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Abstract

We consider a random walk on a d-regular graph G where d → ∞ and G satisfies certain
conditions. Our prime example is the d-dimensional hypercube, which has n = 2d vertices. We
explore the likely component structure of the vacant set, i.e. the set of unvisited vertices. Let
Λ(t) be the subgraph induced by the vacant set of the walk at step t. We show that if certain
conditions are satisfied then the graph Λ(t) undergoes a phase transition at around t∗ = n loge d.
Our results are that if t ≤ (1 − ε)t∗ then w.h.p. as the number vertices n → ∞, the size L1(t)
of the largest component satisfies L1 � log n whereas if t ≥ (1 + ε)t∗ then L1(t) = o(log n).

1 Introduction

The problem we consider can be described as follows. We have a finite graph G = (V,E), and a
simple random walk W = Wu on G, starting at u ∈ V . In this walk, if W(t) denotes the position
of the walk after t steps, then W(0) = u and if W(t) = v then W(t+ 1) is equally likely to be any
neighbour of v. We consider the likely component structure of the subgraph Λ(t) induced by the
unvisited vertices of G at step t of the walk.

Initially all vertices V of G are unvisited or vacant. We regard unvisited vertices as colored red.
When Wu visits a vertex, the vertex is re-colored blue. Let Wu(t) denote the position of Wu at
step t. Let Bu(t) = {Wu(0),Wu(1), . . . ,Wu(t)} be the set of blue vertices at the end of step t, and
Ru(t) = V \ Bu(t). Let Λu(t) = G[Ru(t)] be the subgraph of G induced by Ru(t). Initially Λu(0)
is connected, unless u is a cut-vertex. As the walk continues, Λu(t) will shrink to the empty graph
once every vertex has been visited. We wish to determine, as far as possible, the likely evolution
of the component structure as t increases.

For several graph models, it has been shown that the component structure of Λ(t) = Λu(t) undergoes
a phase transition of some sort. In this paper we add results for some new classes of graphs. What
we expect to happen is that there is a time t∗, such that if t ≥ (1 + ε)t∗ then w.h.p. all components
of Λ(t) are “small” and if t ≤ (1− ε)t∗ then w.h.p. Λ(t) contains some “large” components. Here
ε is some arbitrarily small positive constant and the meanings of small, large will be made clear.
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1.1 Previous work

We begin with the paper by Černý, Teixeira and Windisch [3]. They consider a sequence of n-vertex
graphs Gn with the following properties:

A1 Gn is d-regular, 3 ≤ d = O(1).

A2 For any v ∈ V (Gn), there is at most one cycle within distance α logd−1 n of v for some
α ∈ (0, 1).

A3 The second eigenvalue λ2 of the random walk transition matrix satisfies λ2 ≤ 1− β for some
constant β ∈ (0, 1).

Let

t∗ =
d(d− 1) log(d− 1)

(d− 2)2
n. (1)

In which case, it is shown in [3] that for t ≤ (1− ε)t∗ there is w.h.p. a unique giant component in
Λ(t) of size Ω(n) and other components are all of size o(n). Furthermore, if t ≥ (1 + ε)t∗ then all
components of Λ(t) are of size O(log n).

The most natural class of graphs which satisfy A1,A2,A3 w.h.p. are random d-regular graphs,
3 ≤ d = O(1). For this class of graphs Cooper and Frieze [9] tightened the above results in the
following ways. (i) they established the asymptotic size of the giant component for t ≤ (1 − ε)t∗,
and proved all other components have size O(log n); (ii) they proved almost all small components
are trees, and gave a detailed census of the number of trees of sizes O(log n). Subsequent to this
work, Černy and Teixeira [4] built on the methodology of [9] and analysed the component structure
at time t∗ itself. More recently, for random d-regular graphs, 3 ≤ d = O(1), Cooper and Frieze
[10] determined the phase transition for a related structure, the vacant net, which by analogy with
vacant set, they define as the subgraph induced by the unvisited edges of the graph G. Initially all
edges are unvisited. The random walk visits an edge by making a transition using the edge.

In the paper [9], Cooper and Frieze also considered the class of Erdős-Reńyi random graphs Gn,p
with edge probabilities p above the connectivity threshold p = log n/n. For Gn,p where p =
c log n/n, (c − 1) log n → ∞, they established that Λ(t) undergoes a phase transition around t∗ =
n log logn. For these graphs, at t−ε = (1 − ε)t∗ the size L1 of the largest component cannot be
Ω(n) since the vacant set has size |R(tε)| = o(n) w.h.p. On the other hand it was shown that
L1 = Ω(|R(tε)|) w.h.p. More recently, Wassmer [16] found the phase transition in Λ(t) when the
underlying graph is the giant component of Gn,p, p = c/n, c > 1.

