
Discordant voting processes on finite graphs.∗

Colin Cooper† Martin Dyer‡ Alan Frieze§ Nicolás Rivera¶

August 7, 2018

Abstract

We consider an asynchronous voting process on graphs called discordant voting,
which can be described as follows. Initially each vertex holds one of two opinions, red
or blue. Neighbouring vertices with different opinions interact pairwise along an edge.
After an interaction both vertices have the same colour. The quantity of interest is the
time to reach consensus, i.e., the number of steps needed for all vertices have the same
colour. We show that for a given initial colouring of the vertices, the expected time to
reach consensus, depends strongly on the underlying graph and the update rule (i.e.,
push, pull, oblivious).

1 Introduction

The process of reaching consensus in a graph by means of local interactions is known as
voting. It is an abstraction of human behavior, and can be implemented in distributed
computer networks. As a consequence voting processes have been widely studied.

In the simplest case each vertex has a colour or opinion (e.g., red, blue etc), and neighbouring
vertices interact pairwise in a fixed way to update their colours. After this interaction both
vertices have the same colour. Three basic ways to make an update are:

Push: Pick a random vertex and push its colour to a random neighbour.
Pull: Pick a random vertex and pull the colour of a random neighbour.
Oblivious: Pick a random edge and push the colour of one randomly chosen
endpoint to the other one.

∗This work was supported by EPSRC grant EP/M005038/1, “Randomized algorithms for computer net-
works”, NSF grant DMS0753472 and Becas CHILE.
†Department of Informatics, King’s College London, UK. colin.cooper@kcl.ac.uk
‡School of Computing, University of Leeds, Leeds, UK. M.E.Dyer@leeds.ac.uk
§Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh PA 15213, USA.

alan@random.math.cmu.edu
¶Department of Informatics, King’s College London, UK. nicolas.rivera@kcl.ac.uk

1

In the case of asynchronous voting, all three methods are well defined. For synchronous
voting the push and oblivious processes are not well defined, as more than one colour could
be pushed to a vertex at a given step.

The performance of randomized voting processes is usually measured by the consensus time,
(the expected time to reach consensus), and the probability a given opinion wins.

A common synchronous model is randomized pull voting, where at each step, each vertex
adopts the opinion of a randomly chosen neighbour. For connected non-bipartite graphs,
Hassin and Peleg [13] and Nakata et al. [18] proved the probability opinion (colour) A wins
is d(A)/2m, where d(A) is the degree of the vertices initially holding opinion A, and m is
the number of edges of the graph.

If the colours of the vertices are initially distinct, the pull voting process takes Θ(n) expected
steps to reach consensus on many classes of expander graphs on n vertices. This is proved for
the complete graph Kn by Aldous and Fill [1], and for r-regular random graphs by Cooper,
Frieze and Radzik [5]. Results for general connected graphs based on the eigenvalue gap
and variance of the degree sequence are given by Cooper et al. in [6]. For n-vertex graphs
G, they give an expected consensus time of O(n/(ν(1 − λ))), where λ is the second largest
eigenvalue in absolute value of the transition matrix P of a simple random walk on G. Thus
λ = max(|λ2|, ..., |λn|), where λ1 = 1 is the principal eigenvalue. The parameter ν measures
the regularity of the degree sequence, and ranges from 1 for regular graphs to Θ(n) for the
star graph. The value is given by ν =

∑
v∈V d

2(v)/(d2n), where d(v) is the degree of vertex
v, and d = dave = 2m/n is the average degree.

For regular graphs, the result of [6] achieves an upper bound of O(n3) in the worst case. Using
a different approach, Berenbrink et al. [4] proved a consensus time of O((dave/dmin)(n/Φ)).
Here dave, dmin are the average and minimum degrees respectively. The parameter Φ is the
graph conductance, Φ = minS⊂V (G)

E(S:Sc)
min{d(S),d(Sc)} , where E(S : Sc) are the edges between S

and Sc, and S 6= ∅, V .

Much of the analysis of asynchronous pull voting has been made in the continuous-time
model, where edges or vertices have exponential waiting times between events. An example
is the work by Cox [8] for toroidal grids. For detailed coverage see Liggett [16]. More
recently Oliveira [19] shows that the expected consensus time is O(Hmax), where Hmax =
maxv,u∈V H(v, u) and H(v, u) is the expected hitting time of u by a random walk starting
at vertex v. Asynchronous pull voting is less studied in a discrete setting. It was shown in
[7] that the expected time to consensus for asynchronous pull voting is

ET = O(nm/dminΦ), (1)

where m is the number of edges, dmin is minimum degree and Φ is graph conductance. Thus
ET = O(n5) for any connected graph, and O(n2) for regular expanders.

This paper considers a different asynchronous voting process, discordant voting. An edge
is discordant if the colours of its endpoints differ, and a vertex is discordant if any of its
incident edges are discordant. In the model we consider, initially each vertex has one of two
opinions, red or blue. Neighbouring vertices of different colours, interact pairwise along a
discordant edge. Thus, e.g., in discordant push voting, a discordant vertex is chosen at each

2

step, and then a discordant edge incident with the chosen vertex. Henceforth we refer to the
voting processes discussed above (based on choosing edges or vertices randomly) as ordinary
voting processes to distinguish them from discordant voting.

In discordant voting, the expected time to consensus varies considerably, both with the
structure of the underlying graph, and with the protocol used; and sometimes in a quite
counter-intuitive way (see Table 2). This behavior is in contrast with ordinary (i.e., non-
discordant) asynchronous voting. Moreover, only the push and pull protocols exhibit this
variation in consensus time with the graph structure. The oblivious protocol has a consensus
time of O(n2) on any connected n-vertex graph (see Remark 1). This consensus time depends
only on the initial number of red and blue vertices and is independent of the graph structure,
and thus serves as a standard of comparison for the other two processes.

Discordant voting originated in the complex networks community as a model of social evolu-
tion (see, e.g., [12], [21]). The general version of the model allows for rewiring; the interacting
vertices can break the edge joining them and reconnect elsewhere. This serves as a model of
social behavior in which vertices either change their opinion or their friends.

Rewiring in the oblivious discordant voting model has been extensively studied. Holme and
Newman [14] investigated discordant voting as a model of a self-organizing network which
restructures based on the acceptance or rejection of differing opinions among social groups.
At each step, a random discordant edge uv is selected, and an endpoint x ∈ {u, v} chosen
with probability 1/2. With probability 1−α the opinion of x is pushed to the other endpoint
y, and with probability α, vertex y breaks the edge and rewires to a random vertex with
the same opinion as itself. Simulations suggest the existence of threshold behavior in α.
This was investigated further by Durrett et al. [10] for sparse random graphs of constant
average degree 4 (i.e., G(n, 4/n)). The paper studies two rewiring strategies, rewire-to-
random, and rewire-to-same, and finds experimental evidence of a phase transition in both
cases. Basu and Sly [3] made a formal analysis of rewiring for Erdos-Renyi graphs G(n, 1/2)
with 1 − α = β/n, β > 0 constant. They found that for either strategy, if β is sufficiently
small the network quickly disconnects maintaining the initial proportions. As β increases the
minority proportion decreases, and in rewire-to-random a positive fraction of both opinions
survive. A subsequent paper by Durrett et al. [2] examines the rewiring phase transitions
for the intermediate case of thick graphs G(n, 1/na) where 0 < a < 1.

Although discordant voting seems a natural model of local interaction, its behavior is not
well understood even in the simplest cases. Moreover, the analysis of rewiring is highly
problematic. Firstly there is no natural model for the space of random graphs derived from
the rewiring. Secondly the voting and rewiring interactions condition the degree sequence in
a way which makes subsequent analysis difficult.

In this paper we assume there is no rewiring, and evaluate the performance of discordant
voting as a function of the graph structure. As discordant voting always chooses an edge
between the opposing red and blue sets, intuitively it should finish faster than ordinary
asynchronous voting which ignores this discordancy information.

As previously remarked, for discordant voting using the oblivious protocol, the expected
time to consensus is the same for any connected n–vertex graph. It is independent of graph

3

structure and of the number of edges, and depends only on the initial number of vertices of
each colour (red, blue). Whichever discordant edge is chosen, the number of blue vertices
in the graph increases (resp. decreases) by one with probability 1/2 at each step. This is
equivalent to an unbiased random walk on the line (0, 1, ..., n) with absorbing barriers (see
Feller [11, XIV.3]).

