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Abstract

We say that a k-uniform hypergraph C is a Hamilton cycle of type `, for some
1 ≤ ` ≤ k, if there exists a cyclic ordering of the vertices of C such that every edge
consists of k consecutive vertices and for every pair of consecutive edges Ei−1, Ei in
C (in the natural ordering of the edges) we have |Ei−1 \ Ei| = `. We prove that for
k/2 < ` ≤ k, with high probability almost all edges of the random k-uniform hypergraph
H(n, p, k) with p(n) � log2 n/n can be decomposed into edge-disjoint type ` Hamilton
cycles. A slightly weaker result is given for ` = k/2. We also provide sufficient conditions
for decomposing almost all edges of a pseudo-random k-uniform hypergraph into type
` Hamilton cycles, for k/2 ≤ ` ≤ k. For the case ` = k these results show that almost
all edges of corresponding random and pseudo-random hypergraphs can be packed with
disjoint perfect matchings.

1 Introduction

The subject of Hamilton graphs and Hamiltonicity-related problems is undoubtedly one of
the most central in Graph Theory, with a great many deep and beautiful results obtained.
Hamiltonicity problems occupy a place of honor in the theory of random graphs too, the
reader can consult the monographs of Bollobás [4] and of Janson,  Luczak and Ruciński [14]
for an account of some of the most important results related to Hamilton cycles in random
graphs. Of particular relevance to the current work is a previous result of the authors [9] who
proved that for edge probability p = p(n) ≥ n−ε for some constant ε > 0, whp1 almost all
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edges of the random graph G(n, p) can be packed with edge-disjoint Hamilton cycles.

Quite a few results about Hamiltonicity of pseudo-random graphs are available too. Informally,
a graph G = (V, E) with |V | = n vertices and |E| = m edges is pseudo-random if its edge
distribution is similar, in some well-defined quantitative way, to that of a truly random graph

G(n, p) with the same expected density p = m
(
n
2

)−1
. A thorough discussion about pseudo-

random graphs, their alternative definitions and properties can be found in the survey [17].
It is well-known that pseudo-randomness of graphs can be guaranteed by imposing conditions
on vertex degrees and co-degrees (see, e.g., [21], [5]); we will adopt a similar approach later in
the paper when discussing pseudo-random hypergraphs. There are known sufficient criteria
for Hamiltonicity in pseudo-random graphs. Also, the above mentioned result of [9] can be
extended to the pseudo-random case as well. Since we will employ this result in our arguments,
let us state it here formally. A graph G on vertex set [n] is (α, ε)-regular if

Qa: δ(G) ≥ (α− ε)n, where δ(G) denotes the minimum degree of G.

Qb: If S, T are disjoint subsets of [n] and |S|, |T | ≥ εn then
∣∣∣ eG(S,T )|S| |T | − α

∣∣∣ ≤ ε, where eG(S, T )

is the number of S − T edges in G.

The following is implied by the main theorem of [9]:

Theorem 1 Let G be an (α, ε)-regular graph with n vertices where

α� ε and αε3 � 1

(n log n)1/2
. (1)

Then G contains at least (α/2− 4ε)n edge-disjoint Hamilton cycles.

Remark 1 Theorem 2 of [9] only claims to be true for α constant. This was an unfortunate
over-cautious statement. The real condition should be the one given in the above theorem. We
will justify this claim in the appendix.

In contrast, much less is known about Hamiltonicity in hypergraphs in general and in random
and pseudo-random hypergraphs in particular. Formally, a hypergraph H is an ordered pair
H = (V, E), where V is a set of vertices, and E is a family of distinct subsets of V , called
edges. A hypergraph H is k-uniform if all edges of H are of size k. It is generally believed that
k-uniform hypergraphs for k ≥ 3 are much more complicated objects of study than graphs
(corresponding to k = 2). Specifically for Hamiltonicity, even extending the definition of a
Hamilton cycle in graphs to the case of (uniform) hypergraphs is not a straightforward task.
In fact, several alternative definitions are possible. In this paper (in some departure from a
relatively standard notation) we will use the following definition. Denote

νi =
n

i
, 1 ≤ i ≤ k.
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Suppose that 1 ≤ ` ≤ k. A type ` Hamilton cycle in a k-uniform hypergraph H = (V, E) on
n vertices is a collection of ν` edges of H such that for some cyclic order of [n] every edge
consists of k consecutive vertices and for every pair of consecutive edges Ei−1, Ei in C (in
the natural ordering of the edges) we have |Ei−1 \ Ei| = `. Thus, in a type ` Hamilton cycle
the sets Ci = Ei \ Ei−1, i = 1, 2, . . . , ν`, are a partition of V into sets of size `. (An obvious
necessary condition for the existence of a cycle of type ` in a hypergraph on n vertices is that
` divides n. We thus always assume, when discussing Hamilton cycles of type `, that this
necessary condition is fulfilled.) In the literature, when ` = 1 we have a tight Hamilton cycle
and when ` = k − 1 we have a loose Hamilton cycle. In the extreme case ` = k the notion
reduces to that of a perfect matching in a hypergraph.

Several recent papers (see, e.g., [13], [16], [18], [20]) provided sufficient conditions for the
existence of a type ` Hamilton cycle in a k-uniform hypergraph H on n vertices in terms
of the minimum number of edges of H passing through any subset of k − 1 vertices, thus
extending the classical Dirac sufficient condition for graph Hamiltonicity to the hypergraph
case. These results however appear to be of rather limited relevance to the current paper, as
here we are mostly concerned with sparse hypergraphs (with o(|V |k) edges), while the above
mentioned results are for the (very) dense case.

The main goal of this paper at large is to study Hamiltonicity in random and pseudo-random
hypergraphs. A random k-uniform hypergraph H(n, p, k) is a hypergraph with vertex set
{1, . . . , n} = [n], where each k-tuple of [n] is an edge of the hypergraph independently with
probability p = p(n). For the case k = 2 the model H(n, p, k) reduces to the classical binomial
random graph G(n, p). Up until recently, essentially nothing was known about Hamilton cycles
in random hypergraphs. Even the most basic question of the threshold for the appearance
of a cycle of type ` in H(n, p, k) had not been addressed in the literature. A recent series of
papers, see Frieze [8], Dudek and Frieze [6], [7], establish the thresholds for the existence of
type ` Hamilton cycles, 1 ≤ ` ≤ k− 1 up to constant factors or up to arbitrarily slow growing
functions of n. In the case ` = k, i.e., the case of perfect matchings – a recent striking result
of Johannson, Kahn and Vu [15], has established the order of magnitude of the threshold for
the appearance of a perfect matching in a k-uniform random hypergraph.

In this paper, rather than studying the conditions for the existence of a single Hamilton cycle,
we study the conditions for the existence of a packing of almost all edges of a random or a
pseudo-random hypergraph into Hamilton cycles. For ` ≥ k/2 we manage to obtain non-
trivial results in this direction. It appears that the cases of small ` (where adjacent edges
along the Hamilton cycle have larger intersection) are harder.

Our first result is about packing Hamilton cycles in random hypergraphs.