There has also been a considerable amount of research on the d-dimensional grid Zd and the d-
dimensional torus (Z/nZ)d. Here the results are less precise. Benjamini and Sznitman [2] and
Windisch [17] investigated the structure of the vacant set of a random walk on a d-dimensional
torus. The main focus of this work is to apply the method of random interlacements. For toroidal
grids of dimension d ≥ 5, it is shown that there is a value t+(d), linear in n, above which the vacant
set is sub-critical, and a value of t−(d) below which the graph is super-critical. It is believed that
there is a phase transition for d ≥ 3. A recent monograph by Černy and Teixeira [5] summarizes
the random interlacement methodology. The monograph also gives details for the vacant set of
random r-regular graphs.
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1.2 New results

In this note we consider certain types of d-regular graphs with n vertices, where d → ∞ with n.
Our main example of interest is the hypercube Qd which has n = 2d vertices. The vertex set of the
hypercube is sequences {0, 1}d where two sequences are defined as adjacent iff they differ in exactly
one coordinate. In order to be slightly more general, we identify those properties of the hypercube
that underpin our results.

Given certain properties (listed below), we can show that w.h.p. the graph Λ(t) exhibits a change in
component structure at around the time t∗ = n log d which is asymptotically equal to the expression
in (1). We show that if t ≤ t−ε = (1− ε)t∗ then w.h.p. there are components in Λ(t) of size much
larger than logn, whereas if t ≥ tε = (1 + ε)t∗ then all components of Λ(t) are of size o(log n).

We use the notation Pr(Wx(t) = y) and P tx(y) for the probability that a ergodic random walk
starting from vertex x is at vertex y at step t. If t is sufficiently large, so that the walk is very
close to stationarity and the starting point x is arbitrary, we may also use the simplified notation
Pr(W(t) = y). Let πv = d(v)/2m to denote the stationary probability of vertex v, where m = |E|
is the number of edges of the graph G and d(v) is the degree of v. For regular graphs, πv = 1/n.
The rate of convergence of the walk is given by

|P tx(y)− πy| ≤ (πy/πx)1/2λt, (2)

where λ = max(λ2, |λn|) is the second largest eigenvalue of the transition matrix in absolute value.
See for example, Lovasz [15] Theorem 5.1.

The hypercube Qd is bipartite, and a simple random walk does not have a stationary distribution
on bipartite graphs. To overcome this, we replace the simple random walk by a lazy walk, in which
at each step there is a 1/2 probability of staying put. Let NG(v) denote the neighbours of v in G,
and dG(v) = |NG(v)|. The lazy walk W has transition probabilities given by

P (v, w) =


1
2 w = v

1
2dG(v) w ∈ NG(v)

0 Otherwise

.

We can obtain the underlying simple random walk, which we refer to as the speedy walk, by ignoring
the steps when the particle does not move. For large t, asymptotically half of the steps in the lazy
walk will not result in a change of vertex. Therefore w.h.p. properties of the speedy walk after
approximately t steps can be obtained from properties of the lazy walk after approximately 2t steps.
Unless explicitly stated otherwise, all future discussions and proofs refer to the lazy walk which we
will denote by W.

The effect of making the walk lazy is to shift the eigenvalues of the simple random walk upwards
so that, for the lazy walk λ = λ2. For a lazy walk we define a mixing time T , such that for all
vertices x, y

T = min
t≥1

{
t :

∣∣∣∣P tx(y)− 1

n

∣∣∣∣ ≤ 1

n3

}
. (3)

For the lazy walk, the spectral gap is 1−λ, so using this in (2), property P1 (defined below) implies
that we can take T = O(dρ1 log n) in (3). Note that we will always assume there is a lower bound
on T given by

T ≥ K log n, (4)

for some large K > 0.
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The graph properties we assume for our analysis

Let G = (V,E) be a graph with vertex set V and edge set E. For S ⊂ V , define NG(S) =
{w ∈ V \ S : ∃v ∈ S s.t. {v, w} ∈ E}.

We assume that the graph G = (V,E) is d-regular, connected, and has the properties P1–P4 listed
below. The bounds in properties P2–P4 are parameterised by the ε used to define t±ε for the
vacant set. We will point out later where we use these bounds, so that the reader can see their
relevance.

