Long paths in random Apollonian networks

Colin Cooper*

Alan Frieze[†]

February 6, 2014

Abstract

We consider the length L(n) of the longest path in a randomly generated Apollonian Network (ApN) \mathcal{A}_n . We show that w.h.p. $L(n) \leq ne^{-\log^c n}$ for any constant c < 2/3.

1 Introduction

This paper is concerned with the length of the longest path in a random Apollonian Network (ApN) \mathcal{A}_n . We start with a triangle $T_0 = xyz$ in the plane. We then place a point v_1 in the centre of this triangle creating 3 triangular faces. We choose one of these faces at random and place a point v_2 in its middle. There are now 5 triangular faces. We choose one at random and place a point v_3 in its centre. In general, after we have added v_1, v_2, \ldots, v_1 there will 2n + 1 triangular faces. We choose one at random and place v_n inside it. The random graph \mathcal{A}_n is the graph induced by this embedding. It has n + 3 vertices and 3n + 6 edges.

This graph has been the object of study recently. Frieze and Tsourakakis [4] studied it in the context of scale free graphs. They determined properties of its degree sequence, properties of the spectra of its adjacency matrix, and its diameter. Cooper and Frieze [2], Ebrahimzadeh, Farczadi, Gao, Mehrabian, Sato, Wormald and Zung [3] improved the diameter result and determine the diameter asymptotically. The paper [3] proves the following result concerning the length of the longest path in \mathcal{A}_n :

Theorem 1 There exists an absolute constant α such that if L(n) denotes the length of the longest path in A_n then

$$\mathbf{Pr}\left(L(n) \ge \frac{n}{\log^{\alpha} n}\right) \le \frac{1}{\log^{\alpha} n}.$$

^{*}Department of Informatics, King's College, University of London, London WC2R 2LS, UK. Supported in part by EPSRC grant $\rm EP/J006300/1$

[†]Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh PA15213, USA. Supported in part by NSF grant CCF0502793.

The value of α from [3] is rather small and we will assume for the purposes of this proof that

$$\alpha < \frac{1}{3}.\tag{1}$$

The aim of this paper is to give the following improvement on Theorem 1:

Theorem 2

$$\mathbf{Pr}(L(n) \ge ne^{-\log^c n}) \le O(e^{-\log^{c/2} n})$$

for any constant c < 2/3.

This is most likely far from the truth. It is reasonable to conjecture that in fact $L(n) \leq n^{1-\varepsilon}$ w.h.p. for some positive $\varepsilon > 0$. For lower bounds, [3] shows that $L(n) \geq n^{\log_3 2} + 2$ always and $\mathbf{E}(L(n)) = \Omega(n^{0.8})$. Chen and Yu [1] have proved an $\Omega(n^{\log_3 2})$ lower bound for arbitrary 3-connected planar graphs.

2 Outline proof strategy

We take an arbitrary path P in \mathcal{A}_n and bound its length. We do this as follows. We add vertices to the interior of xyz in rounds. In round i we add σ_i vertices. We start with $\sigma_0 = n^{1/2}$ and choose $\sigma_i \gg \sigma_{i-1}$ where $A \gg B$ iff B = o(A). We will argue inductively that P only visits $\tau_{i-1} = o(\sigma_{i-1})$ faces of $\mathcal{A}_{\sigma_{i-1}}$ and then use Lemma 2 below to argue that roughly a fraction τ_{i-1}/σ_{i-1} of the σ_i new vertices go into faces visited by P. We then use a variant (Lemma 3) of Theorem 1 to argue that w.h.p. $\frac{\tau_i}{\sigma_i} \leq \frac{\tau_{i-1}}{2\sigma_{i-1}}$. Theorem 2 will follow easily from this.

