Flips in Graphs

Tom Bohman^{*†}

Andrzej Dudek^{*} Oleg Pikhurko^{*§} Alan Frieze^{*‡}

June 1, 2010

Abstract

We study a problem motivated by a question related to quantumerror-correcting codes. Combinatorially, it involves the following graph parameter:

 $f(G) = \min\{|A| + |\{x \in V \setminus A : d_A(x) \text{ is odd}\}| : A \neq \emptyset\},\$

where V is the vertex set of G and $d_A(x)$ is the number of neighbors of x in A. We give asymptotically tight estimates of f for the random graph $G_{n,p}$ when p is constant. Also, if

 $f(n) = \max \{ f(G) : |V(G)| = n \}$

then we show that $f(n) \leq (0.382 + o(1))n$.

1 Introduction

In this paper we consider a problem which is motivated by a question from quantum-error-correcting codes. To see how to use graphs to construct quantum-error-correcting codes see, e.g., [2, 4, 5].

Given a graph G with ± 1 signs on vertices, each vertex can perform at most one of the following three operations: O_1 (flip all of its neighbors, *i.e.*, change their signs), O_2 (flip itself), and O_3 (flip itself and all of its neighbors). We want to start with all +1's, execute some non-zero number of operations and return to all +1's. The *diagonal distance* f(G) is the minimum number of operations needed (with each vertex doing at most one operation).

*Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, {tbohman,adudek,af1p,pikhurko}@andrew.cmu.edu

[†]Research partially supported by NSF grant DMS-0401147

[‡]Research partially supported by NSF grant DMS-0753472

[§]Research partially supported by NSF grant DMS-0758057

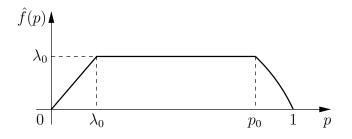


Figure 1: The behavior of $\hat{f}(p) = \lim_{n \to \infty} f(G_{n,p})/n$ as a function of p.

Trivially,

$$f(G) \le \delta(G) + 1 \tag{1}$$

holds, where $\delta(G)$ denotes the minimum degree. Indeed, a vertex with the minimum degree applies O_1 and then its neighbors fix themselves applying O_2 . Let

$$f(n) = \max f(G),$$

where the maximum is taken over all non-empty graphs of order n. Shiang Yong Looi (personal communication) asked for a good approximation on f(n).

In this paper we asymptotically determine the diagonal distance of the random graph $G_{n,p}$ for any $p \in (0, 1)$.

We denote the symmetric difference of two sets A and B by $A \triangle B$ and the logarithmic function with base e as log.

Theorem 1.1 There are absolute constants $\lambda_0 \approx 0.189$ and $p_0 \approx 0.894$, see (6) and (12), such that for $G = G_{n,p}$ asymptotically almost surely:

- (i) $f(G) = \delta(G) + 1$ for 0 or <math>p = o(1),
- (ii) $|f(G) \lambda_0 n| = \tilde{O}(n^{1/2})$ for $\lambda_0 \le p \le p_0$,
- (*iii*) $f(G) = 2 + \min_{x,y \in V(G)} |(N(x) \triangle N(y)) \setminus \{x,y\}|$ for $p_0 or <math>p = 1 o(1)$.

(Here $O(n^{1/2})$ hides a polylog factor).

Figure 1 visualizes the behavior of the diagonal distance of $G_{n,p}$. In addition to Theorem 1.1 we find the following upper bound on f(n).

Theorem 1.2 $f(n) \le (0.382 + o(1))n$.

In the remainder of the paper we will use a more convenient restatement of f(G). Observe that the order of execution of operations does not affect the final outcome. For any $A \subset V = V(G)$, let B consist of those vertices in $V \setminus A$ that have odd number of neighbors in A. Let a = |A| and b = |B|. Then f(G)is the minimum of a + b over all non-empty $A \subset V(G)$. The vertices of A do an O_1/O_3 operation, depending on the even/odd parity of their neighborhood in A. The vertices in B then do an O_2 -operation to change back to +1.

2 Random Graphs for p = 1/2

Here we prove a special case of Theorem 1.1 when p = 1/2. This case is somewhat easier to handle.

