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Abstract

The classical result in the theory of random graphs, proved by Erdős and Rényi in 1960, concerns

the threshold for the appearance of the giant component in the random graph process. We consider

a variant of this problem, with a Ramsey flavor. Now, each random edge that arrives in a sequence

of rounds must be colored with one of r colors. The goal can be either to create a giant component

in every color class, or alternatively, to avoid it in every color. One can analyze the offline or online

setting for this problem. In this paper, we consider all these variants and provide nontrivial upper

and lower bounds; in certain cases (like online avoidance) the obtained bounds are asymptotically

tight.

1 Introduction

Let Gn,m be the Erdős-Rényi random graph with n labeled vertices and m randomly chosen edges.

A celebrated result of Erdős and Rényi, probably the single most important result in the theory of

random graphs, discovered a threshold for the appearance of the giant component in this random

model. Erdős and Rényi proved that if m ≤ (1 − ǫ)n
2 for a constant ǫ > 0, then whp1 the random

graph Gn,m has all of its connected components of order at most logarithmic in n; on the other hand,

if m ≥ (1 + ǫ)n
2 then whp Gn,m has a unique connected component of linear size, the so called giant

component, while all other components are at most logarithmic in size. This result can be formulated

equivalently in terms of the random graph process: if the process starts with the empty graph G0 on

n vertices, and at stage i ≥ 1 a random missing edge is added to Gi−1 to form Gi, then after the first

(1 − ǫ)n
2 rounds the resulting graph typically has all connected components of at most logarithmic

size, while after (1+ ǫ)n
2 rounds whp the unique giant component is born, while all other components
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1As customary, we write that a graph property P holds with high probability, or whp for brevity, if the probability

of P tends to 1 as the number of vertices n tends to infinity.

1



are of size O(log n). Since then, there have been numerous extensions to this fundamental result. One

further ramification is considered in this paper.

Recently, quite a lot of attention and research effort has been devoted to controlled random graph

processes. In processes of this type, an input graph or a graph process is usually generated fully

randomly, but then an algorithm has access to this random input and can manipulate it in some well

defined way (say, by dropping some of the input edges, or by coloring them), aiming to achieve some

preset goal. There is usually the so called online version where the algorithm must decide on its course

of action based only on the history of the process so far and without assuming any familiarity with

future random edges, and the offline version, where the algorithm has access to the whole history of the

process and makes its decisions based on the full knowledge of the process. We will give corresponding

accurate definitions for our setting later.

Applied to the question about the appearance of the giant component, the first such version

chronologically is probably the so-called Achlioptas process. This process is named after Dimitris

Achlioptas, who posed the following question about 10 years ago. Suppose random edges arrive in

pairs, and an online algorithm can choose one of them, put it into the graph, and return the other

edge to the pool. Is it possible to design an algorithm that whp delays the appearance of the giant

components for noticeably longer than the Erdős-Rényi 0.5n steps? This question was answered

affirmatively in [6] by the first two authors of the present paper, who exhibited an algorithm that

whp survives for at least 0.535n rounds without creating the giant component. Since then, there

has been a series of papers about the giant component in Achlioptas processes, where a variety of

scenarios and goals (online and offline algorithms, delaying or accelerating the appearance of the giant

component) have been considered. See, e.g., any of [3, 4, 7, 8, 9, 13, 28].

Here we consider a Ramsey-type version of controlled random processes. In this version, incoming

random edges are colored by an algorithm in one of r colors, for a fixed r ≥ 2. The goal of the

algorithm is to achieve or maintain a certain monotone graph property in all of the colors. This

setting originates in the papers of Rödl and Ruciński [26, 27], who determined when Gn,m satisfies the

Ramsey property of having a monochromatic copy of a fixed graph H in any r-coloring of the edges.

In our terminology they considered the offline version of the problem, and the property P to avoid in

each color was the appearance of a copy of a fixed graph H. The online version of the problem for

the case of two colors and H = K3 was treated by Friedgut, Kohayakawa, Rödl, Ruciński and Tetali

in [14], and extended to a wider variety of graphs by Marciniszyn, Spöhel and Steger in [20, 21]. The

online setting of achieving Hamiltonicity in each of r colors has been addressed in [17].

In the present paper, we investigate several Ramsey-type problems involving the giant component.

We consider whether or not it is possible to color the edges of Gn,m in r colors with the objective

of creating a giant component in every color class, or of avoiding a giant component in every color.

We study both the offline and online settings. In the offline setting, an algorithm gets access to the

entire graph, generated according to the probability distribution Gn,m; in the online setting the edges

of Gn,m are first ordered in a random order and then revealed to the algorithm one by one (i.e., the

algorithm observes the random graph process and colors each new edge as it arrives).

The main objective of this paper is to show new interesting questions, and not necessarily to get

precise answers to all of them. We do determine the offline thresholds for these problems for all values

of r, but the online setting remains open. There, we show that for two colors, there is always a

separation phenomenon away from the trivial bounds, and then calculate asymptotic bounds for large

numbers of colors.
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As a warm-up, consider the offline threshold for creating a giant in every color. Recall that if

m < (1 − ǫ)n
2 for any fixed ǫ > 0, then whp Gn,m itself has all components of size O(log n). On

the other hand, one can show that for m > (1 + ǫ)n
2 , whp it is possible to color the edges of Gn,m

with any fixed number of colors r ≥ 2, so that every color class contains a component of order Ω(n).

Indeed, Ajtai, Komlós, and Szemerédi proved in [2] that whp Gn,(1+ǫ)n
2

contains a path of length cǫn.

(Here and later in the paper, we will write cǫ to specify a positive constant determined only by ǫ.) By

splitting this path into r paths of length cǫn/r, the result follows.

The question of avoiding giants in all colors offline is not so simple. It turns out that the threshold

for avoiding giants in r colors is precisely the same as that of r-orientability, which says that it is

possible to direct all of the edges of the graph so that the resulting digraph has maximum in-degree

at most r. Cain, Sanders and Wormald [11], and Fernholz and Ramachandran [12] recently discovered

that this threshold coincides with the number of edges needed to make the (r + 1)-core have average

degree above 2r. More precisely, they showed that for any integer r ≥ 2, there is an explicit threshold

ψr such that the following holds. For any ǫ > 0, if m > (ψr + ǫ)n, then whp Gn,m contains a subgraph

with average degree at least 2r + cǫ, where cǫ > 0. On the other hand, if m < (ψr − ǫ)n, then Gn,m

is r-orientable whp. As the r = 2 case is often of particular interest, we note that (as calculated in

[11]) ψ2 ≈ 1.794, and the asymptotic dependence of ψr on r is ψr = r − 1
2

(

2
e + o(1)

)r
. We now state

our first main theorem in terms of this threshold.

Theorem 1.1. Given any fixed r, let ψr be the threshold referenced above. For any ǫ > 0, if m <

(ψr − ǫ)n, then whp it is possible to color the edges of Gn,m with r colors such that each color class

contains components of order only o(n). On the other hand, if m > (ψr + ǫ)n, then whp every

r-edge-coloring of Gn,m has a color class with a component of order at least cǫn.

Remark. This was also recently and independently discovered by Spöhel, Steger, and Thomas [29].

We also consider online versions of these problems, in which the m edges come sequentially, and

each must be colored as soon as it appears. Precisely, we consider the process to be a sequence of m

rounds. In each round, a random edge arrives, independently and uniformly distributed over all pairs

of vertices. If it repeats an existing edge, then we do not force ourselves to recolor it. This is not an

important issue, because we will never consider more than O(n) rounds, but it is more convenient to

use this product probability space with full independence between the rounds.

Here, we have several results. First we state them for avoiding giants in all colors. The offline

upper bound of course supplies an upper bound for the online case as well. Indeed, a standard coupling

argument (Fact 2.3 in the next section) translates the offline upper bound to the case where the rounds

have independent edges (possibly with repetitions). So, after (ψr + ǫ)n rounds, whp every possible

coloring of them contains a giant component, where the dependence of ψr on r is ψr = r− 1
2

(

2
e +o(1)

)r
.

On the other hand, by taking the natural online adaptation of the offline avoidance strategy, which

was based on edge orientation, we found a randomized online algorithm which matches the first-order

asymptotic of ψr = (1− o(1))r.

Theorem 1.2. For any ǫ > 0, the following holds for all sufficiently large r. There is an online

randomized algorithm which can last for (1 − ǫ)rn rounds, while keeping all connected components in

each of r color classes smaller than o(n) whp.

For large r, this is asymptotically a factor of 2 better than the trivial bound of rn
2 rounds, obtained

by coloring each edge independently at random. However, the above theorem only beats the trivial
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bound after r > 50, at which point the resulting ǫ falls below 1
2 . For the extreme case of small r, we

have the following result using an entirely different strategy, which improves upon the trivial bound

for all r by a factor of approximately 1.06.

Theorem 1.3. There is an online algorithm which can 2-color edges for 1.06n rounds, while keeping

all connected components in both color classes of size at most O(log n) whp.

Remark. Although the theorem is stated only for r = 2, it immediately gives a strategy for all

even r, by splitting the colors into r
2 pairs. At each round, one of the color pairs is randomly chosen,

and the above algorithm is used to decide which of the two colors in the pair to use. Then, this will

avoid giants in all colors for 1.06n · r
2 rounds whp. For odd r, one can run the above modification for

1.06n · r−1
2 rounds using only the first r− 1 colors, and then an additional (1− ǫ)n

2 rounds using only

the r-th color. This beats the trivial bound of rn
2 by a factor which approaches 1.06 as r grows.

When the objective is to create giants in every color class, the trivial bounds are as follows.

Certainly, if fewer than (1− ǫ)n
2 edges are observed, then whp there will be no giant in the uncolored

graph, so one cannot hope to create r monochromatic giants any faster. Note that this trivial lower

bound turned out to be the truth in the offline setting, even though it does not grow with r. We will

show that in the online case, there is a lower bound which does.

Theorem 1.4. There is a constant c ≈ 0.043 such that after (c log2 r)n edges are r-colored by any

online algorithm, whp some color class still has all components of order only O(log n). For r = 2, the

same result holds for c′n edges for any c′ < 2−
√

2 ≈ 0.586.

On the other hand, the trivial strategy of randomly coloring each edge succeeds when the number

of edges surpasses rn/2. We are able to give an online algorithm which asymptotically performs far

better than the trivial one.

Theorem 1.5. There is an online algorithm such that for any ǫ > 0, after (cr + ǫ)n edges every color

class contains a connected component of order at least cǫn whp, where the dependence of cr on r is

cr = (1 + o(1))
√

r
2 .

For the specific case of 2 colors, one can adapt the argument and obtain a value of c2 = 3
4 , but we

give a slightly more sophisticated strategy which creates giants even faster.

Theorem 1.6. There is an online algorithm such that for any ǫ > 0, after 0.733n rounds both color

classes contain connected components of order at least cǫn whp.

This paper is organized as follows. The next section reviews some standard probabilistic facts, and

then develops a general tool which extends a recent result of Spencer and Wormald from [28]. This

allows us to control the evolution of the susceptibility of a graph under the addition of random edges.

Section 3 completely resolves the offline case, by proving Theorem 1.1. For the online setting, Sections

4 and 5 consider the respective problems of avoiding and creating giants. The final section contains

some concluding remarks.

Throughout our paper, we will omit floor and ceiling signs whenever they are not essential, to

improve clarity of presentation. All logarithms are in base e ≈ 2.718 unless otherwise specified. The

following asymptotic notation will be utilized extensively. For two functions f(n) and g(n), we write

f(n) ≪ g(n), f(n) = o(g(n)), or g(n) = ω(f(n)) if limn→∞ f(n)/g(n) = 0, and f(n) = O(g(n)) or

g(n) = Ω(f(n)) if there exists a constant M such that |f(n)| ≤ M |g(n)| for all sufficiently large n.