Theorem 2 Suppose that k/2 < ` ≤ k and suppose that np/ log2 n → ∞. Then whp
H = H(n, p, k) contains a collection of (1 − ε)

(
n
k

)
p/ν` edge-disjoint type ` Hamilton cy-

cles, ε2 = Θ(log n/(np)1/2) = o(1). When ` = k/2 we have the same conclusion for ε11 �
log7/2 n/(n1/2p4).
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Note that for the case ` = k the above theorem provides a sufficient condition on the edge
probability p(n) for being able to pack whp almost all edges of H(n, p, k) into perfect match-
ings.

Other results of the paper are about packing Hamilton cycles in pseudo-random hypergraphs.
For most part, we state the condition of pseudo-randomness of a hypergraph in terms of the
number of edges through subsets of vertices of fixed size. These conditions are suggested by
the expected numbers of such edges in truly random hypergraphs of the same edge density and
are easily seen to hold whp in random hypergraphs. Thus our results about pseudo-random
hypergraphs are applicable to truly random instances as well. Naturally, the direct approach
of Theorem 2 provides a better lower bound on the edge probability p(n).

In this paper we are only able to deal with the case where ` ≥ k/2. Let H = ([n], E) be
a k-uniform hypergraph with vertex set [n] and m edges. Its density p = m/

(
n
k

)
. For a set

X ⊆ [n] with |X| = a < k we define its neighbourhood NH(X) =
{
Y ∈

(
[n]
k−a

)
: X ∪ Y ∈ E

}
and its degree dH(X) = |NH(X)|.

We first consider k/2 < ` < k and list the following properties. The value ε will be a parameter
of regularity. Pa says that the ”degrees” of small sets are close to being regular; Pb says that
the ”co-degrees” of small sets are not too large.

Pa(s): min
S∈([n]

s )
dH(S) = (1± ε)

(
n

k − s

)
p and Pa =

⋂
1≤s≤k−1

Pa(s).

Pb(s, t): max
S1,S2∈([n]

s )
|S1∩S2|=t

|NH(S1) ∩NH(S2)| ≤ (1 + ε)

(
n

k − s

)
p2 and Pb =

⋂
1≤s≤k−1
0≤t≤s

Pb(s, t).

(the notation A = (1±ε)B as a shorthand for the pair of inequalities (1−ε)B ≤ A ≤ (1+ε)B.)

Theorem 3 Let H = ([n], E) be a k-uniform hypergraph with m edges and let p = m/
(
n
k

)
.

Suppose that k/2 < ` < k and 1 > ε5 � log3 n/(n1/2p2) and suppose that H satisfies properties
P = {Pa, Pb}. Then H contains a collection of (1− 2ε1/3)m/ν` edge-disjoint type ` Hamilton
cycles.

The restriction 1 > ε is for relevance and the restriction ε5 � log3 n/(n1/2p2) is used in the
proof (see Lemma 7).2 The latter condition can be relaxed a little through a more careful
implementation of our argument.

We do not really need Pa, Pb(s, t) to hold for all s, t but using the above simplifies the statement
of the theorem. The proof will expose the actual values of s, t for which these properties
are needed. Also, one can observe that in fact, for example, the condition Pa, which is a

2We use the notation an � bn as shorthand for an/bn →∞ as n→∞.
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conjunction of the conditions Pa(s) for different s, is essentially implied by the condition
Pa(k − 1) alone. In any case any reasonable definition of a pseudo-random hypergraph is
likely to yield all such conditions. This is certainly the case for random hypergraphs.

When ` = k/2 we will use the result from [9] as our main technical tool, and the above
stated definition of (α, ε)-regular graphs. Here the definition of a pseudo-random hypergraph
is explicitly tailored to our application. Let H = (V, E) be a k-uniform hypergraph with vertex
set V = [n]. Let P = (X1, X2, . . . , Xν`) be a partition of [n] into ν` parts each of size `. The
graph GP = GP(H) has vertex set [ν`] and an edge (i, j) whenever E = Xi ∪Xj ∈ E(H). We
now say that H is (p, ε)-regular if for a randomly chosen P , the graph GP is (p, ε)-regular qs3.

Theorem 4 Let H = ([n], E) be a k-uniform hypergraph with m edges and let p = m/
(
n
k

)
.

Suppose that H is (p, ε)-regular k-uniform hypergraph with ` = k/2 and

ε11/4pn1/8 � log7/8 n.

Then H contains a collection of (1− 20ε)m/ν` edge-disjoint type ` Hamilton cycles.

We finally consider the case k = `. Here we will be packing perfect matchings as opposed to
Hamilton cycles.

Theorem 5 Let H = ([n], E) be a k-uniform hypergraph with m edges that satisfies Pa, Pb
and suppose that 1 � ε � log5 n/(n1/2p2). Then H contains a collection of (1 − 4ε1/3)m/νk
edge-disjoint perfect matchings.

These are the first results of any significance on packing Hamilton cycles in random and
pseudo-random hypergraphs. We have no reason to believe that they are tight and it would
be interesting to sharpen them.

The case ` < k/2 is more difficult. Frieze, Krivelevich and Loh [10] have analysed the case
k = 3, ` = 1 and proved a result of the same flavour as the above. This has since been
extended to more general k, ` in Bal and Frieze [2].

An interesting point of reference for our theorems is results about perfect decompositions of
the edge set of a complete k-uniform hypergraph Kk

n into Hamilton cycles of various types
(assuming of course some natural divisibility conditions). These include a recent result of
Bailey and Stevens [1] about packing tight Hamilton cycles and a famous result of Baranyai
[3] about decomposing the edge set of Kk

n into perfect matchings. While we do not – and can
not for obvious reasons – achieve perfect decomposition, but rather pack almost all edges, our
results apply to a wide class of hypergraphs, including relatively sparse hypergraphs.

In the next section we cite and prove several general tools applied later in the proofs. In
Section 3 we focus on H = H(n, p, k) and first prove Theorem 2 for k = 3. We then provide a

3An event En occurs quite surely, or qs for brevity, if Pr(En) = 1−O(n−C) for any positive constant C.
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general scheme of the proof, applicable to both the random and the pseudo-random cases. In
Section 5 we give a proof of the random case for general k, `. In Section 6 we prove Theorems
3, 4 and 5. The last section is devoted to concluding remarks.

2 Tools

We start with stating very standard Chernoff-type bounds for binomial random variables: for
0 ≤ ε ≤ 1:

Pr(Bin(m, ξ)−mξ ≤ −εmξ) ≤ e−ε
2mξ/2 (2)

Pr(Bin(m, ξ)−mξ ≥ εmξ) ≤ e−ε
2mξ/3 (3)

Next, we give two statements about the (high probability) existence of many disjoint perfect
matchings in random and in pseudo-random bipartite graphs. For the (somewhat easier) truly
random case we will need the obtained estimate on the number of matchings to hold with
probability polynomially close to 1.