3 Paths and Triangles

Fix $1 \leq \sigma \leq n$ and let \mathcal{A}_{σ} denote the ApN we have after inserting σ vertices A interior to T_0 . It has $2\sigma + 1$ faces, which we denote by $\mathcal{T} = \{T_1, T_2, \dots, T_{2\sigma+1}\}$. Now add N more vertices B to create a larger network $\mathcal{A}_{\sigma'}$ where $\sigma' = \sigma + N$. Now consider a path $P = x_1, x_2, \dots, x_m$ through $\mathcal{A}_{\sigma'}$. Let $I = \{i : x_i \in A\} = \{i_1, i_2, \dots, i_{\tau}\}$. Note that $Q = (i_1, i_2, \dots, i_{\tau})$ is a path of length $\tau - 1$ in \mathcal{A}_{σ} . This is because $i_k i_{k+1}, 1 \leq k < \tau$ must be an edge of some face in \mathcal{T} . We also see that for any $1 \leq k < \tau$ that the vertices $x_j, i_k < j < i_{k+1}$ will all be interior to the same face T_l for some $l \in [2\sigma + 1]$.

We summarise this in the following lemma: We use the notation of the preceding paragraph.

Lemma 1 Suppose that $1 \leq \sigma < \sigma' \leq n$ and that Q is a path of A_{σ} that is obtained from a path P in $A_{\sigma'}$ by omitting the vertices in B.

Suppose that Q has τ vertices and that P visits the interior of τ' faces from \mathcal{T} . Then

$$\tau - 1 < \tau' < \tau + 1$$
.

Proof The path P breaks into vertices of \mathcal{A}_{σ} plus $\tau + 1$ intervals where in an interval it visits the interior of a single face in \mathcal{T} . This justifies the upper bound. The lower bound comes from the fact that except for the face in which it starts, if P re-enters a face xyz, then it cannot leave it, because it will have already visited all three vertices x, y, z. Thus at most two of the aforementioned intervals can represent a repeated face.

4 A Structural Lemma

Let

$$\lambda_1 = \log^2 n.$$

Lemma 2 The following holds for all i. Let $\sigma = \sigma_i$ and suppose that $\lambda_1 \leq \tau \ll \sigma$. Suppose that $T_1, T_2, \ldots, T_{\tau}$ is a set of triangular faces of \mathcal{A}_{σ} . Suppose that $N \gg \sigma$ and that when adding N vertices to \mathcal{A}_{σ} we find that M_j vertices are placed in T_j for $j = 1, 2, \ldots, \tau$. Then for all $J \subseteq [2\sigma + 1]$, $|J| = \tau$ we have

$$\sum_{j \in J} M_j \le \frac{100\tau N}{\sigma} \log \left(\frac{\sigma}{\tau}\right).$$

This holds q.s.¹ for all choices of τ, σ and $T_1, T_2, \ldots, T_{\tau}$.

Proof We consider the following process. It is a simple example of a branching random walk. We consider a process that starts with s newly born particles. Once a particle is born, it waits an exponentially mean one distributed amount of time. After this time, it simultaneously dies and gives birth to k new particles and so on. A birth corresponds to a vertex of our network and a particle corresponds to a face.

Let Z_t denote the number of deaths up to time t. The number of particles in the system is $\beta_N = s + N(k-1)$. Then we have

$$\mathbf{Pr}(Z_{t+dt} = N) = \beta_{N-1} \mathbf{Pr}(Z_t = N - 1)dt + (1 - \beta_N dt) \mathbf{Pr}(Z_t = N).$$

¹A sequence of events \mathcal{E}_n holds quite surely (q.s.) if $\mathbf{Pr}(\neg \mathcal{E}_n) = O(n^{-K}$ for any constant K > 0.

So, if $p_N(t) = \mathbf{Pr}(Z_t = N)$, we have $f_N(0) = 1_{N=s}$ and

$$p_N'(t) = \beta_{N-1} p_{N-1}(t) - \beta_N p_N(t).$$

This yields

$$p_N(t) = \prod_{i=1}^N \frac{(k-1)(i-1) + s}{(k-1)i} \times e^{-st} (1 - e^{-(k-1)t})^N$$
$$= A_{k,N,s} e^{-st} (1 - e^{-(k-1)t})^N.$$

 $A_{3,0,s} = 1$. When s is even, $s, N \to \infty$, and k = 3 we have

$$A_{3,N,s} = \prod_{i=1}^{N} \left(\frac{s/2 + i - 1}{i} \right) = \binom{N + s/2 - 1}{s/2 - 1}$$

$$\approx \left(1 + \frac{s - 2}{2N} \right)^{N} \left(1 + \frac{2N}{s - 2} \right)^{s/2 - 1} \sqrt{\frac{2N + s}{2\pi N s}}.$$

We also need to have an upper bound for small even s, $N^2 = o(s)$, say. In this case we use

$$A_{3,N,s} \leq s^N$$
.

