HAMILTON CYCLES IN RANDOM REGULAR DIGRAPHS

Colin Cooper
School of Mathematical Sciences, Polytechnic of North London, London, U.K. and
Alan Frieze*and Michael Molloy
Department of Mathematics, Carnegie-Mellon University, Pittsburgh PA15213, U.S.A.

March 14, 2005

Abstract

We prove that almost every r-regular digraph is Hamiltonian for all fixed $r \geq 3$.

1 Introduction

In two recent papers Robinson and Wormald [8],[9] solved one of the major open problems in the theory of random graphs. They proved

[^0]Theorem 1 For every fixed $r \geq 3$ almost all r-regular graphs are hamiltonian.

For earlier attempts at this question see Bollobás [2], Fenner and Frieze [5] and Frieze [6] who established the result for $r \geq r_{0}$.

In [8] $(r=3)$ they used a clever variation on the second moment method and in [9] (for $r \geq 4$) they used this idea plus a sort of monotonicity argument.

In this paper we will study the directed version of the problem. Thus let $\Omega_{n, r}=\Omega$ denote the set of digraphs with vertex set $[n]=\{1,2, \ldots, n\}$ such that each vertex has indegree and outdegree r. Let $D_{n, r}=D$ be chosen uniformly at random from $\Omega_{n, r}$. Then

Theorem 2

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}(D \text { is Hamiltonian })= \begin{cases}0 & r=2 \\ 1 & r \geq 3\end{cases}
$$

The case $r=2$ follows directly from the fact that the expected number of Hamilton cycles in $D_{n, 2}$ tends to zero.

Our method of proof for $r \geq 3$ is quite different from [8], [9] although we will use the idea that for $r \geq 3$, a random r-regular bipartite graph is close in some probabilistic sense to a random $(r-1)$-regular bipartite graph plus a random matching.

Our strategy is close to that of Cooper and Frieze [4] who prove that almost every 3 -in,3-out digraph is Hamiltonian.

2 Random digraphs and random bipartite graphs

Given $D_{n, r}=([n], A)$ we can associate it with a bipartite graph $B=B_{n, r}=$ $\phi\left(D_{n, r}\right)=([n],[n], E)$ in a standard way. Here B contains an edge $\{x, y\}$ iff D contains the directed edge (x, y). The mapping ϕ is a bijection between r-regular digraphs and r-regular bipartite graphs and so B is uniform on the latter space, which we denote by $\Omega_{n, r}^{B}$.

For $r \geq 3$ we wish to replace $B_{n, r}$ by $B_{n, r-1}$ plus an independently chosen random perfect matching M of $[n]$ to $[n]$. This is equivalent to replacing D by $\Pi_{0} \cup \hat{D}$ where Π_{0} and \hat{D} are independent and
(i) Π_{0} is the digraph of a random permutation.
(ii) $\hat{D}=D_{n, r-1}$.

Of course Π is the union of vertex disjoint cycles. We call such a digraph a permutation digraph. Its cycle count is the number of cycles.
The arguments of [9] allow us to make the above replacement. A brief sketch of why this is so would certainly be in order.
Let X_{M} denote the number of perfect matchings in $B_{n, r}$. Arguments in [9] demonstrate the existence of $\epsilon(b)>0$ such that for $b>0$ fixed

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(X_{M} \geq \mathbf{E}\left(X_{M}\right) / b\right) \geq 1-\epsilon(b)
$$

where $\epsilon(b) \rightarrow 0$ as $b \rightarrow \infty$.
Now consider a bipartite graph $\mathcal{B}=\left(\Omega_{n, r-1}^{B}, \Omega_{n, r}^{B}, \mathcal{E}\right)$. There is an edge from $G \in \Omega_{n, r-1}^{B}$ to $G^{\prime} \in \Omega_{n, r}^{B}$ iff $G^{\prime}=G \cup M$ where M is a perfect matching. Now choose $\left(G, G^{\prime}\right)$ randomly from \mathcal{E}. Let A denote some event defined on $\Omega_{n, r}^{B}$ and $\hat{A}=\left\{\left(G, G^{\prime}\right) \in \mathcal{E}: G^{\prime} \in A\right\}$. Then since the maximum and minimum degrees of the $\Omega_{n, r-1}^{B}$ vertices of \mathcal{B} are asymptotically equal to $n!e^{-(r-1)}$ (Bender and Canfield [1])

$$
\operatorname{Pr}_{0}(\hat{A})=(1+o(1)) \operatorname{Pr}_{1}(A)
$$

where $o(1)$ refers to $n \rightarrow \infty, P r_{0}$ refers to the space \mathcal{E} with the uniform measure and Pr_{1} refers to (randomly chosen) $G=B_{n, r-1}$ plus a randomly chosen M, disjoint from $G^{\prime}=B_{n, r-1}$.

