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Abstract

We study the problem of constructing a (near) uniform random proper q-coloring
of a simple k-uniform hypergraph with n vertices and maximum degree ∆. (Proper in
that no edge is mono-colored and simple in that two edges have maximum intersection
of size one). We show that if for some α < 1 we have ∆ ≥ nα and q ≥ ∆(1+α)/kα

then Glauber dynamics will become close to uniform in O(n log n) time from a random
(improper) start. Note that for k > 1 + α−1 we can take q = o(∆).

1 Introduction

Markov Chain Monte Carlo (MCMC) is an important tool in sampling from complex distri-
butions. It has been successfully applied in several areas of Computer Science, most notably
for estimating the volume of a convex body [3], [8], [9] and estimating the permanent of a
non-negative matrix [7].

Generating a (nearly) random q-coloring of a n-vertex graph G = (V,E) with maximum
degree ∆ is a well-studied problem in Combinatorics [1] and Statistical Physics [10]. Jerrum
[6] proved that a simple, popular Markov chain, known as the Glauber dynamics, converges
to a random q-coloring after O(n log n) steps, provided q/∆ > 2. This led to the challenging
problem of determining the smallest value of q/∆ for which a random q-coloring can be
generated in time polynomial in n. Vigoda [11] gave the first significant improvement over
Jerrum’s result, reducing the lower bound on q/∆ to 11/6 by analyzing a different Markov
chain. There has been no success in extending Vigoda’s approach to smaller values of q/∆,
and it remains the best bound for general graphs. There are by now several papers giving
improvements on [11], but in special cases. See Frieze and Vigoda [5] for a recent survey.
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In this paper we consider the related problem of finding a random coloring of a simple
k-uniform hypergraph. A k-uniform hypergraph H = (V,E) has vertex set V and E =
{e1, e2, . . . , em} are the edges. Each edge is a k-subset of V . Hypergraph H is simple if
|ei ∩ ej | ≤ 1 for i 6= j. A coloring of H is proper if every edge contains two vertices of a
different color. The chromatic number χ(H) is the smallest number of colors in a proper
coloring of H. In the case of graphs k = 2 we have χ(G) ≤ ∆ + 1 but for hypergraphs
(k ≥ 3) we have much smaller bounds. For example a simple application of the local lemma
implies that χ(H) = O(∆1/(k−1)). In fact a recent result of Frieze and Mubayi [4], is that
for simple hypergraphs χ(H) = O((∆/ log ∆)1/(k−1)). The proof of [4] is somewhat more
involved. It relies on a proof technique called the “nibble“. The aim of this short paper is to
study randomly coloring simple hypergraphs when there are fewer than ∆ colors available.
The goal is to describe an MCMC algorithm for (near) uniform sampling.

Before formally stating our theorem we will define the Glauber dynamics. All of the afore-
mentioned results on coloring graphs (except Vigoda [11]) analyze the Glauber dynamics,
which is a simple and popular Markov chain for generating a random q-coloring.

Let Q denote the set of proper q-colorings of H. For a coloring X ∈ Q we define

B(v,X) = {c ∈ [q] : ∃e 3 v such that X(x) = c for all x ∈ e \ {v}}

be the set of colors unavailable to v.

Then let Q = {1, 2, . . . , q} and

A(v,X) = Q \B(v,X).

For technical purposes, the state space of the Glauber dynamics is Ω = QV ⊇ Q. From a
coloring Xt ∈ Ω, the evolution Xt → Xt+1 is defined as follows:

Glauber Dynamics
(a) Choose v = v(t) uniformly at random from V .

(b) Choose color c = c(t) uniformly at random from A(v,Xt). If A(v,Xt) is empty we let
Xt+1 = Xt.

(c) Define Xt+1 by

Xt+1(u) =

{
Xt(u) u 6= v

c u = v

We will assume from now on that
q ≤ 2∆ (1)

If q > 2∆ then we defer to Jerrum’s result [6].

Let Y denote a coloring chosen uniformly at random from Q. We will prove the following:

Theorem 1 Let H be a k-uniform simple hypergraph with maximum degree ∆ where k ≥ 3.
Suppose that (1) holds and that

∆ ≥ nα (2)
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for some α satisfying

2

k − 2
< α < 1 k ≥ 5

1

k − 1
< α < 1 k = 3, 4

Suppose that for a sufficiently large constant K,

q ≥ K∆(1+α)/αk. (3)

Suppose that the initial coloring X0 is chosen randomly from Ω. Then for an arbitrary
constant δ > 0 we have

dTV (Xt, Y ) ≤ δ (4)

for t ≥ tδ, where tδ = 2n log(2n/δ).