When $s \geq 3$ is odd, $s, N \to \infty$ (no need to deal with small N here) and k = 3 we have

$$A_{3,N,s} = \prod_{i=1}^{N} \left(\frac{2i - 2 + s}{2i} \right) = \frac{(s - 1 + 2N)!((s - 1)/2)!}{2^{2N}(s - 1)!N!((s - 1)/2 + N)!}$$

$$\approx \left(1 + \frac{s - 1}{2N} \right)^{N} \left(1 + \frac{2N}{s - 1} \right)^{(s - 1)/2} \frac{1}{(2\pi N)^{1/2}}.$$

We now consider with $\tau \to \infty, \tau \ll \sigma, N \ge m \ge 2\tau N/\sigma \gg \tau$ and arbitrary t, (under the assumption that τ is odd and σ is odd)

(We sometimes use $A \leq_b B$ in place of A = O(B)).

$$\begin{aligned}
&\mathbf{Pr}(M_{1} + \dots + M_{\tau} = m \mid M_{1} + \dots + M_{\sigma} = N) \\
&= \frac{\mathbf{Pr}(M_{1} + \dots + M_{\tau} = m) \, \mathbf{Pr}(M_{\tau+1} + \dots + M_{\sigma} = N - m)}{\mathbf{Pr}(M_{1} + \dots + M_{\sigma} = N)} \\
&= \frac{A_{3,m,\tau} A_{3,N-m,\sigma-\tau}}{A_{3,N,\sigma}} \\
&\approx \frac{\left(1 + \frac{\tau - 1}{2m}\right)^{m} \left(1 + \frac{2m}{\tau - 1}\right)^{(\tau - 1)/2} \left(1 + \frac{\sigma - \tau - 2}{2(N - m)}\right)^{N - m} \left(1 + \frac{2(N - m)}{\sigma - \tau - 2}\right)^{(\sigma - \tau - 2)/2} (N(2(N - m) + \sigma))^{1/2}}{\left(1 + \frac{\sigma - 1}{2N}\right)^{N} \left(1 + \frac{2N}{\sigma - 1}\right)^{(\sigma - 1)/2} \left(2\pi m\sigma(N - m)\right)^{1/2}} \\
&\leq_{b} \frac{e^{(\tau - 1)/2} \left(\left(\frac{2m}{\tau}\right)^{(\tau - 1)/2} e^{o(\tau)}\right) e^{(\sigma - \tau)/2} \left(1 + \frac{2(N - m)}{\sigma - \tau - 2}\right)^{(\sigma - \tau - 2)/2} (N(2(N - m) + \sigma))^{1/2}}{e^{\sigma/2 - \sigma^{2}/8N} \left(\left(\frac{2N}{\sigma}\right)^{(\sigma - 1)/2} e^{\sigma^{2}/(4 + o(1))N}\right) (m\sigma(N - m))^{1/2}} \\
&\leq_{b} \frac{e^{o(\tau)} \left(\frac{2m}{\tau}\right)^{(\tau - 1)/2} \left(1 + \frac{2(N - m)}{\sigma - \tau - 2}\right)^{(\sigma - \tau - 2)/2}}{\left(N(2(N - m) + \sigma)\right)^{1/2}} \\
&\leq_{b} \frac{e^{o(\tau)} \left(\frac{2m}{\tau}\right)^{(\tau - 1)/2} \left(1 + \frac{2(N - m)}{\sigma - \tau - 2}\right)^{(\sigma - \tau - 2)/2}}{\left(N(2(N - m) + \sigma)\right)^{1/2}}
\end{aligned}$$