On the other hand if Pr refers to $B_{n, r}$ then

$$
\begin{aligned}
\operatorname{Pr}_{0}(\hat{A}) & =\sum_{G^{\prime} \in A} \frac{X_{M}}{|\mathcal{E}|} \\
& =\sum_{G^{\prime} \in A} \frac{X_{M}}{\mathbf{E}\left(X_{M}\right)\left|\Omega_{n, r}^{B}\right|} \\
& \geq(\operatorname{Pr}(A)-\epsilon(b)) / b
\end{aligned}
$$

Thus

$$
\operatorname{Pr}(A) \leq \epsilon(b)+(b+o(1)) \operatorname{Pr}_{1}(A)
$$

Thus if A is $\left\{\phi^{-1}\left(B_{n, r-1} \cup M\right)\right.$ is non-Hamiltonian $\}$ (M disjoint from $B_{n, r-1}$ here) we can show that $\operatorname{Pr}(A) \rightarrow 0($ as $n \rightarrow \infty)$ by proving that $\operatorname{Pr}_{1}(A) \rightarrow 0$ (as $n \rightarrow \infty$), since b can be arbitrarily large.

Finally, if Pr_{2} refers to $B_{n, r-1}$ plus a randomly chosen M (not necessarily disjoint from $B_{n, r-1}$) then $\operatorname{Pr}_{2}(A) \rightarrow 0$ (as $n \rightarrow \infty$) implies $\operatorname{Pr}_{1}(A) \rightarrow 0$ (as $n \rightarrow \infty$) since the probability that M is disjoint from $B_{n, r-1}$ in this case tends to the constant $e^{-(r-1)}>0$.

We have thus reduced the proof of Theorem 2 to that of showing

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(\Pi_{0} \cup \hat{D} \text { is Hamiltonian }\right)=1
$$

In fact we have only to prove the result for $r=3$ and apply induction. Thus assume $r=3$ from now on.

We will use a two phase method as outlined below.
Phase 0. Π_{0} being a random permutation digraph it is almost always of cycle count at most $2 \log n$, see for example Bollobás [3].
Phase 1. Using \hat{D} we increase the minimum cycle size in the permutation digraph to at least $n_{0}=\left\lceil\frac{100 n}{\log n}\right\rceil$.
Phase 2. Using \hat{D} we convert the Phase 1 permutation digraph to a Hamilton cycle.

In what follows inequalities are only claimed to hold for n sufficiently large. The term whp is short for with high probability i.e. probability $1-\mathrm{o}(1)$ as $n \rightarrow \infty$.

3 Phase 1. Removing small cycles

We partition the cycles of the permutation digraph Π_{0} into sets SMALL and LARGE, containing cycles C of size $|C|<n_{0}$ and $|C| \geq n_{0}$ respectively. We define a Near Permutation Digraph (NPD) to be a digraph obtained from a
permutation digraph by removing one edge. Thus an NPD Γ consists of a path $P(\Gamma)$ plus a permutation digraph $P D(\Gamma)$ which covers $[n] \backslash V(P(\Gamma))$.

We now give an informal description of a process which removes a small cycle C from a current permutation digraph Π. We start by choosing an (arbitrary) edge $\left(v_{0}, u_{0}\right)$ of C and delete it to obtain an NPD Γ_{0} with $P_{0}=$ $P\left(\Gamma_{0}\right) \in \mathcal{P}\left(u_{0}, v_{0}\right)$, where $\mathcal{P}(x, y)$ denotes the set of paths from x to y in D. The aim of the process is to produce a large set S of NPD's such that for each $\Gamma \in S$, (i) $P(\Gamma)$ has a least n_{0} edges and (ii) the small cycles of $P D(\Gamma)$ are a subset of the small cycles of Π. We will show that whp the endpoints of one of the $P(\Gamma)$'s can be joined by an edge to create a permutation digraph with (at least) one less small cycle.

The basic step in an Out-Phase of this process is to take an NPD Γ with $P(\Gamma) \in \mathcal{P}\left(u_{0}, v\right)$ and to examine the edges of \hat{D} leaving v. Let w be the terminal vertex of such an edge and assume that Γ contains an edge (x, w). Then $\Gamma^{\prime}=\Gamma \cup\{(v, w)\} \backslash\{(x, w)\}$ is also an NPD. Γ^{\prime} is acceptable if (i) $P\left(\Gamma^{\prime}\right)$ contains at least n_{0} edges and (ii) any new cycle created (i.e. in Γ^{\prime} and not $\Gamma)$ also has at least n_{0} edges.

If Γ contains no edge (x, w) then $w=u_{0}$. We accept the edge if $P(\Gamma)$ has at least n_{0} edges. This would (prematurely) end an iteration, although it is unlikely to occur.