Here dTV denotes variational distance i.e. maxS⊆Q |Pr(Xt ∈ S)−Pr(Y ∈ S)|.

Our assumptions on α,∆ imply some inequalities that we put here for future reference:

qk � n∆. (5)

qk−2 � ∆ for k ≥ 5. (6)

q � ∆2/3 for k = 3 (7)

q � ∆1/2 for k = 4 (8)

Here we use An � Bn to mean that An/Bn →∞ as n→∞.

Note that H simple implies that

∆ ≤ n− 1

k − 1
<
n

k
.

Note that we do not claim rapid mixing from an arbitrary start. Indeed, since we are
using relatively few colors, it is possible to choose an initial coloring from which there is no
Glauber move i.e. we do not claim that the chain is ergodic, see Section 5 for examples of
blocked colorings.

The algorithm can be used in a standard way, [6], to compute an approximation to the
number of proper colorings of H.

We can also prove the following. We can consider Glauber Dynamics as inducing a graph
ΓQ on Q where two colorings are connected by an edge if there is a move taking one to the
other. Note that if Glauber can take X to Y in one step, then it can take Y to X in one
step.

Corollary 1 The graph ΓQ contains a giant component Q0 of size (1− o(1))|Q|.
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2 Good and bad colorings

Let X ∈ Ω be a coloring of V . For a vertex v and 1 ≤ i ≤ k − 1 let

Ev,i,X = {e : v ∈ e and | {X(w) : w ∈ e \ {v}} | = i}

be the set of edges e containing v in which e \ {v} uses exactly i distinct colors under X.
Let yv,i,X = |Ev,i,X | so that |B(v,X)| ≤ yv,1,X for all v,X. Let

ε =
1

100(2k)k
.

We divide our analysis into three cases: k ≥ 5, k = 3 and k = 4.

2.1 k ≥ 5

We define the sequence ε = ε, ε2, . . . , εk−2.

Definition 1 We say that X is θε-bad if ∃v ∈ V, 1 ≤ i ≤ k − 2 such that

yv,i,X ≥ θµi where µi = min

{
(εq)i,

∆

(10k)k−2−iεq

}
. (9)

Otherwise we say that X is θε-good. (If θ = 1 then we drop it).

Given this definition, we have

10kµi ≤ µi+1 ≤ εqµi for 1 ≤ i ≤ k − 3. (10)

It is convenient to define
µk−1 = ∆. (11)

Note that if X is ε-good then |A(v,X)| ≥ (1− ε)q for all v ∈ V .

In this section we will show that almost all colorings of Ω are ε-good and almost all colorings
in Q are ε-good. Consider a random coloring X ∈ Ω. We first estimate the probability
that it is properly colored. We use the local lemma.

Fix an edge e ∈ H. Then using PrΩ to indicate that the random choice is from Ω,

p = PrΩ(e is not properly colored by X) =
1

qk−1
.

Now consider a dependency graph, in the context of the local lemma. The events are
Be = {e is not properly colored)}. Be and Bf are indpendent if e ∩ f = ∅. Thus the
maximum degree ∆1 in the dependency graph is bounded by k∆. Then

4∆1p ≤ 4k∆p ≤ 4k∆

Kk−1∆(k−1)(1+α)/(αk)
=

4k

Kk−1∆(k−1−α)/(αk)
< 1. (12)
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So, by the local lemma, if m ≤ ∆n/k is the number of edges in H,

PrΩ(X is proper) ≥ (1− 2p)m ≥ (1− 2p)∆n/k ≥ e−2p∆n/k(1−2p) ≥ e−3∆n/(kqk−1). (13)

For the third inequality we use (1− x) ≥ e−x/(1−x) whenever 0 < x < 1.

Given this, we consider the probability that there is a bad vertex. For a fixed vertex v

and an edge e containing v the probability that e ∈ Ev,i,X is at most
(
k−1
i

) (
i
q

)k−1−i
.

Indeed, there will be a set of i vertices S, for which there are
(
k−1
i

)
possibilities such that

the remaining k − 1 − i vertices have their colors all used by S. The probability of this

being at most
(
i
q

)k−1−i
. Thus the value yv,i,X has distribution dominated by the binomial

Bin

(
∆,
(
k−1
i

) (
i
q

)k−1−i
)

.