The above bound can be re-written as

$$\leq_b \frac{e^{o(\tau)} \left(\frac{2}{\tau}\right)^{(\tau-1)/2} N^{1/2} \sigma^{(\sigma-1)/2}}{(2N)^{(\sigma-1)/2} \sigma^{1/2}} \times \frac{m^{(\tau-1)/2} \left(1 + \frac{2(N-m)}{\sigma-\tau-2}\right)^{(\sigma-\tau-2)/2} (N-m+\sigma)^{1/2}}{(m(N-m))^{1/2}}.$$

Suppose first that $m \leq N - 4\sigma$. Then the bound becomes

$$\leq_{b} \frac{e^{o(\tau)} \left(\frac{2}{\tau}\right)^{(\tau-1)/2} N^{1/2} \sigma^{(\sigma-1)/2}}{(2N)^{(\sigma-1)/2} \sigma^{1/2}} \times m^{(\tau-2)/2} \left(1 + \frac{2(N-m)}{\sigma - \tau - 2}\right)^{(\sigma-\tau-2)/2} \\
\leq_{b} \frac{e^{o(\tau)} 2^{(\tau-1)/2} N^{1/2} \sigma^{(\sigma-1)/2}}{(2N)^{(\sigma-1)/2} \tau^{\tau/2}} \times m^{(\tau-2)/2} \left(\frac{2(N-m)}{\sigma - \tau}\right)^{(\sigma-\tau)/2} e^{\sigma^{2}/(N-m)} \\
\leq \frac{e^{o(\tau)} N^{1/2}}{m^{1/2}} \left(\frac{\sigma(N-m)}{N(\sigma - \tau)}\right)^{(\sigma-\tau)/2} \left(\frac{\sigma m}{\tau N}\right)^{(\tau-1)/2} e^{\sigma^{2}/(N-m)} \\
\leq_{b} \frac{e^{o(\tau)} N^{1/2}}{m^{1/2}} \left(\frac{e^{2}m\sigma}{\tau N} \cdot \exp\left\{-\frac{m(\sigma - \tau)}{(\tau - 1)N} + \frac{2\sigma^{2}}{(\tau - 1)(N-m)}\right\}\right)^{(\tau-1)/2} \\
= \frac{e^{o(\tau)} N^{1/2}}{m^{1/2}} \left(\frac{e^{2}m\sigma}{\tau N} \cdot \exp\left\{-\frac{m\sigma}{(\tau - 1)N} \left(1 - \frac{\tau}{\sigma} - \frac{2\sigma}{m} - \frac{2\sigma}{N-m}\right)\right\}\right)^{(\tau-1)/2} \\
\leq \frac{e^{o(\tau)} N^{1/2}}{m^{1/2}} \left(\frac{e^{2}m\sigma}{\tau N} \cdot \exp\left\{-\frac{m\sigma}{(\tau - 1)N} \left(1 - \frac{\tau}{\sigma} - \frac{2\sigma}{m} - \frac{2\sigma}{N-m}\right)\right\}\right)^{(\tau-1)/2}$$

We inflate this by $n^2\binom{2\sigma+1}{\tau}$ to account for our choices for $\sigma, \tau, T_1, \ldots, T_{\tau}$ to get

$$\leq_b n^2 \frac{e^{o(\tau)} N^{1/2}}{m^{1/2}} \left(\frac{4e^4 m\sigma^3}{\tau^3 N} \cdot \exp\left\{ -\frac{m\sigma}{3\tau N} \right\} \right)^{(\tau-1)/2}.$$

So, if
$$m_0 = \frac{100\tau N \log(\sigma/\tau)}{\sigma}$$
 then
$$\sum_{m=m_0}^{N-4\sigma} \mathbf{Pr}(\exists \sigma, \tau, T_1, \dots, T_\tau : M_1 + \dots + M_\tau = m \mid M_1 + \dots + M_\sigma = N)$$

$$\leq_b n^2 e^{o(\tau)} N^{5/2} \sum_{m=m_0}^{N-4\sigma} \left(\frac{4e^4 m \sigma^3}{\tau^3 N} \cdot \exp\left\{ -\frac{m\sigma}{3\tau N} \right\} \right)^{(\tau-1)/2}$$

$$\leq n^2 e^{o(\tau)} N^{7/2} \left(\frac{4e^4 m_0 \sigma^3}{\tau^3 N} \cdot \exp\left\{ -\frac{m_0 \sigma}{3\tau N} \right\} \right)^{(\tau-1)/2}$$

