one endpoint marked
and then the corresponding edge will be added to H,. Qs at least an e~* proportion of
these edges will stay isolated throughout the execution of PAIR. Let Y denote these edges
of H,. Qs at least a proportion 1/100 of ¥ will join two vertices not in B,. Call this set
Y:. Let Z; C Z be the set of > (1 — 0(1))e™®n/100 edges which correspond in this way
to Y;. Algorithm PAIR deletes a random subset of them. By Theorem 4 each such edge
has a greater than 1/2 (conditional) probability of not being deleted. Thus gs, when the
edges corresponding to By, are chosen for deletion, there will be at least (1—o0(1))e™®n/200
edges of Z; still to choose from. Then gs a proportion > e¢~8/201 of members of Z; will be
chosen for deletion. Such an edge has the form (a;, az) where ay € A7 ,.
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The case ¢ = 1 is similar except that one has to start with the second round and argue
that the deletion of edges ey, b € Bf; produces 0'n isolated edges which once belonged to
GIANT. This is not difficult to prove: GIANT contains §"n paths (z,y, z) where z has
degree 1 and y has degree 2. The deletion of (z,y) produces an isolated edge (y, z). The
rest of the argument is similar to the case ¢ = 2. O

To use Lemma 13 we consider the 2¢ nodes at the bottom level of a superstep. Each such
node I" has a > 6 chance of having a;(T") (see (35) for definition) lying in a tree with root
not in A*(n/logn). Call such a node helpful. Applying (1) we see that the probability that
level £y contains fewer than #2f 1 helpful nodes is at most e #2°~* < (logn) Yo for some
absolute constant v, > 0.

Call a successful superstep entirely successful if it contains at least §2¢%~! helpful nodes.
Thus a superstep is entirely successful with probability at least 1 — O((logn) 7).

In growing our trees we only consider the (entirely successful) supersteps growing from
the helpful nodes of a previous superstep. We let h; denote the number of helpful nodes
at superstep level ¢ (which corresponds to ordinary level {gt) in the constructed tree. We
know from the above discussion that

hy > 62%71 wip(7o).
Now let E3(t) = {hsy1 < 62%71h,} so that, by (1) and the above,
Pr(&s(t) | h) < e ™™ < (logn) ™Yok,

provided |#| < n5t°(W)., It follows that if

1 to
5 log n+loglogn
t2 = ’7102g0+(80—4) log2-‘ and &3 = Ulg(t)

t=
then & occurs wlp(7,). But if £3 does not occur, then the process can be stopped after ¢,
steps with between n'/2logn and a maximum v, = n-®°(!) leaves. In which case the size
of H will grow by O(n5+°()/logn) = n-t°() during the construction, as required.

Some further technical changes are necessary. Before considering them let us examine the
probability that (a(®),5(®)) € My, at the start of an In-phase or Out-Phase. This can only
occur if at some previous step we choose 7(e) € X for some edge e of D; U Dy, other than
when we specifically compute 7 (a(®), 5(?)) at the beginning of an In-phase or Out-phase.
Call the former event B. Then

Pr(B) = O(|X|n™*M /n) = o(1)
as required.

We consider the construction of our v trees in two stages. First of all we grow the trees
without enforcing acceptability and thus allow the formation of small cycles and paths. We
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enforce conditions involving cleanliness and not choosing vertices of LC; and we grow in
supersteps. The growth of the v, trees can naturally be considered to occur simultaneously.
Let L;, denote the set of start vertices of the paths associated with the nodes at depth
¢ of the i’th tree, i = 1,2...,v1,£ = 0,1,...,t5. Thus L;o = {6} for all i. We prove
inductively that L, = Ly, for all 4,¢. In fact if L;y = L;, then the used edges have
the same set of initial vertices and since all of the deleted edges are II;-edges we have
L;y+1 = Ly 41. This explains why we temporarily drop acceptability. Acceptability of an
edge varies with 7; We continue this growing process until | L 4| = v». This provides room
for the pruning process described next.

We now consider the fact that in some of the trees some of the leaves may have been
constructed in violation of acceptability. We imagine that we prune the trees 77,7, . . 7:,1
by disallowing any supernode that was constructed in violation of acceptability. Let a tree
be BAD if after pruning it has less than v leaves and GOOD otherwise. Now consider the
pruning of 7:. From the analysis of an In-Phase we see that

Pr(7; is BAD) = O (%) .

logn)7o
Therefore
E(number Of BAD trees) = O (m)
and
Pr(3 > v1/2 BAD trees) = O <W) .
Thus

Pr(there are less than v4/2 GOOD trees after pruning)
< Pr(failure to construct 71, 7z,...7T,,) + Pr(3 > v1/2 BAD trees)

_ 1
=0 <(logn)%) ’

Thus with probability 1-O(1/(logn)70) we end up with v /2 sets of v paths, each of length
at least 10001/ log n where the ith set of paths all terminate in a(® ¢ A*. The sets out(a®)
are still unconditioned and hence

. 20\ Y1 /2
Pr(no out(a®)) edge closes one of these paths) < (1 - V)
n

= O(n™).
Consequently the probability that we fail to eliminate a particular small cycle C' after

breaking an edge is O(1/(logn)7o). If |C| > v, = 4[’7511 then we try 2[76% times using
independent edges of C and so the probability we fail to eliminate a given small cycle
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C is certainly O(1/(logn)?) for |C| > ~; (remember that we calculated all probabilities
conditional on previous outcomes and assuming |H| < n-3Fo())

Now the number of cycles of length at most v, in II; is asymptotically Poisson with bounded
mean and so there are fewer than loglogn whp. Hence, the probability we fail to eliminate
all small cycles is o(1).