Let $G = G_{n,1/2}$ be a binomial random graph. First we find a lower bound on f(G). If we choose a non-empty $A \subset V$ and then generate G, then the distribution of b is binomial with parameters n - a and 1/2, which we denote here by Bin(n - a, 1/2). Hence, if l is such that

$$\sum_{a=1}^{l-1} \binom{n}{a} \Pr(Bin(n-a, 1/2) \le l-1-a) = o(1), \tag{2}$$

then asymptotically almost surely the diagonal distance of G is at least l.

Let $\lambda = l/n$ and $\alpha = a/n$. We can approximate the summand in (2) by

$$2^{n\left(H(\alpha)+(1-\alpha)\left(H\left(\frac{\lambda-\alpha}{1-\alpha}\right)-1\right)+O(\log n/n)\right)},\tag{3}$$

where H is the binary entropy function defined as $H(p) = -p \log_2 p - (1 - p) \log_2(1-p)$. For more information about the entropy function and its properties see, *e.g.*, [1]. Let

$$g_{\lambda}(\alpha) = H(\alpha) + (1 - \alpha) \left(H\left(\frac{\lambda - \alpha}{1 - \alpha}\right) - 1 \right).$$
(4)

The maximum of $g_{\lambda}(\alpha)$ is attained exactly for $\alpha = 2\lambda/3$, since

$$g'_{\lambda}(\alpha) = \log_2 \frac{2(\lambda - \alpha)}{\alpha}$$

Now the function

$$h(\lambda) = g_{\lambda}(2\lambda/3) \tag{5}$$

is concave on $\lambda \in [0, 1]$ since

$$h''(\lambda) = \frac{1}{(\lambda - 1)\lambda \log 2} < 0.$$

Moreover, observe that h(0) = -1 and h(1) = H(2/3) - 1/3 > 0. Thus the equation $h(\lambda) = 0$ has a unique solution λ_0 and one can compute that

$$\lambda_0 = 0.1892896249152306\dots \tag{6}$$

Therefore, if $\lambda = \lambda_0 - K \log n/n$ for large enough K > 0, then the left hand side of (2) goes to zero and similarly for $\lambda = \lambda_0 + K \log n/n$ it goes to infinity. In particular, $f(G) > (\lambda_0 - o(1))n$ asymptotically almost surely. Let us show that this constant λ_0 is best possible, *i.e.*, asymptotically almost surely $f(G) \leq (\lambda_0 + K \log n/n)n$. Let $\lambda = \lambda_0 + K \log n/n$, *n* be large, and $l = \lambda n$. Let $\alpha = 2\lambda/3$ and $a = \lfloor \alpha n \rfloor$. We pick a random *a*-set $A \subset V$ and compute *b*. Let X_A be an indicator random variable so that $X_A = 1$ if and only if $b = b(A) \leq l - a$. Let $X = \sum_{|A|=a} X_A$. We succeed if X > 0.

The expectation $E(X) = \binom{n}{a} \Pr(Bin(n-a, 1/2) \le l-a)$ tends to infinity, by our choice of λ . We now show that X > 0 asymptotically almost surely by using the Chebyshev inequality. First note that for $A \cap C \ne \emptyset$ we have

$$Cov(X_A, X_C) = \Pr(X_A = X_C = 1) - \Pr(X_A = 1) \Pr(X_C = 1) = 0.$$

Indeed, if $x \in V \setminus (A \cup C)$, then $\Pr(x \in B(A)|X_C = 1) = 1/2$, since $A \setminus C \neq \emptyset$ and no adjacency between x and all vertices in $A \setminus C$ is exposed by the event $X_C = 1$. Similarly, if $x \in C \setminus A$, then $A \cap C \neq \emptyset$ and an adjacency between x and $A \cap C$ is independent of the occurrence of $X_C = 1$. This implies that $\Pr(x \in B(A) \mid X_C = 1) = 1/2$ as well. Thus $\Pr(X_A = 1|X_C = 1) = \Pr(Bin(n-a, 1/2) \leq l-a) = \Pr(X_A = 1)$, and consequently, $Cov(X_A, X_C) = 0$.