since xe^{-Ax} is decreasing for $Ax \ge 1$

$$= n^{2}e^{o(\tau)}N^{7/2} \left(\frac{4e^{4}m_{0}\sigma}{\tau N} \exp\left\{-\frac{m_{0}\sigma}{6\tau N}\right\} \times \frac{\sigma^{2}}{\tau^{2}} \exp\left\{-\frac{m_{0}\sigma}{6\tau N}\right\}\right)^{(\tau-1)/2}$$

$$\leq n^{2}N^{7/2} \left(400e^{4+o(1)}\log\left(\frac{\sigma}{\tau}\right) \times e^{-50/3} \times \frac{\sigma^{2}}{\tau^{2}} \left(\frac{\tau}{\sigma}\right)^{50/3}\right)^{(\tau-1)/2}$$

$$= O(n^{-anyconstant}).$$

Suppose now that $N-4\sigma \leq m \leq N-\sigma^{1/3}$. Then we can bound (3) by

$$\leq_b \frac{e^{o(\tau)} \left(\frac{2}{\tau}\right)^{(\tau-1)/2} \sigma^{(\sigma-1)/2}}{(2N)^{(\sigma-1)/2}} \times m^{(\tau-1)/2} e^{4\sigma}$$
$$\leq \left(\frac{e^8 \sigma}{2N}\right)^{(\sigma-\tau)/2} \left(\frac{e^8 \sigma}{\tau}\right)^{(\tau-1)/2}.$$

We inflate this by $n^2 {2\sigma+1 \choose \tau} < n^2 4^{\sigma}$ to get

$$\leq_b n^2 \left(\frac{8e^8\sigma}{N}\right)^{(\sigma-\tau)/2} \left(\frac{16e^8\sigma}{\tau}\right)^{(\tau-1)/2}$$

So,

$$\sum_{m=N-4\sigma}^{N-\sigma^{1/3}} \mathbf{Pr}(\exists \sigma, \tau, T_1, \dots, T_{\sigma} : M_1 + \dots + M_{\tau} = m \mid M_1 + \dots + M_{\sigma} = N)$$

$$\leq_b n^2 N^2 \sigma \left(\frac{8e^8 \sigma}{N}\right)^{(\sigma-\tau)/2} \left(\frac{16e^8 \sigma}{\tau}\right)^{(\tau-1)/2}$$

$$= O(n^{-anyconstant})$$

since $\sigma \log N \gg \tau \log \sigma$.

When $m \ge N - \sigma^{1/3}$ we replace (2) by

$$\leq_{b} \frac{\left(1 + \frac{\tau - 1}{2m}\right)^{m} \left(1 + \frac{2m}{\tau - 1}\right)^{(\tau - 1)/2} \sigma^{N - m} N^{1/2}}{\left(1 + \frac{\sigma - 1}{2N}\right)^{N} \left(1 + \frac{2N}{\sigma - 1}\right)^{(\sigma - 1)/2} (m\sigma)^{1/2}} \\
\leq_{b} \frac{e^{\tau/2 + o(\tau)} \left(\frac{2m}{\tau}\right)^{(\tau - 1)/2} \sigma^{N - m} N^{1/2}}{e^{\sigma} \left(\frac{2N}{\sigma}\right)^{(\sigma - 1)/2} m^{1/2}} \\
\leq_{b} \left(\frac{e^{1 + o(1)} \sigma}{\tau}\right)^{(\tau - 1)/2} \left(\frac{\sigma}{2N}\right)^{(\sigma - \tau)/2} \sigma^{\sigma^{1/3}}.$$

Inflating this by n^24^{σ} gives a bound of

$$\leq_b n^2 \left(\frac{16e^{1+o(1)}\sigma}{\tau}\right)^{(\tau-1)/2} \left(\frac{8\sigma^{1+o(1)}}{N}\right)^{(\sigma-\tau)/2} = O(n^{-anyconstant}).$$

5 Modifications of Theorem 1

Let $\lambda = \log^3 n$ and partition $[\lambda]$ into $q = \log n$ sets of size $\lambda_1 = \log^2 n$. Now add $n - \lambda$ vertices to \mathcal{T}_{λ} and let M_i denote the number of vertices that land in the *i*th part Π_i of the partition. Lemma 2 implies that q.s.

$$M_i \le M_{\text{max}} = \frac{200n}{\log n} \log \log n, \quad 1 \le i \le \tau. \tag{4}$$

Let

$$\omega_1(x) = \log^{\alpha/2} x \tag{5}$$

for $x \in \mathbb{R}$.