We have now shown that whp a 2-in,2-out digraph contains a permutation digraph II; in
which the minimum cycle length is at least ng = [1000n/logn].

Lemma 14 Phase 2 produces a permutation digraph Ily with minimal cycle length at least
no whp.

4 Phase 3. Patching the Phase 2 permutation digraph
to a Hamilton cycle

In this section we will no longer need to condition on £. We simply condition on the output
matching M and we then use Lemma 5(b) to discuss the distribution of unmarked vertices
over Il,.

Let Cy, Cs, . .., Cy be the cycles of IT,, and let f/~: VA(HUAY). Ifv € V then out(v) is still
unconditioned, and is still a random pair. Let C; = C; NV, ¢; = |Ci], ¢1 < g < --- < ¢

Lemma 15 Whp

505
¢; > (.5051)|Cy) — n®/20 > 220 1<i<k.
logn

Proof It follows from Theorem 4 and Lemma 5(b) that whp every sub-path of II; of
length £ > X\ = [(logn)?] contains at least (.509)¢ members of V' \ A*.

Fix 1 < i < k. Observe that |II, \ II;] = O((logn)?). Delete those edges of C; which
are in II, \ II; or on a cycle of length at most A in II;. The number of edges deleted
d = O((logn)®) whp. Delete any of the d paths formed which are of length less than ).
This leaves p = |C;| — O((log n)®) remaining edges R; on sub-paths of II; of length at least
A. Thus whp at least (.509)p > (.5051)|C;| of the vertices in R; are in not A*. O

We also ensure that ¢; < 0.505|C;| by selecting a random 0.505|C;| subset of C; if necessary.

If kK = 1 we can skip this phase, otherwise let a = @. For each C; we consider selecting a

set of m; = 2| %] + 1 vertices v € C;, and deleting the edge (v,u) in M. Let m = Y% m,
and relabel (temporarily) the broken edges as (v;,u;), i € [m] as follows. In cycle C;
identify the lowest numbered vertex x; which loses a cycle edge directed out of it. Put
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v; = x; and then go round C; defining vs, v3, . ..V, in order. Then let v,,, 11 = z2 and so
on. We thus have m path sections P; € P(ug(;),v;) in II; for some permutation ¢. We see
that ¢ is an even permutation as all the cycles of ¢ are of odd length.

It is our intention to rejoin these path sections of II; to make a Hamilton cycle in D, if
we can. Suppose we can. This defines a permutation p where p(i) = j if P, is joined to
P; by (vj,ug(j)), where p € H,, the set of cyclic permutations on [m]. We will use the
second moment method to show that a suitable p exists whp. A technical problem forces a
restriction on our choices for p. This will produce a variance reduction in a second moment
calculation.

Given p define A = ¢p. In our analysis we will restrict our attention to p € Ry, = {p €
H,, :¢p € Hy}. If p € Ry then we have not only constructed a Hamilton cycle in II, U D,
but also in the auziliary digraph A, whose edges are (i, A(7)).

Lemma 16 (m — 2)! <|Ry| < (m —1)!

Proof We grow a path 1, \(1),A2(1),...,A"(1)... in A, maintaining feasibility in the
way we join the path sections of II; at the same time.

We note that the edge (i, A(i)) of A corresponds in D,, to the edge (v;, ugq(;)). In choosing
A(1) we must avoid not only 1 but also ¢(1) since A(1) = 1 implies p(1) = 1. Thus there
are m — 2 choices for A(1) since ¢(1) # 1 from the definition of m;.

In general, having chosen A(1),A\%(1),...,A"(1),1 < 7 < m — 3 our choice for \"*!(1) is
restricted to be different from these choices and also 1 and ¢ where u, is the initial vertex
of the path terminating at vy-(;) made by joining path sections of IIy. Thus there are either
m — (r+1) or m — (r + 2) choices for A"*1(1) depending on whether or not £ = 1. Hence,
when r = m — 3, there may be only one choice for A™ 2(1), the vertex h say. After adding
this edge, let the remaining isolated vertex of A be w. We now need to show that we can
complete A, p so that A\, p € H,,. Which vertices are missing edges in A at this stage ?
Vertices 1, w are missing in-edges, and h,w out-edges. Hence the path sections of I, are
joined so that either

UL —> Up, Uy —> Uy O Uy —> Uy Uy —> Upe

The first case can be (uniquely) feasibly completed in both A and D by setting A(h) =
w, A(w) = 1. Completing the second case to a cycle in Il means that

A= (LAQ),...,Am7%(1))(w) (46)

and thus A € H,,. We show this case cannot arise. A = ¢p and ¢ is even implies that A
and p have the same parity. On the other hand p € H,, has a different parity to A in (46)
which is a contradiction.
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Thus there is a (unique) completion of the path in A. O

We finish our proof:
Lemma 17 Pr( D, does not contain a Hamilton cycle ) = o(1).