Remark 1. Oblivious protocol. Let T be the time to consensus in the two-party asynchronous
discordant voting process starting from any initial coloring with R(0) = r, B(0) = n− r red
and blue vertices respectively. For any connected n vertex graph, ET (Oblivious) = r(n− r).

Starting with an equal number of red and blue vertices the oblivious protocol takes ET ∼
n2/4 steps for any connected graph. For ordinary asynchronous voting, the performance of
the oblivious protocol can also depend on the number of edges m. In the worst case, the
expected wait to hit the last red-blue edge is m. If so the ordinary asynchronous case could
take ET = O(mn2) steps.

In contrast to the oblivious case, discordant push and pull protocols can exhibit very different
expected times to consensus, which depend strongly on the underlying graph in question.

Theorem 1. Let T be the time to consensus of the asynchronous discordant voting process
starting from any initial coloring with an equal number of red and blue vertices, i.e., R =
B = n/2. For the complete graph Kn, ET (Push) = Θ(n log n), and ET (Pull) = Θ(2n).

For the complete graph Kn the various protocols give very different expected completion
times, which vary from Θ(n log n) for push, to Θ(n2) for oblivious, to Θ(2n) for pull. On the
basis of this evidence, our initial view was that there should be a meta-theorem of the ‘push
is faster than oblivious, oblivious is faster than pull’ type. Intuitively, this is supported by
the following argument. Suppose red (R) is the larger colour class. Choosing a discordant
vertex uniformly at random, favors the selection of the larger class. In the push process, red
vertices push their opinion more often, which tends to increase the size of R. Conversely,
the pull process tends to re-balance the set sizes. If R is larger, it is recoloured more often.

For the cycle Cn, we prove that all three protocols have similar expected time to consensus;
a result which is consistent with the above meta-theorem.

Theorem 2. Let T be the time to consensus of the asynchronous discordant voting process.
For the cycle Cn, and starting from any initial coloring with an equal number of red and blue
vertices, the Push and Pull protocols have ET = O(n2).

For the initial colouring where the first half of the cycle is coloured red and the second half
blue, as shown in Figure 5, the Push and Pull protocols have ET = Θ(n2).

At the time of publication of this paper, the constant in the value of ET was refined by
Pongrácz [20]. By combining the techniques of this paper with results for absorbing Markov
chains, it is shown that Theorem 2 can be refined to |ET − n2/4| = O(n3/2) for all three
processes.

At this point we are left with a choice. Either to produce evidence for a relationship of the
form ET (Push) = O(ET (Pull)) for general graphs, or to refute it. Mossel and Roch [17]

4

found slow convergence of the iterated prisoners dilemma problem (IPD) on caterpillar trees.
Intuitively push voting is aggressive, whereas pull voting is altruistic, and thus similar to
cooperation in the IPD. Motivated by this, we found simple counter examples, namely the
star graph Sn and the double star S∗n.

Theorem 3. Let T be the time to consensus of the asynchronous discordant voting process.

For the star graph Sn, and starting from any initial coloring with an equal number of red and
blue vertices, ET (Push) = Θ(n2 log n), and ET (Pull) = O(n2).

For the double star S∗n with the initial colouring of Figure 1, ET (Push) = Ω(2n/5), and
ET (Pull) = O(n4).

c1S1
c2 S2

Fig. 1: Double star S∗ with half of the vertices coloured red and half coloured blue.

At this point little remains of the possibility of a meta-theorem except a vague hope that at
least one of the push and pull protocols always has polynomial time to consensus. However,
this is disproved by the example of the barbell graph, which consists of two cliques of size
n/2 joined by a single edge.

Theorem 4. Let T be the time to consensus of the asynchronous discordant voting process.
For the barbell graph, there exist initial colourings with an equal number of red and blue
vertices, such that ET (Push) = Ω(2n/10), and ET (Pull) = Ω(2n/2).

We use the term ordinary to refer to the standard asynchronous voting model in which the
protocol makes no distinction between discordant and non-discordant neighbours.

A summary of these results is given in the table below. The moral of the story is that there
is always some graph and starting configuration for which the chosen push or pull process
behaves badly.

5

Discordant voting Ordinary voting

Push Pull Obliv. Push Pull Obliv.

Complete graph Kn Θ(n log n) Θ(2n)

n2/4

O(n2) O(n2) O(n4)

Cycle Cn Θ(n2) Θ(n2) O(n2) O(n2) O(n3)

Star graph Sn Θ(n2 log n) O(n2) O(n2) O(n2) O(n3)

Double star S∗n Ω(2n/5) O(n4) O(n3) O(n4) O(n3)

Barbell graph Ω(2n/10) Ω(2n/2) O(n4) O(n4) O(n4)

Fig. 2: Worst case expected time to consensus for discordant and ordinary asynchronous
voting protocols on connected n-vertex graphs.

The column for ordinary asynchronous pull voting in Table 2 follows from (1). The column for
ordinary asynchronous pull voting from ET = O(n2m) (see below Remark 1). To complete
the column for ordinary asynchronous push voting, we used a result of [7]. For any graph
G = (V (G), E(G)),

ET (Push) = O(1/Ψ(G)), (2)

where

Ψ(G) =
2C(G)

ndmax

min
S⊂V (G)

1

min{J(S), J(Sc)}
∑

(v,w)∈E(S:Sc)

1

d(v)d(w)
.

The expression is evaluated over sets S 6= ∅, V (G), and dmax is maximum degree, C(G) =
(
∑

v∈V 1/d(v))−1, E(S : Sc) are the edges between S and Sc, and J(S) =
∑

v∈S d(v)−1. The
parameter Ψ does not seem related to the classical graph parameters, but can be directly
evaluated for the graphs we consider. For regular graphs,

Ψ =
2

n2
Φ,

in which case ET = O(n2/Φ), which agrees with the asynchronous pull model in (1).

Asynchronous discordant voting model

We next give a formal definition of the discordant voting process. Given a graph G = (V,E),
with n = |V |. Each vertex v ∈ V is labelled with an opinion X(v) ∈ {0, 1}. We call X a
configuration of opinions. We can think of the opinions as having colours; e.g., red (0) and
blue (1). An edge e = uv ∈ E is discordant if X(u) 6= X(v). Let K(X) denote the set
of discordant edges at time t. A vertex v is discordant if it is incident with any discordant
edge, and D(X) will denote the set of discordant vertices in X. We consider three random
update rules for opinions Xt at time t.

Push: Choose vt ∈ D(Xt), uniformly at random, and a discordant neighbour ut of vt uni-
formly at random. Let Xt+1(ut)← Xt(vt), and Xt+1(w)← Xt(w) otherwise.

6

Pull: Choose vt ∈ D(Xt), uniformly at random, and a discordant neighbour ut of vt uni-
formly at random. Let Xt+1(vt)← Xt(ut), and Xt+1(w)← Xt(w) otherwise.

Oblivious: Choose {ut, vt} ∈ K(Xt) uniformly at random. With probability 1/2, Xt+1(vt)←
Xt(ut), with probability 1/2, Xt+1(ut)← Xt(vt), and Xt+1(w)← Xt(w) otherwise.

These three processes are Markov chains on the configurations in G, in which the opinion
of exactly one vertex is changed at each step. Assuming G is connected, there are two
absorbing states, when X(v) = 0 for all v ∈ V , or X(v) = 1 for all v ∈ V , where no
discordant vertices exist. When the process reaches either of these states, we say that is has
converged. Let T be the step at which convergence occurs. Our object of study is ET .

Structure of the paper.

A major obstacle in the analysis discordant voting, is that the effect of recoloring a vertex
is not always monotone. For each of the graphs studied, the way to bound ET differs.
The proof of the pull voting result for the cycle Cn in particular, is somewhat delicate, and
requires an analysis of the optimum of a linear program based on a potential function.

The general proof methodology is to map the process to a biased random walk on the line
0, ..., n. In Section 2 we prove results for a Birth-and-Death chain which we call the Push
chain. This chain can be coupled with many aspects of the discordant voting process. We
then prove Theorems 1, 2, 3 and 4 in that order.