We do not want to look at very many edges of \hat{D} in this construction and we build a tree T_{0} of NPD's in a natural breadth-first fashion where each non-leaf vertex Γ gives rise to NPD children Γ^{\prime} as described above. The construction of T_{0} ends when we first have $\nu=\lceil\sqrt{n \log n}\rceil$ leaves. The construction of T_{0} constitutes an Out-Phase of our procedure to eliminate small cycles. Having constructed T_{0} we need to do a further In-Phase, which is similar to a set of Out-Phases.

Then whp we close at least one of the paths $P(\Gamma)$ to a cycle of length at least n_{0}. If $|C| \geq 2$ and this process fails then we try again with a different edge of C in place of $\left(u_{0}, v_{0}\right)$.

We now increase the the formality of our description. We start Phase 2 with a permutation digraph Π_{0} and a general iteration of Phase 2 starts with a permutation digraph Π whose small cycles are a subset of those in
Π_{0}. Iterations continue until there are no more small cycles. At the start of an iteration we choose some small cycle C of Π. There then follows an Out-Phase in which we construct a tree $T_{0}=T_{0}(\Pi, C)$ of NPD's as follows: the root of T_{0} is Γ_{0} which is obtained by deleting an edge $\left(v_{0}, u_{0}\right)$ of C.

We grow T_{0} to a depth at most $\lceil 1.5 \log n\rceil$. The set of nodes at depth t is denoted by S_{t}.
Let $\Gamma \in S_{t}$ and $P=P(\Gamma) \in \mathcal{P}\left(u_{0}, v\right)$. The potential children Γ^{\prime} of Γ, at depth $t+1$ are defined as follows.
Let w be the terminal vertex of an edge directed from v in \hat{D}.
Case 1. w is a vertex of a cycle $C^{\prime} \in P D(\Gamma)$ with edge $(x, w) \in C^{\prime}$. Let $\Gamma^{\prime}=\Gamma \cup\{(v, w)\} \backslash\{(x, w)\}$.
Case 2. w is a vertex of $P(\Gamma)$. Either $w=u_{0}$, or (x, w) is an edge of P. In the former case $\Gamma \cup\{(v, w)\}$ is a permutation digraph Π^{\prime} and in the latter case we let $\Gamma^{\prime}=\Gamma \cup\{(v, w)\} \backslash\{(x, w)\}$.

In fact we only admit to S_{t+1} those Γ^{\prime} which satisfy the following conditions. C(i) The new cycle formed (Case 2 only) must have at least n_{0} vertices, and the path formed must either be empty or have at least n_{0} vertices. When the path formed is empty we close the iteration and if necessary start the next with Π^{\prime}.

Now define W_{+}, W_{-}as follows: initially $W_{+}=W_{-}=\emptyset$. A vertex x is added to W_{+}whenever we learn any of its out-neighbours in \hat{D} and to W_{-}whenever we learn any of its in-neighbours. $W=W_{+} \cup W_{-}$. We never allow $|W|$ to exceed $n^{9 / 10}$.

The only information we learn about \hat{D} is that certain specific arcs are present.

The property we need of the random graph \hat{D} is that if $x \notin W_{+}$and S is any set of vertices, disjoint from W, then

$$
\operatorname{Pr}\left(N_{+}(x) \cap S \neq \emptyset\right)=\left(1-\left(1-\frac{|S|}{n}\right)^{2}\right)\left(1+O\left(\frac{1}{n^{1 / 10}}\right)\right)
$$

These approximations are intended to hold conditional on any past history of the algorithm such that $|W| \leq n^{9 / 10}$. Furthermore, if $x \in W_{+}$but only
one neighbour y is known then, where $y \notin S$,

$$
\operatorname{Pr}\left(N_{-}(x) \cap S \neq \emptyset \mid y\right)=\frac{|S|}{n}\left(1+O\left(\frac{1}{n^{1 / 10}}\right)\right)
$$

Similar remarks are true for $N_{-}(x)$. Thus, since W remains small, $N_{ \pm}(v)$ are usually (near) random pairs in \bar{W}.

C(ii) $x \notin W$.
An edge (v, w) which satisfies the above conditions is described as acceptable.
In order to remove any ambiguity, the vertices of S_{t} are examined in their order of construction.

Lemma 3 Let $C \in S M A L L$. Then

$$
\operatorname{Pr}\left(\exists t<\left\lceil\log _{3 / 2} \nu\right\rceil \text { such that }\left|S_{t}\right| \geq \nu\right)=1-O\left((\log \log n / \log n)^{2}\right)
$$

Proof. We assume we stop construction of T_{0}, in mid-phase if necessary, when $\left|S_{t}\right|=\nu$, and show inductively that whp $\left(\frac{3}{2}\right)^{t} \leq\left|S_{t}\right| \leq 2^{t}$, for $t \geq 3$. Let t^{*} denote the value of t when we stop. Thus the overall contribution to $|W|$ from this part of the algorithm is at most $|S M A L L| \times 2^{t^{*}+1} \leq n^{0.86}$.