The number of vertices n is assumed to be sufficiently large where necessary.
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2 Preliminaries

In this section, we review some standard facts commonly used in Probabilistic Combinatorics. Then,

we use them to prove a useful result (Theorem 2.6) which shows that a certain graph parameter, the

susceptibility, tracks a natural differential equation. This extends a result of Spencer and Wormald,

and we state it in a general-purpose form for the convenience of possible future citations.

2.1 Probabilistic tools

We recall the Chernoff bound for exponential concentration of the binomial distribution. The following

formulation appears in, e.g., [1].

Fact 2.1. For any ǫ > 0, there exists cǫ > 0 such that any binomial random variable X with mean µ

satisfies P [|X − µ| > ǫµ] < e−cǫµ.

A binomial random variable is the sum of independent indicator variables. We also need concen-

tration in settings without complete independence. Recall that a martingale is a sequence X0,X1, . . .

of random variables such that each conditional expectation E [Xt+1 | X0, . . . ,Xt] is precisely Xt. The

Hoeffding-Azuma inequality (see, e.g., [1]) provides concentration for martingales with bounded step-

wise increments |Xt+1 −Xt|, and this has been widely used in probabilistic combinatorics.

When only one-sided concentration is needed, it can be convenient to consider instead a super-

martingale, which only requires E [Xt+1 | X0, . . . ,Xt] ≤ Xt for all t. We will use the analogue of

Hoeffding-Azuma for supermartingales, which follows from exactly the same proof as for martingales

(see, e.g., [19] or [30]).

Fact 2.2. Let X0, . . . ,Xn be a supermartingale, with bounded differences |Xi+1 −Xi| ≤ C. Then for

any λ ≥ 0,

P [Xn ≥ X0 + λ] ≤ exp

{

− λ2

2C2n

}

.

We can also define submartingales via the requirements E [Xt+1 | X0, . . . ,Xt] ≥ Xt; estimates on

their lower tails, similar to the above fact, follow by symmetry.

Finally, we will frequently switch between the models Gn,p, Gn,m, and the product space of m

independent uniform random edges, depending on which one is the most convenient. Adding more

edges makes it harder to avoid giants, but easier to create them, so all properties we consider are

monotone. Hence the following fact allows us to translate results between the models, while still

keeping everything sharp to first-order.

Fact 2.3. Fix any constant ǫ > 0, and suppose that m = m(n) tends to infinity with n, but m = o(n2).

Then there are couplings of the corresponding probability spaces such that the following hold.

(i) Gn,m ⊂ Gn,p whp for p = (1 + ǫ)2m
n , and Gn,m ⊃ Gn,p whp for p = (1− ǫ)2m

n .

(ii) The graph formed by generating m random edges (possibly with repetition) is always contained in

Gn,m, and whp contains Gn,m′ with m′ = (1− ǫ)m.

Proof sketch. By the standard coupling of Gn,m and Gn,p via the random graph process, part (i)

follows from the Chernoff bound on Bin
[(n

2

)

, p
]

. For part (ii), one can similarly couple Gn,m′ with the
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product space of m edges by considering an infinite sequence of independent random edges. Then,

the m-edge product space is the projection onto the first m choices, and Gn,m′ is the graph consisting

of the first m′ distinct edges. So, it suffices to show that whp, there are at least (1 − ǫ)m distinct

edges among the first m sampled with replacement. Observe that when the k-th edge is sampled, the

probability that it is a repetition of a previously sampled edge is always less than k/
(n
2

)

< ǫ
2 since

m = o(n2). Therefore, the number of samples which are repetitions is stochastically dominated by

Bin
[

m, ǫ
2

]

, which is at most ǫm whp by the Chernoff bound. Then, the number of distinct edges is

at least (1− ǫ)m, as desired. �

2.2 Evolution of susceptibility

One of the most useful parameters for studying the giant component of a graph is the susceptibility .

For a graph G, this is defined as S(G) = 1
n

∑

v Cv, where Cv is the size of the connected component

in G containing v. Note that this also equals 1
n times the sum of the squares of the component sizes.

Many researchers have investigated the evolution of the susceptibility under random edge addition,

starting with Bohman and Kravitz, who used this to analyze the Achlioptas process in [9].

More recently, Spencer and Wormald proved in [28] that for m up to (1 − ǫ)n
2 , the susceptibility

of the m-edge random graph evolves like the solution φ(m) of the differential equation φ′ = 2
nφ

2 with

initial condition φ(0) = 1. The heuristic for this differential equation is quite natural, although the

formal proof is nontrivial. Indeed, when a random edge is added to some intermediate (and subcritical)

G, its endpoints typically lie in different components, each of which has expected size S(G). If both

component sizes are close to S(G), then the increment to S(G) after adding the edge is roughly
1
n

[

(S(G) + S(G))2 − 2S(G)2
]

= 2
nS(G)2. Thus, one might expect the evolution of S(G) to follow

φ′ = 2
nφ

2. The solution of this differential equation is φ(m) =
(

1 − 2
nm
)−1

, so it only “blows up”

when m reaches n
2 . This matches the classical threshold of the giant component, because the result of

Spencer and Wormald concentrates S(Gn,m) around φ(m) for m up to (1−ǫ)n
2 . In this range, S(Gn,m)

is then bounded by a constant, and we can always trivially bound the size of the largest component

by
√

nS(G), so the largest component is o(n) whp.

However, once we start to color edges, the color classes are no longer Erdős-Rényi random graphs.

It is then crucial to control the evolution of susceptibility from initial graphs which are non-empty.

One of the main contributions of [28] was a result of this nature, but it only controlled one phase of

evolution. In order to formulate it, we need the following definition.

Definition 2.4. A graph has a K, c component tail if for all positive integers s, at most Ke−cs-

fraction of its vertices lie in components of order at least s.

Note that a K, c component tail immediately implies that all components have order O(log n). Now

we restate a key result of Spencer and Wormald (Theorem 3.1 of [28]), translated into an equivalent

form via Fact 2.3.

Fact 2.5. Let L,K, c, γ be positive real numbers. Let G be a graph on n vertices with a K, c component

tail and S(G) ≤ L. Add (1 − γ) n
2L independent random edges to G, ignoring repeated edges, and let

the result be G′. Then there exist K ′, c′ such that G′ has a K ′, c′ component tail whp.

The K ′, c′ component tail is very useful, because it bounds the entire distribution of the component

sizes. However, our arguments also need control of the new value of the susceptibility after random
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edge addition, so we prove the following extension of the above result. This can be done using the

methods used in [28], but we include here an alternate (and simpler) proof, following ideas from [5].

Theorem 2.6. Let L,K, c, γ be positive real numbers. Let G be a graph on n vertices with a K, c

component tail and S(G) ≤ L. Add (1 − γ) n
2L independent random edges to G, ignoring repeated

edges, and let the result be G′. Then there exist K ′, c′ such that whp G′ has a K ′, c′ component tail,

and S(G′) ≤ L
γ

+ o(1).

Remark. The bound L
γ arises from the following heuristic. Suppose that the initial susceptibility

is L. We will show that its evolution is dictated by the differential equation φ′ = 2
nφ

2 with initial

condition φ(0) = L, whose solution is φ(t) =
(

1
L − 2

n t
)−1

. Substituting t = (1− γ) n
2L gives L

γ .

Proof. Note that by definition, the susceptibility is always at least 1, so we will implicitly use L ≥ 1

throughout the proof. Let T = (1 − γ) n
2L . Let e1, . . . , eT denote the incoming edges, and let Gt be

the graph after the addition of the first t of them. Fact 2.5 gives constants K ′, c′ such that GT has a

K ′, c′ component tail whp.

Let φ(t) =
(

1
L− 2

nt
)−1

. We now formalize our heuristic argument which suggests that S(Gt) evolves

like φ(t). For each t, let Et be the event thatGt has aK ′, c′ component tail and S(Gt) ≤ φ(t)+e
5L
γ

t
nn−

1
3 .

Note that we will only run t up to T ≤ n, so the exponential factor is only at most a constant, and

hence the error term tends to zero as n grows. Now, consider the sequence of random variables:

Xt =

{

S(Gt)− φ(t)− e
5L
γ

t
nn−

1
3 if Et−1 holds,

Xt−1 otherwise.

We claim that Xt is a supermartingale. Indeed, suppose that Gt has components of order C1, C2, . . .

If the incoming edge v1v2 has v1 in the i-th component and v2 in the j-th component, then the

susceptibility increases by exactly 1
n [(Ci + Cj)

2 − C2
i − C2

j ] = 2
nCiCj when i 6= j, and zero otherwise.

Therefore,

E [S(Gt+1) | e1, . . . , et] = S(Gt) +
∑

i6=j

2

n
CiCj ·

Ci

n

Cj

n− 1

≤ S(Gt) +
2

n− 1

(

1

n

∑

i

C2
i

)2

= S(Gt) +
2

n− 1
S(Gt)

2.

We use this to bound the expected conditional increment inXt. Note that for the purposes of bounding

E [Xt+1 | e1, . . . , et] we may assume that Et holds (otherwise this conditional expectation is trivially
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equal to Xt). Using the above, and the convexity of φ and the exponential, we have:

E [Xt+1 −Xt | e1, . . . , et, Et]

≤ 2

n− 1
S(Gt)

2 − (φ(t+ 1)− φ(t))−
(

e
5L
γ

t+1
n − e

5L
γ

t
n

)

n−
1
3

≤ 2

n− 1
S(Gt)

2 − φ′(t)− 5L

γ

1

n
e

5L
γ

t
nn−

1
3

=
2

n− 1
S(Gt)

2 − 2

n
φ(t)2 − 5L

γ

1

n4/3
e

5L
γ

t
n

≤ 2

n− 1

(

φ(t) + e
5L
γ

t
nn−

1
3

)2
− 2

n
φ(t)2 − 5L

γ

1

n4/3
e

5L
γ

t
n

=
2

n(n− 1)
φ(t)2 +

4

(n− 1)n1/3
φ(t)e

5L
γ

t
n +

2

(n− 1)n2/3
e

10L
γ

t
n − 5L

γ

1

n4/3
e

5L
γ

t
n .

We will only run t up to T = (1 − γ) n
2L , so we always have t

n < 1, as well as φ(t) ≤ L
γ because φ is

increasing. Plugging in these bounds, the φ(t) and exponential factors are replaced by constants, so

the asymptotic behavior of each term is determined by the power of n in the denominator. Hence the

second and fourth terms dominate, giving

E [Xt+1 −Xt | e1, . . . , et, Et] ≤ (1 + o(1))

(

4

n4/3

L

γ
e

5L
γ − 5L

γ

1

n4/3
e

5L
γ

)

= −(1 + o(1))
L

γn4/3
e

5L
γ ,

which is negative for sufficiently large n. Therefore, Xt is indeed a supermartingale. Observe that

X0 ≤ −n−1/3. We will use the Hoeffding-Azuma inequality (Fact 2.2) to prove that whp, Xt < 0 for

every t ≤ T . For this, note that the one-step change in Xt is zero if Gt does not have aK ′, c′ component

tail. Otherwise, as previously remarked, all components of Gt are bounded by some C log n, so the

maximum change in the susceptibility is 2
n(C log n)2. To bound the one-step change in the error term

φ(t) + e
5L
γ

t
nn−

1
3 , which is an increasing convex function, it suffices to use the first derivative at t = T .