2 Birth-and-Death chains

A Markov chain (Xt)t≥0 is said to be a Birth-and-Death chain on state space S = {0, . . . , N}
if given Xt = i then the possible values of Xt+1 are i + 1, i or i − 1 with probability pi, ri
and qi respectively. Note that q0 = pN = 0. In this section we assume that ri = 0, p0 = 1,
qN = 1, pi > 0 for i ∈ {0, . . . , N − 1} and qi > 0 for i ∈ {1, . . . , N}. We next summarize
some results on Birth-and-Death chains (see Peres, Levin and Wilmer [15, 2.5]).

Denote by EiY the expected value of random variable Y when the chain starts in i (i.e.,
X0 = i). Define the random hitting time of state i as Ti = min{t > 0 : Xt = i}. Thus EjTi
is the expected hitting time of state i starting from state j, or first return time if j = i.

A probability distribution π satisfies the detailed balance equations, if

π(i)P (i, j) = π(j)P (j, i), for all i, j ∈ S. (3)

Birth-and-Death chains with pi = P (i, i + 1), qi = P (i, i − 1) can be shown to satisfy the
detailed balance equations. It follows from this, (see, e.g., [15]) that

Ei−1Ti =
1

qiπ(i)

i−1∑
k=0

π(k). (4)

7

For Birth-and-Death chains, this equation can be written explicitly in terms of pi, qi (see
[15]), as E0T1 = 1/p0 = 1 and in general for i ∈ {1, . . . , N},

Ei−1Ti =
i−1∑
k=0

1

pk

qk+1 · · · qi−1
pk+1 · · · pi−1

. (5)

In writing this expression we follow the convention that if k = i − 1 then qk+1···qi−1

pk+1···pi−1
= 1 so

that the last term is 1/pi−1. Note also that the final index k on pk is k = N − 1, i.e., we
never divide by pN = 0.

For any M ≤ N , we have that E0TM =
∑M

i=1Ei−1Ti. For example, E0T1 = 1
p0

= 1 and

E0T2 = 1 + 1
p1

+ q1
p0p1

etc. Thus, for M ≥ 1

E0TM =
M∑
i=1

Ei−1Ti =
M∑
i=1

i−1∑
k=0

1

pk

i−1∏
j=k+1

qj
pj
. (6)

We define two Birth-and-Death chains which feature in our analysis. The chains have states
{0, 1, ..., i, ..., N} where N = n/2 (assume n ≥ 2 even). We refer to these chain as the push
chain, and pull chain respectively.

Push Chain. Let Zt be the state occupied by the push chain at step t ≥ 0. Let δ ∈
{−1, 0,+1} be fixed. When applying results for the push chain in our proofs, we will state
the value of δ we use. The transition probability pi = P (i, i+ 1) from Zt = i, is given by

pi =

1, if i = 0

1/2 + i/n+ δ/n, if i ∈ {1, . . . , n/2− 1}
0, if i = n/2

. (7)

Pull Chain. Let Zt be the state occupied by the pull chain at step t ≥ 0. Given that
Zt = i, the transition probability pi = P (i, i+ 1) is given by

pi =

1, if i = 0

1/2− i/n− δ/n, if i ∈ {1, . . . , n/2− 1}
0, if i = n/2

. (8)

For 1 ≤ i ≤ N − 1 the pull chain is the push chain with the probabilities reversed, i.e.,
pi = 1− pi.

Push Chain: Bounds on hitting time

Push Chain: Upper bound on hitting time.

8

Lemma 5. For any M ≤ N , let E0TM be the expected hitting time of M in the push chain
Zt starting from state 0. Then

E0TM ≤ 2N logM +O(1).

Proof. Using (6) and recalling the notational convention given below (5) we can change the
order of summation to give

E0TM =
M−1∑
k=0

M∑
i=k+1

1

pk

qk+1 · · · qi−1
pk+1 · · · pi−1

=
1

pM−1
+

M−2∑
k=0

M−1∑
i=k+1

1

pk

qk+1 · · · qi−1
pk+1 · · · pi−1

. (9)

Using (7), we see that for 1 ≤ k ≤ N − 2 we see that qk/pk ≥ qk+1/pk+1, q1/p1 ≤ 1, and for
2 ≤ k ≤ N − 1 that qk/pk < 1. As p0 = 1, we upper bound E0TM by

E0TM ≤M +
1

pM−1
+

M−2∑
k=1

1

pk

M−1∑
i=k+1

(
qk+1

pk+1

)i−k−1
, (10)

and
M−2∑
k=1

1

pk

∞∑
`=0

(
qk+1

pk+1

)`
=

M−2∑
k=1

1

pk

1

1− qk+1

pk+1

=
M−2∑
k=1

pk+1

pk

1

pk+1 − qk+1

. (11)

As qk = 1− pk, pk − qk = 2pk − 1 > 0 for all k ∈ {2, . . . , N − 1}, then 1
pk−qk

= N
k+δ

. For all

k ∈ {1, . . . , N − 2} we have pk+1

pk
≤ 2. Using (10) with the upper bounds given in (11), we

obtain the required conclusion.

Push Chain: Lower bound on hitting time.

Lemma 6. Let δ = 0 in (7). Let E0TM be the expected hitting time of M in the push chain
Zt starting from state 0. There exists a constant C such that, for any

√
N ≤M = o(N3/4),

E0TM ≥ C(N logM/
√
N +

√
N).

Proof. For 0 < x < 1,

1− x
1 + x

= exp

{
−2

(
x+

x3

3
+ · · ·+ x2`+1

2`+ 1
+ · · ·

)}
.

Thus with N = n/2

i−1∏
j=k+1

qj
pj

=
i−1∏

j=k+1

1− j/N
1 + j/N

(12)

= exp

{
−2

(
i−1∑

j=k+1

j

N
+
∑ (j/N)3

3
+ · · ·+

∑ (j/N)2`+1

2`+ 1
+ · · ·

)}
= exp{−2Ψ}, (13)

9

say. If f(s) is non-negative and monotone increasing, then
∑i−1

s=k+1 f(s) ≤
∫ i
k
f(s) ds. Thus,

the sum of terms in (j/N)3 and above in Ψ can be bounded above by

∑
`≥1

i−1∑
j=k+1

(j/N)2`+1

2`+ 1
≤
∑
`≥1

1

(2`+ 1)N2`+1

∫ i

k

x2`+1dx

≤
∑
`≥1

1

(2`+ 1)N2`+1
· i

2`+2

2`+ 2

= O

(
i4

N3

)∑ 1

(2`+ 1)(2`+ 2)
= O

(
i4

N3

)
.

Thus, using our assumption that M = o(N3/4),

Ψ =
i(i− 1)

2N
− k(k + 1)

2N
+O

(
i4

N3

)
=

i2

2N
− k2

2N
− i+ k

2N
− o(1).

Replacing Ψ in (13) with the upper bound given above, gives a lower bound on the term
(13) in (6). Thus

E0TM ≥ (1− o(1))
M∑
i=0

i−1∑
k=0

1

pk
exp

(
− i

2

N

)
exp

(
k2

N

)
. (14)

For i ≤ M the last term on the righthand side of (14) is bounded below by a positive
constant. Let

σ(i) =
i−1∑
k=0

exp

(
k2

N

)
. (15)

Let β = (1/2) log 2 ≈ 0.34. We claim that, if i ≥
√
N then

σ(i) ≥ βN

2i
ei

2/N . (16)

Let a = βN/i then for i ≥
√
N , i− a > 0. For k ≥ i− a

k2

N
≥ i2

N
− 2ia

N
+
a2

N
=
i2

N
− 2i

N
β
N

i
+ β

N

i2
≥ i2

N
− 2β.

If k ≥ i − a, then exp{k2/N} ≥ 1
2

exp{i2/N}. As there are at least a such values of k, it

follows that σ(i) ≥ βN/2iei
2/N .

Let
√
N ≤ i ≤ M = o(N3/4). Replace (15) in(14) with (16). Noting that p0 = 1 and for

1 ≤ k ≤M , pk ∼ 1/2, we can assume (1− o(1))/pk ≥ 1/2 to give

E0TM ≥
∑
i<
√
N

e−1

2
+

M∑
i=
√
N

βN

2i
≥
√
N/6 +

βN

3
log

M√
N
.