Lemma 1 Let k ≥ 1 be an integer. Let G be a random bipartite graph with sides A,B of size
|A| = |B| = n, where each pair (a, b), a ∈ A, b ∈ B, is an edge of G independently and with
probability at least p. Assume p(n) � log n/n. Then with probability 1− o(n−k), G contains
a family of (1− δ)np edge disjoint perfect matchings, where

δ =

(
4(k + 3) log n

np

)1/2

= o(1) .

Proof Due to monotonicity is is enough to prove the lemma for the case when all edge
probabilities are exactly p. Set n0 = (1 − δ)np. The Max-Flow Min-Cut theorem tells us
that the following is a necessary and sufficient condition for G to have n0 edge-disjoint perfect
matchings: Suppose that we make up a network with source σ and sink τ and join σ to each
vertex of A by an edge of capacity n0 and each vertex of B to τ by an edge of capacity n0.
Each edge of G is given capacity one. Suppose that our minimum cut is X : X̄ and S = A∩X
and T = B∩X then a necessary and sufficient condition for the existence of n0 disjoint perfect
matchings is that

(n− |S|)n0 + |T |n0 + e(S,B \ T ) ≥ n0n ,

which reduces to
m ≥ (s− t)n0 (4)

for all S ⊆ A, T ⊆ B, if |S| = s, |T | = t,m = e(S,B \ T ).

Note that we need only verify (4) computationally for t ≤ n/2. When t > n/2 we could
repeat our computations to show that with the required probability e(B \ T,A \ (A \ S)) ≥
((n− t)− (n− s))n0.
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We have:

Pr(∃S ⊆ A, T ⊆ B, |S| > |T |, |T | ≤ n/2 : e(S,B \ T ) ≤ (1− δ)|S|(n− |T |)p) ≤
n∑
s=1

min{s−1,n/2}∑
t=1

(
n

s

)(
n

t

)
exp

{
−δ

2

2
s(n− t)p

}
≤

n∑
s=1

min{s−1,n/2}∑
t=1

(
n

s

)(
n

t

)
exp

{
−δ2snp/4

}
. (5)

Assume first that
(
n
s

)
≥
(
n
t

)
. Then

(5) ≤
n∑
s=1

min{s−1,n/2}∑
t=1

(
n2e2

4s2
· e−δ2np/4

)s
=

n∑
s=1

min{s−1,n/2}∑
t=1

(
n2e2

4s2
· n−k−3

)s
= o(n−k).

When
(
n
s

)
≤
(
n
t

)
we can replace (5) by

n∑
s=n/2

min{s−1,n/2}∑
t=1

(
n2e2

4t2
· n−k−3)

)t
= o(n−k).

Here we have used s ≥ t.

It follows (see (4)) that with the required probability simultaneously for all relevant sets S, T ,

m ≥ (1− δ)s(n− t)p ≥ (1− δ)(s− t)np = (s− t)n0 .

2

In the next lemma we prove the existence of many disjoint perfect matchings in a bipartite
pseudo-random graphs with equal sides, where pseudo-randomness is given through/controlled
by vertex degrees and co-degrees.

Lemma 2 Let G be a bipartite graph with vertex set A ∪ B where |A| = |B| = n. Suppose
that the minimum degree in G is at least (1− θ)dn and the maximum co-degree of two vertices
is at most (1 + θ)d2n for some small value θ � 1. Suppose further that θ4/3d2n� 1. Then G
contains a collection of (1− θ1/3)dn edge-disjoint perfect matchings.

The assumption θ4/3d2n� 1 in the above lemma is mostly for convenience and will be good
enough for our purposes; it can be relaxed somewhat through a more careful analysis.

Proof Let d0 = (1− θ)d and d1 = (1− θ1/3)d. Going back to (4) we see that we need to
show that

m ≥ (s− t)d1n (6)

for all S ⊆ A, T ⊆ B, |S| = s, |T | = t,m = e(S,B \ T ). Obviously we can assume s > t.
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Now,
m ≥ s(d0n− t)

and so (6) is satisfied if
s(d0n− t) ≥ (s− t)d1n

or
s(d0 − d1)n ≥ (s− d1n)t.

In particular, (6) holds if t ≤ (d0 − d1)n. Furthermore, we also have

m ≥ (n− t)(d0n− (n− s)).

If n− t ≤ (d0 − d1)n then this implies that (6) holds.

So we assume from now on that

(d0 − d1)n < min {t, n− t} . (7)

We can further assume that t ≤ n/2. For t > n/2 we can reverse the roles of A,B and show
that e(B \ T,A \ (A \ S)) ≥ ((n− t)− (n− s))d1n, which is (6).

We now perform the usual double counting trick by estimating the number of paths of the
form S,B, S in two ways. On one hand, each such path corresponds to a common neighbor of
a pair of vertices a1, a2 ∈ S. Therefore, the quantity to be estimated is at most

(
s
2

)
d22n, where

d2 = (1 + θ)1/2d. On the other hand, it is exactly∑
b∈B

(
d(b, S)

2

)
=
∑
b∈B\L

(
d(b, S)

2

)
+
∑
b∈L

(
d(b, S)

2

)

where d(b, S) is the number of neighbors of b in S in the graph G. Since
∑

b∈B\L d(b, S) = m,
we can estimate the first summand as follows:∑

b∈B\T

(
d(b, S)

2

)
≥ (n− t)

(
m
n−t
2

)
=
m
(
m
n−t − 1

)
2

.

As for the second summand, the number of edges between T and S can be estimated from
below by d0ns−m, and therefore

∑
b∈L

(
d(b, S)

2

)
≥ t

(d0sn−m
t

2

)
=
d0sn−m

2

(
d0sn−m

t
− 1

)
.

It follows that

m

(
m

n− t
− 1

)
+ (d0sn−m)

(
d0sn−m

t
− 1

)
≤ s(s− 1)d22n .
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After performing straightforward arithmetic manipulations, we get to:

(m− d0s(n− t))2 ≤ s(n− t)(std22 − std20 + d0t) .

Recalling the definitions of d0 and d2, we see that

d22 − d20 = (1 + θ − (1− θ)2)d2 = (3θ + θ2)d2 .

Also, since s ≥ t and ` ≥ (d0 − d1)n ≥ θ1/3dn/2 by (7), we see that θds ≥ θ4/3d2n/2 � 1 by
the lemma’s assumption. Hence d0t� θd2st. We thus arrive at the following inequality:

(m− d0s(n− t))2 ≤ 4θd2s2t(n− t) .

Since t ≤ n/2, we have

m ≥ (n− t)sd0
(

1− 2t1/2θ1/2

(1− θ)(n− t)1/2

)
≥ (n− t)sd0

(
1− 2θ1/2

1− θ

)
.

This implies (6) if
d1
d
≤ (n− t)s

(s− t)n

(
1− 2θ1/2

1− θ

)
(1− θ).

Since s(n−t)
(s−t)n ≥ 1, it is enough to verify that

d1
d
≤
(
1− θ − 2θ1/2

)
.

This is implied by
d1 ≤ d(1− θ1/3).