P1 The spectral gap for the lazy walk is Ω(1/dρ1) for some constant 0 < ρ1 ≤ 3. This implies that
we can take T = O(dρ1 log n) in (3), (see [14], Chapter 12).

P2 (log log n)2/ε � d = O
(

n
logn

)1/5
.

P3 For u, v ∈ V , the graph distance distG(u, v) is the length of the shortest path from u to v in G.
Let ν(u, v) be the number of neighbours w of v for which distG(w, u) ≤ distG(u, v). Then for
all u, v such that distG(u, v) ≤ dε, there exists an ρ2 = O(1), such that ν(u, v) ≤ ρ2 distG(u, v).

P4 For S ⊆ V , let e(S) denote the number of edges induced by S. If |S| = o (log n), then
e(S) = o(d|S|).

Properties P1–P4 are various measures of expansion. Our results for the structure of the vacant
set Λ(t) based on these properties are as follows.

Theorem 1 Let ε = ε(n) be a function such that ε � 1/ log d. Let t∗ = n log d and let t±ε =
(1± ε)t∗. Let L1(t) denote the size of the largest component in Λ(t). At step t of the speedy walk,
the following results for L1(t) hold.

(a) If G satisfies P1, P2, P3, P4, and t ≤ t−ε then w.h.p. L1(t) ≥ eΩ(dε/2).
Note that dε/2 can be replaced by dγε for any constant 0 < γ < 1.

(b) If G satisfies P1, P2, P3, and t ≥ t+ε then w.h.p. L1(t) = o(log n).

We next give examples of graphs which satisfy Theorem 1(a),(b). Random regular graphs with
degree d satisfying P2 can be shown to satisfy properties P1, P3, P4 w.h.p. The hypercube Qd
satisfies P1–P4. This can be shown as follows. Property P1 is satisfied with ρ1 = 1, as the spectral
gap for the lazy walk is 2/d (see [14] page 162). As d = log2 n, P2 is clearly satisfied. For P3,
without loss of generality, let v = (0, 0, . . . , 0) and let u = (1, 1, . . . , 1, 0, . . . , 0) (k 1’s) be vertices
of Qd. There are exactly ν(u, v) = k neighbours w of v which satisfy distG(u,w) ≤ distG(u, v), so
we can take ρ2 = 1. For P4 we can use the edge isoperimetric inequality of Hart [12] which states
that the number of edges between S and V −S is at least s(d− log2 s), where |S| = s. This implies
that S induces at most (s/2) log2 s edges. If s = o(d) then e(S) ≤ (s/2) log2 s = o(ds).
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2 The main tools for our proofs

Given a graph G and random walk W, let T be the mixing time given in (3). For a vertex v, let
Rv = Rv(G) denote the expected number of visits to v by the walk Wv within T steps. Thus

Rv =
T∑
k=0

P kv (v). (5)

Note that, as P 0
v (v) = 1, Rv ≥ 1.

Our main tool is a lemma (Lemma 1) that we have found very useful in analysing the cover time
of various classes of random graphs. A more general form of Lemma 1 which originally appeared
in [6], and simplified in [7] required a certain technical condition to be satisfied. It was shown in
[8] that provided Rv = O(1) for all v ∈ V , this condition is always true. For graphs which satisfy
P2 and P3, it follows that Rv = 2 + O(1/d) = O(1) as required. We will prove this in Lemma 6.
The probabilities given in Lemma 1 and Corollary 2 are with respect to a random walk on a fixed
graph G.

Lemma 1 (First visit lemma) Let v ∈ V be such that Rv = O(1), Tπv = o(1) and Tπv =
Ω(n−2). Let

ft(u, v) = Pr(t = min {τ > T :Wu(τ) = v})
be the probability that the first visit to v after time T occurs at step t.

There exists
pv =

πv
Rv(1 +O(Tπv))

, (6)

and constant K > 0 such that for any u ∈ V , and all t ≥ T ,

ft(u, v) = (1 +O(Tπv))
pv

(1 + pv)t+1
+O(Tπve

−t/KT ). (7)

2

Corollary 2 For t ≥ T let Av(t) be the event that Wu does not visit v at steps T, T + 1, . . . , t.
Then, under the assumptions of Lemma 1,

Pr(Av(t)) =
(1 +O(Tπv))

(1 + pv)t
+O(T 2πve

−t/KT ). (8)

The result (8) follows by adding up (7) for s > t. 2

Remark 3 Let K > 0 as in (7) and let L be given by

L = 2KT log n. (9)