10

3 Voting on the complete graph Kn.

For the complete graph Kn, the probability that the number of blue vertices B increases at
a given step is B(t)/n, whereas in the pull process it is R(t)/n = 1 − B(t)/n. The chain
defined by Yt = max{R(t), B(t)} − n/2 is a Birth-and-Death chain. We study the time that
takes Yt to reach N = n/2 starting from 0.

Theorem 1: Push process. For the push model, the process Yt is identical to the push
chain Zt with transitions given by (7) with δ = 0. This was analysed in Section 2.

Theorem 1: Pull process. For the pull model, the process Yt is identical to the pull chain
Zt with transitions given by (8) with δ = 0

For the pull model, the process Yt is identical to the pull chain Zt with transitions given by
(8). To begin with, observe that wk =

(
n

N+k

)
, k = 0, 1, . . . , N satisfies the detailed balance

equation (3). Hence we have π(k) = wk/W , where W = w0 + w1 + · · ·+ wN .

It follows from (4) that

Ei−1Ti =
2n

n+ 2i
· 1(

n
N+i

) · i−1∑
k=0

(
n

N + k

)
.

Putting i = N we have

EN−1TN =
N−1∑
k=0

(
n

N + k

)
=

1

2

(
2n − 2 +

(
n

N

))
= Ω(2n). (17)

On the other hand, an upper bound

N∑
i=1

Ei−1Ti ≤ 2 · 2n ·
N∑
i=1

1(
n

N+i

) = O(2n),

follows from a result of Sury [22], that

N∑
i=1

1(
n

N+i

) =
n+ 1

2n

n∑
i=0

2i

i+ 1
= O(1).

4 Voting on the cycle

An n-cycle G, with V = [n], has E = {(i, i + 1) : i ∈ [n]}, where we identify vertex n + i
with vertex i. See Fig. 3.

11

1

2

3

4

567

8

9

10

11

12

13

14 15 16

17

18

(i) All X(i) = 1

1

2

3

4

567

8

9

10

11

12

13

14 15 16

17

18

(ii) All X(i) = i mod 2

Fig. 3: Cycle with n = 18

Let X = X(t) denote the (configuration of opinions) of the voting process at time t, Let
K(X) denote the set of discordant edges of X and let k(X) = |K|. Let D(X) denote the set
of discordant vertices in X. We note that, during voting, the number of discordant edges
can never increase from its current value.

We say i + 1, i + 2, . . . , j is a run of length (j − i) (1 ≤ j − i < n) if X(i) 6= X(i + 1) =
X(i + 2) = · · · = X(j) 6= X(j + 1). A singleton is a run of length 1, a single vertex. These
vertices require special treatment, since they lie in two discordant edges. If a singleton
is recoloured, the number of discordant edges decreases by two, and indeed recolouring a
singleton is the only way to decrease the number of discordant edges.

Note that the number of runs, k(X), in X is equal to the number of discordant edges. Also
k is even, since red and blue runs must alternate, so we will write r(X) = 1

2
k(X), and

k0 = 2r0 = k(X0). Thus r(X) is the number of paths of a given colour. Then T is the first
t for which k(Xt) = r(Xt) = 0, (a cycle is not a path).

Let the k runs in X have lengths `1, `2, . . . , `k respectively, and let s(X) denote the number of
singletons. Clearly

∑k
i=1 `i = n, and there are κ = 2k−s discordant vertices, so k ≤ κ ≤ 2k.

We wish to determine the convergence time T for an arbitrary configuration X0 of the push
or pull process to reach an absorbing state XT with XT (i) = XT (1) (i ∈ [n]). In these
processes, the run lengths behave rather like symmetric random walks on the line. However,
an analysis using classical random walk techniques [11] seems problematic. There are two
main difficulties. Firstly, the k “walks” (run lengths) are correlated. If a run is long, the
adjacent runs are likely to be shorter, and vice versa. Secondly, when the change vertex is
a singleton, the lengths of three adjacent runs are combined, so three walks suddenly merge
into one. One of the three runs is a singleton, but the other two may have arbitrary lengths.

Therefore, we will use the random walk view only to give a lower bound on the convergence
time. For the upper bound, we use a different approach. We will define a potential function

ψ(X) =
k∑
i=1

√
`i ,

where ψ(X) = 0 if and only if k(X) = 0. The important feature of ψ is that it is a separable

12

and strictly concave function of the `i (i ∈ [k]). Almost any other function with these
properties would give similar results.

Lemma 7. For any configuration X on the n-cycle with k runs, ψ(X) ≤
√
kn.

Proof. If k = 0, this is clearly true. Otherwise, if k ≥ 2, by concavity we have ψ(X)/k =
1
k

∑k
i=1

√
`i ≤

√
1
k

∑k
i=1 `i =

√
n/k, so ψ(X) ≤

√
kn.

Observe that k(Xt+1) = k(Xt) at step t of either the push or pull process, unless the change
vertex is a singleton, in which case we may have k(Xt+1) = k(Xt)−2. Thus {t : k(Xt) = 2r}
is an interval [tr, tr−1), which we will call phase r of the process.

Let vt = v ∈ D(Xt) be the active vertex, i.e., the vertex selected to push in the push rule,
or pull in the pull rule. Let δv be the expected change in ψ, i.e.,

δv = E[ψ(Xt+1)− ψ(Xt) | vt = v].

If there are κ = 2k − s discordant vertices, the total expected change δ in ψ is

∆ = E[ψ(Xt+1)− ψ(Xt)] =
1

κ

∑
v∈D

δv.

We will show that ∆ is negative, so ψ(Xt) is monotonically decreasing with t, in expectation.
Unfortunately we cannot simply bound δv for each v ∈ D, since it is possible to have δv > 0.
Thus we will consider discordant edges. We partition the set K of discordant edges uv into
three subsets:

(A) A = {uv : u and v not singleton};
(B) B = {uv : u not singleton, v singleton};
(C) C = {uv : u and v both singleton}.

See Fig. 4, where `z is the length of the run containing discordant vertex z, for z ∈ {u, v, w, q}.

`v

`u

u

v

(A) u and v not singleton

`w

`u

`v=1

u

v

w

(B) u not singleton, v singleton

`w

`q

w

`u=1

`v=1

u

v

q

(C) u and v both singleton

Fig. 4: Cases for discordant edge uv

13

Note that k can change only if uv ∈ B ∪ C. Now let

λuv =

√
`u +

√
`v, uv ∈ A ;√

`u + 1
2

√
`v, uv ∈ B ;

1
2

√
`u + 1

2

√
`v, uv ∈ C .

δuv =

δu + δv, uv ∈ A ;

δu + 1
2
δv, uv ∈ B ;

1
2
δu + 1

2
δv, uv ∈ C .

Each singleton is in two discordant edges, all other discordant vertices in one, and each run
is bounded by two discordant vertices. Therefore

ψ = 1
2

∑
v∈D

√
`v =

∑
uv∈K

λuv , δ =
1

κ

∑
v∈D

δv =
1

κ

∑
uv∈K

δuv .

We will show that δuv < 0 for all uv ∈ K. We consider cases (A), (B) and (C) separately. So
far, the analysis is identical for pull and push voting. Now we must distinguish them. First
we consider the push process.

Push voting

(A)

δv =
√
`v + 1−

√
`v +

√
`u − 1−

√
`u,

δu =
√
`v − 1−

√
`v +

√
`u + 1−

√
`u.

Hence δuv = (
√
`v + 1 +

√
`v − 1− 2

√
`v) + (

√
`u + 1 +

√
`u − 1− 2

√
`u) ≤ −1

4
(`
−3/2
v +

`
−3/2
u), using Lemma 8.

Lemma 8. For all ` ≥ 1,
√
`+ 1 +

√
`− 1 ≤ 2

√
`− 1

4
`−3/2.