In general, let X_{t} be the number of unacceptable edges found when constructing $S_{t+1},\left(t=1,2, \ldots, t^{*}\right)$. The event of a particular edge (v, w) being unacceptable is stochastically dominated by a Bernouilli trial with probability of success $p<\log \log n / n$. (in general inequalities are only claimed for sufficiently large n). To see this observe that there is a probability of at most $201 / \log n$ that in Case 2 we create a small cycle or a short path. There is an $O\left(n^{-1 / 10}\right)$ probability that $x \in W$. Finally there is the probability that w lies in a small cycle. Now in a random permutation the expected number of vertices in cycles of size at most k is precisely k / n. Thus whp Π_{0} contains at most $n \log \log n /(2 \log n)$ vertices on small cycles and so given this, the probability that w lies on a small cycle is at most $\log \log n /(2 \log n)$.
For $t \leq c$, constant, the probability of 2 or more unacceptable edges in layers $t \leq c$ is $O\left(\frac{2^{2 c}(\log \log n)^{2}}{(\log n)^{2}}\right)$ and thus $\left|S_{t+1}\right|>2\left|S_{t}\right|-1>\left(\frac{3}{2}\right)^{t}$ for $3 \leq t \leq c$ with probability $1-O\left((\log \log n / \log n)^{2}\right)$.
In order to see this, note that in the case where there is only one acceptable
edge at the first iteration, subsequent layers expand by a power of 2 , and $\left|S_{1}\right|=2$ otherwise.
For $t>c, c$ large, the expected number of unacceptable edges at iteration t is at most $\mu=2 p\left|S_{t}\right|$ and thus by standard bounds on tails of the Binomial distribution,

$$
\operatorname{Pr}\left(X_{t}>\left\lfloor\left|S_{t}\right| / 2\right\rfloor| | S_{t} \mid=s\right) \leq\left(\frac{2 e \log \log n}{\log n}\right)^{\lfloor s / 2\rfloor}
$$

This upper bound is easily good enough to complete the proof of the lemma.

Now T_{0} has leaves Γ_{i}, for $i=1, \ldots, \nu$, each with a path of length at least n_{0}, (unless we have already successfully made a cycle). We now execute an In-Phase. This involves the construction of trees $T_{i}, i=1,2, \ldots \nu$. Assume that $P\left(\Gamma_{i}\right) \in \mathcal{P}\left(u_{0}, v_{i}\right)$. We start with Γ_{i} and \mathcal{D}_{i} and build T_{i} in a similar way to T_{0} except that here all paths generated end with v_{i}. This is done as follows: if a current NPD Γ has $P(\Gamma) \in \mathcal{P}\left(u, v_{i}\right)$ then we consider adding an edge $(w, u) \in \hat{D}$ and deleting an edge $(w, x) \in \Gamma$ (as opposed to (x, w) in an Out-Phase). Thus our trees are grown by considering edges directed into the start vertex of each $P(\Gamma)$ rather than directed out of the end vertex. Some technical changes are necessary however.

We consider the construction of our ν trees in two iterations. First of all we grow the trees only enforcing condition $\mathrm{C}(\mathrm{ii})$ of success and thus allow the formation of small cycles. We try to grow them to depth $k=\left\lceil\log _{3 / 2} \nu\right\rceil$. We also consider the growth of the ν trees simultaneously. Let $T_{i, \ell}$ denote the set of start vertices of the paths associated with the nodes at depth ℓ of the i 'th tree, $i=1,2 \ldots, \nu, \ell=0,1, \ldots, k$. Thus $T_{i, 0}=\left\{u_{0}\right\}$ for all i. We prove inductively that $T_{i, \ell}=T_{1, \ell}$ for all i, ℓ. In fact if $T_{i, \ell}=T_{1, \ell}$ then the acceptable \hat{D} edges have the same set of initial vertices and since all of the deleted edges are Π_{0}-edges (enforced by C(ii)) we have $T_{i, \ell+1}=T_{1, \ell+1}$.

The probability that we succeed in constructing ν trees $T_{1}, T_{2}, \ldots T_{\nu}$, say, is, by the analysis of Lemma 3, $1-O\left((\log \log n / \log n)^{2}\right)$. Note that the number of nodes in each tree is at most $2^{k+1} \leq n^{.87}$ and so the overall contribution to $|W|$ from this part of the algorithm is $O\left(n^{.87} \log n\right)$.
We now consider the fact that in some of the trees some of the leaves may
have been constructed in violation of $\mathrm{C}(\mathrm{i})$. We imagine that we prune the trees $T_{1}, T_{2}, \ldots T_{\nu}$ by disallowing any node that was constructed in violation of $\mathrm{C}(\mathrm{i})$. Let a tree be BAD if after pruning it has less than ν leaves. Now an individual pruned tree has essentially been constructed in the same manner as the tree T_{0} obtained in the Out-Phase. (We have chosen k large enough so that we can obtain ν leaves at the slowest growth rate of $3 / 2$ per node.) Thus

$$
\operatorname{Pr}\left(T_{1} \text { is } \mathrm{BAD}\right)=O\left(\left(\frac{\log \log n}{\log n}\right)^{2}\right)
$$

and

$$
E(\text { number of BAD trees })=O\left(\nu\left(\frac{\log \log n}{\log n}\right)^{2}\right)
$$

and

$$
\operatorname{Pr}(\exists \geq \nu / 2 \text { BAD trees })=O\left(\left(\frac{\log \log n}{\log n}\right)^{2}\right)
$$