Provided pv = o(1/T ) and t ≥ L then, as pv = O(πv), the bounds (7) and (8) can be written as

ft(u, v) = (1 +O(Tπv)) pv e
−tpv(1+O(pv))

and
Pr(Av(t)) = (1 +O(Tπv)) e

−tpv(1+O(pv))

respectively. For the graphs we consider πv = 1/n. From P1, T = O(dρ1 log n) and from P2,
d = O(n/ log n)1/4. Thus for ρ1 ≤ 3, pv = o(1/T ) as required.
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Contraction lemma

Let H = (V (H), E(H)) be given. Let S be a subset of vertices of H. In order to estimate the
probability of a first visit to a set S of vertices, we proceed as follows. Contract S to a single
vertex γ(S). This forms a multi-graph Γ = Γ(H,S) = (V ′, E′) in which the set S is replaced by
γ = γ(S). The edges of H, including loops and multiple edges formed by contraction, are retained.
For (v, w) ∈ E(H) the equivalent edge in E′ is given as follows. If v, w 6∈ S then (v, w) ∈ E′,
whereas if v ∈ S,w 6∈ S then (γ,w) ∈ E′. For the case v, w ∈ S replace (v, w) ∈ E by (γ, γ) ∈ E′.
It follows that |E′| = |E(H)|, so that πγ = πS =

∑
v∈S πv.

Note that if T is a mixing time for W in H, then T is a mixing time for the walk in Γ. It is proved
in [1, Ch. 3], Corollary 27, that if a subset S of vertices is contracted to a single vertex, then the
second eigenvalue of the transition matrix cannot increase. Thus λ2(H) ≥ λ2(Γ). We used the
second eigenvalue λ2(H) = λ of the lazy walk in (2) to obtain the mixing time bound T in (3).
Thus T is also a mixing time bound for (3) in Γ. For WH

u , u ∈ S, the equivalent walk in Γ is WΓ
γ .

If we apply Lemma 1 to γ in Γ, the probability of a first visit to S in H can be found (up to an
additive error of O(|S|/n3) from the probability of a first visit to γ in Γ. This is proved next.

Lemma 4 [7] Let H = (V (H), E(H)), let S ⊆ V (H), let γ(S) be vertex obtained by the contraction
of S. Let V ′ = V − S + γ, and let Γ(H,S) = (V ′, E′). Let WH

u be a random walk in H starting at
u 6∈ S, and let WΓ

u be a random walk in Γ. Let T be a mixing time satisfying (3) in both H and Γ.

For graphs G = H,Γ, let AGw(t) be the event that in graph G, no visit was made to w at any step
T ≤ s ≤ t. Then

Pr(∩v∈S AHv (t)) = Pr(AΓ
γ (t)) +O(|S|/n3).

For graphs G = H,Γ, let EGw (t) be the event that in graph G, the first visit to w after time T occurs
at step t, (i.e. t = min

{
τ > T :WG(τ) = w

}
). Then

Pr(∪v∈S EHv (t)) = Pr(EΓ
γ (t)) +O(|S|/n3).

Proof

Note that |E(H)| = |E′| = m, say. Let Wx(j) (resp. Xx(j)) be the position of walk Wx = WH
x

(resp. Xx =WΓ
x ) at step j. For graphs G = H,Γ, let P su(x;G) be the s step transition probability

for the corresponding walk to go from u to x in G.

Pr(AΓ
γ (t)) =

∑
x 6=γ

P Tu (x; Γ)Pr(Xx(s− T ) 6= γ, T ≤ s ≤ t; Γ) (10)

=
∑
x 6=γ

(
d(x)

2m
+O

(
1/n3

))
Pr(Xx(s− T ) 6= γ, T ≤ s ≤ t; Γ) (11)

=
∑
x6∈S

(
P Tu (x;H) +O

(
1/n3

))
Pr(Wx(s− T ) 6∈ S, T ≤ s ≤ t;H) (12)

=
∑
x 6∈S

[Pr(Wu(T ) = x)Pr(Wx(s− T ) 6∈ S, T ≤ s ≤ t;H) +O(1/n3)]

= Pr(Wu(t) 6∈ S, T ≤ s ≤ t;H) +O(|S|/n3)

= Pr(∩v∈S AHv (t)) +O(|S|/n3). (13)
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In (10), if AΓ
γ (t) occurs then Xu(T ) 6= γ. Given Xu(T ) = x, by the Markov property Xu(s) is

equivalent to the walk Xx(s − T ). After T steps, the walk Xu on Γ is close to stationarity. We
use (3) to approximate P Tu (x; Γ) by πx = d(x)/2m = 1/n in (11). The second factor in equation
(12) follows because there is a natural measure preserving map φ between walks in H that start at
x 6∈ S and avoid S, and walks in Γ that start at x 6= γ and avoid γ.