Thus there will be d(1− θ1/3) edge-disjoint perfect matchings. 2

3 Illustrative case: random hypergraphs, k = 3, ` = 2

The proof of the general case (at least for ` > k/2) is based on the same idea as for the case
k = 3, ` = 2 but is heavier on notation and will be therefore given afterwards. Hopefully, the
reader will find it useful to consider the simplest case first.

We will construct the Hamilton cycles via the following algorithm:

A1: Choose r = n(np)1/2 random partitions (Xi, Yi), i = 1, 2, . . . r, of V into two sets of size
ν2.
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We use the notation

Xi = {xi,1 < xi,2 < · · · < xi,ν2} and Yi = {yi,1 < yi,2 < · · · < yi,ν2} .

For each i we choose a random permutation σi on Xi and define a sequence

Γi = (xi,σi(1), xi,σi(2), . . . , xi,σi(ν2), xi,σi(ν2+1) = xi,σi(1)).

A2: At this point we expose the edges of H(n, p, 3) = ([n], Ep).

A3: Suppose now that for edge E ∈ Ep there are f(E) instances i such that for some 1 ≤ j =
j(i) ≤ ν2, we have Xi ∩ E = {xi,σi(j), xi,σi(j+1)}. If f(E) > 0 choose one of these f(E)
instances at random and label the edge E with the chosen i; if f(E) = 0, the edge E
stays unlabelled. Let Hi ⊂ H be the subhypergraph of all edges labeled by i.

A4: Let Gi be the bipartite graph with vertex set Ai∪Bi defined as follows: Ai, Bi are disjoint
copies of [ν2]. Add edge (a, b) to Gi if E = (xi,σi(a), yi,b, xi,σi(a+1)) ∈ Hi (i.e., (a, b) ∈ Gi if
the a-th pair of the sequence Γi united with the vertex yi,b forms an edge E of H labeled
by i).

A5: We claim that whp (see Lemma 3 below) each Gi will contain at least

n0 = (1− δ)ν2p0

edge-disjoint perfect matchings.

Here

δ =

(
72n log n

r

)1/2

and f0 = rρ+ (12rρ log n)1/2 and p0 =
p

f0
. (8)

We set

ρ =
ν22(
n
3

) .
Remark 2 Note that ρ is the probability that instance i is one of the f(E) instances in
A3 for edge E ∈ E, as we will argue in Lemma 3. Also, we will argue that each graph Gi

described above is a truly random bipartite graph with edge probability at least p0. The
parameters are set so as to ensure that p0 � log n/n, thus enabling us to invoke Lemma
1.

Each such matching gives rise to a loose Hamilton cycle of Hi and these will be edge-
disjoint by construction. Indeed suppose that our matching is (ea, φ(ea)), a = 1, 2, . . . , ν2,
where the edges ea are ordered according to the order of their appearance along the
Hamilton cycle Γi. From this we obtain the type 2 Hamilton cycle with edges Ea =
ea ∪ {φ(ea)}. Since the subhypergraphs Hi are edge-disjoint and since distinct edges in
the graph Gi correspond to distinct edges of Hi, the so obtained Hamilton cycles in H
are indeed edge-disjoint.
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It follows that whp H(n, p, 3) contains at least rn0 edge-disjoint Hamilton cycles. Finally,

n0r = (1− δ)ν2p0r = (1− δ)ν2p
f0

r = (1− δ) ν2pr

rρ+ (12rρ log n)1/2

=
ν2pr

r · ν
2
2

(n3)

1− δ

1 +
(

12 logn
rρ

)1/2 ≥
(
n
3

)
p

ν2

(
1− δ −

(
12 log n

rρ

)1/2
)

=

(
n
3

)
p

ν2

(
1−Θ(log n/(np)1/2)

)
,

proving Theorem 2 for this case.

Lemma 3

Pr(Gi does not contain n0 edge-disjoint perfect matchings) = o(n−3).

Proof

For a triple E ⊂ [n], we say that 1 ≤ i ≤ r includes E if the set E ∩ Xi is of size 2 and
is one of the edges of the cycle Γi. Thus the random variable f(E) counts the number of
partitions (Xi, Yi) that include E. Observe that the i-th partition includes a fixed triple E
with probability (

3

2

)( n−3
ν2−2

)(
n
ν2

) ν2(
ν2
2

) =
3n

2(n− 1)(n− 2)
=

ν22(
n
3

) = ρ

(first choose two elements of E ∩ Xi, then choose Xi to intersect E in exactly these two
elements, then choose a random permutation σi Xi – due to symmetry the probability that

E ∩ Xi is one of the ν2 edges it defines is ν2
(
ν2
2

)−1
). Moreover the events “i includes E”

are mutually independent for different i. Therefore, the random variable f(E) is distributed
binomially with parameters r and ρ. Now using the Chernoff bounds 2, 3, we see that with
probability at least 1 − o(1) we have 1 ≤ f(E) ≤ f0 for all

(
n
3

)
possible edges. So assume

that indeed 1 ≤ f(E) ≤ f0 for all E. Moreover, the values of f(E) are determined by Step
A1 of our construction and are thus independent of the appearance of random edges at Step
A2. For 1 ≤ a, b ≤ ν2, the pair (a, b) is an edge of the random auxiliary graph Gi if the
corresponding triple E is an edge of the random hypergraph H and is chosen to be labeled by
i. Thus (a, b) ∈ E(Gi) independently and with probability at least p/f0 = p0.

Therefore we can whp reduce our problem to showing that with probability 1 − o(n−3) the
random bipartite graph Kν2,ν2,p0 satisfies has a family of n0 edge disjoint perfect matchings.
This is an immediate corollary of Lemma 1. 2
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4 A general scheme

With a roadmap in mind, we proceed to the general case. There are six cases to deal with
(three random and three pseudo-random) and they are all variations on the following scheme:
It depends on parameters

r,NX , NY = n−NX , kX , kY , νX =
NX

kX
, νY =

NY

kY
, ε, f0.

that vary with case.

Define

ρ = ρk,` =
ν2`(
n
k

) .
General Scheme:

S1: Choose r random partitions (Xi, Yi), i = 1, 2, . . . r, of [n] into two sets of size NX and NY

respectively.

We use the notation

Xi = {xi,1 < xi,2 < · · · < xi,NX} and Yi = {yi,1 < yi,2 < · · · < yi,NY } .

S2: For each i we let σi be a random permutation of Xi and let τi be a random permutation
of Yi. Form the partition X = (Xi,a, a = 1, 2, . . . , νX) of Xi into sets of size kX and the
partition Y = (Yi,b, b = 1, 2, . . . , νY ) of Yi into sets of size kY . Here

Xi,a =
{
xi,σi((a−1)(k−`)+1), . . . , xi,σi(a(k−`))

}
, Yi,b =

{
yi,τi((b−1)(2`−k)+1), . . . , yi,τi(b(2`−k))

}
.

S3 This part of the scheme is more case specific. Some of the edges E will be represented by
an edge of a graph Gi.

(a) k/2 < ` < k:

kX = k − `, kY = 2`− k, NX = ν`kX , NY = ν`kY .

We say that i is a candidate for E ∈ E if there exist a, b such that E = Xi,a ∪Yi,b ∪
Xi,a+1.