Thus

$$
\begin{aligned}
& \operatorname{Pr}(\exists<\nu / 2 \text { GOOD trees after pruning }) \\
\leq & \operatorname{Pr}\left(\text { failure to construct } T_{1}, T_{2}, \ldots T_{\nu}\right)+\operatorname{Pr}(\exists \geq \nu / 2 \text { BAD trees }) \\
= & O\left(\left(\frac{\log \log n}{\log n}\right)^{2}\right)
\end{aligned}
$$

Thus with probability $1-O\left((\log \log n / \log n)^{2}\right)$ we end up with $\nu / 2$ sets of ν paths, each of length at least $100 n / \log n$ where the i 'th set of paths have V_{i} say, as their set of start vertices and v_{i} as a final vertex. At this stage each $v_{i} \notin W_{+}$and each $V_{i} \cap W_{-}=\emptyset$. Hence

$$
\begin{aligned}
\operatorname{Pr}(\text { no } \Pi \text { edge closes one of these paths }) & \leq\left(1-\frac{2 \nu}{n}\left(1+O\left(\frac{1}{n^{1 / 10}}\right)\right)\right)^{\nu / 2} \\
& =O\left(n^{-1}\right)
\end{aligned}
$$

Consequently the probability that we fail to eliminate a particular small cycle is
$O\left((\log \log n / \log n)^{2}\right)$ and we have

Lemma 4 The probability that Phase 2 fails to produce a permutation digraph with minimal cycle length at least n_{0} is $o(1)$.

At this stage we have shown that $\Pi_{0} \cup \hat{D}$ almost always contains a permutation digraph Π^{*} in which the minimum cycle size is at least n_{0}.

We shall refer to Π^{*} as the Phase 1 permutation digraph.

4 Phase 2. Patching the Phase 1 permutation digraph to a Hamilton cycle

Let $C_{1}, C_{2}, \ldots, C_{k}$ be the cycles of Π^{*}, and let $c_{i}=\left|C_{i} \backslash W\right|, c_{1} \leq c_{2} \leq \cdots \leq$ c_{k}, and $c_{1} \geq n_{0}-n^{3 / 4} \geq \frac{99 \log n}{n}$. If $k=1$ we can skip this phase, otherwise let $a=\frac{n}{\log n}$. For each C_{i} we consider selecting a set of $m_{i}=2\left\lfloor\frac{c_{i}}{a}\right\rfloor+1$ vertices $v \in C_{i} \backslash W$, and deleting the edge (v, u) in Π^{*}. Let $m=\sum_{i=1}^{k} m_{i}$ and relabel (temporarily) the broken edges as $\left(v_{i}, u_{i}\right), i \in[m]$ as follows: in cycle C_{i} identify the lowest numbered vertex x_{i} which loses a cycle edge directed out of it. Put $v_{1}=x_{1}$ and then go round C_{1} defining $v_{2}, v_{3}, \ldots v_{m_{1}}$ in order. Then let $v_{m_{1}+1}=x_{2}$ and so on. We thus have m path sections $P_{j} \in \mathcal{P}\left(u_{\phi(j)}, v_{j}\right)$ in Π^{*} for some permutation ϕ. We see that ϕ is an even permutation as all the cycles of ϕ are of odd length.

There will be a chance that we can rejoin these path sections of Π^{*} to make a Hamilton cycle using \hat{D}. Suppose we can. This defines a permutation ρ where $\rho(i)=j$ if P_{i} is joined to P_{j} by $\left(v_{i}, u_{\phi(j)}\right)$, where $\rho \in H_{m}$ the set of cyclic permutations on $[m]$. We will use the second moment method to show that a suitable ρ exists whp. Unfortunately a technical problem forces a restriction on our choices for ρ.

Given ρ define $\lambda=\phi \rho$. In our analysis we will restrict our attention to $\rho \in R_{\phi}=\left\{\rho \in H_{m}: \phi \rho=\lambda, \lambda \in H_{m}\right\}$. If $\rho \in R_{\phi}$ then we have not only constructed a Hamilton cycle in $\Pi^{*} \cup \hat{D}$, but also in the auxillary digraph Λ, whose edges are $(i, \lambda(i))$.