Proof. First, we prove the inequality
√

1 + x +
√

1− x ≤ 2 − 1
4
x2, for all x ≤ 1. By

squaring both sides, the inequality is true if 2+2
√

1− x2 ≤ 4−x2 + 1
16
x4. This is true

if
√

1− y ≤ 1− 1
2
y, with y = x2. Squaring both sides, this is 1− y2 ≤ 1− y2 + 1

4
y4,

which is clearly true. Now, letting x = 1/`,
√
`+ 1 +

√
`− 1 ≤ 2

√
` − 1

4
`−3/2 is

equivalent to
√

1 + x+
√

1− x ≤ 2− 1
4
x2 with x ≤ 1.

(B) Let u,w be the discordant neighbours of v. Then

δv =
1

2
(
√
`u − 1−

√
`u +

√
2− 1 +

√
`w − 1−

√
`w +

√
2− 1)

Since
√
`− 1 ≤

√
`, δv ≤

√
2− 1. Also

δu =
√
`w + `u + 1−

√
`w −

√
`u − 1 ≤

√
3− 3,

using Lemma 9. Thus

δuv ≤
1

2
(
√

2− 1) +
√

3− 3 < −1 ≤ −1

2
(`−3/2v + `−3/2u).

14

Lemma 9. For all `1, `2 ≥ 1,
√
`1 +

√
`2 + 1 ≥

√
`1 + `2 + 1 + (3−

√
3).

Proof. Consider f(`1, `2) =
√
`1 +

√
`2 + 1 −

√
`1 + `2 + 1 + (

√
3 − 3). Then, for all

`1, `2 > 0,
∂f

∂`i
=

1

2
√
`i
− 1

2
√
`1 + `2 + 1

> 0 (i = 1, 2) .

Hence f(`1, `2) ≥ f(1, 1) = 0 for all `1, `2 ≥ 1.

(C) Let u,w be the discordant neighbours of v, and v, q the discordant neighbours of u.
Then

δv =
1

2
(
√
`w − 1−

√
`w +

√
2− 1 +

√
`q + 2−

√
`q − 2).

Now
√
`− 1 ≤

√
` and

√
`+ 2−

√
`− 2 ≤

√
3− 3, using Lemma 9 with `1 = 1. Thus

δv ≤ 1
2
(
√

2 − 1 +
√

3 − 3) < −0.425. Similarly δu < −0.425, so δuv < −0.425 ≤
−1

5
(`
−3/2
v + `

−3/2
u).

Hence we have δuv < −1
5
(`
−3/2
v + `

−3/2
u) for all uv ∈ K, so

δ =
1

κ

∑
v∈D

δv =
1

κ

∑
uv∈K

δuv ≤ −
1

5κ

∑
uv∈K

(`−3/2v + `−3/2u) < − 1

5κ

∑
v∈D

`−3/2v .

Thus

E[ψ(Xt+1)] < ψ(Xt)−
1

5κ

∑
v∈D

`−3/2v .

Since f(x) = x−3 is a convex function, E[f(X)] ≥ f(E[X]) by Jensen’s inequality [23, 6.6],
so

1

κ

∑
v∈D

`−3/2v ≥
(1

κ

∑
v∈D

√
`v

)−3
=
(κ

2ψ(Xt)

)3
≥
(k

2ψ(Xt)

)3
,

as κ = 2k − s, and we assume t is in the interval [tr, tr−1) in which there are k(Xt) = 2r
runs. Therefore,

E[ψ(Xt+1)] < ψ(Xt)−
1

5

(k

2ψ(Xt)

)3
= ψ(Xt)−

k3

40ψ(Xt)3
. (18)

Hence, using Lemma 7 we have that ψ(Xt) ≤
√
kn and so

E[ψ(Xt+1)]− E[ψ(Xt)] ≤ − 1
40
k3/(kn)3/2 = − 1

40
(k/n)3/2 . (19)

During phase r of the process (the interval [tr, tr−1)) the number of runs is k = 2r, for r ∈ [r0],
where r0 = 2k(X0) is the initial number of runs. Let ϕr = E[ψ(Xtr)]. Since r0 = 1

2
k(X0),

tr0 = 0 and, since r(XT) = k(XT) = 0, t0 = T and ϕ0 = 0. Let mr = E[tr−1− tr], for r ∈ [r0]
and γr = 1

40
(2r/n)3/2. Then (7) implies that ψ(Xt) + (t − tr−1)γr is a supermartingale [23,

10.3] during phase r, and tr−1 is a stopping time. Then the optional stopping theorem [23,
10.10] implies that

ϕr−1 + γrmr = E[ψ(Xtr−1) + γr(tr − tr−1)] ≤ E[ψ(Xtr)] = ϕr ,

15

which implies
ϕr − ϕr−1 ≥ γrmr = 1

40
mr(2r/n)3/2 (r ∈ [r0]) . (20)

Note, in particular, that ϕr ≥ ϕr−1 for all r ∈ [r0].

From Lemma 7, ϕr ≤
√

2rn. Then, from (20), we have mr ≤ 40
√

2rn(2r/n)−3/2 = 20n2/r.
Thus

E[T] =

r0∑
j=1

mj ≤ 20n2

r0∑
j=1

1/j < 20n2(log r0 + 1) .

Since r0 ≤ n/2, this gives an absolute bound of 20n2 log(en/2) = O(n2 log n). However, we
can improve this with a more careful analysis.

Let xr = ϕr−ϕr−1 ≥ 0, for r ∈ [r0]. By Lemma 7,
∑r

i=1 xj = ϕr ≤
√

2rn. Also, from (20), we
have mr ≤ 40xr(n/2r)

3/2 = 10
√

2n3/2xr/r
3/2, so E[T] =

∑r0
j=1mj < 10

√
2n3/2

∑r0
j=1 xr/r

3/2.

Thus E[T] is bounded above by T ?, the optimal value of the following linear program.

T ? = max 10
√

2n3/2
∑r0

r=1 xr/r
3/2

such that
∑r

j=1 xj ≤
√

2rn (r ∈ [r0])

xj ≥ 0 (j ∈ [r0]) .

(21)

This linear program can be solved easily by a greedy procedure. In fact, it is a polymatroidal
linear program [9], but we will give a self-contained proof for this simple case, using linear
programming duality.

Lemma 10. Let 0 < b1 < b2 < · · · < bν and c1 > c2 > · · · > cν > 0. Then the linear
program max

∑ν
j=1 cjxj subject to

∑r
j=1 xj ≤ br, xr ≥ 0 (r ∈ [ν]) has optimal solution

x1 = b1, xj = bj − bj−1 (j = 2, 3, . . . , ν).

Proof. This solution has objective function value c1b1 + c2(b2 − b1) + · · · + cν(bν − bν−1).
The dual linear program is min

∑ν
i=1 biyi subject to

∑ν
i=j yi ≥ cj, yj ≥ 0 (j ∈ [ν]), and has

feasible solution yν = cν , yj = cj − cj+1 (j ∈ [ν − 1]). Then the dual objective function has
value bνcν + bν−1(cν−1 − cν) + · · ·+ b1(c1 − c2). However,

c1b1 + c2(b2 − b1) + · · ·+ cν(bν − bν−1) = bνcν + bν−1(cν−1 − cν) + · · ·+ b1(c1 − c2) .

Since the objective function values are equal, it follows that the two solutions are optimal
in the primal and dual respectively.

Thus, the optimal solution to (21) is xr =
√

2nr −
√

2n(r − 1) =
√

2nr(1 −
√

1− 1/r) ≤√
2n/r, for r ∈ [r0], since 1− y ≤

√
1− y for 0 ≤ y ≤ 1. Thus

T ? ≤ 10
√

2n3/2

r0∑
j=1

xr/r
3/2 ≤ 10

√
2n2

r0∑
j=1

√
2/
(√

r r3/2
)

= 20n2

r0∑
r=1

1/r2 < (10π2/3)n2 ,

since
∑∞

r=1 1/r2 = π2/6. Thus we have an absolute bound of E[T] = O(n2).

16

Pull voting

The case of pull voting is similar, but the calculations for cases (A)–(C) are changed as
follows.

(A′) The analysis for this case is identical to (A), except that δu and δv are interchanged.

Hence δuv ≤ −1
4
(`
−3/2
v + `

−3/2
u), as before.