Let L_i denote the length of the longest path in Π_i . Suppose that \mathcal{T}_n contains a path of length at least n/ω_1 , $\omega_1 = \omega_1(n)$ and let k be the number of i such that

$$L_i \ge \frac{200n \log \log n}{\omega_1^2 \log n} \ge \frac{M_{\text{max}}}{\log^{\alpha}(M_{\text{max}})}.$$

Then, as $k \leq q = \log n$ we have

$$k \frac{200n \log \log n}{\log n} + (\log n - k) \frac{200n \log \log n}{\omega_1^2 \log n} \ge \frac{n}{\omega_1}$$

which implies that

$$k \ge \frac{\log n}{201\omega_1 \log \log n}.$$

Theorem 1 with the bound on M_i given in (4) implies that the probability of this is at most

$$\frac{1}{n} + \left(\frac{\log n}{\frac{\log n}{201\omega_1 \log \log n}}\right) \left(\frac{1}{\log^{\alpha}(n/\log n)}\right)^{\frac{\log n}{201\omega_1 \log \log n}} \le \frac{1}{n} + \left(\frac{1}{\log^{\alpha/3} n}\right)^{\frac{\log n}{201\omega_1 \log \log n}} \le \frac{1}{\phi(n,\omega_1)} \tag{6}$$

where

$$\phi(x,y) = \exp\left\{\frac{\log x}{y\log\log x}\right\}.$$

The term 1/n accounts for the failure of the property in Lemma 2.

In summary, we have proved the following

Lemma 3

$$\mathbf{Pr}\left(L(n) \ge \frac{n}{\omega_1(n)}\right) \le \frac{1}{\phi(n,\omega_1)}.\tag{7}$$

We are using $\phi(x,y)$ in place of $\phi(x)$ because we will need to use $\omega_1(x)$ for values of x other than n.

Next consider \mathcal{A}_{σ} and $\lambda_1 \leq \tau \ll \sigma$ and let $T_1, T_2, \ldots, T_{\tau}$ be a set of τ triangular faces of \mathcal{A}_{σ} . Suppose that we add $N \gg \sigma$ more vertices and let N_j be the number of vertices that are placed in T_j , $1 \leq j \leq \tau$.

Next let

$$\Lambda(x) = e^{x^2} \tag{8}$$

where $x \in \mathbb{R}$.

Now let

$$J = \{j : N_j \ge \Lambda_0\} \text{ where } \Lambda_0 = \Lambda(\omega_1(n)).$$
 (9)

Let L_j denote the length of the longest path through the ApN defined by T_j and the N_j vertices it contains, $1 \le j \le \tau$. For the remainder of the section let

$$\omega_0 = \omega_1(\Lambda_0), \quad \phi_0 = \phi(\Lambda_0, \omega_0) = \exp\left\{\frac{\omega_0}{2\log\omega_0}\right\}, \quad \omega_2 = \frac{\phi_0}{\omega_0}.$$
 (10)

Then let

$$J_1 = \left\{ j \in J : L_j \ge \frac{N_j}{\omega_1(N_j)} \right\}. \tag{11}$$

We note that

$$\log \omega_2 = \log \phi_0 - \log \omega_0 = \frac{\log \Lambda_0}{\omega_0 \log \log \Lambda} - \log \omega_0$$
$$= \frac{\omega_0^2}{(2 + o(1))\omega_0 \log \log \omega_0} - \log \omega_0.$$

For $j \in J$, $N_j \ge \Lambda_0$ (see (9)). It follows from Lemma 3 that the size of J_1 is stochastically dominated by $Bin(\tau, 1/\phi_0)$. Using a Chernoff bound we find that

$$\mathbf{Pr}\left(|J_1| \ge \frac{\omega_2 \tau}{\phi_0}\right) \le \left(\frac{e}{\omega_2}\right)^{\omega_2 \tau/\phi_0}. \tag{12}$$