Now consider the case when $A \cap C = \emptyset$. Let s be a vertex in A. Define a new indicator random variable Y which takes the value 1 if and only if $|B(C) \setminus \{s\}| \le l - a$. Observe that

$$\Pr(Y = 1) = \Pr(Bin(n - a - 1, 1/2) \le l - a)$$

$$\le 2\Pr(Bin(n - a, 1/2) \le l - a) = 2\Pr(X_A = 1).$$

Moreover,

$$\Pr(X_A = 1 | Y = 1) = \Pr(Bin(n - a, 1/2) \le l - a) = \Pr(X_A = 1),$$

since for every $x \in V \setminus A$ the adjacency between x and s is not influenced by Y = 1. Finally note that $X_C \leq Y$. Thus,

$$Cov(X_A, X_C) \le \Pr(X_A = X_C = 1) \le \Pr(X_A = Y = 1)$$

= $\Pr(Y = 1) \Pr(X_A = 1 | Y = 1) \le 2 (\Pr(X_A = 1))^2$.

Consequently,

$$Var(X) = E(X) + \sum_{A \cap C \neq \emptyset, A \neq C} Cov(X_A, X_C) + \sum_{A \cap C = \emptyset} Cov(X_A, X_C)$$
$$\leq E(X) + 2 \sum_{A \cap C = \emptyset} (\Pr(X_A = 1))^2$$
$$= E(X) + 2 \binom{n}{a} \binom{n-a}{a} (\Pr(X_A = 1))^2 = o(E(X)^2),$$

as $E(X) = \binom{n}{a} \Pr(X_A = 1)$ tends to infinity and $\binom{n-a}{a} = o\binom{n}{a}$. Hence, Chebyshev's inequality yields that X > 0 asymptotically almost surely.

Remark 2.1 A version of the well-known Gilbert-Varshamov bound (see, e.g., [3]) states that if

$$2^{-n} \sum_{i=1}^{l-1} \binom{n}{i} 3^i < 1, \tag{7}$$

then $f(n) \ge l$. Observe that this is consistent with bound (2). Let $\lambda = l/n$. We can approximate the left hand side of (7) by

$$2^{n(H(\lambda)+\lambda\log_2 3-1+o(1))}$$

One can check after some computation that

$$H(\lambda) + \lambda \log_2 3 - 1 = g_\lambda(2\lambda/3).$$

Therefore, (2) and (7) give asymptotically the same lower bound on f(n).

3 Random Graphs for Arbitrary p

Let $G = G_{n,p}$ be a random graph with $p \in (0, 1)$.

Observe that for a fixed set $A \subset V$, |A| = a, the probability that a vertex from $V \setminus A$ belongs to B(A) is

$$p(a) = \sum_{0 \le i < \frac{a}{2}} {a \choose 2i+1} p^{2i+1} (1-p)^{a-(2i+1)} = \frac{1-(1-2p)^a}{2}.$$

(If this is unfamiliar, expand $(1-2p)^n$ as $((1-p)-p)^n$ and compare).

3.1 0

For $p < \lambda_0$ we begin with the upper bound $f(G) \leq \delta(G) + 1$, see (1). For the lower bound it is enough to show that

$$\sum_{2 \le a \le pn} \binom{n}{a} \Pr\left(Bin(n-a, p(a)) \le pn-a\right) = o(1),\tag{8}$$

since $\delta(G) + 1 \leq np$ asymptotically almost surely. (We may assume that $p = \Omega\left(\frac{\log n}{n}\right)$; for otherwise $\delta(G) = 0$ with high probability and the theorem is trivially true.) This implies with high probability that if $|A| + |B| \leq pn$, then |A| = 1.

3.1.1 *p* Constant

We split this sum into two sums for $2 \le a \le \sqrt{n}$ and $\sqrt{n} < a \le pn$, respectively. Let X = Bin(n-a, p(a)) and

$$\varepsilon = 1 - \frac{pn-a}{(n-a)p(a)} \ge 1 - \frac{p}{p(2)} = 1 - \frac{1}{2-2p} > 0.$$
 (9)

Thus, by Chernoff's bound,

$$\Pr(Bin(N,\rho) \le (1-\theta)N\rho) \le e^{-\theta^2 N\rho/2}.$$
(10)

