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Abstract

We consider the following question. We are given a dense digraph D0 with minimum in- and out-
degree at least αn, where α > 0 is a constant. We then add random edges R to D0 to create a digraph
D. Here an edge e is placed independently into R with probability n−ε where ε > 0 is a small positive
constant. The edges E(D) of D are given edge costs C(e), e ∈ E(D), where C(e) is an independent copy
of the exponential mean one random variable EXP (1) i.e. P(EXP (1) ≥ x) = e−x. Let C(i, j), i, j ∈ [n]
be the associated n×n cost matrix where C(i, j) =∞ if (i, j) /∈ E(D). We show that w.h.p. the patching
algorithm of Karp finds a tour for the asymmetric traveling salesperson problem that is asymptotically
equal to that of the associated assignment problem. Karp’s algorithm runs in polynomial time.

1 Introduction

Let D(α) be the set of digraphs with vertex set [n] and with minimum in- and out-degree at least αn. We
are given a digraph D0 ∈ D(α) and then we add random edges R to D0 to create a digraph D. Here an edge
e is placed independently into R with probability n−ε where ε > 0 is a small positive constant. The edges
E(D) of D are given costs C(e), e ∈ E(D), where C(e) is an independent copy of the exponential mean one
random variable EXP (1) i.e. P(C(e) ≥ x) = e−x. Let C(i, j), i, j ∈ [n] be the associated n × n cost matrix
where C(i, j) = ∞ if (i, j) /∈ E(D). One is interested in using the relationship between the Assignment
Problem (AP) and the Asymmetric Traveling Salesperson Problem (ATSP) associated with the cost matrix
C(i, j), i, j ∈ [n] to asymptotically solve the latter.

The problem AP is that of computing the minimum cost perfect matching in the complete bipartite graph
Kn,n when edge (i, j) is given a cost C(i, j). Equivalently, when translated to the complete digraph ~Kn it
becomes the problem of finding the minimum cost collection of vertex disjoint directed cycles that cover all
vertices. The problem ATSP is that of finding a single cycle of minimum cost that covers all vertices. As
such it is always the case that v(ATSP ) ≥ v(AP ) where v(•) denotes the optimal cost. Karp [27] considered
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the case where D = ~Kn. He showed that if the cost matrix is comprised of independent copies of the uniform
[0, 1] random variable U(1) then w.h.p. v(ATSP ) = (1 + o(1))v(AP). He proves this by the analysis of a
patching algorithm (see below). Karp’s result has been refined in [17], [22] and [28].

Karp’s Patching Algorithm: First solve the AP to obtain a minimum cost perfect matching M and let
AM = {C1, C2, . . . , C`} be the associated collection of vertex disjoint cycles covering [n]. Then patch two of
the cycles together, as explained in the next paragraph. Repeat until there is one cycle.

A pair e = (x, y), f = (u, v) of edges in different cycles C1, C2 are said to be a patching pair if the edges e′ =
(u, y), f ′ = (x, v) both exist. In which case we can replace C1, C2 by a single cycle (C1∪C2∪{e′, f ′}) \ {e, f}.
The edges e, f are chosen to minimise the increase in cost of the set of cycles.

Theorem 1. Suppose that D0 ∈ D(α), α > 0 where α is constant. Suppose that D is created by adding random
edges R to D0 and that each edge of D is given an independent EXP (1) cost. Here an edge e /∈ E(D0) is
placed independently into R with probability n−ε where ε > 0 is a small positive constant. Then w.h.p.
v(ATSP ) = (1 + o(1))v(AP) and Karp’s patching algorithm finds a tour (Hamilton cycle) of the claimed cost
in polynomial time.

The use of EXP (1) as opposed to U(1) is an artifact of our proof. In particular it enables us to claim that
a certain tree is uniformly distributed among the spanning trees of a certain graph, see Lemma 9.

This model for instances of the ATSP arises in the following context: Karp’s heuristic is well understood for
the case of the complete digraph with random weights. If we want to understand its performance on other
digraphs then we must be sure that the class of digraphs we consider is Hamiltonian w.h.p. The class of
digraphs D(α) is a good candidate, but we can only guarantee Hamiltonicity if α ≥ 1/2. If we want to allow
arbitrary α then the most natural thing to do is add o(n2) random edges, as we have done.

It is often the case that adding some randomness to a combinatorial structure can lead to significant positive
change. Perhaps the most important example of this and the inspiration for a lot of what has followed, is the
seminal result of Spielman and Teng [39] on the performance of the simplex algorithm, see also Vershynin
[41] and Dadush and Huiberts [12].

The paper [39] inspired the following model of Bohman, Frieze and Martin [8]. They consider adding random
edges to an arbitrary member G of G(α). Here α is a positive constant and G(α) is the set of graphs with
vertex set [n] and minimum degree at least αn. They show that adding O(n) random edges to G is enough to
create a Hamilton cycle w.h.p. This is in contrast to the approximately 1

2
n log n edges needed if we rely only

on the random edges. Research on this model and its variations has been quite substantial, see for example
[4], [5], [6], [7], [9], [10], [13], [16], [23], [30], [31], [32], [36], [37], [38], [40].

Notation Let G denote the bipartite graph with vertex partition A = {a1, a2, . . . , an} , B = {b1, b2, . . . , bn}
and an edge {ai, bj} for every directed edge (i, j) ∈ E(D). A matching M of G induces a collection AM of
vertex disjoint paths and cycles in D and vice-versa. If the matching is perfect, then there are only cycles.

The proof requires a number of definitions of values, graphs, digraphs and trees. It might be helpful to the
reader if we list them along with their definitions. See Appendix A.
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2 Proof of Theorem 1

We begin by solving the AP. We prove the following:

Lemma 2. W.h.p., the solution to the AP contains only edges of cost C(i, j) ≤ γn = n−(1−2ε).

Lemma 3. W.h.p., after solving the AP, the number νC of cycles is at most r0 log n where r0 = n1−3ε.

Bounding the number of cycles has been the most difficult task. Karp proved that the number of cycles is
O(log n) w.h.p. when we are dealing with the complete digraph ~Kn. Karp’s proof is very clean but rather

fragile. It relies on the key insight that if D = ~Kn then the optimal assignment comes from a uniform random
permutation. This seems unlikely to be true in general and this requires building a proof from scratch.