(b) ` = k/2:
NX = n, NY = 0, kX = `, kY = `.

We say that i is a candidate for E ∈ E if there exist a, b such that E = Xi,a ∪Xi,b.

(c) ` = k:
kX = bk/2c , kY = dk/2e , NX = νkkX , NY = νkkY .

We say that i is a candidate for E ∈ E if there exist a, b such that E = Xi,a ∪ Yi,b.

12



S4: Suppose now that for E ∈ E there are f(E) instances i that are a candidate for E. If
f(E) > 0 then we choose one of the f(E) instances at random and label edge E with the
chosen i = ψ(E). f(E) = 0, the edge E stays unlabeled. Let Hi be the subhypergraph
of H formed by the edges of H labeled by i.

We will argue in all cases that

Pr((1− ε)f0 ≤ f(E) ≤ f0, for all E ∈ E) = 1− o(1). (9)

S5: We now describe a graph Gi that is determined by the edges of Hi. This part of the
scheme is also case specific.

(a) k/2 < ` < k: Gi is the bipartite graph with vertex partition Ai ] Bi comprising
disjoint copies of [ν`]. For a ∈ Ai and b ∈ Bi we make (a, b) an edge of Gi if
E = Xi,a ∪ Yi,b ∪Xi,a+1 ∈ E and E is labeled with i.

(b) ` = k/2: Gi is the graph with vertex set [ν`], where a, b ∈ [ν`] are connected by an
edge if Xi,a ∪Xi,b is an edge of H labeled by i.

(c) ` = k: Gi is the bipartite graph with vertex partition Ai ] Bi comprising disjoint
copies of [νk]. For a ∈ Ai and b ∈ Bi we make (a, b) an edge of Gi if E = Xi,a∪Xi,b ∈
E and E is labeled with i.

S6: Let
p0 = p/f0 .

The construction succeeds:

(a) k/2 < ` < k: If for all i, Gi contains (1− ε)ν`p0 edge disjoint perfect matchings.

(b) ` = k/2: If for all i, Gi contains (1− 20ε)rν` edge-disjoint Hamilton cycles.

(c) ` = k: If for all i, Gi contains (1− ε)νkp0 edge disjoint perfect matchings.

We argue now that each matching or cycle in S6(a)− (c) gives rise to a type ` Hamilton cycle
in H. We will argue that these Hamilton cycles are edge disjoint. Then it will be a matter of
checking that the procedure succeeds whp once we have decided on the various parameters
and that most edges of H are covered.

(a) k/2 < ` < k: A perfect matching of Gi can be expressed as a bijection f : Ai → Bi. This
gives us the Hamilton cycle Ea = Xi,a ∪ Yi,f(a) ∪Xi,a+1, a = 1, 2, . . . , ν` of H. If a 6= a′

then Ea 6= Ea′ and an edge E can appear once only in Gψ(E). Thus the Hamilton cycles
produced by the algorithm are edge disjoint.

(b) ` = k/2: A Hamilton cycle of Gi can be expressed as a permutation π of [ν`]. This gives
us the Hamilton cycle Ea = Xi,a ∪Xi,π(a), a = 1, 2, . . . , ν` of H. The argument for Case
(a) shows that the Hamilton cycles produced by the algorithm are edge disjoint.
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(c) ` = k: A perfect matching of Gi gives us the Hamilton cycle Ea = Xi,a ∪ Yi,f(a), a =
1, 2, . . . , ν` of H. The argument for Case (a) shows that the Hamilton cycles produced
by the algorithm are edge disjoint.

We will now go through the six cases of the paper, one by one, showing that with carefully
chosen values of r,NX , kX , kY , ε, f0, the above scheme can be shown to work whp.

We continue with the analysis of H(n, p, k). In this case we only expose the edges of H after
the completion of Step S2.

5 Random hypergraphs

We now provide a proof of the random case (Theorem 2). It is simpler than the proof for
pseudo-random hypergraphs and hopefully will help in the understanding of the proofs of
Theorems 3 and 4.

5.1 k/2 < ` < k

Let

r = nk−2(np)1/2, ε =

(
4(k + 3)k! log n

`(np)1/2

)1/2

, f0 = ρr + (4kρr log n)1/2. (10)

Let also
n0 = (1− ε)νlp0 .

Lemma 4

Pr(Gi does not contain n0 edge-disjoint perfect matchings) = o(n−k).

Proof The edges of Gi appear independently with probability p/f(E) where f(E) has

distribution Bin(r, ρ), ρ = ρk,` =
ν2`

(nk)
. (To see it, for a fixed partition (Xi, Yi) and a fixed pair

of permutations (σi, τi) of Xi, Yi), resp., the index i includes ν2` k-tuples from [n]. Therefore by

symmetry a random i includes a fixed k-tuple E with probability
ν2`

(nk)
.) Now ε2rρ ≥ 4k log n

and so (2) and (3) imply (9).

We have thus reduced our problem to showing that with probability 1 − o(n−k) the ran-
dom bipartite graph Kν`,ν`,p0 contains n0 edge-disjoint perfect matchings. We can use p0 as
probability, because of (9). Applying Lemma 1 gives the desired result. 2
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We have thus shown that whp H(n, p, k) contains at least

(1− ε)rν`p0 =
(1− ε)rν`p

ρk,`r + (4kρk,`r log n)1/2
≥ (1− 2ε)

(
n

k

)
p/ν`

edge disjoint type ` Hamilton cycles. This confirms Theorem 2 for this case.

5.2 ` = k/2

Let

r = ωnk−2ε−2 log n, ε =

(
ω5 log7/2 n

n1/2p4

)1/11

, f0 = ρr + (4kρr log n)1/2

where ρ =
(
ν`
2

)
/
(
n
k

)
.

The distribution of f(E) is Bin(r, ρ) and ε2rρ � log n and so (9) holds by the Chernoff
bounds.

Lemma 5 Each Gi is qs ((1− 2ε)p0, 2εp0)-regular.

Proof Given (9), the degree of vertex v inGi dominatesBin(ν`−1, p0) and so PropertyQa

holds from Chernoff bounds. Observe that ν`p0 = Ω((np)1/2)� log n. Similarly the number of
edges between two sets S, T dominates Bin(|S| |T |, p0) and is dominated by Bin(|S| |T |, (1−
ε)−1p0) and Property Qb also holds from Chernoff bounds. 2

Applying Theorem 1 we see that whp H contains at least

r ((1− 2ε)p0/2− 8εp0) ν` ≥
(
n

k

)
p

ν`
(1− 20ε)

edge-disjoint type k/2 Hamilton cycles, completing the proof of Theorem 2 for this case. (It
is the second inequality in (1) that determines the value of ε here).

5.3 ` = k

Let

r = nk−2(np)1/2, ε = 10k!

(
4(k + 3)k2 log n

k!(np)1/2

)1/2

, f0 = ρr + (4kρr log n)1/2 (11)

where ρ = ρk,k.

It is left to argue that whp eachGi contains at least (1−ε)νkp0 edge-disjoint perfect matchings.
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Lemma 6

Pr(Gi does not contain (1− ε)νkp0 edge-disjoint perfect matchings) = o(n−k).