Hence, we see that

$$\Pr(Bin(n-a, p(a)) \le pn - a) = \Pr(X \le (1-\varepsilon)E(X))$$
$$\le \exp\{-\varepsilon^2 E(X)/2\}$$
$$= \exp\{-\Theta(n)\},$$

and consequently,

$$\sum_{2 \le a < \sqrt{n}} \binom{n}{a} \Pr\left(Bin(n-a, p(a)) \le pn - a\right) \le \sqrt{n} \binom{n}{\sqrt{n}} \exp\{-\Theta(n)\}$$
$$\le \exp\{O(\sqrt{n}\log n)\} \exp\{-\Theta(n)\}$$
$$= o(1).$$

Now we bound the second sum corresponding to $\sqrt{n} < a \leq pn$. Note that

$$\sum_{\sqrt{n} \le a \le pn} \binom{n}{a} \Pr\left(Bin(n-a, p(a)) \le pn-a\right)$$
$$= \sum_{\sqrt{n} \le a \le pn} \binom{n}{a} \Pr\left(Bin\left(n-a, \frac{1}{2} + O(e^{-\Omega(n^{1/2})})\right) \le pn-a\right)$$
$$\le n2^{n(h(p)+o(1))} = o(1).$$

Here h is defined in (5) and the right hand limit is zero since $p < \lambda_0$.

3.1.2 p = o(1)

We follow basically the same strategy as above and show that (8) holds for large a and something similar when a is small. Suppose then that $p = 1/\omega$ where $\omega = \omega(n) \to \infty$. First consider those a for which $ap \ge 1/\omega^{1/2}$. In this case $p(a) \ge (1 - e^{-2ap})/2$. Thus,

$$\sum_{\substack{ap \ge 1/\omega^{1/2} \\ a \le np}} \binom{n}{a} \Pr\left(Bin(n-a, p(a)) \le pn-a\right)$$
$$= \sum_{\substack{ap \ge 1/\omega^{1/2} \\ a \le np}} e^{O(n\log\omega/\omega)} e^{-\Omega(n/\omega^{1/2})} = o(1).$$

If $ap \leq 1/\omega^{1/2}$ then p(a) = ap(1 + O(ap)). Then

$$\sum_{\substack{ap < 1/\omega^{1/2} \\ 2 \le a \le np}} \binom{n}{a} \Pr\left(Bin(n-a, p(a)) \le pn-a\right) \\ \le \sum_{\substack{ap < 1/\omega^{1/2} \\ 2 \le a \le np}} \left(\frac{ne}{a} e^{-np/10}\right)^a = o(1) \quad (11)$$

provided $np \ge 11 \log n$.

If $np \leq \log n - \log \log n$ then $G = G_{n,p}$ has isolated vertices asymptotically almost surely and then f(G) = 1. So we are left with the case where $\log n - \log \log n \leq np \leq 11 \log n$.

We next observe that if there is a set A for which $2 \leq |A|$ and $|A|+|B(A)| \leq np$ then there is a minimal size such set. Let $H_A = (A, E_A)$ be a graph with vertex set A and an edge $(v, w) \in E_A$ if and only if v, w have a common neighbor in G. H_A must be connected, else A is not minimal. So we can find $t \leq a - 1$ vertices T such that $A \cup T$ spans at least t + a - 1 edges between A and T. Thus we can replace the estimate (11) by

$$\sum_{\substack{ap<1/\omega^{1/2}\\2\leq a\leq np}} \sum_{t=1}^{a-1} \binom{n}{a} \binom{n}{t} \binom{ta}{t+a-1} p^{t+a-1} \Pr\left(Bin(n-a-t,p(a)) \leq pn-a\right)$$
$$\leq \sum_{\substack{ap<1/\omega^{1/2}\\2\leq a\leq np}} \sum_{t=1}^{a-1} \left(\frac{ne}{a}\right)^a \left(\frac{ne}{t}\right)^t \left(\frac{taep}{t+a-1}\right)^{t+a-1} e^{-anp/10}$$
$$\leq \frac{1}{e^2 np} \sum_{\substack{ap<1/\omega^{1/2}\\2\leq a\leq np}} a\left((e^2 np)^2 e^{-np/10}\right)^a = o(1).$$

3.2 p_0

First let us define the constant p_0 . Let

$$p_0 \approx 0.8941512242051071\dots \tag{12}$$

be a root of $2p - 2p^2 = \lambda_0$. For the upper bound let $A = \{x, y\}$, where x and y satisfy $|N(x) \triangle N(y)| \le |N(x') \triangle N(y')|$ for any $x', y' \in V(G)$. Then $B = B(A) = N(x) \triangle N(y)$, and thus, asymptotically almost surely $|B| \le (2p - 2p^2)n$ plus a negligible error term o(n). (We may assume that $1 - p = \Omega\left(\frac{\log n}{n}\right)$; for otherwise we have two vertices of degree n - 1 with high probability, and hence, f(G)=2.)