Given Lemmas 2, 3, the proof is straightforward. We can begin by temporarily replacing costs C(e) > γn by
infinite costs before we solve the the AP. Lemma 2 implies that w.h.p. we get the same optimal assignment
as we would without the cost changes. Having solved the AP, the memoryless property of the exponential
distribution, implies that the unused edges in E(D) of cost greater than γn have a cost which is distributed
as γn + EXP (1).

Let C = C1, C2, . . . , C` be a cycle cover and let ki = |Ci| where k1 ≤ k2 ≤ · · · ≤ k`, 2 ≤ ` ≤ r0 log n. (There is
nothing more to do if ` = 1.) Different edges in Ci give rise to disjoint patching pairs. We ignore the saving
associated with deleting the edges e, f of the cycles and only look at the extra cost C(e′) + C(f ′) incurred.
We will also only consider the random edges R when looking for a patch. The number of possible patching
pairs πC satisfies

πC ≥
∑
i<j

kikj =
1

2

(
n2 −

∑̀
i=1

k2
i

)
≥ 1

2

(
n2 − ((n− `+ 1)2 + `− 1)

)
≥ `n

2
.

Each of these πC pairs uses a disjoint set of edges. We define the sets

R` =

{
e ∈ R : C(e) ≤ γn +

1

(`n1−5ε/2)1/2

}
, 1 ≤ ` ≤ r0.

Each edge of E( ~Kn) \ E(D0) appears in R` with probability at least p` = n−ε
(

1−o(1)

`n1−5ε/2

)1/2

, independent of

other edges. (The factor n−ε accounts for being included in the random set R. Then if C(e) > γn we use
the memoryless property to get the second factor). Let E` be the event that at some stage in the patching
process, |C| = ` and that there is no patch using only edges in R`. If E` does not occur then we reduce the
number of cycles by at least one. We have

P(∃2 ≤ ` ≤ r0 : E`) ≤
r0∑
`=2

P

(
E` |

r0⋂
λ=`+1

¬Eλ

)
≤

r0∑
`=2

P (E`)
1−

∑r0
λ=`+1 P(Eλ)

≤
r0∑
`=2

(1− p2
`)
`n/2

1−
∑r0

λ=`+1(1− p2
λ)
λn/2

=

r0∑
`=2

(
1− 1−o(1)

`n1−ε/2

)`n/2
1−

∑r0
λ=`+1

(
1− 1−o(1)

λn1−ε/2

)λn/2 = o(1).

W.h.p. the patches involved in these cases add at most the following to the cost of the assignment:

r0 logn∑
`=1

(
γn +

1

(`n1−5ε/2)1/2

)
≤ r0γn log n+

(
2r0

n1−5ε/2

)1/2

= o(1). (1)

Given the last equality and the fact that w.h.p. v(AP) > (1 − o(1))ζ(2) > 1 we see that Karp’s patching
heuristic is asymptotically optimal. The lower bound of (1− o(1))ζ(2) on v(AP ) comes from [3].
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3 Proof of Lemma 2

We show that w.h.p. for any pair of vertices a ∈ A, b ∈ B and any perfect matching M between A and B
that there is an M -alternating path from a to b that only uses at most 10/ε non-M edges, each of cost at
most εγn/10. (A path is M -alternating if its edges alternate between being in M and not being in M .) So
the difference in cost between added and deleted edges at most γn. We need to prove a slightly more general
version where r ≥ r0 replaces n, see Lemma 6.

The idea of the proof is based on the fact that w.h.p. the sub-digraph induced by edges of low cost is a good
expander. There is therefore a low cost path between every pair of vertices. Such a path can be used to
replace an expensive edge.

Chernoff Bounds: We use the following inequalities associated with the Binomial random variableBin(N, p).

P(Bin(N, p) ≤ (1− θ)Np) ≤ e−θ
2Np/2.

P(Bin(N, p) ≥ (1 + θ)Np) ≤ e−θ
2Np/3 for 0 ≤ θ ≤ 1.

P(Bin(N, p) ≥ γNp) ≤
(
e

γ

)γNp
for γ ≥ 1.

Proofs of these inequalities are readily accessible, see for example [21]. We have the same bounds for the
Hypergeometric distribution with mean Np. This follows from Theorem 4 of Hoeffding [24].

Assume now that a1, a2, . . . , an is a random permutation of A and similarly for B. For r ≥ r0 we let
Ar = {a1, a2, . . . , ar} and Br = {b1, b2, . . . , br}. We let Gr = (Ar ∪Br, Er) denote the subgraph of G induced
by Ar ∪Br.

Lemma 4. If r ≥ r0 then with probability 1 − o(n−1), (i) Gr has minimum degree at least α0r where α0 =
(1− o(1))α and (ii) Gr is connected and (iii) Gr contains a perfect matching.

Proof. The degree of a vertex is hypergeometric with mean r, α and so the minimum degree condition follows
from the Chernoff bounds above. If m, p satisfy p = m/2n2 = n−ε/2 then the Chernoff bounds imply that
adding edges to D0 with probability p will add fewer than m random edges w.h.p. On the other hand Frieze
[19] showed that w.h.p. Kr,r,p has a Hamilton cycle. For p as large as given, this can easily be shown to be
1− o(n−1) if r ≥ r0. This is because the probability there is no Hamilton cycle in Kr,r,p is dominated by the
probability that there is an isolated vertex. And this is at most 2r(1− p)r ≤ 2ne−r0n

−ε
= o(n−1). This verfies

connectivity and the existence of a perfect matching.

Lemma 5. For a set S ⊆ Ar we let

N0(S) =
{
bj ∈ Br : ∃ai ∈ S such that (ai, bj) ∈ R and C(i, j) ≤ βr =

εγr
10

}
where γr = r−(1−2ε).

If r ≥ r0 then with probability 1− e−Ω(εrε/2),

|N0(S)| ≥ εrε|S|
40

for all S ⊆ Ar, 1 ≤ |S| ≤ r1−ε. (2)

Proof. For a fixed S ⊆ Ar, s = |S| ≥ 1 we have that |N0(S)| is distributed as Bin(r, qs) in distribution, where

1− qs = (1− n−ε + n−εe−βr)s ≤ (1− 1
2
n−εβr)

s. It follows that qs ≥ n−εβrs/3 for s ≤ r1−ε and so rqs ≥ εrε/2s
30

.
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Let νs = εrε/2s
40

. Then, using the Chernoff bounds, we have

P (¬(2)) ≤
r1−ε∑
s=1

(
r

s

)
P (Bin (r, qs) ≤ νs) ≤

r1−2ε∑
s=1

(re
s

)s
e−Ω(εrε/2s) =

r1−2ε∑
s=1

(re
s
· e−Ω(εrε/2)

)s
= e−Ω(εrε/2).