Recalling that T = (1− γ) n
2L , this turns out to be precisely

d

dt

∣

∣

∣

∣

t=T

=

[

(

1

L
− 2

n
T

)−2

· 2
n

]

+

[

e
5L
γ

T
n n−1/3 · 5L

γn

]

=
( γ

L

)−2 2

n
+ e

5L
γ

T
n

5L

γn4/3
,

which is clearly O(n−1) because γ and L are constants, and T ≤ n. Applying the Hoeffding-Azuma

inequality with λ = n−1/3, we find that for each t ≤ T ≤ n,

P [Xt ≥ 0] ≤ exp

{

− n−2/3

2 ·
(

2
n(C log n)2

)2
t

}

≤ exp

{

− n1/3

8C4 log4 n

}

.

A union bound over all t ≤ T shows that whp, all Xt < 0. Furthermore, Fact 2.5 implies that whp,

GT has a K ′, c′ component tail.

To complete our argument, we claim that whenever all of these high-probability events happen,

then all Et occur for 0 ≤ t ≤ T . We prove this by induction on t. Each Et has two parts: a component

tail and an upper bound on S(Gt). The K ′, c′ component tail property is automatically satisfied for
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all t because Gt ⊂ GT , and we are assuming that GT already has this (monotone) property. We

concentrate on the upper bounds for S(Gt) in the remainder of this proof. For the base case t = 0,

the susceptibility part of E0 is immediate by definition since S(G0) = φ(0) < φ(0)+ e
5L
γ

0
nn−

1
3 . For our

induction step, given that Et−1 occurs, the definition of Xt is then S(Gt) − φ(t) − e
5L
γ

t
nn−

1
3 instead

of the alternative Xt−1. Yet we assumed that Xt < 0, so that gives the susceptibility part of Et, and

completes the induction.

Therefore, we conclude that ET occurs whp, which in particular means that S(GT ) ≤ φ(T ) +

e
5L
γ

T
n n−

1
3 = L

γ + o(1), as desired. �

3 Offline avoidance of giants

In this section, we prove Theorem 1.1, which has two parts, a lower and an upper bound. The lower

bound relies on the following relationship between orientability and decomposition. Recall that we

call a graph r-orientable if it is possible to orient all edges such that all in-degrees are at most r.

Lemma 3.1. The edges of any r-orientable graph G can be colored with r colors such that for every

pair of distinct vertices u, v, there are at most 2 monochromatic paths in each color connecting u and

v.

Proof. Fix an orientation of G with all in-degrees at most r, and greedily color the edges by r colors

so that at each vertex, all incoming edges are differently colored. Consider a particular color class. By

construction, it is a directed graph with all in-degrees at most 1, so it is a disjoint union of unicyclic

components. Then, every pair of vertices is linked by at most two paths in that color, as desired. �

The previous lemma produces a coloring whose connectivity is very fragile. Our next lemma

quantifies this, showing that the (a priori, possibly large) monochromatic components shatter easily.

Lemma 3.2. For any ǫ > 0, there is c > 0 such that the following holds. Let G be a graph on n vertices

with maximum degree log n, where every pair of distinct vertices is connected by at most 2 distinct

paths. Independently delete each edge of G with probability ǫ. Then, whp all connected components of

the resulting graph have order at most ne
−c log n

log log n = o(n).

Proof. Define c such that 1− ǫ = e−8c, and recall from Section 2.2 that the susceptibility of a graph

is 1
n

∑

v Cv, where Cv is the size of the connected component containing v. Let the random variable S

be the susceptibility of the graph G′ which remains after the edge deletions. Since
∑

v Cv equals the

sum of the squares of the component sizes, all components of G′ have order at most
√
nS. Thus, it

suffices to show that S ≤ ne−2c log n
log log n whp.

Fix an arbitrary vertex v. Since G has maximum degree log n, the total number of vertices within

distance D = 1
2

log n
log log n of v is at most (log n)D =

√
n. Any other vertex u has probability at most

2(1 − ǫ)D = 2e−8cD of being connected to v after the deletion. This is because there are at most 2

paths between u and v, and each path has length at least D. Therefore, by linearity of expectation, the

expected size of the component containing v is E [Cv] ≤
√
n+ n · 2e−4c log n

log log n ≤ ne−3c log n
log log n . Another

application of linearity of expectation gives E [S] ≤ ne−3c log n
log log n . So, by Markov’s inequality, S exceeds

ne−2c log n
log log n with probability at most e−c log n

log log n = o(1), completing the proof. �
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Remark. The self-contained argument above only requires a relatively weak maximum degree con-

dition, and is sufficient for our purposes. It is worth mentioning that under the stronger assumption

that G is a random graph, one can use the substantially less trivial Lemma 11 of [8] to sharpen the

eventual bound to n1−cǫ, as Spöhel, Steger and Thomas do in [29]. Indeed, that lemma claims that if

m = cn, then there is a large constant K such that in Gn,m, the number of vertices within distance

(log n)/K of any vertex v is at most n
log 2K

K whp. Using this fact above instead of our exploration to

depth 1
2

log n
log log n bounds all connected components below n1−cǫ .

Let us now state the result of Cain, Sanders and Wormald [11], and Fernholz and Ramachandran

[12], on the matching thresholds for orientability and average degree.

Fact 3.3. For any integer r ≥ 2, there is an explicit threshold ψr such that the following holds. For

any ǫ > 0, if m < (ψr − ǫ)n, then Gn,m is r-orientable whp. On the other hand, if m > (ψr + ǫ)n,

then whp Gn,m contains a subgraph with average degree at least 2r + cǫ, where cǫ > 0.

We are now ready to prove the lower bound, which we first translate to Gn,p for convenience. By

applying Fact 2.3 and rescaling ǫ, it suffices to show that if p = 2(1− ǫ)(ψr − ǫ)/n, then whp there is

a coloring of Gn,p where every color class has all components of order o(n).

Proof of lower bound of Theorem 1.1. Let p′ = 2(ψr − ǫ)/n, and observe that Gn,p can be

obtained from G′ = Gn,p′ by independently deleting each edge with probability ǫ. First, consider the

graph G′ before deletions. By Fact 3.3, G′ is r-orientable whp. Also, it is easy to see that since np is

at most the constant 2ψr, G
′ has maximum degree at most log n whp. Indeed, each individual degree

is distributed as Bin(n − 1, p), and P [Bin(n− 1, p) > log n] ≤
( n
log n

)

plog n ≤
( enp

log n

)log n
. Since np is

bounded by a constant, this is o(n−1), so a union bound over all n vertices implies that the maximum

degree is at most log n whp.

Thus, by Lemma 3.1, we can color the edges of G′ so that every pair of distinct vertices is connected

by at most two paths in each color. This, together with our degree bound and Lemma 3.2, shows that

after deleting each edge of G′ independently with probability ǫ (to obtain Gn,p), whp all color classes

have connected components of order only o(n). �

For the upper bound, we use the second half of Fact 3.3, which gives a subgraph of high average

degree. It turns out that this is already enough to ensure a giant. To see this, we first show that small

sets of vertices typically induce low average degree in the random graph.

Lemma 3.4. For any λ, ǫ > 0, there is a constant c > 0 such that in Gn,p with p = λ
n , whp every set

of at most cn vertices induces a subgraph with average degree less than 2 + ǫ.

Proof. Without loss of generality, assume that ǫ < 1 and λ ≥ 1. Let c = (e3λ2)−
2
ǫ . We will take a

union bound over all subsets of t ≤ cn vertices. For a fixed value of t, the probability that some t-set
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of vertices induces at least
(

1 + ǫ
2

)

t edges is at most

(

n

t

)

· P
[

Bin

[(

t

2

)

,
λ

n

]

≥
(

1 +
ǫ

2

)

t

]

≤
(

n

t

)

·
(

t2/2

(1 + ǫ
2)t

)(

λ

n

)(1+ ǫ
2
)t

≤
(en

t

)t
·
(

et2/2

(1 + ǫ
2)t
· λ
n

)(1+ ǫ
2
)t

=

[

(en

t

)

·
(

eλ

2 + ǫ
· t
n

)1+ ǫ
2

]t

=

[

e

(

eλ

2 + ǫ

)1+ ǫ
2

·
(

t

n

) ǫ
2

]t

≤
[

e3λ2

2
·
(

t

n

)
ǫ
2

]t

.

To complete our union bound, we sum the final expression over the range 1 ≤ t ≤ cn. We split this into

two intervals, separating at t = log n. Observe that the quantity in the square brackets increases in t,

and reaches 1
2 when t = cn. So, the sum over the interval log n ≤ t ≤ cn is at most

∑cn
log n 2−t = o(1).

For the other interval t < log n, the square bracket is still at most 1
2 ≤ 1, so we can ignore the outer

exponentiation and conclude that the final expression is at most e3λ2

2 ·
( log n

n

)
ǫ
2 . Multiplying this by

the number of values of t in this interval (logn), we see that the final sum is still o(1). Therefore, the

property holds whp, as claimed. �

From this, we immediately derive the following useful corollary, which ensures a giant in any

subgraph of average degree at least 2 + ǫ.

Corollary 3.5. For any λ, ǫ > 0, there is a constant c > 0 such that in Gn,m with m = λn, whp

every subgraph with average degree at least 2 + ǫ contains a connected component of order at least cn.

Proof. By the previous lemma and Fact 2.3, whp Gn,m has the property that every set of at most

cn vertices induces a subgraph with average degree less than 2 + ǫ. Then, consider any subgraph H

with average degree at least 2 + ǫ. Separating H into its connected components, we find that some

component must have average degree at least 2 + ǫ. Therefore, that component must have order at

least cn, as desired. �

Proof of upper bound of Theorem 1.1. By Fact 3.3, if m > (ψr + ǫ)n, whp Gn,m contains

a subgraph H with average degree at least 2r + cǫ. No matter which colors appear on the edges of

H, some color class will have average degree at least 2 + cǫ/r, and therefore contain a giant whp by

Corollary 3.5. �

4 Online avoidance of giants

In this section, we consider the online case of the avoidance problem. We first show that a natural

adaptation of the offline algorithm gives an asymptotically sharp result for large numbers of colors.

Then, we consider the other extreme with 2 colors, and show that the trivial bound (surviving for

(1− ǫ)n rounds by randomly coloring each incoming edge) is not tight.
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4.1 Many colors

Our offline algorithm avoided giant components by orienting edges to minimize in-degrees. By replacing

the offline orientation procedure with an online one, this strategy naturally extends to the online

setting. Online edge orientation has been extensively studied, in the famous equivalent formulation

known as the “power of two random choices” with balls and bins (see [22] for a survey of results).

Indeed, that setting had n bins, with kn balls coming sequentially, each with two independent random

choices for a destination bin. The objective was to control the maximum load across all of the bins.

This can be interpreted as a graph orientation problem, where each pair of bin choices corresponds

to an incoming edge with the two choices as endpoints. The edge’s orientation records which bin the

ball is sent to, and the goal of controlling the maximum in-degree is precisely the same as that of

controlling the maximum load in the balls-and-bins problem.

It is now well-known that when the objective is to minimize the maximum in-degree, the stochasti-

cally optimal online orientation strategy is to always orient each incoming edge towards the endpoint

which currently has lower in-degree. However, it turns out that for the purpose of proving Theorem

1.2, one can use a random orientation strategy, which is easier to analyze. Our coloring algorithm,

which we call orient, internally maintains a set of orientations for all edges it has seen. To color a

new edge e, it randomly orients it with equal probability toward one of its endpoints. Let the new

in-degree of that endpoint be d. If d < r, then color d is used for the edge e. Otherwise, color r is

used. Observe that just as in Lemma 3.1, each of the first r − 1 color classes is a disjoint union of

unicyclic components. Therefore, each of these color classes has every pair of vertices connected by at

most two paths, so it will shatter by the same argument as in the proof of Theorem 1.1.