So, from Chernoff bound:

Pr(B(n, p) ≥ λnp) ≤
( e
λ

)λnp
(14)

we see that

Pr(yv,i,X ≥ µi) ≤

(
e
(
k−1
i

)
(i/q)k−1−i∆

µi

)µi
≤
(

e(2k)k∆

min {εiqk−1, ε−1(q/(10k))k−2−i∆}

)µi
≤ e−µi

≤ e−εmin{q,∆/q}

for i = 1, 2, . . . , k − 2, since µi ≥ µ1 ≥ εmin {q,∆/q}. (We use (6) and our definition of ε
to go from the second to the third line).

It follows that if X is chosen randomly from Ω then

PrΩ(X is ε− bad) ≤ kne−εmin{q,∆/q}. (15)

So, using PrQ to indicate the random choice is from Q, and using (13),

PrQ(X is ε− bad) = PrΩ(X is ε− bad | X is a proper coloring)

≤ kn exp

{
−εmin {q,∆/q}+

3n∆

kqk−1

}
≤ e−εmin{q,∆/q}/2 = o(1),

after using (5) and (6).

Thus whp, a random proper or improper q-coloring of H is ε-good.

Remark 1 We observe that if qk−1/n∆ → ∞ then a random coloring (from Ω) is proper
whp, in which case we won’t need to use the local lemma.
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Remark 2 It is reasonable to conjecture that PrQ(X is ε − bad) is not much larger than
PrΩ(X is ε− bad). Using the Local Lemma inflates the first proability by too much, seem-
ingly. A better estimate of the first probability would allow us to consider smaller q.

2.2 k = 3

In this case we let µ1 = εq. yv,1,X has distribution dominated by Bin(∆, 1/q) and so

Pr(yv,1,X ≥ µ1) ≤
(
e∆

qµ1

)µ1
≤ e−q

since q � ∆2/3 here, see (7). So

PrQ(X is ε− bad) ≤ 3n exp

{
−q +

n∆

q2

}
= o(1),

using (5).

2.3 k = 4

In this case we let µ1 = εq and µ2 = 10kµ1. yv,1,X has distribution dominated by
Bin(∆, 3/q2) and yv,2,X has distribution dominated by Bin(∆, 3/q) so

Pr(yv,1,X ≥ µ1) ≤
(

3e∆

q2µ1

)µ1
≤ e−q

Pr(yv,2,X ≥ µ2) ≤
(

3e∆

qµ2

)µ2
≤ e−q

since q � ∆1/2 here, see (8). So

PrQ(X is ε− bad) ≤ 4n exp

{
−q +

3n∆

4q3

}
= o(1),

using (5).

3 Persistence of goodness

We once again divide our analysis into three cases: k ≥ 5, k = 3 and k = 4.

3.1 k ≥ 5

We show first that
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Lemma 1

Pr(Xt is 2ε− good for t ≤ t0 | X0 is ε− good) ≥ 1− 2−µ1/2. (16)

where
t0 =

n

4k2e
. (17)

Proof For vertices x, y ∈ V that share an edge, let e(x, y) be that edge.

Observe that if Xt is 2ε-good and x ∈ V then

Pr(yx,i,t+1 − yx,i,t = 1 | Xt) ≤
(k − 2)2yx,i+1,t

(1− 2ε)qn
+
kyx,i−1,t

n
(18)

for 1 ≤ i ≤ k − 2. (Here yx,0,t = 0).

Indeed, we have yx,i,t+1 − yx,i,t = 1 only if with v = v(t) we have (i) e(v, x) ∈ Ex,i+1,Xt

and (ii) Xt(v) is a color used once on e(v, x) \ {x} and (iii) c(t) is used on e(v, x) \ {x, v}
or we have (ia) e(v, x) ∈ Ex,i−1,Xt .

Now

Pr((i), (ii), (iii)) = Pr((i)) ·Pr((ii) | (i)) ·Pr((iii) | (i), (ii)) ≤
(k − 1)yx,i+1,t

n
· i

k − 1
· i

(1− 2ε)q
≤ (k − 2)2yx,i+1,t

(1− 2ε)qn

and

Pr((ia)) ≤ (k − 1)yx,i−1,t

n
.

We consider the following sequence of events for 1 ≤ i ≤ k − 2:

Bi(t) = {∃s ≤ t, v ∈ V : Xτ is 2ε− good for τ < s and yv,i,s ≥ yv,i,0 + µi}

Let B(t) =
⋃k−2
i=1 Bi(t) and note that if ¬B(t) then Xt is 2ε-good.