(B′) δv =
√
`u + `w + 1−

√
`u−
√
`w−1 ≤

√
3−3, using Lemma 9. Also δu =

√
2+
√
`u − 1−√

`u − 1 ≤
√

2− 1. Thus δuv ≤
√

2− 1 + 1
2
(
√

3− 3) < −0.22 ≤ − 1
10

(`
−3/2
v + `

−3/2
u).

(C′) δv =
√
`w + 2−

√
`w − 2 <

√
3− 3, from Lemma 9 with ` = 1. Similarly δu <

√
3− 3,

so δuv ≤
√

3− 3 < −1.25 < −1
2
(`
−3/2
v + `

−3/2
u).

Hence we have δuv < − 1
10

(`
−3/2
v +`

−3/2
u) for all uv ∈ K, whereas we had δuv < −1

5
(`
−3/2
v +`

−3/2
u)

for push voting. Thus the estimated rate of convergence is only half that for push voting.
The rest of the analysis follows the same lines as before, except that the convergence time
estimates are doubled. However, we may still conclude that E[T] = O(n2).

Lower bound

Suppose G is an n-cycle, with n = 2ν even, and the push or pull process starts with X0(i) = 0
(i = 1, . . . , ν), X0(i) = 1 (i = ν + 1, . . . , n). Thus k = 2 and `1 = `2 = ν. See Fig. 5. At
each step before convergence, there are two discordant edges, four discordant vertices, and
the push and pull processes proceed identically.

Fig. 5: Lower bound configuration

Let Lt be the length of (say) the red run at step t, so L0 = ν, LT ∈ {0, n}. At each step
before convergence, we have k(Xt) = 2, Lt+1 ← Lt−1 with probability 1/2, and Lt+1 ← Lt+1
with probability 1/2. Thus Lt is a symmetric simple random walk. The number of runs k(Xt)
can only be reduced from two to zero if either Lt = 1 or Lt = n − 1, when one of the runs
is a singleton. Thus E[T] is bounded below by the expected time for a symmetric simple
random walk started at ν to reach either 1 or (n − 1). This is well known [11, XIV.3], and
is exactly (ν − 1)2 = Ω(n2). Therefore the expected convergence time for either the push or
pull process is Θ(n2).

17

r + 1, b− 1, R

r, b, B

r, b, R

r − 1, b+ 1, B

r − 1, b+ 1, R

r − 2, b+ 2, B

S(r + 1) S(r) S(r − 1)

b
b+1

r−1
r

1
b+1

1
r+1

1
b+2

1
r

Fig. 6: Pseudo-states for the push process

5 Voting on the star graph Sn

Let (r, b,X) denote the coloring of the star graph Sn on n vertices in which there are r red
vertices b = n− r blue vertices. The central vertex has colour X ∈ {R,B}.

Push voting on the star

Theorem 11. Starting from |R| = n/2, the push process on the star with n vertices has
expected consensus time ET = Θ(n2 log n).

In the case of the push process, the transitions from state (r, b, R) are to state (r+1, b−1, R)
with probability 1/(b + 1) and to state (r − 1, b + 1, B) with probability b/(b + 1). The
transitions from state (r − 1, b + 1, B) are to (r, b, R) with probability (r − 1)/r and to
(r − 2, b + 2, B) with probability 1/r. For the purposes of discussion we group the states
(r, R) = (r, b, R) and (r − 1, B) = (r − 1, b + 1, B) into a single pseudo-state S(r). The
transitions probabilities within or between S(r + 1) or S(r − 1) are shown in Figure 6, and
are derived as follows:

Let X, Y ∈ {R,B}. For a particle occupying a state (of colour) X in S(r) let PX(Y, r) be
the probability of exit from S(r) via state Y . For example PR(R, r) is the probability that
a particle starting at (r, R) eventually exits from S(r) via state (r, R) to state (r + 1, R) in
S(r + 1). Thus

PR(R, r) =
1

b+ 1

(
1 +

b

b+ 1

r − 1

r
+ · · ·+

(
b

b+ 1

r − 1

r

)k
+ · · ·

)
,

so that

PR(R, r) =
1

b+ 1

1

1− [b(r − 1)/(b+ 1)r]
=
r

n
.

Similarly let PB(R, r) be the probability that a particle currently at (r−1, B) in S(r) moves
from S(r) to (r + 1, R) in S(r + 1). Then

PB(R, r) =
r − 1

r
PR(R, r) =

r − 1

n
.

18

In summary, starting from state X ∈ {R,B} of S(r), for 1 ≤ r ≤ n − 1 the transition
probability pX(r) from S(r) to S(r + 1) (resp. transition probability pX(b) from S(r) to
S(r − 1)) is given by

pX(r) =
r − 1(X=B)

n
, pX(b) =

b+ 1(X=B)

n
. (22)

States (0, B) (i.e., S(0)) and (n,R) (i.e., S(n)) are absorbing.

Let i = max(r, b) − n/2. To obtain lower and upper bounds on the number of transitions
between pseudo-states S(r) before absorption, we can couple the process with a biased random
walk on the line L = {0, 1, ..., n/2} with a reflecting barrier at 0 and an absorbing barrier at
n/2. We assume n is even here. For 0 < i < n/2, let pi be the probability of a transition
from i to i+ 1 on L, and let qi = 1− pi be the probability of a transition from i to i− 1. It
follows from (22) that to obtain bounds on the number of transitions between pseudo-states
S(r) before absorption we can use a value of pi given by

pi = 1/2 + (i+ 1)/n Lower bound, pi = 1/2 + (i− 1)/n Upper bound. (23)

We next consider the number of loops, for example (r, R) → (r − 1, B) → (r, R), made
within S(r) before exit. For a particle starting from state X of S(r) let CXY = CXY (r) be
the number of loops before exit at state Y . Let λ = b

b+1
r−1
r

and ρ = λ/(1− λ)2, then

ECRR =
∑
k≥0

1

b+ 1
kλk =

1

b+ 1

λ

(1− λ)2
= ρ

1

b+ 1
.

Similarly,

ECBR = ρ
r − 1

r(b+ 1)
, ECRB = ρ

b

r(b+ 1)
, ECBB = ρ

1

r
.

The conditional expectations µXY (r) = ECXY (r)/PX(Y, r) are given by

µXY (r) =

ρn
r

1
b+1

, XY = RR

ρn
r

1
b+1

, XY = BR

ρ n
n−r

b
r(b+1)

, XY = RB

ρ n
n−r+1

1
r
, XY = BB

. (24)

The value of ρ = (rb(r − 1)(b + 1))/n2. In particular if b, r = (1 + o(1))n/2 then, whatever
colours X, Y

µXY (r) = (1 + o(1))
n

4
. (25)

Let N = n/2. Starting from r = b = n/2 let T ′N be the number of transitions between states
S(r) to reach max(r, b) = N + n/2. Referring to (23), we consider a biassed random walk
with transition probabilities of Z = max{r, b} − n/2 given by

pi =

1, if i = 0

1/2 + i/n+ δ/n, if i ∈ {1, . . . , n/2− 1}
0, if i = n/2

, (26)

19

r + 1, b− 1, R

r, b, B

r, b, R

r − 1, b+ 1, B

r − 1, b+ 1, R

r − 2, b+ 2, B

S(r + 1) S(r) S(r − 1)

1
r

1
b+1

b
b+1

r
r+1

b+1
b+2

r−1
r

Fig. 7: Pseudo-states for the pull process

where we set δ = 1 for a lower bound on the number of steps T ′ to absorption, and δ = −1
for an upper bound.

The walk in (26) is the push chain Zt with transitions given by (7) as analysed Section 2.
Referring to (7) and (6) we set δ = 0 for a lower bound on E0TM . For M = N3/4, from
Lemma 6,

E0TM ≥ Θ(1)
M∑

i=
√
N

N

i
≥ Θ(N) log

M√
N

= Θ(n log n).

For all states i =
√
N, ..., N3/4, the corresponding value of r = (1 + o(1))n/2. Referring to

(25), whatever the type of transition XY between S(r) and neighbouring states, µXY (r) =
(1 + o(1))n/4. Let µ = minX,Y (µXY (r) : n/2 ≤ r ≤M), then µ ≥ n/5. As E0TN ≥ E0TM =
Θ(n log n) we have that

ET (Push) ≥ µ E0TM = Ω(n2 log n).

The upper bound follows by a similar argument. Put δ = −1 in (7), and use Lemma 5.