The new challenge in this section is to control the r-th color class. Fortunately, it turns out that

it is extremely sparse. To prove this, it is more convenient to work in the random directed graph−→
Gn,p, in which each of the n(n − 1) possible directed edges appears independently with probability

p/2. Note that in this model, it is possible for both −→uv and ←−uv to be present simultaneously. Our

first claim is that
−→
Gn,p typically has no long cycles containing many vertices of high in-degree. This

is relevant because every edge in color r has an endpoint with in-degree at least r.

Lemma 4.1. For any ǫ > 0, the following holds for every sufficiently large constant r. Let
−→
G =

−→
Gn,p

be a random directed graph with p = (1 − ǫ)2r
n , and G be the undirected graph on the same vertex set

obtained by collapsing all edges between each vertex pair into a single undirected edge. Then, whp G

does not contain any cycles of length at least 4
√

log n for which at least half of the vertices on the cycle

had in-degree at least r in
−→
G .

Proof. We will use a union bound to show that a large family of objects do not appear in the random

directed graph. Let us define an isomorphism type to be a directed simple graph whose underlying

undirected graph is a cycle, say with vertices v1, . . . , vt, along with a subset of at least t/2 of its vertices

which have been designated as “high-in-degree vertices.” Note that we do not require the edges of the

cycle to be oriented in a consistent direction. The number of distinct t-vertex isomorphism types is at

most 2t · 2t, because each of the t edges can be oriented in 2 ways, and the number of different subsets

of vertices that can be designated as high-in-degree is at most 2t.

We say that
−→
Gn,p contains a copy of this isomorphism type if there is an embedding of the vertices

vi such that all consecutive edges vivi+1 are present in the correct direction, and all designated high-

in-degree vertices vi already have in-degree at least r − 2 from vertices other than vi−1, vi+1. We do

not restrict our attention to induced copies, so other edges may also be present. If we can show that
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over all isomorphism types with t ≥ 4
√

log n, the expected total number of copies in
−→
Gn,p is o(1), then

we will be done by Markov’s inequality.

So, let us focus on a particular isomorphism type with t vertices. There are at most nt ways to

embed the t vertices of the cycle. Each edge vivi+1 independently appears with its correct orientation

with probability exactly p/2. Next, consider a designated high-in-degree vertex vi. Crucially, we only

require in-degree at least r − 2 from vertices other than vi−1 and vi+1. The reason for this exclusion

is that the previous step may already have exposed the edges −−−→vi−1vi and −−−→vi+1vi. But now, since our

model even allows edges in both directions between vertex pairs, the probability that each designated

vertex indeed has high in-degree is independently P
[

Bin
[

n− 3, p
2

]

≥ r − 2
]

. Since p = (1− ǫ)2r
n and r

is large, each of these individual probabilities is bounded by the probability that Bin
[

n− 3, (1− ǫ) r
n

]

exceeds its mean by at least an ǫ
2 -fraction. By the Chernoff bound, this happens with probability at

most e−cǫr for some constant cǫ. By choosing large enough r, we may assume that this is below 1
64r2 .

Putting everything together, we find that the expected number of copies of a fixed isomorphism type

in
−→
Gn,p is at most

nt
(p

2

)t
(

1

64r2

)t/2

≤
(

1

8

)t

.

We initially showed that the number of distinct t-vertex isomorphism types is at most 4t, so the

expected total number of copies of all t-vertex isomorphism types is at most 2−t. This is a geometric

series, so its sum over all t ≥ 4
√

log n is still o(1), as desired. �

Remark 1. Since we had a convergent geometric series at the end of the proof, the 4
√

log n bound is

not tight. In fact, any function which grows with n is sufficient.

Remark 2. If one is interested in beating the trivial bound, which corresponds to p ≈ r
n , one can

choose ǫ to be extremely close to, but just below, 1
2 . One can numerically check that if ǫ = 0.4999 and

r ≥ 51, then the probability that Bin
[

n, (1 − ǫ) r
n

]

exceeds r − 2 is at most 1
16.1r2 for large n, because

the Binomial converges to a Poisson variable with mean 0.5001r. Continuing the argument, this will

show that the expected number of appearances of all t-vertex isomorphism types is at most
(

4√
16.1

)t
,

which is still a convergent geometric series, so the same result will follow.

Next, we establish an easy bound which holds for ordinary random graphs.

Lemma 4.2. For every constant c, whp in Gn,p with p = c
n , every set of t ≤ 3

√
log n vertices induces

at most t edges.

Proof. The expected number of sets with t ≤ 3
√

log n and at least t+ 1 edges can be bounded by

3
√

log n
∑

t=4

(

n

t

)(
(t
2

)

t+ 1

)

pt+1 ≤
3
√

log n
∑

t=4

t

en

(

ne

t
· tec

2n

)t+1

= o(1).

�

We now combine the previous two lemmas to show that the r-th color class shatters easily. In the

proof of Lemma 3.2, the control of connectivity was done by bounding the number of distinct paths

between every pair of vertices. This time, we use the notion of an essential edge. We say that an edge

e on a path is essential if every other path connecting the same endpoints also contains e. It turns

out that in the r-th color class, every long path contains a huge number of essential edges.
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Lemma 4.3. For any ǫ > 0, the following holds whp for every sufficiently large constant r. Let G be

the graph formed by the r-th color class after (1 − ǫ)rn independent random edges have been colored

by orient. Then every path in G of length at least 3
√

log n has the property that more than half of its

edges are essential.

Proof. Since each (random) incoming edge is randomly directed by orient, one can think of the

input as a sequence of random directed edges, which is then deterministically colored using the rule in

orient. By a similar argument to Fact 2.3, it suffices to consider the more convenient model where

the input sequence is a random permutation of the edges of a random directed graph G =
−→
Gn,p with

p = (1− ǫ)2r
n . Throughout this proof, although G is a directed graph, whenever we speak of cycles or

paths, we are referring to undirected cycles and paths in the underlying undirected graph. In other

words, we are ignoring the edge orientations when seeking these structures.

Note that if an edge of G is oriented toward a vertex with in-degree less than r, then regardless of

the permutation, it will never be colored r. So, let H ⊂ G be obtained by deleting all edges oriented

into vertices of in-degree less than r. Then H entirely contains the r-th color class. Let A be the set of

vertices whose in-degrees were less than r, and let B be those that had in-degree at least r. Observe

that we deleted all edges oriented toward vertices in A, so A spans no edges in H. In particular, any

cycle in H has at least half of its vertices in B, i.e., with in-degree at least r.

Therefore, by Lemma 4.1, whp all cycles in H have length at most 4
√

log n. Also, condition on

the result of Lemma 4.2, which shows that in G (and hence also H), every set of t ≤ 3
√

log n vertices

induces at most t edges. These two graph properties will be enough to show that long paths in H

contain many essential edges.

Let P = v1, . . . , vt be a path in H with length at least 3
√

log n. Suppose for contradiction that

at least half of its edges are non-essential. We claim that since 4
√

log n ≪ 3
√

log n, there must be

non-essential edges vivi+1 and vjvj+1 such that i < j and 3 4
√

log n < j − i < 7 4
√

log n. Indeed, if this

were false, then out of the 7 4
√

log n edges immediately following each non-essential edge in P , at least
4
7 -fraction of them would be essential. Then an averaging argument would contradict the fact that at

least half of the edges were non-essential.

Now, since vivi+1 is non-essential, there is another path P ′ = w1, . . . , ws with w1 = v1 and ws = vt

which avoids the edge vivi+1. Let a be the largest index such that wa ∈ {v1, . . . , vi}, and let b be the

next index after a such that wb ∈ P . These exist because P and P ′ both contain v1 and vt. Note that

by definition, wb is actually in {vi+1, . . . , vt}, and the segment of P ′ from wa to wb intersects P only

at wa and wb. So, there is a cycle C1 formed by going from wa to wb along P ′, and then back to wa

along P . Importantly, the common edges between C1 and P are a contiguous interval containing the

edge vivi+1.

Similarly, we can find a cycle C2 containing the edge vjvj+1. Crucially, C1 and C2 are distinct

(although not necessarily disjoint) because j − i > 3 4
√

log n and we conditioned on all cycles being

shorter than 4
√

log n. Yet j − i < 7 4
√

log n, so the union of C1, C2, and the path vivi+1 . . . vj forms a

subgraph of order k ≤ 9 4
√

log n which spans at least k+ 1 edges. Since we also conditioned on all such

subgraphs having order at least 3
√

log n, this is a contradiction. Therefore, the path P must have had

at least half of its edges essential. �

The previous lemma shows that the r-th color class is typically quite fragile as well. We now

combine this with an adaptation of our offline argument, and prove that it is possible to avoid giants

in all colors for nearly rn rounds whp.
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Proof of Theorem 1.2. By rescaling ǫ, it suffices to give a randomized coloring algorithm that

avoids giants in all colors whp, for a sequence of m = (1− ǫ)3rn independent random edges (possibly

with repetitions). As in our proof of Theorem 1.1, it is convenient to color a slightly denser random

graph, because the deletion of fictitious edges shatters all large components.

Strictly speaking, we cannot simply apply orient to a larger sequence of edges, because for this

problem the input is a sequence of m edges, which must be processed online. We will therefore take

some care in specifying how we randomly interleave the input into a longer sequence of edges, so

that all operations are clearly online. Let us denote the final sequence of real and fictitious edges by

e1, . . . , em′ , where m′ = (1 − ǫ)2rn. Initially, we select a random subset of m of the m′ indices to

correspond to the positions of the real edges. We then generate independent random edges for all

other ei, and pass the resulting sequence to orient. Note that since the input distribution is uniform

over all sequences of m edges, the augmented sequence of edges consists of m′ independent random

edges.

Let σ denote the colored sequence of m′ edges produced by orient. The graph formed by σ has

maximum degree at most log n whp by the same argument as in the offline case. We also know by

construction that there are at most 2 paths between every pair of vertices in each of the first r − 1

color classes. For the r-th color class, Lemma 4.3 ensures that whp, all paths longer than 3
√

log n have

at least half of their edges essential. Let P denote the collection of all of these properties. We will

write σ ∈ P when all of them hold.

Now, we delete the ǫm′ fictitious edges to recover the coloring of the original edges. Note that since

the algorithm knows which m edges are real (that was the input), the edges to delete are completely

determined. But crucially, it used an independent source of randomness to interleave the original m

edges into the full sequence of m′ edges. Therefore, if we only condition on σ (and not on the input),

then the distribution of which m edges were original is uniform over all possible subsets of m positions.

Formally, we are calculating the probability of success by summing over all colored sequences σ of m′

edges. We have

P [success] =
∑

σ

P [success | σ] P [σ] ≥
∑

σ∈P
P [success | σ] P [σ]

Since we showed that σ ∈ P whp, it suffices to show that P [success | σ] ≥ 1 − o(1) for all σ ∈ P.

We noted above that conditioned on σ, the ǫm′ edges to delete were uniformly distributed over all

subsets. Therefore, it remains to show that given any coloring with property P, the deletion of a

random ǫ-fraction of its edges whp shatters all large connected components. We accomplish this by

deleting every edge independently with probability ǫ
2 , which will imply the result by a similar coupling

argument to Fact 2.3, since Bin
(

m′, ǫ
2

)

≤ ǫm′ whp.