Now X0 is ε-good and so (18) implies that so long as Xτ is 2ε-good for τ < s ≤ t, we have

yv,k−2,s ≤ yv,k−2,0 +Bin

(
s,

(k − 2)2yv,k−1,t

(1− 2ε)qn
+
kyv,k−3,t

n

)
≤ yv,k−2,0 +Bin

(
s,
k2

n

(
∆

q
+

2µk−3

k

))
. (19)

The probability in the first binomial above is the RHS of (18) and in the second we bound
yv,k−1,t by ∆ and yv,k−3,t by 2µk−3. Then note that yv,k−2,i+1 is yv,k−2,i + 1 with at most
this probability. So, on using (14),

Pr(Bk−2(t)) ≤ tn
(

2etk2

n

(
∆

µk−2q
+

2µk−3

kµk−2

))µk−2

≤ tn
(

2etk2

n

(
∆

εk−2qk−1
+ ε+

1

5k2

))µk−2

≤ tn
(

2etk2

n

)µk−2

≤ t0n

2µk−2
. (20)
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We have dealt with the minimum in the definition of µk−2 by using the inequality A
minX,Y ≤

A
X + A

Y . The reader will observe that we have not shown that t0 ≥ µk−2. We do not claim
this and when t0 < µk−2 we can replace the RHS of (20) by zero.

For i < k − 2, (18) implies that so long as Xτ is 2ε-good for τ < s ≤ t and
⋃k−2
j=i+1 Bj(t)

does not occur, we have yv,i,s ≤ yv,i,0 +Bin (s, p) where

p =
2(k − 2)2µi+1

(1− 2ε)qn
+

2kµi−1

n
.

So, on using (10),

Pr

Bi(t)∣∣∣∣¬ k−2⋃
j=i+1

Bj(t)

 ≤ t0n(2e(k − 2)2µi+1t

(1− 2ε)qnµi
+

2keµi−1t

nµi

)µi
≤ t0n

(
2k2et

n

)µi
≤ t0n

2µi
.

(21)
Equation (16) and the lemma follows from (20) and (21). 2

We show next that

Lemma 2

Pr(Xt0 is ε− good | X0 is ε− good) ≥ 1− e−cµ1 for some c > 0. (22)

Proof For this we use the fact that if Xt is 2ε-good and x ∈ V then

Pr(yx,i,t+1 − yx,i,t = −1 | Xt) ≥
yx,i,t
n

(23)

for 1 ≤ i ≤ k − 2.

Indeed, we have yx,i,t+1 − yx,i,t = −1 if (i) e(v, x) ∈ Ex,i,Xt , (ii) Xt(v) is used more than
once on e(v, x) \ {x} and (iii) c(t) is a color not used e(v, x) \ {x, v}. Now

Pr((i), (ii), (iii)) = Pr((i)) ·Pr((ii) | (i)) ·Pr((iii) | (i), (ii)) ≥
(k − 1)yx,i,t

n
· k − i

k
· q − i

q
≥ 2(k − 1)(q − i)yx,i,t

kqn
≥ yx,i,t

n
.

We couple yx,i,t with a biased random walk Yt, t ≥ 0 on {0, 1, 2, . . . , }. Here Y0 = µi and

Yt+1 =


Yt + 1 Probability 2(k−2)2µi+1

(1−2ε)qn + 2kµi−1

n

Yt − 1 Probability Yt
n

Yt Probability 1− 2(k−2)2µi+1

(1−2ε)qn − 2kµi−1

n − Yt
n

(24)

If B(t) does not occur then Yt has no lower a chance of increasing by one than yx,i,t and when
Yt = yi,x,t it has no greater a chance of decreasing by one. We can therefore, conditional on
¬B(t), couple yx,i,t, Yt so that yx,i,t ≤ Yt always. We can therefore prove (22) by proving

Pr(Yt0 > µi) ≤ e−cµi (25)
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Let I = {t ≤ t0 : Yt ≥ µi/2} and J = {t ≤ t0 : Yt+1 6= Yt}. If I = ∅ then Yt0 < µ1/2.
Furthermore, if t ∈ I then (i) Pr(t ∈ J) ≥ µi/(2n) and (ii) Pr(Yt+1 = Yt− 1 | Yt+1 6= Yt) ≥
2
3 . To verify (ii) use (10) to show that

2n

µi
·
(

2k2µi+1

(1− 2ε)qn
+

2kµi−1

n

)
≤ 4εk2

1− 2ε
+

4k

10k
≤ 1

2
. (26)

Now consider two cases:

Case 1: I = [t0]: It follows from (i), (ii) above and the Chernoff bounds that

Pr

(
|J | ≤ µit0

4n

)
≤ e−c1µi for some c1 > 0.