The proof argument for EΓ
γ (t) is identical to that for AΓ

γ (t). 2

We use Lemma 4 throughout the rest of this paper. Indeed most of the proofs rely on contracting
some set of vertices S to a vertex γ(S). In this case, although a different graph Γ, and different
walk X are used to estimate the probability, provided

|S|
n3

= o(Pr(AΓ
γ (t))),

the probability estimate we obtain for the walk W in the base graph H is correct. It follows from
(2) and (3) that by increasing the mixing time T by a constant factor we can, if necessary, reduce
the error term |S|/n3 to |S|/nc for any c > 0.

Visits to sets of vertices

Given the walk made a first visit to set of vertices S, we need the probability this first visit was to
a given v ∈ S.

Lemma 5 Let S = {v1, ..., vk} be a set of vertices of a regular graph G, such that the assumptions
of Lemma 1 hold in G for all v ∈ S, and also for γ(S) in Γ(G). For t ≥ T , let Ev = Ev(t) be the
event that the first visit to v after time T occurs at step t, (i.e. t = min {τ > T :W(τ) = v}), and
let ES = ∪v∈SEv. Suppose t ≥ 2(T + L) where L = 2KT log n, where K > 0 is some suitably large
constant. Let pw be as defined by (6), (7) in Lemma 1 for the walk on G. Then for v ∈ S

Pr(Ev | ES) ≤ pv
pγ(S)

(1 +O(LπS). (14)

Proof It is enough to prove the lemma for S = {u, v}, i.e. for two vertices, as vertex u can
always be a contraction of a set. Specifically, if |S| > 2 let u = γ(S \ {v}).

Write t as t = T + s + T + L, where s ≥ L. Let Au be the event that W(t) = u, but that
W(σ) 6∈ {u, v} for σ ∈ [T, s + T − 1], and that W(σ) 6= u for σ ∈ [s + 2T, t − 1]. Contract S to
γ = γ(S) and apply Corollary 2 and Lemma 4 to γ in [T, T + s− 1]. The probability of no visit to
S is (1 +O(TπS))/(1 + pγ)s. Next, apply Lemma 1 to u in [s+ 2T, t] = [t− L, t]. The probability
of a first visit to u at L is (1 +O(Tπu))pu/(1 + pu)L. Thus

Pr(Au) ≤ (1 +O(TπS))pu/((1 + pγ)s (1 + pu)L). (15)

Let Bu be the event that W(t) = u but W(σ) 6∈ {u, v} for σ ∈ [T, t − 1]. Then Bu ⊆ Au and so
Pr(Bu) ≤ Pr(Au). By contracting S we have that the probability of a first visit to γ (and hence
S) at step t is

Pr(Bu ∪ Bv) = (1 +O(TπS))pγ/(1 + pγ)t.

As ES = Bu ∪ Bv, the upper bound follows from

Pr(Ev | ES) =
Pr(Bv)

Pr(Bu ∪ Bv)
≤ Pr(Av)

Pr(Bu ∪ Bv)
=
pv
pγ

(1 +O(LπS)).

2
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3 Proof of Theorem 1(a)

To apply the lemmas of the previous section we will need to estimate Rv as given by (5).

Lemma 6 If P1, P2, P3 hold, then in the lazy walk, for any v ∈ V

(i)

Rv = 2 +
2

d
+O

(
1

d2

)
.

(ii) Suppose W(0) is at distance at least 2 from v (resp. at least 3 from v). The probability W
visits N(v) within L = O(T log n) steps is P (2, L) = O(1/d) (resp. P (3, L) = O(1/d2)).

(iii) Let C ⊆ N(v). For a walk starting from u ∈ C, let RC denote the expected number of returns
to C during T . Then RC = 2 +O (1/d).

Proof Proof of (i). We write

Rv = 1 +
T∑
k=1

1

2k
+
T−1∑
k=0

1

2k

∑
w∈NG(v)

1

2d
R(w, T − k − 1),

where for w ∈ NG(v), R(w, τ) is the expected number of visits to v in τ steps by Ww.

For a lower bound, let Rv(t) be the expected number of returns to v in t steps and let Rv = Rv(T )
as usual. Then

R(w, τ) ≥
τ−1∑
j=0

1

2j
1

2d
Rv(T − τ) =

Rv(T − τ)

d

(
1− 1

2τ

)
.