For each of the first r − 1 color classes, Lemma 3.2 shows that all components shatter to o(n)

whp, as in the offline proof. For the r-th color class, we now adapt the proof of Lemma 3.2 to use

essential edges. Indeed, let us bound the expected size of the component Cv containing a particular

vertex v after the deletions. Since the maximum degree in Gn,rn is log n, the total number of vertices

within distance D = 1
2

log n
log log n of v is at most (log n)D =

√
n. Any other vertex u is at distance at least

D ≫ 3
√

log n away from v, so a shortest path from v to u contains at least D/2 essential edges. The

deletion of any essential edge disconnects u, v, so if edges are deleted with probability ǫ
2 , then u and v

remain connected only with probability at most (1− ǫ
2)D/2 = e−c log n

log log n for some constant c. Hence the

expected size of Cv is at most
√
n+ ne

−c log n
log log n = o(n), and by linearity of expectation, the expected
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susceptibility E [S] of the graph after deletions is o(n). Since the size of the largest component is at

most
√
nS, Markov’s inequality implies that the r-th color class also has all components smaller than

o(n), completing the proof. �

4.2 Two colors

The trivial algorithm, which randomly colors each edge blue or red, clearly lasts for (1 − ǫ)n rounds

whp. We now present a better algorithm which lasts for 1.06n rounds whp. To color a new edge

e, it considers the set of colors C that appear on isolated edges which are incident with any of its

endpoints. (If e is not incident to any isolated edges, then C is empty.) When C contains exactly one

color, the algorithm colors the edge e with the other color. Otherwise, it randomly colors e either blue

or red with equal probability.

We analyze this by tracking a certain partition of the vertex set. Split the set of isolated edges into

two groups based on their color, and call them the red matching and the blue matching, respectively.

After the k-th round, let:

Ik = number of isolated vertices,

Bk = number of vertices in the blue matching,

Rk = number of vertices in the red matching,

and let Jk = n − Ik − Bk − Rk be the number of remaining vertices. These parameters correspond

to the decomposition of the graph into its isolated vertices, the blue matching, the red matching, and

the remainder.

Lemma 4.4. With probability 1− o(1), the following hold for all t ≤ 1.1:

∣

∣

1
nItn − e−2t

∣

∣ ≤ n−1/3,
∣

∣

1
nBtn − te−4t

∣

∣ ≤ e8n−1/3,
∣

∣

1
nRtn − te−4t

∣

∣ ≤ e8n−1/3.

Proof. The probability that a particular vertex is not incident to any of the first tn edges is exactly
(

n−1
n ·n−2

n−1

)tn
=
(

1− 2
n

)tn
, which tends to e−2t from below as n grows. Routine calculus easily bounds the

convergence rate by O(n−1), so E
[

1
nItn

]

= e−2t +O(n−1). Now consider the edge-exposure martingale

where Yk is the conditional expectation of Itn given the first k rounds. Changing the outcome of any

particular round can only affect Itn by at most 2, and there are tn rounds to determine Itn, so by the

Hoeffding-Azuma inequality (see Theorem 7.4.1 of [1]) Itn is within (say) 1
2n

2/3 of its expectation with

probability e−Ω(n1/3). This gives the desired asymptotic for Itn.

We estimate Btn next. We claim that conditioned on the first k incoming edges e1, . . . , ek, the

expected change Bk+1 −Bk is

E [Bk+1 −Bk | e1, . . . , ek] = 2 ·
(

Ik
n

)2 1

2
− 4Bk

n
+O(n−1). (1)

The first summand comes from the creation of a blue isolated edge from 2 isolated vertices, which

contributes 2 to Bk. The probability that both endpoints are isolated vertices is Ik
n ·

Ik−1
n−1 . Since
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1
n(n−1) − 1

n2 = O(n−3) and Ik ≤ n, this is
(

Ik
n

)2 −O(n−1). The 1
2 factor comes from the fact that the

edge is randomly colored blue or red.

For the second summand, the only way we lose blue isolated edges is when an endpoint of the

incoming edge is incident to a blue isolated edge. The probability that the two endpoints hit two

different blue isolated edges (hence contributing −4) is Bk
n ·

Bk−2
n−1 . On the other hand, the probability

that they hit exactly one isolated edge (hence contributing −2) is 2 · Bk
n

(

1− Bk−1
n−1

)

. Thus the expected

contribution from these losses is

(−4) · Bk

n
· Bk − 2

n− 1
+ (−2) · 2 · Bk

n

(

1− Bk − 1

n− 1

)

= −4Bk

n
+O(n−1),

matching the second summand.

Since we showed that 1
nItn = (1 − o(1))e−2t whp, equation (1) suggests that b(t) = 1

nBtn should

satisfy the differential equation

db

dt
= (e−2t)2 − 4b, b(0) = 0,

whose solution is b(t) = te−4t.

We now verify this formally, using the same method as for the proof of Theorem 2.6. For each k,

let Ek be the event that
∣

∣

1
nIk − e−

2k
n

∣

∣ ≤ n− 1
3 and

∣

∣

1
nBk − b

(

k
n

)∣

∣ ≤ e 7k
n n−

1
3 . Now, consider the sequence

of random variables

Wk =

{

Bk − nb
(

k
n

)

− e 7k
n n

2
3 if Ek−1 occurs,

Wk−1 otherwise.

We claim that Wk is a supermartingale. Assume that Ek occurs. Then, using (1) we obtain

E [Wk+1 −Wk | e1, . . . , ek, Ek]

≤
(

Ik
n

)2

− 4Bk

n
+O(n−1)− n

[

b

(

k + 1

n

)

− b
(

k

n

)]

−
[

e
7(k+1)

n − e 7k
n

]

n2/3.

Since Ik
n ≤ e−

2k
n + n−

1
3 and e−

2k
n ≤ 1, we have

( Ik
n

)2 ≤ e−
4k
n + 2n−

1
3 + O(n−

2
3 ). Similarly, −4Bk

n ≤
−4b

(

k
n

)

+ 4e
7k
n n−

1
3 . Recall that for any twice-differentiable function f , Taylor’s formula ensures that

for any t, h, there is some 0 ≤ ξ ≤ 1 such that f(t + h) − f(t) = f ′(t)h + 1
2f

′′(t + ξh)h2. Since the

second derivative of our function b(t) is bounded on the interval 0 ≤ t ≤ 1.1, Taylor’s formula gives

b
(

k+1
n

)

− b
(

k
n

)

= 1
nb

′( k
n

)

+O(n−2). By a similar argument, e
7(k+1)

n − e 7k
n = 7

ne
7k
n +O(n−2). Combining

all of these estimates and using b′ = e−4t − 4b, we obtain

E [Wk+1 −Wk | e1, . . . , ek, Ek]

≤ e−
4k
n + 2n−

1
3 +O(n−

2
3 )− 4b

(

k

n

)

+ 4e
7k
n n−

1
3 − b′

(

k

n

)

− 7e
7k
n n−

1
3

=
(

2− 3e
7k
n

)

n−
1
3 +O(n−

2
3 ).

< 0,

so Wk is indeed a supermartingale. Next, we bound the stepwise differences Wk+1 −Wk. The change

in Bk is at most 4, and our Taylor estimates show that the error term nb
(

k
n

)

− e 7k
n n

2
3 changes by at
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most an absolute constant because b′
(

k
n

)

is bounded on k ≤ 1.1n. Therefore, the Hoeffding-Azuma

inequality implies that since W0 = −n 2
3 ,

P [∃k ≤ 1.1n : Wk ≥ 0] ≤ e−Ω(n1/3). (2)

Similarly, if

Ŵk =

{

Bk − nb
(

k
n

)

+ e
7k
n n

2
3 if Ek−1 occurs,

Ŵk−1 otherwise.

then

E

[

Ŵk+1 − Ŵk | e1, . . . , ek, Ek
]

≥
(

Ik
n

)2

− 4Bk

n
+O(n−1)− n

[

b

(

k + 1

n

)

− b
(

k

n

)]

+
[

e
7(k+1)

n − e 7k
n

]

n2/3.

Since Ik
n ≥ e−

2k
n −n− 1

3 and e−
2k
n ≤ 1, we have

(

Ik
n

)2 ≥ e− 4k
n −2n−

1
3 . Also, −4Bk

n ≥ −4b
(

k
n

)

−4e
7k
n n−

1
3 .

Using the same estimates as before for b
(

k+1
n

)

− b
(

k
n

)

and e
7(k+1)

n − e 7k
n , we obtain

E

[

Ŵk+1 − Ŵk | e1, . . . , ek, Ek
]

≥ e−
4k
n − 2n−

1
3 − 4b

(

k

n

)

− 4e
7k
n n−

1
3 +O(n−1)− b′

(

k

n

)

+ 7e
7k
n n−

1
3

=
(

−2 + 3e
7k
n

)

n−
1
3 +O(n−1).

> 0,

so Ŵk is a submartingale. Applying the Hoeffding-Azuma inequality once again we see that

P

[

∃k ≤ 1.1n : Ŵk ≤ 0
]

≤ e−Ω(n1/3). (3)

We have now shown that whp, Wk < 0, Ŵk > 0, and
∣

∣

1
nIk − e−

2k
n

∣

∣ ≤ n−1/3 for every k ≤ 1.1n.

Whenever these all happen, the same induction argument as in the conclusion of the proof of Theorem

2.6 shows that every Ek necessarily holds as well. In particular,
∣

∣

∣

∣

Bk − nb
(

k

n

)∣

∣

∣

∣

≤ e
7k
n n

2
3 < e8n

2
3 ,

for all k ≤ 1.1n. This completes the proof for Btn, and the result for Rtn follows by symmetry. �

Now that we have control of the vertex partition, we study the evolution of the susceptibility. We

have symmetry between blue and red, so it suffices to show that the susceptibility of the blue color

class does not “blow up” before 1.06n rounds. Let Xk be the sum of the squares of the component

sizes in the blue color class after the i-th round. Note that this is precisely n times the susceptibility

of the blue color class. In the remainder of this proof, we will show that 1
nXtn tracks x(t), which is

the solution of the differential equation

dx

dt
= x2 + 3b2 − 2bx, x(0) = 1, (4)

where b(t) = te−4t. (The precise form of the differential equation will be derived in what follows.)

Numerical methods confirm that this differential equation “blows up” only at t ≈ 1.065, and x(t) ≤ 209

for all t ≤ 1.06.
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Lemma 4.5. Suppose that 1
nXk < 210. Then the expected change in Xk is:

E
[

Xk+1 −Xk | e1, . . . , ek; 1
nXk < 210

]

=

(

Xk

n

)2

+
1

n2

[

4B2
k − 4BkXk −R2

k + 2RkXk

]

+O(n−1).

Proof. Let the connected components in the blue color class be C1, C2, . . . . Suppose that the (k+1)-

st edge has endpoints in Ci, Cj . If i = j, or if the edge is colored red, then the sum of the squares of

the blue components does not change. Otherwise, it increases by exactly (|Ci|+ |Cj |)2−|Ci|2−|Cj|2 =

2|Ci||Cj |. Therefore,

E
[

Xk+1 −Xk | e1, . . . , ek; 1
nXk < 210

]

=
∑

i6=j

2|Ci||Cj | ·
|Ci|
n

|Cj |
n− 1

· pij

where pij is the probability that an edge with endpoints in Ci and Cj is colored blue. Note that pij is

usually 1
2 , but is sometimes 0 or 1 when the endpoints hit isolated edges. The factor of n − 1 in the

denominator is cumbersome, so we will replace it with an n. To do this, note that
∑

i6=j 2|Ci|2|Cj |2 ·
pij ≤ 2(

∑

i |Ci|2)2 = 2X2
k ≤ 2(210n)2 = O(n2). Since 1

n(n−1) − 1
n2 = O(n−3), the total additive error

we will make by replacing the n− 1 with an n is O(n−1). Therefore,

E
[

Xk+1 −Xk | e1, . . . , ek; 1
nXk < 210

]

=
2

n2

∑

i6=j

|Ci|2|Cj|2 · pij +O(n−1).

Let S be the right hand side of this equality, and let S′ be what it would be if all pij were equal to 1
2 .