Proof Equation (9) holds, as in the case k/2 < ` < k. The claim follows again from
Lemma 1. 2

We have thus shown that whp H(n, p, k) contains at least

(1− ε)rνkp0 =
(1− ε)rν`p

ρr + (4kρr log n)1/2
≥ (1− 2ε)

(
n

k

)
p/νk

edge disjoint type k Hamilton cycles. This confirms Theorem 2 for this case.

6 Pseudo-random hypergraphs

In this section we prove Theorems 3, 4 and 5. We follow the same strategy as described in
Section 4. There are complications caused by the notation that we have to add and also by
the fact that H is not random.

6.1 k/2 < ` < k (Theorem 3).

We first choose f0 such that
log2 n

ε4
� f 2

0 �
εn1/2p2

log n
. (12)

We then choose

r =
(

1− ε

2

)(n
k

)
f0
ν2`
.

f(E) is distributed as Bin(r, ρk,`) for each edge of H and the lower bound on f0 together with
the definition of r will then imply that (9) holds.

(The two inequalities in (12) determine our lower bound on ε).

We know from Lemma 2 that if we can prove that the degrees and co-degrees of our bipartite
graphs Gi “behave”, then we can deduce the existence of many disjoint perfect matchings and
so get our packing of Hamilton cycles. Given Lemma 2, all we need to do is to estimate the
degrees and co-degrees of vertices in a fixed Gi.

Lemma 7 Whp, over our random choices of Xi, Yi, σi, τi, each Gi has minimum degree at
least (1− 2ε)ν`p0 and maximum co-degree of at most (1 + 5ε)ν`p

2
0.
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Proof We fix i and focus on Gi. We first show that the minimum degree in Gi is large. We
first fix a ∈ Ai. The vertex a corresponds to the block Xi,a of σi. Condition on Xi,a∪Xi,a+1 = S
for some S ⊂ [n], |S| = 2(k − `). We expose a random subset Yi first. Let Z∗a be the number
of edges E ∈ E such that S ⊂ E and E ∩ Yi = E − S. For each edge E ∈ NH(S)

Pr(E ∩ Yi = E − S) =

(
n−k

NY −(2`−k)

)(
n−2(k−`)

NY

) =
(NY )2`−k

(n− 2(k − `))2`−k
=

(
1 +O

(
1

n

))(
2`− k
`

)2`−k

.

Therefore by assumption Pa,

E(Z∗a) ≥ (1− ε)
(

1 +O

(
1

n

))(
2`− k
`

)2`−k (
n− 2(k − `)

2`− k

)
p .

Since changing the fate of one vertex with respect to the choice of Yi changes the value of Z∗a
by at most

∆a = max
S′∈( [n]

2(k−`)+1)
dH(S ′) ,

and the latter quantity is bounded by (1 + ε)
(

n
2`−k−1

)
p by assumption Pa, we get by the

Azuma-Hoeffding inequality that for any t > 0

Pr(Z∗a ≤ E(Z∗a)− t) ≤ exp

{
− 2t2

n∆2
a

}
. (13)

Here we are using the following inequality: Let Sn denote the set of permutations of [n] and
let f : Sn → < be such that |f(π)− f(π′)| ≤ u whenever π′ is obtained from π by transposing
two elements. Then if π is chosen randomly from Sn then

Pr(f(π)− E(f) ≤ −t) ≤ exp

{
− 2t2

nu2

}
. (14)

For a proof see e.g., Section 3.2 of [19] or Lemma 11 of [12].

In this context, think of choosing a random m-subset of [n] as choosing a random π and then
taking the first m elements as your subset.

Plugging in the estimates on E(Z∗a) and ∆a stated above in (14), we get that qs for every
a ∈ Ai,

Z∗a ≥ (1− ε)
(

1 +O

(
1

n

))(
2`− k
`

)2`−k (
n− 2(k − `)

2`− k

)
p− n2`−k−1/2p log n

≥
(
1− 3

2
ε
)(2`− k

`

)2`−k (
n

2`− k

)
p . (15)

So assume that Yi is chosen so that (15) holds. Now we expose the random permutation τi of
Yi. Let Za be the degree of a in Gi, which is the number of edges E ∈ E such that
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1. E ∩ Yi = E − S (the number of such edges is Z∗a);

2. E ∩ Yi forms a block Yi,b under τi;

3. E is labeled by i (this happens independently and with probability 1/f(E) ≥ 1/f0).

Hence,

E(Za) ≥ Z∗a
ν`(
NY
2`−k

) 1

f0
.

Observe that changing τi by a single transposition changes the value of Za by at most 2 (at
most two blocks Yi,b are affected by such a change). Therefore, applying concentration results
for permutation graphs we get that for any t > 0

Pr(Za ≤ E(Za)− t) ≤ exp

{
− t2

2NY

}
.

Thus qs for every partition i and for every a ∈ Ai, its degree is Gi is at least

(
1− 3

2
ε
)(2`− k

`

)2`−k (
n

2`− k

)
p

ν`(
NY
2`−k

) 1

f0
− n1/2 log n ≥ (1− 2ε)ν`p0 ,

due to our assumption on ε.

The argument for the degrees of the vertices of Bi is quite similar. Fix b ∈ Bi. The vertex b
corresponds to the block Yi,b of τi. Condition on Yi,b = S for some S ⊂ [n], |S| = 2`− k. We
expose a random subset Xi first. Let Z∗b be the number of edges E ∈ E such that S ⊂ E and
E ∩Xi = E − S. For each edge E ∈ NH(S)

Pr(E ∩Xi = E − S) =

(
n−k

NX−2(k−`)

)(
n−(2`−k))

NX

) =
(NX)2k−2`

(n− (2`− k))2k−2`
=

(
1 +O

(
1

n

))(
k − `
`

)2k−2`

.

Therefore by assumption Pa,

E(Z∗b ) ≥ (1− ε)
(

1 +O

(
1

n

))(
k − `
`

)2k−2`(
n− 2`+ k

2(k − `)

)
p .

Since changing the fate of one vertex with respect to the choice of Xi changes the value of Z∗b
by at most

∆b = max
S′∈( [n]

2`−k+1)
dH(S ′) ,

and the latter quantity is bounded by (1 + ε)
(

n
2k−2`−1

)
p by assumption Pa, we get by (14) that

for any t > 0

Pr(Z∗b ≤ E(Z∗b )− t) ≤ exp

{
− 2t2

n∆2
b

}
.
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Plugging in the estimates on E(Z∗b ) and ∆b stated above, we get that qs for every b ∈ Bi,

Z∗b ≥ (1− ε)
(

1 +O

(
1

n

))(
k − `
`

)2k−2`(
n− 2`+ k

2(k − `)

)
p− n2k−2`−1/2p log n

≥
(
1− 3

2
ε
)(k − `

`

)2k−2`(
n

2k − 2`

)
p . (16)

So assume that Xi is chosen so that (16) holds. Now we expose the random permutation σi
of Xi. Let Zb be the degree of b in Gi, which is the number of edges E ∈ E such that

1. E ∩Xi = E \ S (the number of such edges is Z∗b );

2. E ∩Xi forms two consecutive blocks Xi,a, Xi,a+1 under σi;

3. E is labeled by i (this happens independently and with probability 1/f(E) ≥ 1/f0).

Hence,

E(Zb) ≥ Z∗b
ν`(
NX

2k−2`

) 1

f0
.