Proof Let X be the number of Hamilton cycles in H obtainable by deleting edges
as above, rearranging the path sections generated by ¢ according to those p € R4 and if
possible reconnecting all the sections using edges of D,,. We will use the inequality

E(X)?

Pr(X > . 4
f(X >0)> g (47)

Now the definition of the m; yields that

(1.0)n k<m< (1.01)n Lk

a a

and so

(1.009) logn < m < (1.011) logn.
Also

Ci a
k<1 1 ;> 1 d = > —o 1<i<k.
< logn/1000, m; > 1009 an me 2 2.001 <:<k

Let €2 denote the set of possible cycle re-arrangements. w € () is a success if D,, contains
the edges needed for the associated Hamilton cycle. Thus,

E(X) = > Pr(w is a success)
we

-5 (-0-0))

> (-o) (2) -2 1 (%)

Now, n! = (n/e)"v/2mne/™ where 1/(12n + 1) < f(n) < 1/12n. An application of this

leads to . \
G)> 1 Gie 1- i)
m;] = \2n m3+(1/2mz') ci

where m, /2mi < 1.004. Using a v/27 factor to “mop up” factors of size 1-o(1) we obtain,

50 2 ot () 1 (casgm)

G (en) (300m To08).
(2m)*2my/m \ en 2.001 x 1.004
n.0035. (48)

Y
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Let M, M’ be two sets of selected edges which have been deleted in II; and whose path
sections have been rearranged into Hamilton cycles according to p,p’ respectively. Let
N, N' be the corresponding sets of edges which have been added to make the Hamilton
cycles. What is the interaction between these two Hamilton cycles?

Let s= |MNM'| and t = [N N N'|. Now ¢t < s since if (v,u) € NN N’ then there must be
a unique (9,u) € M N M’ which is the unique II5-edge into u. We claim that ¢ = s implies
t =s=mand (M,p) = (M, p'). (This is why we have restricted our attention to p € Ry.)
Suppose then that t = s and (v;,u;) € M N M'. Now the edge (v;,uxi)) € N and since
t = s this edge must also be in N'. But this implies that (vx;),urs)) € M’ and hence in
M N M'. Repeating the argument we see that (vye(), uas(;y) € M N M’ for all k > 0. But
A is cyclic and so our claim follows.

We adopt the following notation. Let < s,¢ > denote |M N M'| = s and [N N N'| =¢. So

E(X?) < E(X)+(1+0(1) > (%)m 2 (g)m

om0 25 3 (1)
— EB(X)4+E + B, say. (49)
Clearly
Ey < (1+0(1))E(X)% (50)

For given p, how many p' satisfy the condition < s, >? Previously |Ry| > (m — 2)! and
now given < s,t >, |Ry(s,t)| < (m — ¢t — 1)!, (consider fixing ¢t edges of A').
Thus

o1++or=s =1 m;

mesor S2() [ £ fIEE) ety
Now

() I
&) T @)
< (1+0(1)) (%)e@{_w}

2m;

< (1+0(1)) (iaol)‘” exp {—L(Ji — 1)}

2mi

where the o(1) term is O((logn)3/n).
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Also

E 2 2
o s
1 >_ f —
12212m1_2m or o1 + o = S,
i—1 2m, - 2’
and
2 1) -(7)
o1+ tor=si=1 Oi s
Hence
E, /g e it s2 ) /2.001\° (m\ (m—t—1)! /n\!
< o 2} 8
E(X)? — +oll))e sz:uz:l( exp{ 2m a s) (m-=2) \2
m s—1 2 2.001\° s—(t—l) n\t
< o N (Hew o (50) Ty (3)
s (4 sz2t1< P\ 7am a (s—1)! \2

- o °°1i<““1> erdan) () )

< (toll)) (27;9) 3 ((2.001)716;5{—8/2771}) !

s=2
= o(1) (51)
To verify that the RHS of (51) is o(1) we can split the summation into

s “i/:“ ((2.001)nexp{—s/2m}>s$

2a

s=2
and

- 2a

S, — i ((2.001)nexp{—s/2m}>s l'

s!
s=|m/2|+1

Ignoring the term exp{—s/2m} we see that

L(-SO%Z)log"J ((1.0005) log n)*

S <
s!

s=2
_ 0(71,9/10)

since this latter sum is dominated by its last term.

Finally, using exp{—s/2m} < e™/* for s > m/2 we see that

Sy < n(1.0005)e_1/4 < n9/10.
The result follows from (47) to (51). O
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