Pull voting on the star

Theorem 12. The pull process on the star with n vertices has expected consensus time
ET = O(n2).

As before, we group the states (r, R) = (r, b, R) and (r−1, B) = (r−1, b+1, B) into a single
pseudo-state S(r). The transitions probabilities within or between S(r + 1) or S(r − 1) are
shown in Figure 7, and are obtained by calculations similar to the push case. In the final
pseudo-state S(n) on the left, the state (n, 0, R) is absorbing, and so the state (n− 1, 1, B)
cannot be reached. As an initial state, (n− 1, 1, B) goes to (n− 2, 2, B) with probability 1.

The pull process seems much easier to analyse. Suppose the star currently has a red central
vertex, and we are in state (r, b, R) of S(r). The probability of a direct transition from
(r, b, R) to (r + 1, b − 1, R) is b/(b + 1). This occurs when a blue leaf vertex is chosen and
pulls the colour of the red central vertex. We say a run is a sequence of transitions which

20

leave the colour of the central vertex unchanged. Let ρ(r, x, R) be run given by the sequence
of transitions

(r, b, R)→ (r + 1, b− 1, R)→ · · · → (x− 1, n− x+ 1, R)→ (x, n− x,R).

Then

Pr(ρ(r, x, R)) =
n− r

n− r + 1

n− r − 1

n− r
· · · n− x+ 1

n− x+ 2
=
n− x+ 1

n− r + 1
.

The probability a run starting at (r, n− r, R) run finishes by absorption at (n, 0, R) is

Pr(ρ(r, n,R)) =
1

n− r + 1
≥ 1

n
.

Each run is terminated by absorption, or by a change of colour of the central vertex, say from
R to B. In the latter case, this marks the start of a new run (possibly of length zero) in the
opposite direction. Starting from (r, n− r, R), let X be the number of changes of colour of
the central vertex from R to B, or vice versa, before absorbtion at (n, 0, R) or (0, n, B). Let
Y be the winning step for a sequence of independent trials with success probability p = 1/n.
Then EX ≤ EY = n. Each run has a length between zero and n, so ET (Pull) = O(n2).

6 Voting on the double star

Push voting on the double star

A double star S?2n+2 comprises two stars S1, S2, each with n leaves, and their central vertices
c1, c2 joined by an edge. See Fig. 1. Let Xt : V → {R,B} identify the colours of the vertices
v ∈ V at time t. We will show that the convergence time for the push process on S?2n+2 can
be exponential in n.

Theorem 13. The push process on the double star with 2n + 2 vertices has worst case
convergence time Ω(22n/5).

Proof. We will assume that the initial configuration for the process has X0(v) = B (v ∈ S1),
and X0(v) = R (v ∈ S2). Then, for convergence to occur, we must have either X(v) = R
(∀v ∈ S1), or X(v) = B (∀v ∈ S2). Without loss of generality, we suppose S1 that must be
recoloured R, and temporarily restrict attention to S1.

Let rt = |{v ∈ S1 \ c1 : Xt(v) = R} be the number of leaves in S1 which are coloured R,
and hence (n− rt) leaves are coloured B. We make no assumption about Xt(c1) or Xt(c2).
See Fig. 8.

21

c1

r

Fig. 8: S1 with r leaves coloured R

Now, if rt−1 = r, at step t either rt ← r + 1, rt ← r − 1, c1 changes colour, or the step
involves S2. We discard all steps which involve S2 or c1, and consider the time t as changing
only when either rt+1 ← rt + 1 or rt+1 ← rt − 1. Thus t is a lower bound on the duration of
the process.

We will upper bound Pr(rt+1 = r + 1), when rt = r. This event occurs only when c1 is
chosen, and will be maximised when Xt(c1) = R, since otherwise c1 must first change colour.
It is also maximised when Xt(c2) = R, since then c1c2 cannot be chosen as a discordant edge.
However, c1 may be recoloured B,R any number of times, k say, between t and t + 1. The
probability that c1 is recoloured B is at most (n− r+ 1)/(n− r+ 2), when c2 is coloured B.
Subsequent to this, the probability that c1 is recoloured R is at most (r + 1)/(r + 2), when
c2 is coloured R.

Pr(rt+1 = r + 1 | rt = r) ≤ 1

n− r + 1

∞∑
k=0

(
r + 1

r + 2

n− r + 1

n− r + 2

)k
=

1

n− r + 1

(
1− r + 1

r + 2

n− r + 1

n− r + 2

)−1
=

(r + 2)(n− r + 2)

(n+ 3)(n− r + 1)

≤ r + 3

n+ 3
, if r ≤ (n− 1)/2.

Since the only alternative is that rt+1 = r − 1, when r ≤ (n− 1)/2, we also have

Pr(rt+1 = r − 1 | rt = r) = 1−Pr(rt+1 = r + 1) ≥ 1− r + 3

n+ 3
=

n− r
n+ 3

.

Now Pr(rt+1 = r+1 | rt = r) ≤ (r+3)/(n+3) ≤ 1/5 if r ≤ (n−12)/5. Let ν = b(n−12)/5c.
Thus, in the range 0 ≤ rt ≤ ν, the process rt is dominated by a random walk Zt with
Pr(Zt+1 = r + 1 | Zt = r) = 1/5, Pr(Zt+1 = r − 1 | Zt = r) = 4/5. Let a trial of this process
be the sequence of T steps, starting with Z0 = 1, until either of the events E0 : ZT = 0 or
Eν : ZT = ν occurs. From [11, p.314], we have

Pr(Eν) =
3

4ν − 1
≤ 41−ν for ν > 1.

22

Let E1,k
ν be the event that Eν ever occurs in k trials. Thus Pr(E1,k

ν) ≤ k41−ν = 4k/4ν .
The corresponding event E2,k

ν in S2 is that n − rt = ν occurs in k trials, and so similarly
Pr(E2,k

ν) ≤ k41−ν . Let Ek
ν = E1,k

ν ∨ E2,k
ν , so

Pr(Ek
ν) = Pr(E1,k

ν ∨ E2,k
ν) ≤ Pr(E1,k

ν) + Pr(E2,k
ν) ≤ 8k/4ν = k/22ν−3.

Clearly convergence requires Ek
ν to have occurred. However, if k ≤ 22(ν−5), Ek

ν occurs with
probability at most 1/4. Thus we need at least Ω(4ν) = Ω(22n/5) trials before there is any
appreciable probability of convergence. Hence Ω(22n/5) is a lower bound on the time for
convergence with high probability.

For a double star S∗N on N = 2n + 2 vertices, it follows that for the push process ET =
Ω(2N/5), as stated in Theorem 3.

Pull voting on the double star

Lemma 14. Let T be the expected time to complete discordant pull voting on the double star
of 2n+ 2 vertices. Then for any starting configuration ET = O(n4).

Proof. Our proof mimics that for pull voting on the star graph. If the centers c1, c2 are the
same colour (say red) we call the central edge monochromatic. If the central vertices are
both red, then a run is a sequence of steps in which a blue leaf vertex is chosen at each step
and pulls the red colour from one of the central vertices.

Let r1, b1 be the number of red and blue leaves in S1 (resp. r2, b2 in S2). Let b1 + b2 = b. Let
ρ(b, k | R) be the probability of a run of length at least k ≥ 0 given the central vertices are red.
The probability that a central vertex is recoloured at the next step is ρ(b, 0 | R) = 2/(b+ 2).
The required probabilities are

ρ(b, k | R) =

b
b+2

k = 1

b(b−1)
(b+2)(b+1)

k = 2

(b−k+2)(b−k+1)
(b+2)(b+1)

k = 3, ..., b− 1

2
(b+1)(b+2)

k = b

Before cancelation of terms, for k ≥ 3 the expression for ρ(b, k | R) is

b

b+ 2

b− 1

b+ 1

b− 2

b
· · · · · · b− (k − 3)

b− (k − 3) + 2

b− (k − 2)

b− (k − 2) + 2

b− (k − 1)

b− (k − 1) + 2
.

The cases k = 1, 2 are given by the first two terms of this expression.