We let APr denote the problem of finding a minimum weight matching between Ar and Br. Let Mr denote
the optimal solution to APr.

Lemma 6. If r ≥ r0 then with probability 1− e−Ω(εrε/2), Mr contains only edges of cost C(i, j) ≤ γr.

Proof. Suppose that Mr contains an edge e of cost greater than γr. Assume w.l.o.g. that e = (a1, b1). Let an
alternating path P = (a1 = x1, y1, . . . , yk−1, xk, yk = b1) be acceptable if (i) x1, . . . , xk ∈ Ar, y1, . . . , yk ∈ Br,
(ii) (xi+1, yi) ∈ Mr, i = 1, 2, . . . , k − 1 and (iii) C(xi, yi) ≤ βr, i = 1, 2, . . . , k. The existence of such a path
with k ≤ 5ε−1 implies the existence of another perfect matching with cost C(Mr) + kβr − C(e) < C(Mr),
which contradicts the optimality of Mr. We show below that w.h.p. there is such a path.

Now consider the sequence of sets S0 = {a1} , S1, S2, . . . ⊆ A, T1, T2, . . . ⊆ B defined as follows:

Ti = N0

(⋃
j<i Sj

)
and Si = φ−1(Ti), where Mr = {(ai, φ(ai)) : i = 1, 2, . . . , r}. It follows from (2) that w.h.p.

|Si| = |Ti| ≤ r1−ε implies that |Si| ≥
(
εrε

40

)i
.

So define i0 to be the smallest integer i such that
(
εrε

40

)i ≥ r1−ε. Note that i0 < 2/ε. Thus w.h.p. |Si0| ≥ r1−ε.
Replace Si0 by a subset of Si0 of size r1−ε and then after this, we have that w.h.p. |Si0+1| ≥ εr

40
.

For a set T ⊆ Br we let

N̂0(T ) = {ai ∈ Ar : ∃bj ∈ T such that (ai, bj) ∈ E(D) and C(i, j) ≤ βr} .

We then define T̂0 = {b1} , T̂1, T̂2, . . . , T̂i0+1 ⊆ B, Ŝ1, Ŝ2, . . . , Ŝi0+1 ⊆ Ar by Ŝi = N̂0

(⋃
j<i T̂j

)
and T̂i = φ(Ŝi)

and argue as above that |T̂i0+1| ≥ εr
40

with probability 1− e−Ω(εrε/2).

For S ⊆ Ar, T ⊆ Br let
ER(S, T ) = {ai ∈ S, bj ∈ T : (i, j) ∈ R,C(i, j) ≤ βr} .

Then,

P
(
∃S ⊆ Ar, T ⊆ Br : |S|, |T | ≥ εr

40
, ER(S, T ) = ∅

)
≤ 22r exp

{
− ε2r2

1600r1−2ε

}
= e−Ω(r1+2ε).

It follows that w.h.p. there will be an edge in ER(Si0+1, T̂i0+1) and we have found an alternating path of
length at most 2i0 + 3 using edges of cost at most βr and this completes the proof of Lemma 6 and hence
Lemma 2.
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4 Proof of Lemma 3

We analyse the solution of APr via the sequential shortest path algorithm for solving the assignment problem.
By this, we mean that given Mr, we obtain Mr+1 by solving a shortest path problem. A shortest path here
corresponds to an augmenting path that increases the matching cost by the minimum. We use a standard
trick to make the edge costs in this problem non-negative. Given this, we prove Lemma 3 by showing that
Dijkstra’s algorithm creates few cycles w.h.p.

4.1 Linear programming formulation of AP

We consider the linear program LPr that underlies the assignment problem and its dual Dr. We obtain Mr+1

from Mr via a shortest augmenting path Pr and we examine the expected number of short cycles created by
this path. A simple accounting then proves Lemma 3.

We consider the linear program LPr for finding Mr. To be precise we let LPr be the linear program

Minimise
∑
i,j∈[r]

C(i, j)xi,j subject to
∑
j∈[r]

xi,j = 1, i ∈ [r],
∑
i∈[r]

xi,j = 1, j ∈ [r], xi,j ≥ 0.

The linear program Dr dual to LPr is given by:

Maximise
r∑
i=1

ui +
r∑
j=1

vj subject to ui + vj ≤ C(i, j), i, j ∈ [r].

4.1.1 Trees and bases

An optimal basis of LPr can be represented by a spanning tree Tr of Gr that contains the perfect matching
Mr, see for example Ahuja, Magnanti and Orlin [1], Chapter 11. We have that for every optimal basis Tr,

C(i, j) = ui + vj for (ai, bj) ∈ E(Tr) (3)

and
C(i, j) ≥ ui + vj for (ai, bj) /∈ E(Tr). (4)

Note that if λ is arbitrary then replacing ui by ûi = ui− λ, i = 1, 2, . . . , r and vi by v̂i = vi + λ, i = 1, 2, . . . , r
has no afffect on these constraints. We say that u,v and û, v̂ are equivalent. It follows that we can always
fix the value of one component of u,v.

For a fixed tree T and u,v let C(T,u,v) denote the set of cost matrices C such that the edges of T satisfy
(3). The following lemma implies that the space of cost matrices (essentially) partitions into sets defined by
T,u,v. As such, we can prove Lemma 3 by showing that there are few cycles for almost all u,v and spanning
trees satisfying (3), (4).

Lemma 7. (a) Fix u,v. If T1, T2 are distinct spanning trees of Gr then C(T1,u,v)∩C(T2,u,v) has measure
zero, given u,v.
(b) If u1 = u′1 = 0 and (u,v) 6= (u′,v′) then for any spanning tree T of Gr, we have that C(T,u,v) ∩
C(T,u′,v′) = ∅.
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Proof. (a) Suppose that C ∈ C(T1,u,v) ∩ C(T2,u,v). We root T1, T2 at a1 and let u1 = 0. The equations
(3) imply that for i ∈ [r], ui is the alternating sum and difference of costs on the path Pi,k from a1 to ai in
Tk. So, unless Pi,1 = Pi,2 for all i, there will be an additional non-trivial linear combination of the C(i, j) that
equals zero. This has probability zero.
(b) There is a 1-1 correspondence between the costs of the tree edges and u,v.