To show the lower bound it is enough to prove that

$$\sum_{3 \le a \le (2p-2p^2)n} \binom{n}{a} \Pr\left(Bin(n-a, p(a)) \le (2p-2p^2)n-a\right) = o(1).$$

Indeed, this implies that if $|A| + |B| \le (2p - 2p^2)n$, then |A| = 1 or 2. But if |A| = 1, then in a typical graph $|B| = (p + o(1))n > (2p - 2p^2)n$ since p > 1/2.

3.2.1 p Constant

As in the previous section we split the sum into two sums for $3 \le a \le \sqrt{n}$ and $\sqrt{n} < a \le pn$, respectively. Let

$$\varepsilon = 1 - \frac{(2p - 2p^2)n - a}{(n - a)p(a)} \ge 1 - \frac{2p - 2p^2}{p(a)} > 0.$$

To confirm the second inequality we have to consider two cases. The first one is for a odd and at least 3. Here,

$$1 - \frac{2p - 2p^2}{p(a)} > 1 - \frac{2p - 2p^2}{1/2} = (2p - 1)^2 > 0.$$

The second case, for a even and at least 4, gives

$$1 - \frac{2p - 2p^2}{p(a)} > 1 - \frac{2p - 2p^2}{p(2)} = 0.$$

Now one can apply Chernoff bounds with the given ε to show that

$$\sum_{B \le a < \sqrt{n}} \binom{n}{a} \Pr\left(Bin(n-a, p(a)) \le (2p - 2p^2)n - a\right) = o(1).$$

Now we bound the second sum corresponding to $\sqrt{n} < a \leq (2p - 2p^2)n$. Note that

$$\sum_{\sqrt{n} \le a \le (2p-2p^2)n} \binom{n}{a} \Pr\left(Bin(n-a,p(a)) \le (2p-2p^2)n-a\right)$$

=
$$\sum_{\sqrt{n} \le a \le (2p-2p^2)n} \binom{n}{a} \Pr\left(Bin\left(n-a,\frac{1}{2}+O(e^{-\Omega(n^{1/2})})\right) \le (2p-2p^2)n-a\right)$$

\$\le n2^{nh(2p-2p^2)+o(1)} = o(1)\$

since $p > p_0$ implies that $2p - 2p^2 < \lambda_0$.

3.2.2 p = 1 - o(1)

One can check it by following the same strategy as above and in Section 3.1.2.

3.3 $\lambda_0 \leq p \leq p_0$

Let $\alpha = 2\lambda_0/3$, $a = \lfloor \alpha n \rfloor$. Fix an *a*-set $A \subset V$ and generate our random graph and determine B = B(A) with b = |B|. Let $\varepsilon = (\log n)^4/\sqrt{n}$ and let X_A be the indicator random variable for $a + b \leq (\lambda_0 + \varepsilon)n$ and $X = \sum_A X_A$. Then

$$p(a) = \frac{1}{2} + e^{-\Omega(n)}$$

and with $g_{\lambda}(\alpha)$ as defined in (4),

$$E(X) = \exp\{(g_{\lambda_0+\varepsilon}(2\lambda_0/3) + o(1))n\log 2\}.$$
(13)

Now

$$g_{\lambda+\varepsilon}(\alpha) = g_{\lambda}(\alpha) + (1-\alpha) \left(H\left(\frac{\lambda+\varepsilon-\alpha}{1-\alpha}\right) - H\left(\frac{\lambda-\alpha}{1-\alpha}\right) \right)$$
$$= g_{\lambda}(\alpha) + \varepsilon \log_2\left(\frac{1-\lambda}{\lambda-\alpha}\right) + O(\varepsilon^2).$$