Lemma $5(m-2)!\leq\left|R_{\phi}\right| \leq(m-1)$!
Proof. We grow a path $1, \lambda(1), \gamma^{2}(1), \ldots, \gamma^{k}(1)$ in Λ, maintaining feasibility
in the way we join the path sections of Π^{*} at the same time.
We note that the edge $(i, \lambda(i))$ of Λ corresponds in \hat{D} to the edge $\left(v_{i}, u_{\phi \rho(i)}\right)$. In choosing $\lambda(1)$ we must avoid not only 1 but also $\phi(1)$ since $\lambda(1)=1$ implies $\rho(1)=1$. Thus there are $m-2$ choices for $\lambda(1)$ since $\phi(1) \neq 1$.

In general, having chosen $\lambda(1), \gamma^{2}(1), \ldots, \gamma^{k}(1), 1 \leq k \leq m-3$ our choice for $\gamma^{k+1}(1)$ is restricted to be different from these choices and also 1 and ℓ where u_{ℓ} is the initial vertex of the path terminating at $v_{\lambda^{k}(1)}$ made by joining path sections of Π^{*}. Thus there are either $m-(k+1)$ or $m-(k+2)$ choices for $\gamma^{k+1}(1)$ depending on whether or not $\ell=1$.

Hence, when $k=m-3$, there may be only one choice for $\gamma^{m-2}(1)$, the vertex h say. After adding this edge, let the remaining isolated vertex of Λ be w. We now need to show that we can complete λ, ρ so that $\lambda, \rho \in H_{m}$.

Which vertices are missing edges in Λ at this stage? Vertices $1, w$ are missing in-edges, and h, w out-edges. Hence the path sections of Π^{*} are joined so that either

$$
u_{1} \rightarrow v_{h}, \quad u_{w} \rightarrow v_{w} \quad \text { or } \quad u_{1} \rightarrow v_{w}, \quad u_{w} \rightarrow v_{h} .
$$

The first case can be (uniquely) feasibly completed in both Λ and D by setting $\lambda(h)=w, \lambda(w)=1$. Completing the second case to a cycle in Π^{*} means that

$$
\begin{equation*}
\lambda=\left(1, \lambda(1), \ldots, \gamma^{m-2}(1)\right)(w) \tag{1}
\end{equation*}
$$

and thus $\lambda \notin H_{m}$. We show this case cannot arise.
$\lambda=\phi \rho$ and ϕ is even implies that λ and ρ have the same parity. On the other hand $\rho \in H_{m}$ has a different parity to λ in (1) which is a contradiction.

Thus there is a (unique) completion of the path in Λ.
Let H stand for the union of the permutation digraph Π^{*} and \hat{D}. We finish our proof by proving

Lemma $6 \operatorname{Pr}(H$ does not contain a Hamilton cycle $)=o(1)$.
Proof. Let X be the number of Hamilton cycles in H resulting from rearranging the path sections generated by ϕ according to those $\rho \in R_{\phi}$. We will
use the inequality

$$
\begin{equation*}
\operatorname{Pr}(X>0) \geq \frac{E(X)^{2}}{E\left(X^{2}\right)} \tag{2}
\end{equation*}
$$

Here probabilities are now with respect to the \hat{D} choices for edges incident with vertices not in W and on the choices of the m cut vertices.

Now the definition of the m_{i} yields that

$$
\frac{2 n}{a}-k \leq m \leq \frac{2 n}{a}+k
$$

and so

$$
\text { (1.99) } \log n \leq m \leq(2.01) \log n
$$

Also

$$
k \leq m / 199, m_{i} \geq 199 \text { and } \frac{c_{i}}{m_{i}} \geq \frac{a}{2.01}, \quad 1 \leq i \leq k
$$

Let Ω denote the set of possible cycle re-arrangements. $\omega \in \Omega$ is a success if \hat{D} contains the edges needed for the asssociated Hamilton cycle. Thus, where $\epsilon=O\left(1 / n^{1 / 10}\right)$,

$$
\begin{align*}
E(X) & =\sum_{\omega \in \Omega} \operatorname{Pr}(\omega \text { is a success) } \\
& =\sum_{\omega \in \Omega}\left(\frac{2}{n}(1+\epsilon)\right)^{m} \\
& \geq\left(\frac{2}{n}(1+\epsilon)\right)^{m}(m-2)!\prod_{i=1}^{k}\binom{c_{i}}{m_{i}} \\
& \geq \frac{1-o(1)}{m \sqrt{m}}\left(\frac{2 m}{e n}\right)^{m} \prod_{i=1}^{k}\left(\left(\frac{c_{i} e}{m_{i}^{1+\left(1 / 2 m_{i}\right)}}\right)^{m_{i}}\left(\frac{\exp \left\{-m_{i}^{2} / 2 c_{i}\right\}}{\sqrt{2 \pi}}\right)\right) \\
& \geq \frac{(1-o(1))(2 \pi)^{-m / 398}}{m \sqrt{m}}\left(\frac{2 m}{e n}\right)^{m} \prod_{i=1}^{k}\left(\frac{c_{i} e}{(1.02) m_{i}}\right)^{m_{i}} \\
& \geq \frac{(1-o(1))(2 \pi)^{-m / 398}}{m \sqrt{m}}\left(\frac{2 m}{e n}\right)^{m}\left(\frac{e a}{2.01 \times 1.02}\right)^{m} \\
& \geq \frac{(1-o(1))(2 \pi)^{-m / 398}}{m \sqrt{m}}\left(\frac{3.98}{2.0502}\right)^{m} \\
& \geq n^{1.3} . \tag{3}
\end{align*}
$$