The next goal is to show that w.h.p. we can choose optimal dual variables of absolute value at most 2γr =
2r−(1−2ε). Let E be the event that |ui|, |vj| ≤ 2γr for all i, j.

Lemma 8. P(E) = 1− o(n−1).

Proof. Fix us = 0 for some s. For each i ∈ [r] there is some j ∈ [r] such that ui+vj = C(i, j). This is because
of the fact that ai meets at least one edge of T and we assume that (3) holds. We also know that if (4) occurs
then ui′ + vj ≤ C(i′, j) for all i′ 6= i. It follows that ui− ui′ ≥ C(i, j)−C(i′, j) ≥ −γr for all i′ 6= i. (We have
used the fact that we do not need to consider edges of cost greater than γr to find Mr, see Lemma 2.) Since i
is arbitrary, we deduce that |ui − ui′ | ≤ γr for all i, i′ ∈ [r]. Since us = 0, this implies that |ui| ≤ γr for i ∈ r.
We deduce by a similar argument that |vj − vj′| ≤ γr for all j, j′ ∈ [r]. Now because for the optimal matching
edges (i, φ(i)), i ∈ [r] we have ui + vφ(i) = C(i, φ(i)), we see that |vj| ≤ 2γr for j ∈ [r].

The next two lemmas help us to understand the structure of the tree Tr. Fix Mr and let G∗r(u,v) be the
subgraph of Gr induced by the edges (ai, bj) for which ui + vj ≥ 0. We first show that Tr is a uniform random
spanning tree of G∗r, containing Mr.

Let Tr(u,v) denote the set of spanning trees of G∗r(u,v) that contain the edges of Mr. This is non-empty
because Tr ∈ Tr(u,v).

Lemma 9. If T ∈ Tr(u,v) then

P(Tr = T | u,v) =
∏

(ai,bj)∈G∗r(u,v)

e−(ui+vj), (5)

which is independent of T .

Proof. Fixing u,v and Tr fixes the lengths of the edges in Tr. If (ai, bj) /∈ E(Tr) then P(C(i, j) ≥ ui + vj) =
e−(ui+vj)

+
where x+ = max {x, 0}. Thus,

P(Tr = T | u,v) =
∏

(ai,bj)/∈E(T )

e−(ui+vj)
+

∏
(ai,bj)∈E(T )

e−(ui+vj) =
∏

(ai,bj)∈G∗r(u,v)

e−(ui+vj). (6)

Thus
Tr is a uniform random member of Tr(u,v). (7)

The next lemma will show that G∗r has a large minimum degree. We need to know that w.h.p. each vertex
ai is connected in G∗r to many bj for which ui + vj ≥ 0. We fix a tree T and condition on Tr = T . For
i = 1, 2, . . . , r let Li,+ = {j : (i, j) ∈ E(G)} and let Lj,− = {i : (i, j) ∈ E(G)}. Then for i = 1, 2, . . . , r and
η > 0 let Ai,+ = Ai,+(η) be the event that | {j ∈ Li,+ : ui + vj ≥ 0} | ≤ ηr and let Aj,− = Aj,−(η) be the
event that | {i ∈ Lj,− : ui + vj ≥ 0} | ≤ ηr.
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Lemma 10. Fix a spanning tree T of G∗r that contains Mr. Then there exists a small positive constant η
such that

P(Ai,+(η) ∨ Aj,−(η) | Tr = T ) = O(e−Ω(εrε/2)) for i, j = 1, 2, . . . , r.

Proof. In the following analysis T is fixed. Throughout the proof we assume that the costs C(i, j) for
(ai, bj) ∈ T are distributed as independent EXP (1), conditional on C(i, j) ≤ γr. Lemma 6 is the justification
for this in that we can solve the assignment problem, only using edges of cost at most γr. Furthermore, in
Gr, the number of edges of cost at most γr incident with a fixed vertex is dominated by Bin(r, γr) and so
with probability 1− e−Ω(r2ε) the maximum degree in Gr can be bounded 2r2ε. This degree bound applies to
the trees we consider.

We fix s and put us = 0. The remaining values ui, i 6= s, vj are then determined by the costs of the edges
of the tree T . Let B be the event that C(i, j) > ui + vj for all (ai, bj) /∈ E(T ). Note that if B occurs then
Tr = T .

We now condition on the set ET of edges (and the associated costs) of {(ai, bj) /∈ E(T )} such that C(i, j) ≥ 2γr.
Let FT = {(ai, bj) /∈ E(T )} \ET . Note that |FT | is dominated by Bin(r2, 1− e−2γr) and so |FT | ≤ 3r2γr with
probability 1− e−Ω(r2ε).

Let Y = {C(i, j) : (ai, bj) ∈ E(T )} and let δ1(Y ) be the indicator for As,+ ∧ E . We write,

P(As,+ | B) = P(As,+ ∧ E | B) =

∫
δ1(Y )P(B | Y )dC∫

P(B | Y )dC
(8)

Then we note that since (ai, bj) /∈ FT ∪ E(T ) satisfies the condition (4),

P(B | Y ) =
∏

(ai,bj)∈FT

exp
{
−(ui(Y ) + vj(Y ))+

}
= e−W , (9)

where W = W (Y ) =
∑

(ai,bj)∈FT (ui(Y ) + vj(Y ))+ ≤ 12r2γ2
r = 12r4ε. Then we have∫

Y

δ1(Y )P(B | Y ) dC =

∫
Y

e−W δ1(Y ) dC

≤
(∫

Y

e−2W dC

)1/2

×
(∫

Y

δ1(Y )2 dC

)1/2

= e−E(W )

(∫
Y

e−2(W−E(W ))dC

)1/2

× P(As,+ | E)1/2

≤ e−E(W )e12r4εP(As,+ | E)1/2. (10)∫
P(B | Y )dC = E(e−W ) ≥ e−E(W ). (11)

Let bj be a neighbor of as in G∗r and let Pj = (i1 = s, j1, i2, j2, . . . , ik, jk = j) define the path from as to bj in
T .