Plugging this into (13) with $\lambda = \lambda_0$ and $\alpha = 2\lambda_0/3$ we see that

$$E(X) = \exp\left\{\left(\varepsilon \log_2\left(\frac{1-\lambda_0}{\lambda_0/3}\right) + O(\varepsilon^2)\right) n \log 2\right\} = e^{\Omega((\log n)^4 n^{1/2})}.$$
 (14)

Next, we estimate the variance of X. We will argue that for $A, C \in \binom{V}{a}$ either $|A \triangle C|$ is small (but the number of such pairs is small) or $|A \triangle C|$ is large (but then the covariance $Cov(X_A, X_C)$ is very small since if we fix the adjacency of some vertex x to C, then the parity of $|N(x) \cap (A \setminus C)|$ is almost a fair coin flip). Formally,

$$Var(X) = E(X) + \sum_{A \neq C} Cov(X_A, X_C)$$

$$\leq E(X) + \sum_{|A \triangle C| < 2\sqrt{n}} \Pr(X_A = X_C = 1)$$

$$+ \sum_{|A \triangle C| \ge 2\sqrt{n}, |A \cap C| \ge \sqrt{n}} Cov(X_A, X_C)$$

$$+ \sum_{|A \cap C| < \sqrt{n}} \Pr(X_A = X_C = 1).$$

Since E(X) goes to infinity, clearly $E(X) = o(E(X)^2)$. We show in Claims 3.1, 3.2 and 3.3 that the remaining part is also bounded by $o(E(X)^2)$. Then Chebyshev's inequality will imply that X > 0 asymptotically almost surely.

Claim 3.1 $\sum_{|A \triangle C| < 2\sqrt{n}} \Pr(X_A = X_C = 1) = o(E(X)^2)$

Proof. We estimate trivially $Pr(X_A = X_C = 1) \leq Pr(X_A = 1)$. Then,

$$\sum_{|A \triangle C| < 2\sqrt{n}} \Pr(X_A = 1) = \binom{n}{a} \sum_{0 \le i < \sqrt{n}} \binom{n-a}{i} \binom{a}{a-i} \Pr(X_A = 1)$$
$$= E(X) \sum_{0 \le i < \sqrt{n}} \binom{n-a}{i} \binom{a}{a-i}$$
$$\le E(X) \ 2^{O(\sqrt{n}\log n)}.$$

Thus, (14) yields that $\sum_{|A \triangle C| < 2\sqrt{n}} \Pr(X_A = X_C = 1) = o(E(X)^2).$

Claim 3.2 $\sum_{|A \triangle C| \ge 2\sqrt{n}, |A \cap C| \ge \sqrt{n}} Cov(X_A, X_C) = o(E(X)^2)$

Proof. If $x \in V \setminus (A \cup C)$, then $\Pr(x \in B(A)|X_C = 1) = 2^{-1+o(1/n)}$, since we can always find at least \sqrt{n} vertices in $A \setminus C$ with no adjacency with xdetermined by the event $X_C = 1$. Similarly, if $x \in C \setminus A$, then there are at least $\sqrt{n} - 1$ vertices in $A \cap C$ such that their adjacency with x is independent of the occurrence of $X_C = 1$. This implies that

$$\Pr(X_A = 1 | X_C = 1) = \sum_{0 \le i \le l-a} \binom{n-a}{i} 2^{-(n-a)+o(1)} = 2^{o(1)} \Pr(X_A = 1),$$

and consequently, $Cov(X_A, X_C) = o(Pr(X_A = 1)^2)$. Hence,

$$\sum_{|A \triangle C| \ge 2\sqrt{n}, |A \cap C| \ge \sqrt{n}} Cov(X_A, X_C) \le {\binom{n}{a}}^2 o(\Pr(X_A = 1)^2) = o(E(X)^2).$$

Claim 3.3 $\sum_{|A \cap C| < \sqrt{n}} \Pr(X_A = X_C = 1) = o(E(X)^2)$

Proof. First let us estimate the number of ordered pairs (A, C) for which $|A \cap C| < \sqrt{n}$. Note,

$$\sum_{|A\cap C|<\sqrt{n}} 1 = \binom{n}{a} \sum_{0 \le i < \sqrt{n}} \binom{n-a}{a-i} \binom{a}{i}$$
$$\le \sqrt{n} \binom{n}{a} \binom{n-a}{a} \binom{a}{\sqrt{n}}$$
$$= 2^{n(H(\alpha)+H(\frac{\alpha}{1-\alpha})(1-\alpha)+o(1))}.$$
(15)