And

Pr

(∑
t∈J

(Yt+1 − Yt) ≥ −|J |/6
∣∣∣∣|J | ≥ µit0

4n

)
≤ e−c2µi for some c2 > 0.

But Yt0 ≤ µi +
∑

t∈J(Yt+1 − Yt) and so (25) is verified for this case.

Case 2: I 6= [t0]: Let t1 = max {t : t /∈ I} and let J1 = {t ∈ J : t > t1}. If |J1| < µi/2 then
Yt0 ≤

µ1
2 + |J1| < µ1. So assume that |J1| ≥ µi/2. But then with probability 1− e−c3µi we

find that
∑

t∈J1(Yt+1 − Yt) < 0 and (25) is verified for this case too.

This completes the proof of (25), and hence (22) and the lemma. 2.

3.2 k = 3

Going back to (19) we see that

yv,1,s ≤ yv,1,0 +Bin

(
s,
k2∆

nq

)
.

And then (20) becomes

Pr(B1(t)) ≤ tn
(

18e∆t

nqµ1

)µ1
� 2−µ1/2

for t ≤ t0 of (17).

We then define Yt as in (24) and (see (26)) compute 2n
µ1
· 2∆

(1−2ε)qn = 4∆
(1−2ε)εq2

� 1. We then

argue as in the case k ≥ 5.

3.3 k = 4

Going back to (20) we see that

Pr(B2(t)) ≤ tn
(

32et

n

(
∆

εq2
+

2

4

))µ2
� 2−µ2/2.
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for t ≤ t0 of (17).

Going back to (21) we see that

Pr

(
B1(t)

∣∣∣∣¬B2(t)

)
≤ t0n

(
8et

(1− 2ε)qn

)µ1
� 2−µ1/2

for t ≤ t0 of (17).

We then define Yt as in (24) and (see (26)) compute 2n
µ1
· 8µ2

(1−2ε)qn = 160k
(1−2ε)εq � 1 (remember

that µ2 = 10kµ1 here) and 2n
µ2

(
8∆

(1−2ε)qn + 2kµ1
n

)
≤ 1

2 . We then argue as in the case k ≥ 5.

4 Coupling Argument

Now consider a pair X,Y of copies of our Glauber chain. Let

h(Xt, Yt) = | {v ∈ V : Xt(v) 6= Yt(v)} |

be the Hamming distance between Xt, Yt. We use describe a simple coupling between the
chains and show that

E(h(Xt+1, Yt+1) | Xt, Yt) ≤
(

1− 1

2n

)
h(Xt, Yt) (27)

if Xt, Yt are both 2ε-good.

Our coupling is the same as that used by Jerrum [6]. The choice of vertex v(t) will be the
same in both chains. We maximally couple the choice of color in each chain. Then, with
v = v(t),

Pr(Xt+1(v) 6= Yt+1(v) | Xt, Yt) ≤ (k − 1)
|Ev,1,Xt |+ |Ev,1,Yt |

(1− 2ε)q
.

Hence, assuming that Xt, Yt are both 2ε-good for 1 ≤ t ≤ t0 we see that

E(h(Xt+1, Yt+1) | Xt, Yt) =
∑
v∈V

Pr(Xt+1(v) 6= Yt+1(v))

=
∑
w∈V

Pr(v(t) 6= w and Xt(w) 6= Yt(w))

+
∑
w∈V

Pr(v(t) = w and Xt+1(w) 6= Yt+1(w))

=
n− 1

n
h(Xt, Yt) +

1

n
h(Xt, Yt)

4(k − 1)ε

1− 2ε

≤
(

1− 1

2n

)
h(Xt, Yt).

Summarising, we have shown that with probability at least 1 − e−cµ1 for some positive
constant c, we have that both of X0 and Y0 are ε-good, both X and Y are 2ε-good for
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t0 steps and both of Xt0 and Yt0 are ε-good. If we run the chain for t0t
∗ steps, where

t∗ = ecµ1/2 steps then the probability that either chain stops being 2ε-good is at most
t∗e−cµ1 ≤ e−cµ1/2. Conditional on these events, E(h(Xtδ , Ytδ) ≤ δ/2 and together with the
fact that the variation distance between Xt and Yt is monotone non-increasing, this implies
(4). (Note that δ includes the probability that either of X0, Y0 are not 2ε-good). This
completes the proof of Theorem 1.