It then follows from (8),(10) and (11) that

P(As,+ | B) ≤ e12r4εP(As,+ | E)1/2. (12)

Note that if B occurs and (3) holds then Tr = T . Let bj be a neighbor of as in G∗r and let Pj = (i1 =
s, j1, i2, j2, . . . , ik, jk = j) define the path from as to bj in T . Then it follows from (3) that vjl = vjl−1

−
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C(il, jl−1) +C(il, jl)). Thus vj is the final value Sk of a random walk St = X0 +X1 + · · ·+Xt, t = 0, 1, . . . , k,
where X0 ≥ 0 and each Xt, t ≥ 1 is the difference between two independent copies of EXP (1) that are
conditionally bounded above by γr. Given E we can assume that the partial sums Si satisfy |Si| ≤ 2γr for
i = 1, 2, . . . , k − 1. Assume for the moment that k ≥ 4 and let x = uik−3

∈ [−2γr, 2γr]. Given x we see that
there is some positive probability p0 = p0(x) that Sk > 0. Indeed,

p0 = P(Sk > 0 | E) ≥ P(x+ Z1 − Z2 > 0)− P(E), (13)

where Z1 = Z1,1 + Z1,2 + Z1,3 and Z2 = Z2,1 + Z2,2 are the sums of independent EXP(1) random variables,
each conditioned on being bounded above by γr and such that |x+

∑t
j=1(Z1,j − Z2,j)| ≤ 2γr for t = 1, 2 and

that |x+Z1−Z2| ≤ 2γr. The absolute constant η0 = p0(−2γr) > 0 is such that min {x ≥ −2γr : p0(x)} ≥ η0.

We now partition (most of) the neighbors of as into N0, N1, N2 where Nt = {bj : k ≥ 3, k mod 3 = t}, k being
the number of edges in the path Pj from as to bj. Now because T has maximum degree 2r2ε, as observed at the
beginning of the proof of this lemma, we know that there exists t such that |Nt| ≥ (α0r− (2r2ε)3)/3 ≥ αr/4,
where α0 ∼ α as in Lemma 4. It then follows from (13) that |Ls,+| dominates Bin(αr/4, η0 − o(1)) and then
P(|Ls,+| ≤ αη0/10) = O(e−Ω(r)) follows from the Chernoff bounds. Similarly for L1,−. Applying the union
bound over r choices for s and applying (12) gives

P(∃s : As,+ ∨ As,−) ≤ re12r4ε−Ω(r) = O(e−Ω(εrε/2)).

Thus the lemma holds with η = η0/10.

4.1.2 Construction of the augmenting path

As previously mentioned, we will go from Mr to Mr+1 by solving a shortest path problem. We let ~Gr be the
orientation of Gr+1 with edges oriented from Ar+1 to Br+1 except for the edges of Mr which are oriented from
Br to Ar. The forward edges (ai, bj) /∈ Mr are given their costs C(i, j). The backward edges in (ai, bj) ∈ Mr

are given costs −C(i, j). This reflects the idea that traversing a forward edge means adding it and traversing
a backward edge means deleting it from the matching. We obtain Mr+1 from Mr by finding a minimum cost
(augmenting) path Pr = (x1 = ar+1, y1, x2, . . . , xσ, yσ = br+1) from ar+1 to br+1 in ~Gr. As defined so far, the
backward edges have a negative cost. In order to use Dijkstra’s algorithm, we must modify the costs so that
they become non-negative.

We let

ur+1 = min {C(r + 1, j)− vj(Tr) : j ∈ [r]} and

vr+1 = min {C(r + 1, r + 1)− ur+1,min {C(i, r + 1)− ui(Tr) : i ∈ [r]}} . (14)

We use costs Ĉ(i, j) = C(i, j)−ui− vj in our search for a shortest augmenting path. Our choice of ur+1, vr+1

and (3), (4) implies that Ĉ(i, j) ≥ 0 and that matching edges have cost zero. This idea for making edge costs

non-negative is well known, see for example Kleinberg and Tardos [29]. The Ĉ cost of a path P from ar+1 to
br+1 ∈ B differs from its C cost by −(ur+1 + vr+1), independent of P .

We now introduce some conditioning C. We fix Mr =
{

(ai, bφ(i)), i = 1, 2, . . . , r
}

and assume that u,v ∈ U =
{ui, vi : |ui|, |vi| ≤ 2γr} and that for all i, neither Ai,+ nor Ai,− of Lemma 10 hold. The constraints (3), (4)
on the C(i, j) become that

C(i, φ(i)) = ui + vφ(i) for i = 1, 2, . . . , r

C(i, j) ≥ ui + vj, otherwise.
(15)
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Note that with this conditioning, the tree Tr of basic variables is not completely determined. The tree Tr will
not be exposed all at once, but we will expose it as necessary. We also define some extra conditioning C+
that will only be needed in Section 4.1.5, when we deal with non-basic edges. Not only will we fix Mr, but
we will also fix Tr and u,v ∈ U .

4.1.3 Dijkstra’s algorithm

We let Γ∗r = Γ∗r(u,v) denote the (multi)graph obtained from G∗r by contracting the edges of Mr and let T̂r be
the tree obtained from Tr by contracting these edges. We have to consider multigraphs because we may find
that (ai, φ(aj)) and (aj, φ(ai)) are both edges of G∗r(u,v). Of course, Tr can only contain at most one of such

a pair. It follows from (7) that given u,v, T̂r is a uniform random spanning tree of Γ∗r.

We use Dijkstra’s algorithm to find the shortest augmenting path from ar+1 to br+1 in the digraph ~Gr. Because
each bj ∈ Br has a unique out-neighbor aφ−1(j) and Ĉ(bj, aφ−1(j)) = 0, we can think of the Dijkstra algorithm

as operating on a digraph ~Γr with vertex set Ar+1. The edges of ~Γr are derived from paths (ai, φ(aj), aj) in
~Gr. (We are just contracting the edges of Mr.) The cost of this edge will be Ĉ(i, j) which is the cost of the

path (ai, φ(aj), aj) in ~Gr. Given an alternating path P = (ai1 , bj1 , ai2 , . . . aik) where φ(ait) = bjt for t ≥ 2

there is a corresponding ψ(P ) = (ai1 , ai,2, . . . , aik) of the same length in ~Gr.