Let M, M^{\prime} be two sets of selected edges which have been deleted in J and whose path sections have been rearranged into Hamilton cycles according to ρ, ρ^{\prime} respectively. Let N, N^{\prime} be the corresponding sets of edges which have been added to make the Hamilton cycles. What is the interaction between these two Hamilton cycles?

Let $s=\left|M \cap M^{\prime}\right|$ and $t=\left|N \cap N^{\prime}\right|$. Now $t \leq s$ since if $(v, u) \in N \cap N^{\prime}$ then there must be a unique $(\tilde{v}, u) \in M \cap M^{\prime}$ which is the unique J-edge into u. We claim that $t=s$ implies $t=s=m$ and $(M, \rho)=\left(M^{\prime}, \rho^{\prime}\right)$. (This is why we have restricted our attention to $\rho \in R_{\phi}$.) Suppose then that $t=s$ and $\left(v_{i}, u_{i}\right) \in M \cap M^{\prime}$. Now the edge $\left(v_{i}, u_{\gamma(i)}\right) \in N$ and since $t=s$ this edge must also be in N^{\prime}. But this implies that $\left(v_{\gamma(i)}, u_{\gamma(i)}\right) \in M^{\prime}$ and hence in $M \cap M^{\prime}$. Repeating the argument we see that $\left(v_{\gamma^{k}(i)}, u_{\gamma^{k}(i)}\right) \in M \cap M^{\prime}$ for all $k \geq 0$. But γ is cyclic and so our claim follows.

We adopt the following notation. Let $t=0$ denote the event that no common edges occur, and (s, t) denote $\left|M \cap M^{\prime}\right|=s$ and $\left|N \cap N^{\prime}\right|=t$. So

$$
\begin{align*}
E\left(X^{2}\right) \leq & E(X)+(1+\epsilon)^{2 m} \sum_{\Omega}\left(\frac{2}{n}\right)^{m} \sum_{\substack{\Omega \\
t=0}}\left(\frac{2}{n}\right)^{m} \\
& +(1+\epsilon)^{2 m} \sum_{\Omega}\left(\frac{2}{n}\right)^{m} \sum_{s=2}^{m} \sum_{t=1}^{s-1} \sum_{\substack{\Omega \\
(s, t)}}\left(\frac{2}{n}\right)^{m-t} \\
= & E(X)+E_{1}+E_{2} \text { say. } \tag{4}
\end{align*}
$$

Clearly

$$
\begin{equation*}
E_{1} \leq(1+\epsilon)^{2 m} E(X)^{2} . \tag{5}
\end{equation*}
$$

For given ρ, how many ρ^{\prime} satisfy the condition (s, t) ? Previously $\left|R_{\phi}\right| \geq$ $(m-2)$! and now $\left|R_{\phi}(s, t)\right| \leq(m-t-1)$!, (consider fixing t edges of $\left.\Gamma^{\prime}\right)$. Thus

$$
E_{2} \leq(1+\epsilon)^{2 m} E(X)^{2} \sum_{s=2}^{m} \sum_{t=1}^{s-1}\binom{s}{t}\left[\sum_{\sigma_{1}+\cdots+\sigma_{k}=s} \prod_{i=1}^{k} \frac{\binom{m_{i}}{\sigma_{i}}\binom{c_{i}-m_{i}}{m_{i}-\sigma_{i}}}{\binom{c_{i}}{m_{i}}}\right] \frac{(m-t-1)!}{(m-2)!}\left(\frac{n}{2}\right)^{t} .
$$