4.1 Proof of Corollary 1

The proof of Theorem 1 shows that if X,Y ∈ Q are both ε-good then there is a path from
X to Y in Q of length O(n log n). Since almost all of Q is ε-good, we are done. 2

5 Blocked example

In this section we give an example of an edge colored hypergraph for which there are no
Glauber moves.

Lemma 3 Let k ≥ 3 and let m, q be sufficiently large. Suppose that εk ≤ 1
10k! and ρ =

εk

(qm)k−2 . Then there exists a hypergraph H with qm vertices and maximum degree ∆ ∈

[ εkqm
2(k−1)! ,

2εkqm
(k−1)! ] and a coloring with q colors so that there are no Glauber moves.

Proof We first choose a simple (k − 1)-uniform hypergraph H1 with m vertices and
qm edges and maximum degree at most 2k4q. The existence of such a hypergraph is easy
to show via the probabilistic method. Fix some 0 < p < 1 and choose each possible edge
to include with probability p. Let Z1 be the number of edges chosen and let Z2 be the
number of pairs of edges that share two or more vertices. We show is that there is a p
such that E(Z1 − Z2 | D) ≥ qm where D is the event that the maximum degree is at most

2k4q. Now E(Z1) =
(
m
k−1

)
p and E(Z2) ≤

(
m
k−1

)(
k−1

2

)(
m−2
k−3

)
p2. Putting p = k4q

m(k−1
2 )(m−2

k−3)

gives E(Z1 − Z2) ≥ k4q(m−1)
(k−1)2(k−2)2

. Now the degree of a vertex is Bin
((

m−1
k−2

)
, p
)

which has

mean 2k4q(m−1)
m(k−1)(k−2)2

and so the probability its degree is greater than 2k4q is exponentially

small in q. Thus E(Z1 − Z2 | D) ≥ qm and our hypergraph exists.

We build a vertex colored k-uniform simple hypergraph H for which the coloring is proper
and for which there are no Glauber moves. We choose disjoint sets V1, V2, . . . , Vq of size m
and let V = V1 ∪ V2 ∪ · · ·Vq. The vertices in Vi are given color i. We let Hi = (Vi, Ei) be a
copy of the hypergraph H1. Then for each i we define an injective map fi from V \Vi → Ei.
This is possible as |Ei| = qm ≥ |V |. Then for each x ∈ Vj and i 6= j we add the edge
Fx,i = {x} ∪ fi(x) to H. These edges block all Glauber moves. Furthermore, we have (i)
Fx,i ∩ Fx,i′ = {x} for i 6= i′ and (ii) |Fx,i ∩ Fy,i| ≤ 1 for x 6= y and (iii) Fx,i ∩ Fy,i = ∅ for
x 6= y, i 6= j. Thus the hypergraph created is simple. Denote the set of edges added so far
by F1 and note that |F1| ≤ q2m.
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At the moment the degree of a vertex lies in [q−1, (k4 +1)q−1]. We now add random edges
F2 so that we have more flexibility with the maximum degree. We only consider edges with
at most one vertex in each Vi and we add these with probability ρ. Now let A1 denote
the number of pairs of edges in F2 that share two or more vertices and let A2 denote the
number of pairs of edges, one from F1 and one from F2 that share two or more vertices.

Now E(|F2|) =
(
q
k

)
mkρ and our choice of ρ is such that E(|F2|) ≥ 2E(A1 +A2). Now

E(A1 +A2) ≤(
q

k

)
mk

(
k

2

)(
q − 2

k − 2

)
mk−2ρ2 + q2m

(
k

2

)(
q − 2

k − 2

)
mk−2ρ ≤ (qm)2k−2ρ2 + k2qkmk−1ρ.

Concentration of measure now ensures that ∆ is in the range required. 2

6 Open Questions

(a) Can we replace the lower bound in (2) by ∆ ≥ ∆0?

(b) Can we replace (3) by qk−1 ≥ K∆ for sufficiently large K?

(c) Can we extend the result to arbitrary k-uniform hypergraphs?

Acknowledgement: We thank Mary Cryan for two important observations.
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