The Dijkstra algorithm applied to ~Gr produces a sequence of values 0 = d1 ≤ d2 ≤ · · · ≤ dr+1. The di
are the costs of shortest paths. Suppose that after k rounds we have a set of vertices Sk for which we have
found a shortest path of length di to ai ∈ Sk and that dl for al /∈ Sk is our current estimate for the cost of a
shortest path from ar+1 to al. The algorithm chooses al∗ /∈ Sk to add to Sk to create Sk+1. Here l∗ minimises
di + Ĉ(i, l) over ai ∈ Sk, al /∈ Sk. It then updates the dl, al /∈ Sk+1 appropriately. In this way, the Dijkstra
algorithm builds up a tree DTk that is made up of the known shortest paths after k rounds. Here DT1 = ar+1.

Let θi,` = dk−di+ui−u`+C(`, φ(`)). Note that if i ≤ k < ` then 0 ≤ di+ Ĉ(i, `)−dk = C(i, `)−θi,`. Having
fixed u,v and Tr the only restriction on C(i, `) for (i, `) non-basic is that C(i, `) ≥ θi,`. This holds regardless of
the other non-basic costs C(p, q), (p, q) 6= (i, `). The memoryless property of the exponential distribution then
implies that under the conditioning C+, the non-basic/non-tree values C(i, `) are independently distributed
as follows:

If θi,` ≥ 0 then di + Ĉ(i, `)− dk is distributed as EXP (1).

Otherwise, di + Ĉ(i, `)− dk is distributed as −θi,` + EXP (1) ≤ u` − ui + EXP (1).
(16)

4.1.4 Final argument

Referring to the augmenting path Pr = (x1 = ar+1, y1, x2, . . . , xσ, yσ = br+1), suppose that 1 ≤ τ < σ and that

M̂r,τ is the matching obtained from Mr by adding the edges (xk, yk), k = 1, 2, . . . , τ and deleting the edges
(xk+1, yk), k = 1, 2, . . . , τ − 1. Suppose now that xτ = ai and yτ = bj. Observe that vertex i is the head of a
path, Q say, in the set of paths and cycles AM̂r,τ

. (Q is directed towards i.) We say that vertex xτ creates a

short cycle if j lies on Q and the sub-path of Q from j to i has length at most `1 := n4ε. In this case we also
say that the edge (i, j) creates a short cycle. Extending the notation, we say that xσ creates a short cycle if
r + 1 (yσ = br+1) is the tail of Q and the length of Q is at most `1. For r ≥ r0 we only count the creation of
a small cycle by an edge (x, y) if this is the first such edge involving x. (In this way we avoid an overcount
of the number of short cycles.) Call this a virgin short cycle. Let χr denote the number of virgin short cycles
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created in iteration r. We then have that

E(νC) ≤ r0

2
+
n

`1

+
n∑

r=r0

E(χr). (17)

Here n/`1 bounds the number of large cycles induced by Mn, i.e. those of length greater than `1. The r0/2
term bounds the contributions from the matching Mr0 . The sum bounds the expected number of small cycles
induced by Mn. To see this, suppose that C is a non-virgin short cycle and that it was created by adding the
edge (x, y). There must have been some earlier virgin short cycle created by adding an edge (x, z) and this
will be counted in the sum.

We claim that

ΣC :=
n∑

r=r0

E(χr) ≤ `1n
1−11ε. (18)

Assume (18) for the moment. Then we have,

E(νC) ≤ r0

2
+
n

`1

+ `1n
1−11ε ≤ r0. (19)

Lemma 3 now follows from the Markov inequality. It only remains to prove (18).

4.1.5 Proof of (18)

We fix r ≥ r0.

Edges incident with ar+1 or br+1 The costs of edges incident with one of ar+1, br+1 are unconditioned at
the start of the search for Pr. They have not been part of the optimization so far. Let ξi be the minimum
C-cost of an alternating path from bi, i ≤ r to br+1 through Gr. It follows from Lemma 6 that w.h.p. ξj ≤ rγr
for all j ≤ r. To create the shortest augmenting path from ar+1 to br+1 we must find the minimum µ∗ of the
C(ar+1,j) + ξj. There are at least α0r indices j for which the edge (ar+1, bj) exists in Gr, see Lemma 4. It
follows that w.h.p. µ∗ ≤ minj C(ar+1, bj) + ργr ≤ 2rγr. There are at most `1 indices j that would lead to
the creation of a short cycle and for these the probability that C(ar+1,j) + j ≤ 2rγr is at most 2γr. Thus in
expectation, edges incident with ar+1 in this context, only contribute O(`1rγr) to the number of short cycles
over all. The same argument can be applied for edges incident with br+1.

Basic Edges Consider the point where we have carried out k iterations of the Dijkstra algorithm and we
are about to add a (k + 1)st vertex to the tree of known shortest paths. A path (a, φ(a′), a′) in the tree Tr
gives rise to a basic edge (a, a′). Basic edges have Ĉ value zero and so if there are basic edges oriented from
DTk to Ar+1 \ DTk then one of them will be added to the shortest path tree and we will have dk+1 = dk.
We need to argue that they are unlikely to create short cycles. At this point we will only have exposed basic
edges that are part of DTk.

Fix ai ∈ V (DTk). We want to show that given the history of the algorithm, the probability of creating a
short cycle via an edge incident with ai is sufficiently small. At the time ai is added to DTr there will be a
set L1 of size at most `1 for which adding the edge corresponding to (ai, bj, aφ−1(j)), aj ∈ L1 creates a short
cycle. This set is not increased by the future execution of the algorithm. At this point we have only exposed
edges of ~Gr pointing into ai.

11



Let e = (ai, x), x ∈ Ar. We claim that

P((ai, x) ∈ T̂r) = O

(
1

r

)
(20)

from which we can deduce that

P(an added basic edge is bad) = O

(
`1

r

)
, (21)

where bad means that the edge creates a short cycle.

To prove (20) we use two well known facts: (i) if e = {a, b} is an edge of a connected (multi)graph G
and T denotes a uniform random spanning tree then P(e ∈ T ) = Reff (a, b) where Reff denotes effective

resistance, see for example [34]; (ii) Reff (a, b) = τ(a,b)+τ(b,a)
2|E(G)| where τ(x, y) is the expected time for a random

walk starting at x to reach y, see for example [15]. We note that in the context of (20), we may have
exposed some edges of Tr. Fortunately, edge inclusion in a random spanning tree is negatively correlated i.e.
P(e ∈ Tr | f1, . . . , fs ∈ Tr) ≤ P(e ∈ Tr), see for example [34].