Then

S′ =
1

n2

∑

i6=j

|Ci|2|Cj |2 +O(n−1) ≤
(

Xk

n

)2

+O(n−1). (5)

Now we estimate the total error we made in S′ by replacing all pij with 1
2 . Whenever pij = 0,

we overestimated by 1
n2 |Ci|2|Cj|2, and when pij = 1, we underestimated by that same amount. To

systematically examine all of the cases when pij 6= 1
2 , we classify the components Ci of the blue color

class into types, which we represent with the letters B, R, I, and J. We say that Ci has type B if it is

part of the blue matching (hence a single edge), type R if it is part of the red matching (hence a single

vertex), type I if it is an isolated vertex, and type J otherwise. Now we break into cases depending on

the types of Ci and Cj. In each case, we calculate the sum of all |Ci|2|Cj |2 of that type.

Case BB. In this case, both Ci and Cj have type B, meaning that they are isolated edges from the

blue matching. If the incoming edge has one endpoint in Ci and one endpoint in Cj , our algorithm

will definitely color it red, so pij = 0. Any |Ci|2|Cj |2 of this type is precisely 22 · 22 = 16. The

number of Ci of type B is Bk
2 , because the blue matching consists of Bk

2 isolated blue edges. So,

the number of pairs Ci, Cj of type BB with i 6= j is Bk
2 ·
(

Bk
2 − 1

)

=
B2

k
4 − O(n). Therefore, the

sum of all |Ci|2|Cj|2 of this type is 4B2
k −O(n).

Cases BI, IB. Again pij = 0. Any |Ci|2|Cj|2 of this type is precisely 22 · 12 = 4. There are Bk
2 · Ik

pairs Ci, Cj of type BI, and the same number of type IB, so the sum is 4BkIk.
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Cases BJ, JB. Again pij = 0. Let Z be the set of indices j such that Cj has type J. Since there are
Bk
2 components Ci of type B, the sum of |Ci|2|Cj |2 over all pairs of type BJ alone is

Bk

2

∑

j∈Z

22 · |Cj |2 = 2Bk

∑

j∈Z

|Cj|2

= 2Bk(Xk −
∑

j 6∈Z

|Cj |2)

= 2Bk

(

Xk − Ik −Rk −
Bk

2
· 22

)

= 2Bk(Xk − Ik −Rk − 2Bk).

The explanation is as follows. Xk is the sum of all |Cj |2. Then, we break the sum over j 6∈ Z of

|Cj |2 into the cases when Cj has type I, R, or B, in which |Cj | is always 1, 1, and 2, respectively.

The total contribution from pairs of type BJ and JB is twice that from BJ alone, so it is

4Bk(Xk − Ik −Rk − 2Bk).

Case RR. Now pij = 1. Any |Ci|2|Cj |2 of this type is precisely 12 · 12 = 1. The number of Ci

of type R is Rk, because the red matching consists of Rk
2 isolated red edges, which give Rk

isolated vertices in the blue color class. So, the number of pairs Ci, Cj of type RR with i 6= j is

Rk · (Rk − 1) = R2
k −O(n). Thus the sum of |Ci|2|Cj |2 is R2

k −O(n).

Cases RI, IR. Again pij = 1. Any |Ci|2|Cj |2 of this type is precisely 12 · 12 = 1. There are Rk · Ik
pairs Ci, Cj of type RI, and the same number of type IR, so the sum is 2RkIk.

Cases RJ, JR. Again pij = 1. Let Z be the set of indices j such that Cj has type J. Since there are

Rk components Ci of type R, the sum of |Ci|2|Cj |2 over all pairs of type RJ is

Rk

∑

j∈Z

12 · |Cj |2 = Rk(Xk − Ik −Rk − 2Bk),

where we used the exact same calculation as in the case BJ for
∑

j∈Z |Cj |2. We double this to

include the contribution from JR, and obtain a total sum of 2Rk(Xk − Ik −Rk − 2Bk).

All other cases. For all other pairs of types, our algorithm chooses a random color, so pij = 1
2 , and

there is no difference between S and S′.

Combining all of the above calculations, we express E
[

Xk+1 −Xk | e1, . . . , ek; 1
nXk < 210

]

= S in

terms of S′ ≤
(

Xk
n

)2
+O(n−1).

S = S′ − 1
n2

[

(4B2
k −O(n)) + 4BkIk + 4Bk(Xk − Ik −Rk − 2Bk)

]

+ 1
n2

[

(R2
k −O(n)) + 2RkIk + 2Rk(Xk − Ik −Rk − 2Bk)

]

.

= S′ +
1

n2

[

4B2
k − 4BkXk −R2

k + 2RkXk

]

+O(n−1)

≤
(

Xk

n

)2

+
1

n2

[

4B2
k − 4BkXk −R2

k + 2RkXk

]

+O(n−1),

as desired. �
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By Lemma 4.4, 1
nBk and 1

nRk track b(t) = te−4t, so Lemma 4.5 indeed indicates that the differential

equation (4) estimates 1
nXtn. We now prove this formally. Our method uses Hoeffding-Azuma, so we

need bounded differences. In our proof of Theorem 2.6, we achieved this by controlling the distribution

of the component sizes with the result of Spencer and Wormald (Fact 2.5).

Recall that a graph has a K, c component tail if for all positive integers s, at most Ke−cs-fraction

of vertices lie in components of order at least s. In particular, the empty graph has a K, c component

tail with K = e and c = 1. Fact 2.5 then ensures that after a period of random edge addition, the

resulting graph still has a K ′, c′ component tail. However, the period only lasts for about 0.5n edges

when starting with the empty graph, and our process needs to run for 1.06n rounds. To work around

this issue, we use several iterations.

Define the sequence t0, . . . , t19, by letting t0 = 0, and ti+1 = ti +
1

4x(ti)
, where x(t) is the solution of

the differential equation (4). The motivation for this sequence is as follows. Suppose we have already

established that the blue graph after tin rounds has a Ki, ci component tail, and its susceptibility L is

approximately x(ti), specifically, that L < 1.5x(ti). Then, we could apply Fact 2.5 with L = 1.5x(ti),

K = Ki, c = ci, and γ = 1
4 , to conclude that after ti+1n rounds, even if all new edges were colored blue,

the blue graph would still have a Ki+1, ci+1 component tail whp. This allows us to define sequences

K0 ≤ · · · ≤ K19 = K ′ and c1 ≥ · · · ≥ c19 = c′. We confirmed numerically that t19 > 1.06, so this

would allow us to maintain a K ′, c′ component tail for 1.06n rounds. Now we formalize this heuristic,

and prove our two-color avoidance theorem.

Proof of Theorem 1.3. For each 0 ≤ k ≤ 1.06n, let Ek be the event that all of the following hold:

Ek =



















∣

∣

1
nBk − b

(

k
n

)∣

∣ ≤ e8n−
1
3 ,

∣

∣

1
nRk − b

(

k
n

)∣

∣ ≤ e8n−
1
3 ,

1
nXk ≤ x

(

k
n

)

+ e
500k

n n−
1
4 ,

and the blue graph has a K ′, c′ component tail.

We define a supermartingale. Let

Zk =

{

Xk − nx
(

k
n

)

− e 500k
n n

3
4 if Ek−1 occurs,

Zk−1 otherwise.

We only consider k ≤ 1.06n, and x(t) ≤ 209 for all t ≤ 1.06, so if Ek holds, we have 1
nXk < 210. Then

Lemma 4.5 gives

E [Zk+1 − Zk | e1, . . . , ek, Ek]

≤
(

Xk

n

)2

+
1

n2

[

4B2
k − 4BkXk −R2

k + 2RkXk

]

+O(n−1)

− n
[

x

(

k + 1

n

)

− x
(

k

n

)]

−
[

e
500(k+1)

n − e 500k
n

]

n
3
4 .

Now we estimate each term. Since Xk
n ≤ x

(

k
n

)

+ e
500k

n n−
1
4 and k ≤ 1.06n, we have

(

Xk
n

)2 ≤ x2
(

k
n

)

+

2x
(

k
n

)

e
500k

n n−
1
4 +O(n−

1
2 ). Similarly,

B2
k

n2 = b2
(

k
n

)

+O(n−
1
3 ), and the same estimate holds for

R2
k

n2 . Also,
1
n(2Rk − 4Bk) = −2b

(

k
n

)

+O(n−
1
3 ), so

1

n
(2Rk − 4Bk) ·

Xk

n
≤ −2b

(

k

n

)[

x

(

k

n

)

− e 500k
n n−

1
4

]

+O(n−
1
3 ).
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From Taylor bounds similar to those in the proof of Lemma 4.4, we have x
(

k+1
n

)

− x
(

k
n

)

= 1
nx

′( k
n

)

+

O(n−2) and e
500(k+1)

n − e 500k
n = 500

n e
500k

n + O(n−2). Combining all of these bounds, and using x′ =

x2 + 3b2 − 2bx, the entire estimate simplifies to

E [Zk+1 − Zk | e1, . . . , ek, Ek] ≤
[

2x

(

k

n

)

+ 2b

(

k

n

)

− 500

]

e
500k

n n−
1
4 +O(n−

1
3 ),

which is indeed less than zero for large n because b(t) = te−4t is always less than 1, and x(t) ≤ 209

for all t ≤ 1.06. Therefore Z0, . . . , Z1.06n is a supermartingale. Note that Z0 = −n 3
4 . Now because we

are dealing with a graph with a K ′, c′ tail, just as in the proof of Theorem 2.6 we have |Zk+1 −Zk| =
O(log2 n) and then the Hoeffding-Azuma inequality implies that for each k ≤ 1.06n,

P [Zk ≥ 0] ≤ e−Ω(n1/2/ log4 n).

Therefore, by a union bound, whp Zk < 0 for all k ≤ 1.06n. Also, Lemma 4.4 implies that whp,
∣

∣

Bk
n − b

(

k
n

)∣

∣ ≤ e8n−
1
3 and

∣

∣

Rk
n − b

(

k
n

)∣

∣ ≤ e8n−
1
3 for every k ≤ 1.06n. Let E be the conjunction of all

of these high-probability events.

To complete our argument, we show by induction that whp, for each 0 ≤ i ≤ 19, the blue graph

after tin rounds has a Ki, ci component tail. The base case i = 0 is trivial. For the induction step,

suppose that it is true for i. Condition on the blue graph after tin rounds having a Ki, ci component

tail, as well as on the event E that all Zk < 0 and all Bk, Rk are concentrated. Then, the same argument

as in the conclusion of the proof of Theorem 2.6 forces all Ek to occur for k ≤ tin, since Ki ≤ K ′

and ci ≥ c′. In particular, Etin already implies that after tin rounds, the blue graph has susceptibility
1
nXtin ≤ x(ti) + o(1) < 1.5x(ti). Applying Fact 2.5 with L = 1.5x(ti), K = Ki, c = ci, and γ = 1

4 , we

see that whp, even if all new edges were colored blue, the blue graph after tin+
(

1− 1
4

)

n
2·1.5x(ti)

= ti+1n

rounds would have a Ki+1, ci+1 component tail. This finishes the induction, so whp the blue graph

after t19n > 1.06n rounds has a K ′, c′ component tail. In particular, all connected components are of

order O(log n), so there is no giant in the blue color class. The same result follows for the red color

class by symmetry. �

5 Online creation of giants

Recall that the trivial bounds for the online creation of giants are as follows. No algorithm can create

giants in all colors in fewer than (1 − ǫ)n
2 total edges, because that is not even enough to make a

giant in the uncolored graph. On the other hand, if one randomly colors each incoming edge, then

monochromatic giants will appear after (r + ǫ)n
2 total edges. In this section, we prove Theorems 1.4,

1.5, and 1.6, which improve the above trivial lower and upper bounds for the online creation of giants.