Now we will bound $\Pr(X_A = X_C = 1)$ for fixed *a*-sets *A* and *C*. Let $S \subset A \setminus C$ be a set of size $s = |S| = \lfloor \sqrt{n} \rfloor$. Define a new indicator random variable *Y*

which takes the value 1 if and only if $|B(C) \setminus S| \leq (\lambda_0 + \varepsilon)n - a$. Clearly, $X_C \leq Y$ and

$$\Pr(Y=1) = \Pr\left(Bin(n-a-s,p(a)) \le (\lambda_0+\varepsilon)n-a\right)$$
$$\le 2^{s+o(1)} \sum_{0 \le i \le (\lambda_0+\varepsilon)n-a} \binom{n-a}{i} 2^{-(n-a)}$$
$$= 2^{s+o(1)} \Pr(X_A = 1).$$

Now if we condition on the existence or otherwise of all edges F' between C and $V\setminus S$ then if $x\in V\setminus A$

$$\Pr(x \in B(A) \mid F' \text{ and } F'') \in \left[\frac{1 - (1 - 2p)^s}{2}, \frac{1 + (1 - 2p)^s}{2}\right]$$

,

where F'' is the set of edges between x and $A \setminus S$. This implies that

$$\Pr(X_A = 1 | Y = 1) = \sum_{\substack{0 \le i \le (\lambda_0 + \varepsilon)n - a}} {\binom{n-a}{i}} 2^{-(n-a) + O(\sqrt{n})}$$
$$= 2^{O(\sqrt{n})} \Pr(X_A = 1),$$

Consequently,

$$\Pr(X_A = X_C = 1) \le \Pr(X_A = Y = 1) \le 2^{O(\sqrt{n})} \Pr(X_A = 1)^2.$$

Hence, (15) implies

$$\sum_{|A \cap C| < \sqrt{n}} \Pr(X_A = X_C = 1) \le 2^{n \left(H(\alpha) + H\left(\frac{\alpha}{1 - \alpha}\right)(1 - \alpha) + o(1)\right)} \Pr(X_A = 1)^2.$$

To complete the proof it is enough to note that

$$E(X)^2 = 2^{n(2H(\alpha)+o(1))} \Pr(X_A = 1)^2$$

and

$$2H(\alpha) > H(\alpha) + H\left(\frac{\alpha}{1-\alpha}\right)(1-\alpha).$$

Indeed, the last inequality follows from the strict concavity of the entropy function, since then $(1 - \alpha)H\left(\frac{\alpha}{1-\alpha}\right) + \alpha H(0) \leq H(\alpha)$ with the equality for $\alpha = 0$ only.

Now we show that $f(G_{n,p}) \ge (\lambda_0 - \varepsilon)n$. We show that

$$\sum_{1 \le a \le (\lambda_0 - \varepsilon)n} \binom{n}{a} \Pr\left(Bin(n - a, p(a)) \le (\lambda_0 - \varepsilon)n - a\right) = o(1).$$

As in previous sections we split this sum into two sums but this time we make the break into $1 \le a \le (\log n)^2$ and $(\log n)^2 < a \le (\lambda_0 - \varepsilon)n$, respectively. In order to estimate the first sum we use the Chernoff bounds with deviation $1 - \theta$ from the mean where

$$\theta = 1 - \frac{(\lambda_0 - \varepsilon)n - a}{(n - a)p(a)} \ge 1 - \frac{\lambda_0 - \varepsilon}{p(a)} \ge 1 - \frac{\lambda_0 - \varepsilon}{\lambda_0} = \frac{\varepsilon}{\lambda_0}.$$

Consequently,

$$\sum_{2 \le a < (\log n)^2} \binom{n}{a} \Pr\left(Bin(n-a, p(a)) \le (\lambda_0 - \varepsilon)n - a\right)$$
$$\le (\log n)^2 \binom{n}{(\log n)^2} \exp\{-\Omega((\log n)^4)\}$$
$$\le \exp\{-\Omega((\log n)^4)\} = o(1).$$

Now we bound the second sum corresponding to $(\log n)^2 < a \leq (\lambda_0 - \varepsilon)n$.

$$\sum_{(\log n)^2 \le a \le (\lambda_0 - \varepsilon)n} \binom{n}{a} \Pr\left(Bin(n - a, p(a)) \le (\lambda_0 - \varepsilon)n - a\right)$$
$$= 2^{n(h(\lambda_0 - \varepsilon) + O(1/n))} = o(1).$$

4 General Graphs

Here we present the proof of Theorem 1.2. First, we prove a weaker result $f(n) \leq (0.440 \dots + o(1))n$.