Given (i) and (ii) and Lemma 9 it only remains to show that with G = Γ∗r = Γ∗r(u,v) that τ(a, x) = O(r), for
a, x ∈ Ar. For this we only have to show that the mixing time for a random walk on Γr is sufficiently small.
After this we can use the fact that the expected time to visit a vertex a from stationarity is 1/πa ≤ r/ηα
where η is from Lemma 10 and where π denotes the stationary distribution, see for example [33]. We estimate
the mixing time of a walk by its conductance.

Let deg(v) ≥ ηr denote degree in Γ∗r. For S ⊆ Ar, let ΦS = e(S, S̄)/deg(S) where e(S, S̄) is the number of
edges of Γ∗r(u,v) with one end in S and deg(S) =

∑
v∈S deg(v). Let Φ = min {ΦS : deg(S) ≤ deg(Ar)/2}.

Note that if deg(S) ≤ deg(Ar)/2 then deg(S̄) ≥ deg(Ar)/2 ≥ ηr2/2 which implies that |S̄| ≥ ηr/2 and so
|S| ≤ (1− η/2)r.

Assume first that |S| ≤ ηr/2. Then

ΦS ≥
∑

v∈S(deg(v)− |S|)+

deg(S)
≥ (ηr/2)|S|

r|S|
=
η

2
.

If ηr/2 ≤ |S| ≤ (1 − η/2)r then we use the random edges R. We sum over the 2O(r) choices for S and the

rO(r) choices for T̂r. Then, as in the final paragraph of the proof of Lemma 10, we see via the Chernoff bounds
that with probability 1 − e−Ω(r2−ε) there are at least η(1 − η/2)r2−ε/3 edges in R from S to S̄. The failure
probability e−Ω(r2−ε) is small enough to handle the rO(r) choices of S, Tr. So,

ΦS ≥
η(1− η/2)r2−ε/3

r2/2
=

2η(1− η/2)r−ε

3
. (22)

It then follows that after r steps of the random walk the total variation distance between the walk and the
steady state is e−Ω(r1−2ε), see for example [33]. This completes our verification of (20) and hence (21).

We will also need a bound on the number of basic edges in any path in the tree DTr constructed by Dijkstra’s
algorithm. Aldous [2], Chung, Horn and Lu [11] discuss the diameter of random spanning trees. Section 6 of
[2] provides an upper bound for the diameter that we use for the following.

Lemma 11. The diameter of T̂r is O(r1/2+3ε) with probability 1− o(r−2).
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Proof. Let A be the adjacency matrix of Γ∗r and let D be the diagonal matrix of degrees deg(v), v ∈ Ar and
let L = I − D−1/2AD−1/2 be the Laplacian. Let 0 = λ0 ≤ λ1 ≤ · · · ≤ λr−1 be the eigenvalues of L and let
σ = 1− λ1. We have λ1 ≥ Φ2/2 (see for example Jerrum and Sinclair [26]). So we have

σ ≤ 1− 1

2

(
2η(1− η/2)r−ε

3

)2

≤ 1− η2

20r2ε
. (23)

Now let ρ0 = r1/2 and δ denote the minimum degree in Γ∗r and

s =

⌈
3

log(1/σ)
· r2

(ρ0 + 1)δ

⌉
= O(r1/2+2ε).

It is shown in [11] that

P(diam(T ) ≥ 2(ρ0 + js)) ≤ r

2j−2
. (24)

Putting j = 5 log r into (24) yields the lemma.

(Unfortunately, there are no equation references for (24). It appears in Section 6 of [2] and Section 5 of [11].
In [11], σ = max {1− λ1, λn−1 − 1}. It is used to bound the mixing time of a lazy random walk on Γ∗r and in
our context we can drop the λn−1 term.)

Non-Basic Edges Each ai ∈ DTk corresponds to an alternating path Pi. As such there are at most `1

choices of ` such that (i, `) would create a bad edge. This is true throughout an execution of the Dijkstra
algorithm. Also, while we initially only know that the C(i, `), ` 6= φ(i) are EXP (1) subject to (15), as
Dijkstra’s algorithm progresses, we learn lower bounds on C(i, `) through (16). For this part of the argument
we condition as for C+. The costs C(i, `) will thus be (conditionally) independent.

We have to show that w.h.p. there are many non-basic pairs (i, `) “competing” to be the next edge added to
DTk. This makes the choice of a bad edge unlikely. Examining (16) we see that for there to be any chance
that an edge (i, `) has low cost, it must be that u` − ui must be at least some small negatiive value. The
following shows that in most cases there will be sufficiently many a` /∈ DTk for which this is true.

Suppose that vertices are added to DTr in the sequence i = i1, i2, . . . , ir. For r0 < j ≤ r let

F (i, j) = |Φ(i, j)| where Φ(i, j) =
{
t > j : uit ≤ uij + γrεr

}
where εr = r−30ε.

Let Xr(i) = {j ≤ r : F (i, j) ≤ rε2
r}.

Lemma 12. |Xr(i)| ≤ 4rεr.

Proof. Assume without loss that it = t and replace the notation Φ(i, j) by Φ(u, j). We show that we can
assume that u1 ≤ u2 ≤ · · · ≤ ur. Assume that uk = max {u1, . . . , ur} and that k < r. Consider amending
u by interchanging uk and ur. Fix j < r. We enumerate the possibilities and show that F (u, j) does not
increase.

If j ≥ k then we have that k /∈ Φ(u, j) and Φ(u, j) may lose element r, since ur has increased. Assume then
that j < k.

Before k /∈ Φ(u, j), r /∈ Φ(u, j) After No change.
Before k /∈ Φ(u, j), r ∈ Φ(u, j) After k ∈ Φ(u, j), r /∈ Φ(u, j).
Before k ∈ Φ(u, j), r /∈ Φ(u, j) Not possible.
Before k ∈ Φ(u, j), r ∈ Φ(u, j) After No change.
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So in all cases F (u, j) does not increase. ur is now the maximum of the ui. After this we can assume that
ur = max {u1, . . . , ur}. We now apply the argument above but restricted to u1, . . . , ur−1 or use induction on
r.