5.1 Lower bound

The previous argument iterated Fact 2.5 to maintain the component tail property, using a customized

argument to control the susceptibility for a specific algorithm. In this section, we need to consider an

arbitrary coloring strategy, so we use our general-purpose tool (Theorem 2.6) to control the suscepti-

bility. This will establish a lower bound of Ω(n log r) for the number of edges required to create giants

online in each of r color classes. We need the following simple bound for random graphs.
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Lemma 5.1. Let λ be a constant. The random graph Gn,p with p = λ
n contains at most o

(

n
log n

)

cycles

of length at most
√

log n, whp.

Proof. The expected number of cycles of length k in Gn,p is at most nk

2k p
k = λk

2k , so the expected

number of cycles of length at most
√

log n is below
∑

√
log n

k=3
λk

2k . If λ ≤ 1, this is below
√

log n.

Otherwise, it is below
√

log n · λ
√

log n. In both cases, the conclusion follows from Markov’s inequality.

�

Next, we need a worst-case bound on how large the susceptibilities of different color classes can be

when a graph is colored.

Lemma 5.2. Let K, c be positive real constants. Let G be an n-vertex graph with a K, c component

tail. Also assume that G contains o
(

n
log n

)

cycles of length at most
√

log n. Consider any 2-coloring

of the edges of G, and let G(1) and G(2) be the n-vertex subgraphs of G obtained by keeping only edges

in the first or second color, respectively. Then S(G(1)) + S(G(2)) ≤ S(G) + 1 + o(1).

Proof. Each component of G(i) is entirely contained within a component of G, so we may break

down the left hand side by components of G. Consider first the components of G which are larger

than
√

log n. Since G has a K, c component tail, the number of vertices in such components is at most

Ke−c
√

log nn. The component tail also implies that there is some constant C such that all components

of G are bounded by C log n. Since S(G(1)) + S(G(2)) = 1
n

∑

v(C
(1)
v + C

(2)
v ), where C

(i)
v is number of

vertices in the component of G(i) containing v, the total contribution from vertices in components of

G with order at least
√

log n is only 1
n ·Ke−c

√
log nn · 2C log n = o(1).

Next, consider the components of order at most
√

log n which contain cycles. Since the suscepti-

bility is 1
n times the sum of squares of component sizes, each component of this type contributes at

most 1
n · 2(

√
log n)2 to S(G(1)) + S(G(2)). By assumption, G only has o

(

n
log n

)

cycles small enough

to fit into these components, so the number of such components is at most o
(

n
log n

)

. Therefore, their

total contribution to S(G(1)) + S(G(2)) is at most 1
n · 2(

√
log n)2 · o

(

n
log n

)

= o(1).

The main contribution comes from the remaining components, which are all trees. Any tree T

in G contributes 1
n

∑

v∈T |T | to S(G). We claim that it contributes at most 1
n

∑

v∈T (|T | + 1) to

S(G(1)) + S(G(2)), i.e., the additional amount is at most 1
n |T |. Indeed, T ’s contribution to S(G(i)) is

precisely 1
n times the sum of the sizes of the G(i)-components that contain each vertex v ∈ T . Trees

have the property that each pair of vertices is connected by a unique path, so we can express the size

of the G(i)-component containing v as
∑

w∈T I
(i)
v,w, where the indicator I

(i)
v,w is 1 if the unique path

between v and w is monochromatic in color i, and 0 otherwise. Hence, the total contribution of T to

S(G(1))+S(G(2)) is 1
n

∑

v,w∈T (I
(1)
v,w + I

(2)
v,w). Since T is a tree, the only time both indicators I

(i)
v,w can be

1 is when w = v. So for each v, the sum
∑

w∈T (I
(1)
v,w + I

(2)
v,w) is at most |T |+ 1, as claimed. Summing

over all tree components, we see that their total contribution to S(G(1)) + S(G(2)) exceeds S(G) by

at most 1
n times the sum of the sizes of tree components, which is at most 1. Combining this with

the contributions from non-tree components above, we obtain S(G(1)) + S(G(2)) ≤ S(G) + 1 + o(1),

as desired. �

Now we proceed to prove Theorem 1.4, using the previous two lemmas, and Theorem 2.6 to control

the evolution of susceptibility. We will show that for any r which is a power of two, whp no online

algorithm can create giants in all r colors within (c log2 r)n edges, where c ≈ 0.043. This clearly

implies the desired asymptotic bound. Our calculated bound for r = 2 will follow as a special case.
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Proof of Theorem 1.4. Let C0 be the set of all r = 2t colors. Let γ be a constant parameter which

we will specify later. The graph is initially empty, with susceptibility L0 = 1. By Theorem 2.6, after

(1 − γ)n
2L

−1
0 edges, the graph formed by the union of those edges has a K1, c1 component tail and

susceptibility at most L0
γ + o(1) whp. Arbitrarily divide the colors into two groups of size 2t−1 each.

Lemmas 5.1 and 5.2 ensure that no matter how the edges were colored, one of the two color groups

determines a graph G1 with susceptibility at most L1 + o(1), where L1 = 1
2

(

1 + L0
γ

)

. Note that G1

still has a K1, c1-component tail, and let C1 be the set of 2t−1 colors we picked.

We iterate this procedure a total of t times. For example, in the next step, we advance by

(1 − γ)n
2L

−1
1 more edges. Even if all of them received colors in C1 (i.e., were added to G1), the

susceptibility of the graph determined by C1-colors is at most L1
γ + o(1) whp, by Theorem 2.6.

Arbitrarily divide the colors of C1 into two groups of size 2t−2 each. Again by Lemmas 5.1 and 5.2,

one of the two color groups, say C2, determines a graph G2 with susceptibility at most L2 + o(1),

where L2 = 1
2

(

1 + L1
γ

)

.

After t iterations, we conclude that there is some single color c such that the graph Gt determined

by all edges of color c has a Kt, ct component tail and susceptibility at most Lt. A final application of

Theorem 2.6 implies that we can add n
2 (L−1

t − ǫ) more random edges and still have all components in

color c of order O(log n) whp.

It remains to count the total number of edges which we have accumulated. The relationship

between the Li’s is Li+1 = 1
2

(

1 + Li
γ

)

= 1
2 + Li

2γ , so

L0 = 1,

L1 =
1

2
+

1

2γ
,

L2 =
1

2
+

1

4γ
+

1

4γ2
,

L3 =
1

2
+

1

4γ
+

1

8γ2
+

1

8γ3
,

and in general,

Lt =
1

2
+

1

2(2γ)
+

1

2(2γ)2
+ · · ·+ 1

2(2γ)t−1
+

1

(2γ)t

< 1 +
1

2γ
+ · · ·+ 1

(2γ)t

<

(

1− 1

2γ

)−1

.

Thus, the total number of edges added (not even counting the final step) is at least

(1− γ)n
2

t−1
∑

i=0

L−1
i > (1− γ)n

2
· t
(

1− 1

2γ

)

.

By routine calculus, the optimal choice for γ is 1√
2
, giving (1 − γ)

(

1 − 1
2γ

)

= 3
2 −
√

2 ≈ 0.086.

Since t = log2 r, we indeed see that whp, no online algorithm can create giants in all colors within

0.043n log2 r edges. This completes the proof of the asymptotic bound.
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For the specific case of r = 2 colors, we can add the final batch of n
2 (L−1

t − ǫ) random edges (here

t = 1) to get a specific bound which beats the trivial bound of n/2 edges. Since L1 = 1
2

(

1 + 1
γ

)

, this

gives a total edge count of

(1− γ)n
2

+
n

2
(L−1

1 − ǫ) =
n

2

[

(1− γ) +

(

1

2

(

1 +
1

γ

))−1

− ǫ
]

=
n

2

[

(1− γ) +
2γ

γ + 1
− ǫ
]

.

By routine calculus, the optimal choice for γ is
√

2 − 1. Therefore, whp, no online algorithm can

create giants in both colors within (2−
√

2− ǫ)n edges, as claimed. �

5.2 Upper bound for many colors

In this section, we present an online coloring algorithm which creates giants in all r color classes within

roughly n
2

√
r edges. The strategy is based on the classical fact that there are infinitely many values

of r such that the edges of Kr can be perfectly partitioned into cliques of order roughly
√
r.

Fact 5.3. Let r = q2 + q+1 for some prime power q. The edges of Kr can be partitioned into disjoint

sets E1, . . . , Er such that each Ei is precisely the edge set of some clique of order q + 1.

Proof. The projective plane of order r = q2 + q + 1 is the finite geometry where points and lines

correspond to dimension-1 and dimension-2 subspaces of F
3
q, respectively. This object contains exactly

q3−1
q−1 = q2 + q+1 points and the same number of lines, and has the property that every pair of distinct

points determines a unique line.

Identify the vertices of Kr with the points of the projective plane. Let the q + 1 vertices of the

clique corresponding to Ei be the points contained in the i-th line of the projective plane. The edge

partition property is then equivalent to the incidence property of the projective plane. �

We also need the giant component threshold in certain inhomogeneous random graph models,

where the edge probability is not uniformly p at all
(

n
2

)

possible sites. Instead, the probability of each

edge depends on the locations of its endpoints. Bollobás, Janson, and Riordan recently completed

a far-reaching study of phase transitions in these types of inhomogeneous models in [10]. We use a

special case of their work, regarding the specific model below.

Fix a symmetric k×k matrix A = (aij). Let Gn,A be the n-vertex random graph defined as follows.

Split the n vertices into k groups of size n/k. Between each pair of distinct vertices, say from the i-th

and j-th groups (where i may equal j), place an independent random edge with probability
aij

n . Note

that when A = cJk, where Jk is the k×k all-ones matrix, Gn,A is the Erdős-Rényi random graph Gn,p

with p = c
n .

The following result was proved as Theorem 3.1 of [10]. Here, the L2 operator norm ‖B‖2 of a

k × k matrix B is sup{‖Bx‖2 : ‖x‖2 = 1}, and the 2-norm of a vector (x1, . . . , xk) is
√

∑

x2
i .

Fact 5.4. Let A = (aij) be a symmetric k×k matrix, and let A be its normalization
(aij

k

)

. If ‖A‖2 > 1,

then Gn,A contains a giant component whp.

Remark 1. In the same theorem, Bollobás, Janson, and Riordan also proved the complementary

result that when ‖A‖2 ≤ 1, the largest component of Gn,A is o(n) whp. However, we do not need this

part for our analysis.
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Remark 2. The L2 operator norm of a real symmetric matrix A always equals its spectral radius

ρ(A), which is the maximum |λi| over all eigenvalues λi. Indeed, A is diagonalizable with an orthonor-

mal basis of real eigenvectors, so let the eigenvalues and eigenvectors be λ1, . . . , λk and v1, . . . , vk,

respectively. Expressing any vector x in this basis as
∑

civi, we have that the condition ‖x‖2 = 1

is precisely
∑

c2i = 1, and ‖Ax‖2 =
√

∑

λ2
i c

2
i . Therefore, ‖Ax‖2 has maximum value equal to the

largest absolute value of an eigenvalue.

Remark 3. As we mentioned above, the Erdős-Rényi model Gn,p with p = c
n corresponds to Gn,A

with A = cJk. The normalized matrix A = c
kJk has eigenvalues c and 0, so Fact 5.4 implies the

classical result that the giant component appears after p = 1
n .

We use this to study the k-partite random graph G
(k)
n,p, which has n vertices split into equal groups

of size n
k , and independent random edges with probability p = c

n between pairs of vertices from distinct

groups. In the above framework, this is Gn,A with A = c(Jk − Ik).

Corollary 5.5. Let k ≥ 2 be a positive integer, and let c > k
k−1 be a real number. Then the k-partite

random graph G
(k)
n,p with p = c

n contains a giant component whp.