This is the probability that for τ − 1 steps the walk loops at vertex w, and then moves to v, giving
Rv(T − τ) expected returns to v. In t ≥ T/2 steps P tv(v) = (1/n)(1 + o(1)) (see (2), (3)). Thus if
τ ≤ T/2, Rv(T − τ) = Rv −O(T/n), and

Rv ≥ 2− 1

2T+1
+ (Rv −O(T/n))

1

2d

T/2∑
k=0

1

2k

(
1− 1

2T−k−1

)
.

Assuming T ≥ K log n (see (4)) it follows that T2−T = O(d−2). Thus

Rv ≥ 2 +
2

d
+O(1/d2)−O(T/2T )−O(T/nd) = 2 +

2

d
+O(1/d2)

We next prove we can bound R(w, T ) from above by

R(w, T ) ≤ Rv
(

1

d
+O

(
1

d2

))
. (16)

Let N i
G(v) be the set of vertices at distance i from v in G, let NG(v) = N1

G(v), and let R∗i =
maxw∈N i

G(v)R(w, T ). By definition R(w, T ) ≤ R∗1 for all w ∈ NG(v) and

R∗1 ≤
∑
j≥0

(
1

2
+
ρ2

2d

)j 1

2d
Rv +

∑
j≥0

(
1

2
+

2ρ2

2d

)j 1

2d
R∗1 +R∗3. (17)
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The first summation term counts the case that for some number of steps the walk loops at a vertex
of NG(v), or moves around in NG(v), which by P3 has probability at most ρ2/2d. At some point,
the walk either moves to v, giving a Rv expected returns, or moves to N2

G(v). In the latter case,
the second term counts moves back to NG(v), and the third term moves to N3

G(v), giving the R∗3
upper bound.

We next show that R∗3 = O(1/d2). To do this we couple the walk on G starting from v, and
up to graph distance ρ3, with a biassed random walk on the line {0, 1, . . . , ρ3}, with reflecting
barriers at 0, ρ3. Once the walk on G has reached graph distance ρ3, it either moves back towards
v immediately or at some future step t < T , in which case we continue the coupling from distance
ρ3 − 1; or it stays at distance at least ρ3 until step T in which case there are no further returns to
v during T steps. To provide an upper bound R∗3, we make a worst case analysis where we assume
that, on reaching distance ρ3 the walk immediately moves back towards v and this is repeated T
times.

Let X be random walk on {0, 1, . . . , ρ3}, with reflecting barriers at 0, ρ3, and transition probabilities
for X (i) for 0 < i < ρ3 given by

X (i+ 1) =


X (i)− 1 Probability q = ρ2ρ3

d

X (i) Probability r = 1
2

X (i) + 1 Probability p = 1
2 −

ρ2ρ3
d

.

Starting W =Wz from z ∈ N3
G(v) is equivalent to starting X = X3 from j = 3. We couple Wz and

X3 so that X3 is always as close to 0 as Wz is to v. Let u =Wz(t). If dist(v, u) ≥ ρ3 then we hold
X3 at ρ3 until Wz moves back to graph distance ρ3− 1. Provided ρ3 ≤ dε and dist(v, u) ≤ ρ3, then
referring to P3, ν(v, u) ≤ ρ2ρ3. Thus the probability that Wz(t) moves towards v is at most the
probability that X moves towards 0.

For a random walk on 0, 1, . . . , ` starting from j = 0, 1, 2, . . . , ` and with probabilities p, q, r of mov-
ing right or left, or looping respectively, it follows from XIV(2.4) of Feller [11] that the probability
πj of the walk visiting 0 before visiting ` is

πj =
ξj − ξ`

1− ξ`
≤ 2ξj (18)

where ξ = q/p. Thus for X as given above, ξ = ρ2`/(d− 2ρ2`), where ` = ρ3.

To finish the proof of (i), we choose ` = ρ3 =
⌈
dδ
⌉
, for some ε/2 < δ < ε. The probability π3 that

X reaches 0 before ρ3 is O(1/d3−3δ) = O(1/d2). Once the walk X has reached ` = ρ3, we restart it
at ρ3 − 1. As explained above, to make a worst case assumption, we repeat this process T times.
The probability X reaches to the origin before a return to ρ3 is given by πρ3−1 = O(ξρ3−1). From
P1, T = O(dρ1 log n), and we find

R∗3 ≤ Tπρ3−1 + π3 = O(log n dρ1+1−ρ3(1−δ)) +O(1/d2) = O(1/d2).

For the last inequality, we used δ > ε/2 and P2 to give

dδ ≥ (log log n)2δ/ε > log logn.