Observe that changing σi by a single transposition changes the value of Zb by at most 4.
Therefore, applying again concentration results for permutation graphs we get that for any
t > 0

Pr(Zb ≤ E(Zb)− t) ≤ exp

{
− t2

8NX

}
.

Thus qs for every partition i and for every b ∈ Bi, its degree is Gi is at least

(
1− 3

2
ε
)(k − `

`

)2k−2`(
n

2k − 2`

)
p

ν`(
NX

2k−2`

) 1

f0
− n1/2 log n ≥ (1− 2ε)ν`p0 ,

due to our assumption on ε.

Now we treat typical co-degrees in the graph Gi. First fix b1, b2 ∈ Bi and Yi,b1 , Yi,b2 and expose
a random set Xi. Let Z∗b1,b2 be the number of subsets S1 ⊂ [n] of cardinality |S1| = 2(k − `)
such that S1 ⊂ Xi and both S1∪Yi,b1 and S1∪Yi,b2 form an edge in E . By our assumption Pb,

E(Z∗b1,b2) ≤ (1 + ε)

(
k − `
`

)2k−2`(
n− 2(2`− k)

2(k − `)

)
p2 .

Using assumption Pa we see that changing Xi by one element changes Z∗b1,b2 by at most

∆b1,b2 = max
S∈( [n]

2`−k+1)
|NH(S)| ≤ (1 + ε)

(
n

2(k − `)− 1

)
p.
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Applying (14) we see that qs for every b1, b2 ∈ Bi,

Z∗b1,b2 ≤
(

1 +
3

2
ε

)(
k − `
`

)2(k−`)(
n

2(k − `)

)
p2 . (17)

Assume Xi is chosen so that (17) holds. Expose the random permutation σi of Xi. Let Zb1,b2
be the co-degree of b1, b2 in Gi, which is the number of blocks Xi,a of Xi under σi such that
E1 = Xi,a ∪Xi,a+1 ∪ Yi,b1 , E2 = Xi,a ∪Xi,a+1 ∪ Yi,b2 ∈ E , and both edges E1, E2 are labeled by
i. Then, recalling that an edge E ∈ E is labeled by i with probability 1

f(E)
≤ 1(

1− 3
2
ε
)
f0

, we get

E(Zb1,b2) ≤ Z∗b1,b2
ν`(
NX

2k−2`

) 1(
1− 3

2
ε
)2
f 2
0

.

Transposing one pair of elements of σi changes Zb1,b2 by at most 4. Using (14) again, we
obtain that qs for every partition i and every pair b1, b2 ∈ Bi, the co-degree Zb1,b2 of b1, b2 in
Gi satisfies:

Zb1,b2 ≤
(

1 +
3

2
ε

)(
k − `
`

)2k−2`(
n

2k − 2`

)
p2

ν`(
NX

2k−2`

) 1(
1− 3

2
ε
)2
f 2
0

− n1/2 log n

≤ (1 + 5ε)ν`p
2
0 .

Now consider a1, a2 ∈ Ai and Xi,a1 , Xi,a1+1, Xi,b2 , Xi,b2+1 and expose a random set Yi. Let
Z∗a1,a2 be the number of subsets S1 ⊂ [n] of cardinality |S1| = 2` − k such that S1 ⊂ Yi and
both S1 ∪Xi,a1 ∪Xi,a1+1 and S1 ∪Xi,a2 ∪Xi,a2+1 form an edge in E . By our assumption Pb,

E(Z∗a1,a2) ≤ (1 + ε)

(
2`− k
`

)2`−k (
n

2`− k

)
p2 .

Using assumption Pa we see that changing Yi by one element changes Z∗a1,a2 by at most

∆a1,a2 = max
S∈( [n]

2(k−`)+1)
|NH(S)| ≤ (1 + ε)

(
n

2`− k − 1

)
p.

Applying (14) we see that qs for every b1, b2 ∈ Bi,

Z∗a1,a2 ≤
(

1 +
3

2
ε

)(
k − `
`

)2k−2`(
n

2k − 2`

)
p2 . (18)

Assume Yi is chosen so that (18) holds. Expose the random permutation τi of Yi. Let Za1,a2
be the co-degree of a1, a2 in Gi, which is the number of blocks Yi,b of Yi under τi such that
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E1 = Xi,a1 ∪Xi,a1+1∪Yi,b, E2 = Xi,a2 ∪Xi,a2+1∪Yi,b ∈ E , and both edges E1, E2 are labeled by
i. Then, recalling that an edge E ∈ E is labeled by i with probability 1

f(E)
≤ 1(

1− 3
2
ε
)
f0

, we get

E(Za1,a2) ≤ Z∗a1,a2
ν`(
NY
2`−k

) 1(
1− 3

2
ε
)2
f 2
0

.

Transposing one pair of elements of τi changes Za1,a2 by at most 4. Using (14) again, we
obtain that qs for every partition i and every pair a1, a2 ∈ Bi, the co-degree Za1,a2 of a1, a2 in
Gi satisfies:

Za1,a2 ≤
(

1 +
3

2
ε

)(
2`− k
`

)2`−k (
n

2`− k

)
p2

ν`(
NY
2`−k

) 1(
1− 3

2
ε
)2
f 2
0

− n1/2 log n

≤ (1 + 5ε)ν`p
2
0 .

2

We can now apply Lemma 2 below with n = ν`, d = p0, θ = 5ε to show that each Gi contains
at least (1 − (5ε)1/3)ν`p0 ≥ (1 − 2ε1/3)m/rn edge-disjoint perfect matchings. This completes
the proof of Theorem 3 for the case k/2 < ` < k.

6.2 ` = k/2 (Theorem 4).

We first choose f0 such that

log n

ε2
� f0 � ε3/4pn1/8 log1/8 n.

We then choose

r =
(2− ε)

(
n
k

)
f0

ν2`
.

The random variable f(E) is distributed as Bin(r, ρ) where ρ =
(ν`2 )
(nk)

and so with the above

parameter definitions, (9) holds whp.

Lemma 8 Let G be a ν vertex, (p, ε)-regular graph. Suppose that G0 is the random subgraph
of G where each edge e of G is included independently with probability pe, where (1 − ε)p∗ ≤
pe ≤ p∗. Suppose that

ε2νpp∗ � log ν and ε3νpp∗ � log 1/ε.