Proof. By Fact 5.4 and our second remark, the problem reduces to determining the eigenvalues of

A = c
k (Jk − Ik). These are precisely c

k (k − 1) and c
k (0 − 1), so since k ≥ 2, the giant component

appears once c > k
k−1 . �

We are now ready to state our algorithm and prove its effectiveness. Note that a coloring algorithm

that produces giants in r colors trivially gives coloring algorithms for any r′ < r as well, simply by

using the first color whenever any color beyond r′ was to be used. So, Theorem 1.5 is a consequence

of the following more precise formulation, combined with the Prime Number Theorem and Fact 2.3.

Theorem. Let r = q2 + q+1 for some prime power q. There is an online algorithm such that for any

ǫ > 0, whp all r color classes contain giant components within
(

r
q + ǫ

)

n
2 edges.

Proof. Arbitrarily partition the n vertices into r sets V1, . . . , Vr, each of size n
r . By Fact 5.3, there is

a partition E1 ∪ . . . ∪Er of the edges of Kr, such that each Et is precisely the edge set of some clique

of order q + 1. Our online coloring algorithm is then as follows. Usually, the incoming edge will have

endpoints in distinct parts Vi and Vj . In that case, color the edge with the index t of the Et which

contains the edge ij in the partitioned graph Kr. Otherwise, if the incoming edge is spanned by a

single Vi, then discard the edge entirely. Note that this is even stronger than coloring it, because we

will now find giants without using those edges at all.

Our algorithm disregards the entire history of the process, since the color of each edge is a function

of the locations of its endpoints. In particular, the order of the edges is irrelevant, so the performance

only depends on the final edge set. Thus, by Fact 2.3, it suffices to show that if this strategy is applied

to Gn,p with p =
(

r
q + ǫ

2

)

1
n , then it creates giants in all colors whp. By passing to this independent

model, each color class itself becomes a (q+1)-partite random graphG
(q+1)
n′,p , on only n′ = n

r (q+1) ≈ n√
r

vertices. Indeed, Et is the edge set of a clique on some set S of q+ 1 vertices of Kr, so the edges that

receive color t are precisely those with endpoints in some Vi and Vj with i 6= j and i, j ∈ S.

Finally, we can apply Corollary 5.5 with k = q+1, since p = c′

n′ with c′ =
(

r
q + ǫ

2

)

1
n · nr (q+1) > q+1

q .

Therefore, each individual color class contains a giant component whp. Taking a union bound over

all r (finitely many) color classes finishes the proof. �
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5.3 Upper bound for 2 colors

To adapt our strategy from the previous section to the case r = 2, we must specify symmetric 0-1

matrices A1 and A2 which sum to the k× k all-ones matrix Jk. We then split the vertices into k equal

parts V1, . . . , Vk, and color an edge with endpoints in some Vi, Vj with color 1 if the ij-entry of A1 is

1, and color 2 otherwise.

Then, after applying this strategy to the edges of Gn,p with p = c
n , the i-th color class is a copy

of Gn,cAi . By the second remark after Fact 5.4, this contains a giant component when the spectral

radius ρ( c
kAi) exceeds 1. Since our objective is to create giants in both colors as rapidly as possible,

we want to select A1 and A2 such that A1 + A2 = Jk, but min{ρ(A1), ρ(A2)} is as large as possible.

This appears to be a nontrivial problem, but one simple way to choose the matrices is to let A1 have

1’s in the top-left t× t submatrix, and 0’s everywhere else. This leads to the following bound.

Proposition 5.6. For every ǫ > 0, it is possible to create giants in two colors online within
(

3
4 + ǫ

)

n

rounds whp.

Proof sketch. Since A1 is just Jt embedded in an all-zeros matrix, its spectral radius is precisely

t. Next, note that A2 = Jk − A1 has rank 2, so it has at most 2 nonzero eigenvalues λ1, λ2. The

trace of A2 is k − t, so λ1 + λ2 = k − t. Also, the main diagonal of A2
2 has its first t entries equal to

k − t, and the remaining k − t entries equal to k, giving tr(A2
2) = t(k − t) + (k − t)k = k2 − t2. This

trace also equals λ2
1 +λ2

2, because the nonzero eigenvalues of A2
2 are λ2

1 and λ2
2. Solving this system of

equations, one finds that the largest eigenvalue of A2 is 1
2(k − t +

√
k2 + 2kt− 3t2). Recall that the

largest eigenvalue of A1 is t, and we wanted the largest possible min{ρ(A1), ρ(A2)}. Routine calculus

shows that the optimal choice of t is 2
3k, giving both ρ(Ai) = 2

3k. So, we choose the particular 3 × 3

matrices

A1 =





1 1 0

1 1 0

0 0 0



 , A2 =





0 0 1

0 0 1

1 1 1



 .

Therefore, as we remarked at the beginning, Fact 5.4 shows that when this strategy is applied to Gn,p

with p = c
n , both colors will contain giant components if their spectral radii ρ( c

kAi) exceed 1, i.e., once

c > 3
2 . By Fact 2.3, this happens after

(

3
2 + ǫ

)

n
2 rounds, so we are done. �

Remark. Although the partition we chose may appear näıve, there is evidence to suggest that it

may be optimal. Note that if we ignore the main diagonal (an effect that can be made negligible by

choosing large k) and seek A1 +A2 = Jk − Ik, then A1 and A2 are the adjacency matrices of a graph

and its complement.

Several researchers have studied the question of bounding the sum of the spectral radii of the

adjacency matrices of complementary graphs (see [15, 18, 23, 24, 25, 31]). In particular, Nikiforov

recently conjectured in [23] that the sum of these two spectral radii is always at most 4
3k+O(1), where

k is the number of vertices. If true, this would imply that min{ρ(A1), ρ(A2)} ≤ 2
3k +O(1), which our

construction achieved. In fact, in his extremal example, one graph was a clique on a subset of the

vertices, which is essentially the same as our construction. So, perhaps 3
4n is the limit of what can be

achieved by any strategy as above.

Next, we prove Theorem 1.6, which shows that by making the strategy more adaptive, one can

create giants even faster. The algorithm in the proof of Proposition 5.6 fixed a subset R of vertices
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in advance, and used the first color whenever an edge was spanned by R. The key idea is to let

the subset R depend on the outcomes of the first few rounds. To analyze this strategy, we will need

two results from the literature. The first is a folklore result on the susceptibility of the Erdős-Rényi

random graph.

Fact 5.7. Let 0 < t < 1
2 be a fixed parameter. Then there exist constants K, c such that whp, the

graph on n vertices formed by tn independent random edges has susceptibility 1
1−2t + o(1), and a K, c

component tail.

Justification. This result is well-known. Nevertheless, for completeness, we will show how a formal

proof can be derived as a consequence of Theorem 1.1 of Spencer and Wormald in [28]. We do not

state their full theorem here, as it is much broader in scope, and hence necessarily more technical.

Instead, we provide some pointers for the interested reader to check this conclusion. Page 591 of

their paper specifies the bounded size algorithm which corresponds to the Erdős-Rényi evolution. In

terms of these parameters, their target susceptibility function S(t) for the tn/2-edge random graph

is the solution of their differential equation (37), where their subscript
−→
j only takes the single value

(ω, ω, ω, ω). In their notation, this is simply S′(t) = I((ω, ω, ω, ω), t). The right hand side evaluates to

S(t)2 because all xω(t) = 1 (pointed out on page 597) and their equation (6) implies that Sω = S for

the Erdős-Rényi evolution. The solution of S′(t) = S(t)2 with initial condition S(0) = 1 is S(t) = 1
1−t .

This indeed matches Fact 5.7 because Spencer and Wormald parameterize their susceptibility S(t)

with respect to the random graph with tn/2 edges, whereas we consider tn edges. �

The second result we need is Theorem 3.1 of [28], again translated to account for the fact that

their parameterization is for tn/2 edges, instead of tn edges.

Fact 5.8. Let L,K, c, ǫ be positive real numbers. Let G be a graph on n vertices with a K, c component

tail and S(G) = L. Then, after adding (1 + ǫ) n
2L more independent random edges, the resulting graph

contains a giant component whp.

Proof of Theorem 1.6. Let the colors be red and blue. We state the coloring strategy in terms of a

constant parameter t, which we can optimize at the end. (The best choice turns out to be t ≈ 0.189.)

For the first tn rounds, color all edges red. Then, permanently fix R to be the set of all vertices

incident to a red edge at that time. Color each future edge red whenever both endpoints lie in R, and

blue otherwise.

Let α = |R|
n . Lemma 4.4 shows that α = (1 − e−2t + o(1)) whp. Let us analyze how many

rounds are required for a red giant to appear. By Fact 5.7, the (completely red) graph G at time

tn has susceptibility S(G) = 1
1−2t + o(1) whp, so the sum of the squares of its component sizes is

(

1
1−2t +o(1)

)

n. Let GR be the subgraph of G induced by R. The sum of the squares of the components

in GR is precisely S(G)n− (1−α)n, because all components of G outside R are singletons. Therefore,

since GR has αn vertices, its susceptibility L is:

L =
1

αn
[S(G)n − (1− α)n] = (1 + o(1))

1

α

[

1

1− 2t
− e−2t

]

.

Then, by Fact 5.8, whp the red graph will contain a giant component after (1 + ǫ) |R|
2L more random

edges are added with both endpoints in R. By a standard coupling as in Fact 2.3, this happens
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after (1 + ǫ) |R|
2L · α−2 more rounds whp, since each incoming edge falls within R with probability α2.

Substituting |R| = αn, we find that a red giant appears after a grand total of tn + ( 1
2αL + ǫ)n =

[

t+ 1
2

(

1
1−2t − e−2t

)−1
+ ǫ
]

n rounds whp.

To analyze the blue graph, observe that by a similar coupling to Fact 2.3, after tn+(1+ǫ) cn
2 rounds

the blue graph contains Gn,cA whp, where A is the n × n matrix with 0’s in the top-left |R| × |R|
submatrix, and 1’s everywhere else. Plugging |R| = αn into the eigenvalue calculation from the proof

of Proposition 5.6, we see that the largest eigenvalue of A is n
2

(

1−α+
√

1 + 2α − 3α2
)

. Thus, Fact 5.4

implies that whp, the giant component appears in the blue graph once c surpasses 2
1−α+

√
1+2α−3α2

+ǫ,

i.e., when the total number of rounds exceeds tn+ 1+ǫ
1−α+

√
1+2α−3α2

n.

Since α = 1 − e−2t + o(1), it is now routine to numerically optimize t. It turns out that the best

choice is t ≈ 0.189, which gives α ≈ 0.314. Then, both of the bounds at the ends of the previous two

paragraphs are satisfied after 0.733n rounds, completing the proof. �

6 Concluding remarks

In this paper we have introduced several rather natural algorithmic variants of the classical problem

of the appearance of the giant component in a random graph/process. As expected, the offline cases

of these problems appear to be much more accessible, and indeed we managed to solve both the

avoidance and the embracing versions asymptotically for any fixed r. The online case seems to be

more challenging; there we showed that in all cases one can do better than the trivial algorithms that

randomly color each incoming edge, but for creating giants, rather sizable gaps remain.

It would certainly be nice to settle the case of two colors for creating and avoiding giants online

in both color classes, but that could be difficult. A more approachable problem might be to close the

asymptotic gap between the lower bound of Ω(log r) · n and the upper bound of O(
√
r) · n for the

question of creating giants in r colors. In particular, can one show a lower bound of the form ran for

some positive constant a?

Another, perhaps more technical, issue that we would like to see settled is the nature of an algorithm

for avoiding giants online. Our online avoidance algorithm is randomized. Is there a deterministic

strategy that matches its performance in the online setting?

Acknowledgment. The authors would like to thank the anonymous referees for suggestions that

improved the exposition of this paper.
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[26] V. Rödl and A. Ruciński, Lower bounds on probability thresholds for Ramsey properties, in:
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