Using this we prove

Lemma 4 Suppose that

$$\log\left(\frac{\sigma}{\tau}\right) \le \frac{\omega_0}{\log \omega_0}.$$

Then q.s., for all $\lambda_1 \leq \tau \ll \sigma \ll N$ and all collections \mathcal{T} of τ faces of \mathcal{A}_{σ} we find that with J_1 as defined in (11),

$$|J_1| \le \frac{\omega_2 \tau}{\phi_0}.$$

Proof It follows from (12) that

$$\mathbf{Pr}\left(\exists \tau, \sigma, N, \mathcal{T} : |J_1| \ge \frac{\omega_2}{\tau \phi_0}\right) \\
\leq n^3 \binom{(2\sigma+1)}{\tau} \left(\frac{e}{\omega_2}\right)^{\omega_2 \tau/\phi_0} \\
\leq n^3 \left(\frac{e(2\sigma+1)}{\tau} \cdot \left(\frac{e}{\omega_2}\right)^{\omega_2/\phi_0}\right)^{\tau} \\
\leq \exp\left\{\tau \left(\frac{3\log n}{\tau} + 2 + \log\left(\frac{\sigma}{\tau}\right) + \frac{\omega_2}{\phi_0} - \frac{\omega_2\log\omega_2}{\phi_0}\right)\right\} \\
\leq \exp\left\{\tau \left(\frac{3\log n}{\tau} + 2 + \frac{\omega_0}{\log\omega_0} + -\frac{\omega_0}{(2+o(1))\log\log\omega_0}\right)\right\} \\
= O(n^{-anyconstant}).$$

6 Proof of Theorem 2

Fix a path P of \mathcal{A}_n . Suppose that after adding $\sigma \geq n^{1/2}$ vertices we find that P visits

$$n^{1/2} \ge \tau \ge \lambda_1 \omega_0 \tag{13}$$

of the triangles $T_1, T_2, \ldots, T_{\tau}$ of \mathcal{A}_{σ} . Now consider adding N more vertices, where the value of N is given in (16) below. Let $\sigma' = \sigma + N$ and let τ' be the number of triangles of $\mathcal{A}_{\sigma'}$ that are visited by P.

We assume that

$$\frac{\alpha}{2}\log\log n \le \log\left(\frac{\sigma}{\tau}\right) \le \frac{\omega_0}{\log\omega_0}.\tag{14}$$

Let M_i be the number of vertices placed in T_i and let N_i be the number of these that are visited by P. It follows from Lemma 2 that w,h.p.

$$\sum_{i=1}^{\tau} M_i \le \frac{100\tau N}{\sigma} \log \left(\frac{\sigma}{\tau}\right).$$

Now w.h.p.,

$$\sum_{i=1}^{\tau} N_i \le \tau \Lambda_0 + \frac{100\omega_2 \tau N}{\phi_0 \sigma} \log \left(\frac{\sigma \phi_0}{\omega_2 \tau} \right) + \frac{100\tau N}{\sigma \omega_0} \log \left(\frac{\sigma}{\tau} \right). \tag{15}$$

Explanation: $\tau \Lambda_0$ bounds the contribution from $[\tau] \setminus J$ (see (9)). The second term bounds the contribution from J_1 . Now $|J_1| < \omega_2 \tau / \phi_0 \ll \tau$ as shown in Lemma 4. We cannot apply Lemma 2 to bound the contribution of J_1 unless we know that $|J_1| \geq \lambda_1$. We choose an arbitrary set of indices $J_2 \subseteq [\tau] \setminus J_1$ of size $\omega_2 \tau / \phi_0 - |J_1|$ and then the middle term bounds the contribution of $J_1 \cup J_2$. Note that $\omega_2 \tau / \phi_0 = \tau / \omega_0 \geq \lambda_1$ from (13). The third term bounds the contribution from $J \setminus J_1$. Here we use $\omega_1(N_j) \geq \omega_1(\Lambda_0) = \omega_0$, see (11).