Suppose we aim at showing that $f(n) \leq \lambda n$. We fix some α and ρ and let $a = \alpha n$ and $r = \rho n$. For each *a*-set *A* let R(A) consist of all sets that have Hamming distance at most *r* from B(A). If

$$\binom{n}{a} \sum_{i=0}^{r} \binom{n}{i} = 2^{n(H(\alpha) + H(\rho) + o(1))} > 2^{n},$$
(16)

then there are A, A' such that $R(A) \cap R(A') \ni C$ is non-empty. This means that C is within Hamming distance r from both B = B(A) and B' = B(A'). Thus $|B \bigtriangleup B'| \leq 2r$.

Let all vertices in $A'' = A \triangle A'$ flip their neighbors, *i.e.*, execute operation O_1 . The only vertices outside of A'' that can have an odd number of neighbors in A'' are restricted to $(B \triangle B') \cup (A \cap A')$. Thus

$$f(G) \le |A \bigtriangleup A'| + |(B \bigtriangleup B') \cup (A \cap A')| \le 2a + 2r = 2n(\alpha + \rho).$$
(17)

Consequently, we try to minimise $\alpha + \rho$ subject to $H(\alpha) + H(\rho) > 1$. Since the entropy function is strictly concave, the optimum satisfies $\alpha = \rho$, otherwise replacing each of α, ρ by $(\alpha + \rho)/2$ we strictly increase $H(\alpha) + H(\rho)$ without changing the sum. Hence, the optimum choice is

$$\alpha = \rho \approx 0.11002786443835959...$$

the smaller root of H(x) = 1/2, proving that $f(n) \leq (0.440 \dots + o(1))n$.

In order to obtain a better constant we modify the approach taken in (16). Let us take $\delta = 0.275$, $\alpha = 0.0535$, $a = \lfloor \alpha n \rfloor$, $d = \lfloor \delta n \rfloor$. Look at the collection of sets B(A), $A \in {[n] \choose a}$. This gives ${n \choose a} = 2^{n(H(\alpha)+o(1))}$ binary *n*-vectors.

We claim that some two of these vectors are at distance at most d. If not, then inequality (5.4.1) in [3] says that

$$H(\alpha) + o(1) \le \min\{1 + g(u^2) - g(u^2 + 2\delta u + 2\delta) : 0 \le u \le 1 - 2\delta\},\$$

where $g(x) = H((1 - \sqrt{1 - x})/2)$. In particular, if we take $u = 1 - 2\delta = 0.45$, we get $0.30108 + o(1) \le 0.30103$, a contradiction.

Thus, we can find two different *a*-sets *A* and *A'* such that $|B(A) \triangle B(A')| \le d$. As in (17), we can conclude that $f(G) \le 2a + d \le (0.382 + o(1))n$.

5 Acknowledgment

The authors would like to thank Shiang Yong Looi for suggesting this problem.

References

- N. Alon and J. Spencer, *The Probabilistic Method*, third ed., Wiley, New York, 2008.
- [2] M. Hein, W. Dür, J. Eisert, R. Raussendorf, M. van den Nest, H. J. Briegel, *Entanglement in graph states and its applications*, E-print arXiv:quant-ph/0602096, Version 1, 2006.
- [3] J. H. van Lint, *Introduction to Coding Theory*, third ed., Springer-Verlag, 1999.
- [4] S. Y. Looi, L. Yu, V. Gheorghiu, and R. B. Griffiths, Quantum errorcorrecting codes using qudit graph states, E-print arXiv.org:0712.1979, Version 4, 2008.
- [5] S. Yu, Q. Chen, C. H. Oh, Graphical quantum error-correcting codes, Eprint arXiv:0709.1780v1, Version 1, 2007.