Then G0 is ((1− 2ε)pp∗, 2εpp∗)-regular, qs.
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Proof The degree of vertex v in G0 dominates Bin(pν, (1 − ε)p∗) and so Property Qa

holds from Chernoff bounds. Similarly the number of edges between two sets S, T dominates
Bin((p− ε)|S| |T |, (1− ε)p∗) and is dominated by Bin((p− ε)|S| |T |, p∗) and Property Qb also
holds from Chernoff bounds. 2

We apply Lemma 8 to each GPi , where Pi is the partition induced by σi. Here p∗ = (1−ε)−1f0.
Now by assumption GPi is (p, ε) regular. It follows that qs, Gi is ((1−3ε)p/f0, 2εp/f0) regular.
Applying Theorem 1 and using the upper constraint on f0 we see that qs each Gi contains
(p(1− 3ε)/2f0 − 8εp/f0)ν` edge disjoint type ` Hamilton cycles. Thus H contains r times as
many edge disjoint Hamilton cycles, verifying this case.

6.3 ` = k (Theorem 5).

Here the aim is to find many edge-disjoint perfect matchings. We first choose f0 such that
(12) holds and then choose

r = (1− ε)
(
n

k

)
f0
ν2k
.

We claim (see Lemmas 2 and 9) that whp each Gi will contain at least

n0 = (1− 2ε1/3)νkp0

edge-disjoint perfect matchings. So H will contain at least rn0 edge-disjoint perfect matchings,
completing the proof of Theorem 5.

Lemma 9 Whp, over our random choices of Xi, Yi, σi, τi, each Gi has minimum degree at
least (1− 2ε)νkp0 and maximum co-degree at most (1 + 5ε)νkp

2
0.

Proof The arguments here are very similar to those in Lemma 7, so we will be rather
brief. We fix i and focus on Gi. We first show that the minimum degree in Gi is large.
For a ∈ Ai, denote by Za its degree in Gi. Then, using assumption Pa and martingale-type
arguments, we can show that

E(Za) ≥
(
1− 3

2
ε
)(kY

k

)kY ( n

kY

)
p

νk(
NY
kY

) 1

f0
.

Using concentration results for permutation graphs again, we derive that qs for every partition
i and every a ∈ Ai, the degree of a in Gi is at least

(
1− 3

2
ε
)(kY

k

)kY ( n

kY

)
p

νk(
NY
kY

) 1

f0
− n1/2 log n ≥ (1− 2ε)νkp0 ,

due to our assumption on ε.
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Let now Zb denote the degree of vertex b ∈ Bi in Gi. We can argue similarly, while invoking
assumption Pa to show that qs for every partition i and every b ∈ Bi,

Zb ≥ (1− 2ε)νkp0 .

Finally, we treat the co-degrees of pairs of vertices in Gi. Let b1, b2 ∈ Bi. Let Zb1,b2 be their
co-degree in Gi. Then using assumption Re and martingale-type concentration arguments, we
can prove that qs for every partition i and every pair of vertices b1, b2 ∈ Bi

Zb1,b2 ≤
(
1 +

3

2
ε
)(kX

k

)kX ( n

kX

)
p2

νk(
NX
kX

) 1(
1− 3

2
ε
)2
f 2
0

− n1/2 log n

≤ (1 + 5ε)νkp
2
0 .

Similarly, if a1, a2 ∈ Ai, let Za1,a2 be their co-degree in Gi. Then using assumption Pb and
martingale-type concentration arguments, we can prove that qs for every partition i and every
pair of vertices a1, a2 ∈ Ai

Za1,a2 ≤
(
1 +

3

2
ε
)(kY

k

)kY ( n

kY

)
p2

νk(
NY
kY

) 1(
1− 3

2
ε
)2
f 2
0

− n1/2 log n

≤ (1 + 5ε)νkp
2
0 .

2

7 Concluding remarks

In this paper we have derived sufficient conditions for packing almost edges of k-uniform
random and pseudo-random hypergraphs into disjoint type ` Hamilton cycles. This appears
to be a first result of this kind for the problem of packing Hamilton cycles in this setting.
There is no reason to believe our assumptions on the edge probability p(n) or the density of
a pseudo-random hypergraph are tight, and it would be quite natural to try and extend them
and to obtain tight(er) bounds.

In the paper [11] we were able to show how to use the results of [9] in a game theoretic setting.
More precisely, we showed how to play a Maker-Breaker type of game on the complete graph
where Maker is able to construct an (1/2−ε, ε)-regular graph, ε = o(1). We could then use the
results of [9] to show that Maker could construct approximately n/4 edge-disjoint Hamilton
cycles when alternately choosing edges against an adversary. The techniques of that paper
can be extended to the hypergraph setting in a straightforward manner.

Acknowledgement. The authors wish to thank the anonymous referees for their helpful
criticism and remarks.

23



References

[1] R. F. Bailey and B. Stevens, Hamiltonian decompostions of complete k-uniform hyper-
graphs, Discrete Mathematics 310 (2010), 3088–3095.

[2] D. Bal and A.M. Frieze, Packing tight Hamilton cycles in uniform hypergraphs, to appear.

[3] Zs. Baranyai, On the factorization of the complete uniform hypergraph, In: Infinite and
finite sets, Vol. I, Colloq. Math. Soc. Janos Bolyai, Vol. 10, North-Holland, Amsterdam,
1975, 91–108.

[4] B. Bollobás, Random graphs, 2nd ed., Vol. 73, Cambridge University Press, Cambridge,
2001.

[5] F. R. K. Chung, R. L. Graham, and R. M. Wilson, Quasi-random graphs, Combinatorica
9 (1989), 345–362.

[6] A. Dudek and A.M. Frieze, Loose Hamilton cycles in random k-uniform hypergraphs,
Electronic Journal of Combinatorics, to appear.

[7] A. Dudek and A.M. Frieze, Tight Hamilton cycles in random uniform hypergraphs, sub-
mitted.

[8] A.M. Frieze, Loose Hamilton cycles in random 3-uniform hypergraphs, Electronic Journal
of Combinatorics 17, N28.

[9] A.M. Frieze and M. Krivelevich, On packing Hamilton cycles in ε-regular graphs, Journal
of Combinatorial Theory Ser. B 94 (2005) 159-172.

[10] A.M. Frieze, M. Krivelevich and P. Loh, Packing tight Hamilton cycles in 3-uniform
hypergraphs, Proceedings of the 22nd Symposium on Discrete Algorithms (SODA’11),
913–932.

[11] A.M. Frieze, M. Krivelevich, O. Pikhurko and T. Szabo, The game of JumbleG, Combi-
natorics, Probability and Computing 14 (2005) 783-794.

[12] A.M. Frieze and B. Pittel, Perfect matchings in random graphs with prescribed minimal
degree, Trends in Mathematics, Birkhauser Verlag, Basel (2004) 95-132.
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[14] S. Janson, T.  Luczak and A. Ruciński, Random graphs, Wiley, New York, 2000.

[15] A. Johansson, J. Kahn and V. Vu, Factors in random graphs, Random Structures and
Algorithms 33 (2008), 1–28.

24
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A Claimed improvement for Theorem 1

The proof in [9] requires

1. ε2n/α� log n and ε3n/α� log(1/ε) for the proof of Lemma 1.

2. αε3 � 1
(n logn)1/2

is needed to verify condition Q2.

With these inequalities, the proof of Theorem 1 of [9] goes through.
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