Now

$$
\frac{\binom{c_{i}-m_{i}}{m_{i}-\sigma_{i}}}{\binom{c_{i}}{m_{i}}} \leq \frac{\binom{c_{i}}{m_{i}-\sigma_{i}}}{\binom{c_{i}}{m_{i}}}
$$

$$
\begin{aligned}
& \leq(1+o(1))\left(\frac{m_{i}}{c_{i}}\right)^{\sigma_{i}} \exp \left\{-\frac{\sigma_{i}\left(\sigma_{i}-1\right)}{2 m_{i}}\right\} \\
& \leq(1+o(1))\left(\frac{2.01}{a}\right)^{\sigma_{i}} \exp \left\{-\frac{\sigma_{i}\left(\sigma_{i}-1\right)}{2 m_{i}}\right\}
\end{aligned}
$$

where the $o(1)$ term is $O\left((\log n)^{3} / n\right)$. Also

$$
\begin{gathered}
\sum_{i=1}^{k} \frac{\sigma_{i}^{2}}{2 m_{i}} \geq \frac{s^{2}}{2 m} \quad \text { for } \sigma_{1}+\cdots \sigma_{k}=s \\
\sum_{i=1}^{k} \frac{\sigma_{i}}{2 m_{i}} \leq \frac{k}{2}
\end{gathered}
$$

and

$$
\sum_{\sigma_{1}+\cdots+\sigma_{k}=s} \prod_{i=1}^{k}\binom{m_{i}}{\sigma_{i}}=\binom{m}{s} .
$$

Hence

$$
\begin{align*}
\frac{E_{2}}{E(X)^{2}} & \leq(1+o(1)) e^{k / 2} \sum_{s=2}^{m} \sum_{t=1}^{s-1}\binom{s}{t} \exp \left\{-\frac{s^{2}}{2 m}\right\}\left(\frac{2.01}{a}\right)^{s}\binom{m}{s} \frac{(m-t-1)!}{(m-2)!}\left(\frac{n}{2}\right)^{t} \\
& \leq(1+o(1)) n^{.01} \sum_{s=2}^{m} \sum_{t=1}^{s-1}\binom{s}{t} \exp \left\{-\frac{s^{2}}{2 m}\right\}\left(\frac{2.01}{a}\right)^{s} \frac{m^{s-(t-1)}}{(s-1)!}\left(\frac{n}{2}\right)^{t} \\
& =(1+o(1)) n^{0.01} \sum_{s=2}^{m}\left(\frac{2.01}{a}\right)^{s} \frac{m^{s}}{s!} \exp \left\{-\frac{s^{2}}{2 m}\right\} m \sum_{t=1}^{s-1}\binom{s}{t}\left(\frac{n}{2 m}\right)^{t} \\
& \leq(1+o(1))\left(\frac{2 m^{3}}{n^{99}}\right) \sum_{s=2}^{m}\left(\frac{(2.01) n \exp \{-s / 2 m\}}{2 a}\right)^{s} \frac{1}{s!} \\
& =o(1) \tag{6}
\end{align*}
$$

To verify that the RHS of (6) is $o(1)$ we can split the summation into

$$
S_{1}=\sum_{s=2}^{\lfloor m / 4\rfloor}\left(\frac{(2.01) n \exp \{-s / 2 m\}}{2 a}\right)^{s} \frac{1}{s!}
$$

and

$$
S_{2}=\sum_{s=\lfloor m / 4\rfloor+1}^{m}\left(\frac{(2.01) n \exp \{-s / 2 m\}}{2 a}\right)^{s} \frac{1}{s!}
$$

Ignoring the term $\exp \{-s / 2 m\}$ we see that

$$
\begin{aligned}
S_{1} & \leq \sum_{s=2}^{\lfloor(.5025) \log n\rfloor} \frac{((1.005) \log n)^{s}}{s!} \\
& =o\left(n^{9 / 10}\right)
\end{aligned}
$$

since this latter sum is dominated by its last term.
Finally, using $\exp \{-s / 2 m\}<e^{-1 / 8}$ for $s>m / 4$ we see that

$$
S_{2} \leq n^{(1.005) e^{-1 / 8}}<n^{9 / 10}
$$

The result follows from (2) to (6).
Acknowledgement: we thank the referee for his/her comments.

References

[1] E.A.Bender and E.R.Canfield, The asymptotic number of labelled graphs with given degree sequences, Journal of Combinatorial Theory (A) 24, (1978) 296-307.
[2] B.Bollobás, Almost all regular graphs are Hamiltonian, European Journal of Combinatorics 4 (1983) 97-106.
[3] B.Bollobás, Random graphs, Academic press, 1985.
[4] C.Cooper and A.M.Frieze, Hamilton cycles in a class of random digraphs, to appear.
[5] T.I.Fenner and A.M.Frieze, Hamiltonian cycles in random regular graphs, Journal of Combinatorial Theory B 37, (1984) 103-112.
[6] A.M.Frieze, Finding hamilton cycles in sparse random graphs, Journal of Combinatorial Theory B 44, (1988) 230-250.
[7] V.F.Kolchin, Random mappings, Optimization Software Inc., New York,1986.
[8] R.W.Robinson and N.C.Wormald, Almost all cubic graphs are Hamiltonian, Random Structures and Algorithms 3 (1992) 117-126.
[9] R.W.Robinson and N.C.Wormald, Almost all regular graphs are Hamiltonian, Random Structures and Algorithms to appear.

[^0]: *Supported by NSF grant CCR-9024935