Proof of (ii). Let C = {v} ∪N(v). The property P3 holds in G for any vertex at distance ` ≤ dε

from v. Because moving closer to C implies moving closer to v, a vertex within distance ` of v
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has at most ρ2` neighbours closer to C. Thus the probability of a transition from N2
G(v) to C is

at most 2ρ2/d. If the walk starts at distance 2 from v, it either loops or moves within N2
G(v), or,

conditional on making a transition away from N2
G(v), with probability O(2ρ2/d) it moves to C, and

with probability 1−O(1/d) moves to N3
G(v).

To complete the proof we use the same coupling argument as the proof of (i). Assume the walk
starts at a distance 3 from v. We define a graph ΓC obtained from G by contracting the vertices
in C to a single vertex γC . As explained before Lemma 4, we can still use the same mixing time
T . If we replace v by γC , we can still use the coupling with the random walk X on {0, 1, ..., ρ3}.
As moving closer to γC means moving closer to v, choosing ρ3 = bdεc − 1, it follows from P3
as outlined above that the transition probabilities are correct. By the argument of part (i), the
walk next moves to γC with probability at most π2 = O(1/d2) and to a distance ρ3 from γC with
probability 1 − O(1/d2). After this we use the argument of (i) as before. In conclusion, for a set
C ⊆ N(v) and a walk which moves away from C to a distance 2 from v, (resp. distance 3 from v)
the probability of a return to {v} ∪N(v) within L steps is O(1/d) (resp. O(1/d2)).

Proof of (iii). Let C ⊆ {v} ∪N(v). Contract C to γC as above. We claim that RγC = 2 + O
(

1
d

)
.

The 2 comes from the loop at each vertex and a factor of O(ρ2/d) comes from possible loops at γC
arising from G-edges inside C. If the walk moves to N2

G(v), then by (ii) the probability of a return
to C is O(1/d). 2

Analysis for t ≤ t−ε

Recall that t−ε = (1− ε)n log d. Let U denote the set of vertices unvisited by the lazy walk in the
time interval [1, 2t−ε] and let U0 denote the set of vertices unvisited by the lazy walk in the time
interval [T, 2t−ε]. Note that |U0 \ U | ≤ T . Given Lemma 7 below holds, using P1, P2 it follows
that T = o(|U0|) and thus |U | = (1− o(1))|U0|.

Lemma 7 w.h.p.

|U0| ∼
n

d1−ε .

Proof Fix a vertex v. Corollary 2 and Remark 3 tell us that

Pr(v ∈ U0) =

(
1 +O

(
T

n

))
exp

{
−2t−ε
nRv

+O

(
t−ε
n2

)}
+O(e−Ω(t−ε/T )). (19)

By Lemma 6, Rv = 2 + 2
d +O

(
1
d2

)
. This gives Pr(v ∈ U0) ∼ d1−ε and thus

E |U0| ∼
n

d1−ε .

Now consider a pair of vertices v, w at distance 5 or more in G. Let Γvw be obtained from G by
contracting v, w to a single vertex γvw. Referring to Lemma 4 we have

Pr(v, w ∈ U0) = Pr(AΓ
γvw(2t−ε)) +O(1/n3). (20)

Working in Γvw, it follows more or less verbatim by using the arguments of Lemma 6(i) that
Rγvw = 2 + 2

d +O
(

1
d2

)
. As v, w are sufficiently far apart, only minor modifications are needed for

the analysis of X . Thus
2

Rγvw
=

(
1 +O

(
1

d2

))(
1

Rv
+

1

Rw

)
. (21)
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Similarly to (19), from Corollary 2 and Remark 3, with πγvw = 2/n, and pγvw = (1+O(T/n)) 2/(nRγvw)
we find that

Pr(AΓ
γvw(2t−ε)) =

(
1 +O

(
T

n

))
exp

{
− 2

Rγvw

2t−ε
n

+O

(
t−ε
n2

)}
+O(e−Ω(t−ε/T )). (22)

Using t−ε = (1− ε)n log d in (22) it follows from (20) and (21) that

Pr(v, w ∈ U0) =

(
1 +O

(
log d

d2

))
Pr(v ∈ U0)Pr(w ∈ U0) +O(1/n3). (23)

We prove concentration using Chebychev’s inequality. This states that for a random variable X
with finite mean µ and variance σ2, then for k > 0,

Pr(|X − µ| ≥ k) ≤ σ2/k2.