If the central edge is monochromatic, then the probability P to finish voting without recol-
oring either of c1, c2 is P = ρ(b, b | R) ≥ 1/n2. Let µ′ be an upper bound on the expected

23

number of runs required for an exit (i.e., for the entire colouring to be monochromatic).
Then µ′ ≤ 1/P = n2.

If the central edge is not monochromatic, e.g., c1 is red and c2 is blue, let the probability of
becoming monochromatic in a given step be φ(r1, b1, r2, b2). Thus

φ(r1, b1, r2, b2) ≥ min

{
2

b1 + r2 + 2
,

2

r1 + b2 + 2

}
≥ 2

2n+ 2
=

1

n+ 1
.

Let µ be an upper bound on the expected wait for the central edge to become monochromatic.
Then µ ≤ n+ 1.

The number of steps in any run is at most s = 2n+ 1. Thus for the pull process

ET ≤ µµ′s = (n+ 1) n2 (2n+ 1) = O(n4).

7 Voting on the barbell graph

The barbell or dumbbell graph of N = 2n vertices, B2n, is formed from two disjoint cliques
S1 and S2 of size n joined by a single edge e.

Push voting on the barbell

We start with the following configuration: all vertices in S1 are red, and all vertices in S2

are blue. Initially e is the only discordant edge. Let T the first time when the whole of S1

is blue (or S2 is red). Clearly T is less than or equal to the time to reach consensus. For
simplicity, we just look at S1 and assume the final colour of S1 (and S2) is blue. Suppose
that Nt is the number of blue vertices in S1, where initially N0 = 0. Let Mt be the number
of discordant vertices, where M0 = 2. When 1 ≤ Nt ≤ n/5− 9 then Mt ≥ n, and

Pr(Nt+1 = Nt + 1|Nt) ≤ (Nt + 1)/Mt ≤ (Nt + 1)/n ≤ 1/5,

Pr(Nt+1 = Nt − 1|Nt) = (n−Nt)/Mt ≥ 2/5.

In the regime 1 ≤ Nt ≤ n/5− 9, Nt is dominated by a process N ′t with

Pr(N ′t+1 = N ′t + 1|N ′t) = 1/5,

Pr(N ′t+1 = N ′t − 1|N ′t) = 2/5,

Pr(N ′t+1 = N ′t|N ′t) = 2/5. (27)

Let Z be N ′t observed when N ′t changes, and thus we ignore the loop steps given by (27). In
which case, the probability p that Z increases by one is p = 1/3, and the probability q that
Z decreases by one is q = 2/3. We now follow the analysis for push voting on the double

24

star. Let a trial of this process be the sequence of T steps, starting with Z0 = 1, until either
of the events E0 : ZT = 0 or Eν : ZT = ν occurs. From [11, p.314], we have

Pr(Eν) =
1

2ν − 1
≤ 21−ν for ν > 1.

From now on, the same argument used for the double star works here. We just repeat the
conclusion that ET = Ω(2ν) = Ω(2n/5) = Ω(2N/10), where N = 2n is the total number of
vertices.

Pull voting on the barbell

We suppose we have reached a configuration in which all vertices except one are red. Suppose
the unique blue vertex is in S1. We modify our process so that the system reaches consensus
faster. To do that, in each round we only select vertices in S1, and assume the final colour
will be red. If the final colour would be blue, then we must also recolor all of S2. Even if
the vertex c1 of the bridge edge e = (c1, c2) is blue, the interaction between S1 and S2 does
not affect the outcome. If S1 is not in consensus then each vertex in S1 has at least one
discordant neighbour in S1, so the (red) opinions in S2 will not affect the outcome.

We use a result from the proof of Theorem 1 for Kn as given in Section 3. Inequality (17)
shows that the expected time for pull voting to reach consensus in Kn, when all but one
vertex is red is Ω(2n). So, the time to finish in the modified process is Ω(2n) = Ω(2N/2) on
a graph with N vertices.

8 Concluding remarks

In contrast to ordinary randomized voting which performs consistently on a wide variety
of graphs, the consensus time of push or pull discordant voting depends strongly on the
structure of the underlying graph (see Figure 2). The exact structural properties which could
be used to predict this behaviour are unclear. This performance seems counter-intuitive, as
focusing on the conflicts between vertices rather than ignoring them ought to allow us to
reach consensus more quickly.

Unlike ordinary voting which admits a general analysis (see, e.g., [7]), the methods used for
discordant voting are somewhat ad-hoc. In the case of discordant voting on the cycle, one of
the referees suggested an alternative approach to upper bounding the consensus time based
on coupling with a simple random walk.

References

[1] D. Aldous and J. Fill. Reversible Markov Chains and Random Walks on Graphs.
http://stat-www.berkeley.edu/pub/users/aldous/RWG/book.html.

25

[2] A. Basak, R. Durrett and Y. Zhang. The evolving voter model on thick graphs.
arXiv:1512.07871, 2015.

[3] R. Basu, A. Sly. The evolving voter model on dense random graphs. Annals of Applied
Probability, Volume 27, Number 2 (2017), 1235-1288.

[4] P. Berenbrink, G. Giakkoupis, A. Kermarrec, and F. Mallmann-Trenn. Bounds on the
voter model in dynamic networks. arXiv:1603.01895, 2016.

[5] C. Cooper, A. M. Frieze, and T. Radzik. Multiple random walks in random regular
graphs. SIAM J. Discrete Math. 23(4), 1738-1761, 2009.

[6] C. Cooper, R. Elsässer, H. Ono, T. Radzik. Coalescing random walks and voting on
connected graphs. SIAM J. on Discrete Math. 27(4), 1748-1758, 2013.

[7] C. Cooper and N. Rivera. The linear voting model. 43rd International Colloquium on
Automata, Languages, and Programming (ICALP 2016), 144:1–144:12, 2016.

[8] J. T. Cox. Coalescing random walks and voter model consensus times on the torus Zd.
The Annals of Probability 17(4), 1333–1366, 1989.

[9] F. Dunstan and D. Welsh. A greedy algorithm for solving a certain class of linear pro-
grammes. Mathematical Programming 5 , 338–353, 1973.

[10] R. Durrett, J. Gleeson, A. Lloyd, P. Mucha, F. Shie, D. Sivakoff, J. Socolar, and C.
Varghese. Graph fission in an evolving voter model. Proceedings of the National Academy
of Sciences, 109, 3682–3687, 2012.

[11] W. Feller, An introduction to probability theory and its applications. Vol. 1 (3rd ed.),
Wiley, 1968.

[12] T. Gross, H. Sayama, (Eds.). Adaptive Networks Theory, Models and Applications.
Springer 2009.

[13] Y. Hassin and D. Peleg. Distributed probabilistic polling and applications to propor-
tionate agreement. Information & Computation, 171(2), 248-268, 2001.

[14] P. Holme and M. Newman. Nonequilibrium phase transition in the coevolution of net-
works and opinions. Phys. Rev. E 74, 056108, 2006

[15] D. Levin, Y. Peres, E. Wilmer. Markov Chains and Mixing Times. AMS, 2009.

[16] T. Liggett. Stochastic Interacting Systems: Contact, Voter and Exclusion Processes.
Springer-Verlag, 1999.

[17] E. Mossel and S. Roch. Slow emergence of cooperation for win-stay lose-shift on trees.
Machine Learning 67, 722, 2007.

[18] T. Nakata, H. Imahayashi, M. Yamashita. Probabilistic local majority voting for the
agreement problem on finite graphs. In COCOON 1999, 330–338, 1999.

26

[19] R. Oliveira. On the coalescence time of reversible random walks. Transactions of the
American Mathematical Society, 364(4), 2109–2128, 2012.

[20] A. Pongrácz. Discordant voting protocols for cyclically linked agents. Proceedings of the
World Congress on Engineering 2018 Vol I, WCE 2018, July 4-6, 2018, London, U.K.

[21] H. Sayama, I. Pestov, J. Schmidt, B. Bush, C. Wong, J. Yamanoi, T. Gross. Modeling
complex systems with adaptive networks. Computers and Mathematics with Applica-
tions, 65(10), 1645-1664, 2013.

[22] B Sury. Sum of the reciprocals of the binomial coefficients. European Journal of Com-
binatorics, 14 351-353, 1993.

[23] D. Williams, Probability with Martingales. Cambridge University Press, 1991.

27