We now choose

$$N = 3\sigma\Lambda_0. (16)$$

We observe that

$$\frac{\omega_2}{\phi_0} \log \left(\frac{\sigma \phi_0}{\omega_2 \tau} \right) \le \frac{1}{\omega_0} \left(\frac{\omega_0}{\log \omega_0} + 2 \log \omega_0 \right) = o(1).$$

$$\frac{1}{\omega_0} \log \left(\frac{\sigma}{\tau} \right) \le \frac{1}{\log \omega_0} = o(1).$$

Now along with Lemma 1 this implies that

$$\tau' \le \sum_{i=1}^{\tau} (N_i + 1) \le \tau + \tau \Lambda_0 + o\left(\frac{\tau N}{\sigma}\right).$$

Since $\sigma' = \sigma + N$ this implies that

$$\frac{\tau'}{\sigma'} \le \left(\frac{1}{3} + o(1)\right) \frac{\tau}{\sigma} < \frac{\tau}{2\sigma}.$$

It follows by repeated application of this argument that we can replace Theorem 1 by

Lemma 5

$$\mathbf{Pr}\left(L(n) \ge \log n + \frac{100 \log n}{e^{\omega_0/\log \omega_0}}n\right) = O\left(\frac{1}{\phi(n, \omega_1(n))}\right).$$

Proof We add the vertices in rounds of size $\sigma_0 = n^{1/2}, \sigma_1, \ldots, \sigma_m$. Here $\sigma_i = 3\sigma_{i-1}\Lambda_0$ and $m-1 \geq (1-o(1))\frac{\log n}{\log \Lambda_0} = (1-o(1))\frac{\log n}{\omega_1(n)^2} = \log^{1-2\alpha} n$. We let $P_0, P_1, P_2, \ldots, P_m = P$ be a sequence of paths where P_i is a path in $\mathcal{A}_i = \mathcal{A}_{\sigma_0 + \cdots + \sigma_i}$. Furthermore, P_i is obtained from P_{i+1} in the same way that Q is obtained from P in Lemma 1. We let τ_i denote the number of faces of \mathcal{A}_i whose interior is visited by P_i . It follows from Lemma 1 and Lemma 2 that the length of P is bounded by

$$m + \frac{\tau_{m-1}}{\sigma_{m-1}} \sigma_m \log \left(\frac{\sigma_{m-1}}{\tau_{m-1}} \right),$$

since the second term is a bound on the number of points in the interior of triangles of A_{m-1} visited by P.

We have w.h.p. that

$$\frac{\sigma_i}{\tau_i} \ge \begin{cases} \frac{2\sigma_{i-1}}{\tau_{i-1}} & \frac{\sigma_{i-1}}{\tau_{i-1}} \le e^{\omega_0/\log \omega_0} \\ \frac{\sigma_{i-1}}{100\tau_{i-1}\log(\sigma_{i-1}/\tau_{i-1})} & \frac{\sigma_{i-1}}{\tau_{i-1}} > e^{\omega_0/\log \omega_0} \end{cases}.$$

The second inequality here is from Lemma 2.

The result follows from $2^{\log^{1-2\alpha} n} > e^{\omega_0/\log \omega_0}$.

To get Theorem 2 we repeat the argument in Sections 5 and 6, but we start with $\omega_1(x) = \log^{1/3} x$. The claim in Theorem 2 is then slightly weaker than the claim in Lemma 5.

References

- [1] G. Chen and X. Yu, Long cycles in 3-connected graphs, *Journal of Combinatorial Theory* B 86 (2002) 80-99.
- [2] C. Cooper and A.M. Frieze, The height of random *k*-trees and related branching processes, http://arxiv.org/abs/1309.4342
- [3] E. Ebrahimzadeh, L. Farczadi, P. Gao, A. Mehrabian, C. Sato, N. Wormald and J. Zung. On the Longest Paths and the Diameter in Random Apollonian Networks (2013). http://arxiv.org/pdf/1303.5213v1.pdf
- [4] A.M. Frieze and C. Tsourakakis. On Certain Properties of Random Apollonian Networks. WAW 2012, 93–112. (2012).