Next let k1 be the smallest index k in Xr(i) and let J1 = [uk1 , uk1 +γrεr]. The interval J1 contains at most rε2
r

of the values ui. Then let k2 be the smallest index k in Xr(i) with k > uk1 +γrεr and let J2 = [uk2 , uk2 +γrεr]
and so on. Using the fact that u ∈ U we see that in this way we cover Xr(i) with at most 4ε−1

r intervals each
containing at most rε2

r of the values uj for which j ∈ Xr(i).

Now let
Kr =

{
k : |Xr(i) ∩ [k − rε2

r/2, k]| ≥ rε2
r/4
}
.

Lemma 13. |Kr| ≤ 2|Xr(i)| ≤ 8rεr.

Proof. Let zj,k be the indicator for (j, k) satisfying k− rε2
r/2 ≤ j ≤ k and j ∈ Xr(i). Then if z =

∑
j,k zj,k we

have

z ≥
∑
k∈Kr

rε2
r/4 = |Kr|rε2

r/4.

z ≤
∑

j∈Xr(i)

rε2
r/2 ≤ rε2

r|Xr(i)|/2.

and the lemma follows from Lemma 12.

It follows from the definition of Kr that if k /∈ Kr then there are at least rε2
r/4 × rε2

r pairs (i, `) such that
i ≤ k < ` and u` ≤ ui + γrεr. Note that θi,` ≥ −εrγr for each such pair. We next estimate for k /∈ Kr and

r0 ≤ k ≤ r and j ≤ k < m ≤ r the probability that (j,m) minimises di + Ĉ(i, `). The Chernoff bounds
imply that w.h.p. r2ε4

rn
−ε/5 � r of these pairs appear as edges in the random edge set R. (We can afford

to multiply by 2r so that this claim holds for all possibilities for the set of r2ε4
rn
−ε/4 pairs.) Given this, it

follows from the final inequality in (16) that

P(an added non-basic edge is bad | C+) ≤ `1

(
εrγr +

5nε

r2ε4
r

)
≤ 2`1εrγr. (25)

Explanation: There are at most `1 possibilities for a bad edge e = (aj, am) being added. The term εrγr
bounds the probability that the cost of edge e is less than εrγr. Failing this, e will have to compete with at
least r2ε4

rn
−ε/5 other pairs for the minimum.

We will now put a bound on the length L of a sequence (tk, xk), k = 1, 2, . . . , L where tk, k /∈ Kr is an
iteration index where a non-basic edge (yk, xk) is added to DTr. The expected number of such sequences can
be bounded by ∑

t1<t2<···<tL
x1,x2,...,xL

(2εrγr)
L ≤

(
r

L

)2

(2εrγr)
L ≤

(
2r2e2εrγr

L2

)L
= o(n−2), (26)

if L2 ≥ 3e2εrγrr
2 or L ≥ 3e2r1/2−16ε.

Explanation: We condition on the tails yk of the edges added at the given times. Then there are at most r
possibilities for the head xk and then 2εrγr bounds the probability that (yk, xk) is added, see (25).

Combining Lemma 11 and (26) we obtain a bound of r1−13ε on the diameter of DTr. (Each path in DTr
consists of a sequence of non-basic edges separated by paths of T̂r and so we multiply the two bounds.)
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4.1.6 Putting it all together

Let ζr,k be the 0,1 indicator for ek being a virgin bad edge i.e. one that creates a virgin short cycle. Note
that

∑n
r=r0

∑r
k=1 ζr,k ≤ n. We remind the reader that the following inequalities are claimed to be true for

sufficiently small ε > 0,

We have that with C equal to the hidden constant in (21),

n∑
r=r0

r∑
k=1
k/∈Kr

P(ek is bad | C)ζr,k ≤ C`1

n∑
r=r0

r1−13ε

r
+ 2

n∑
r=r0

`1

r∑
k=k0

γrεrζr,k.

Explanation: For each ai ∈ DTk, the set of possible bad edges does not increase for each k′ > k. This is
because each ai ∈ DTk is associated with an alternating path that does not change with k′. The first term
bounds the expected number of bad basic edges, using (21) and our bound on the diameter of DTr. The
second sum deals with non-basic edges and uses (25).

Now

`1

n∑
r=r0

r1−13ε

r
≤ `1n

1−11ε

and
n∑

r=r0

r∑
k=1

ζr,k`1γrεr ≤ `1γr0εr0

n∑
r=r0

r∑
k=1

ζr,k ≤ `1γr0εr0n = o(1).

Finally, it follows from Lemma 13 and the fact that only edges of cost at most γr are added that for any k ≤ r,
P(ek is bad | C) ≤ `1γr. (There are always at most `1 choices of edge that could be bad and the probability
they have cost at most γr is 1− e−γr ≤ γr.) So,

n∑
r=r0

∑
k∈Kr

P(ek is bad | C)ζr,k ≤ `1

n∑
r=r0

|Kr|γr ≤ 8`1

n∑
r=r0

rγrεr ≤ `1n
1−20ε.

After adding the O(`1rγr) contribution from the edges incident with ar+1, br+1, this completes the justification
for (18) and the proof of Lemma 3.

5 Final Remarks

We have extended the proof of the validity of Karp’s patching algorithm to random perturbations of dense
graphs with minimum in- and out-degree at least αn and independent EXP (1) edge weights. We can extend
the analysis to costs with a density function f(x) that satisfies f(x) = 1 + O(x) as x → 0. Janson [25]
describes a nice coupling in the case of shortest paths, see Theorem 7 of that paper.
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A Definitions

ε = a sufficiently small positive constant.

`1 = n4ε.

r0 = n1−3ε.

γr = r2ε−1.

βr =
εγr
10
.

εr = r−30ε.

Gr : This is the bipartite subgraph of G induced by Ar, Br.

Mr :This is the minimum cost perfect matching between Ar and Br.

G∗r(u,v) : This is the subgraph of Gr induced by the edges (ai, bj) for which ui + vj ≥ 0.

Γ∗r(u,v) : This is the graph obtained from G∗r(u,v) by contracting the matching edges.

~Gr : This is the digraph obtained by orienting the edges of Gr+1 from Ar+1 to Br+1,

except for the edges of Mr, which are oriented from Br to Ar.

~Γr : This is the digraph obtained from ~Gr(u,v) by contracting the matching edges.

Tr : This is the spanning tree of Gr corresponding to an optimal basis.

T̂r : This is the tree obtained from Tr by contracting Mr.

DTk : This is the tree comprising the first k vertices selected by Dijkstra’s algorithm below.
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