Let Xvw be the indicator for v, w ∈ U0. Let S be the set of pairs of vertices at distance at least 5,
and let S′ be the set of distinct pairs at distance at most 4. Then

E |U0|2 = E |U0|+
∑

(v,w)∈S

EXvw +
∑

(v,w)∈S′
EXvw

≤ E |U0|+
(

1 +O

(
log d

d2

))
E |U0|2 +O(d4 E |U0|).

The second term on the second line follows from (23). The third term uses the observation that
there are O(d4) vertices at distance at most 4 from a given v ∈ U0. Thus

Var(|U0|) = O(d4 E |U0|) +O

(
log d

d2
E |U0|2

)
.

From P2 we have that d4 = o(E |U0|). Thus for some ω tending to infinity

Pr

(
||U0| −E |U0|| ≤

E |U0|√
ω

)
≤ O

(
ω log d

d2

)
+O

(
ωd4

E |U0|

)
= o(1).

2

Lemma 8 A vertex is bad if it has fewer than dε/2 neighbours in U . Let B denote the set of bad
vertices. Then w.h.p. |B| ≤ ne−dε/10.

Proof Fix a vertex v and denote NG(v) by W = {w1, w2, . . . , wd}. Let X = |W ∩ U |. In the
proof of Lemma 7 we showed that for a given vertex x, Pr(x ∈ U) = p̃ ∼ d−(1−ε). Thus EX ∼ dε

and if X was distributed as Bin(d, p̃) then it would follow from Hoeffding’s inequality that

Pr

(
X ≤ 1

2
dε
)
≤ e−Ω(dε). (24)

The bound (24) is our target. We establish it is true, in spite ofX not having a binomial distribution.
For S ⊆ W , let AS = {W ∩ U = W \ S}, i.e. exactly the vertices S of W are visited by the walk.
So,

Pr

(
X ≤ 1

2
dε
)

=
d∑

D=d−dε/2

∑
S⊆W
|S|=D

Pr(AS). (25)
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If AS occurs then there is a sequence of times t = (t0 = 1 ≤ t1 < t2 · · · < tD ≤ tD+1 = 2t−ε) and
a bijection f : S → [D] such that for x ∈ S there is a first visit to wx at time tf(x). Let B(S, t)
denote this event. For a sequence t, let Φ(t) = {i : |ti+1 − ti| ≤ L}, where L = 2KT log n is given
by (9). Let Th = {t : |Φ(t)| = h} |. For h ≥ 0, let

Sh =
∑
t∈Th

Pr(B(S, t)).

Then,

Pr(AS) ≤
D∑
h=0

Sh. (26)

The main content of the proof of this lemma will be to establish that

Pr(AS) = O(1)
(
e−2pt−ε

)(d−D) (
1− e−2pt−ε

)D
. (27)

Given (25) and (27) we see that

Pr

(
X ≤ 1

2
dε
)

= O(1)
∑

D≥d−dε/2

(
d

D

)(
e−2pt−ε

)(d−D) (
1− e−2pt−ε

)D
.

The expected value of Bin(d, e−2pt−ε) is dε(1 + o(1)), so from the Hoeffding inequality,

Pr

(
X ≤ 1

2
dε
)

= O
(
e−d

ε/8
)
.

Thus the expected number of bad vertices is

E |B| = O
(
n e−d

ε/8
)
,

and the lemma follows from the Markov inequality.

Proof of (27). We begin with S0. Our upper bound for S0 will contain some terms that should
properly be assigned to some Sh, h > 0, but this is allowable as we proving an upper bound. We
repeat this warning below. Let

p =
1(

2 +O
(

1
d

))
n
, (28)

then we have

S0 ≤ D!
∑

t1<t2···<tD

(
D∏
i=1

(1 +O(T/n))p

(1 + (d− i+ 1)p)ti−ti−1
+ o(e−Ω(

ti−ti−1
T )

)

×
(

1 +O(Td/n)

(1 + (d−D)p)2t−ε−tD
+ o(e−Ω(

t−ε−tD
T )

)
. (29)

Proof of (29). Assume for the moment that S = {w1, . . . , wD} and that f(wi) = i for i =
1, 2, . . . , D. Let Ai = {wi, wi+1, . . . , wD} for i = 1, 2, . . . , D. We assign times t1, t2, . . . , tD to S in
D! ways. Now consider a term

Ψi =
(1 +O(T/n))p

(1 + (d− i+ 1)p)ti−ti−1
+ o(e−Ω((ti−ti−1)/T )). (30)
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We claim this is an upper bound for the probability that there were no visits to wi, . . . , wd during
[ti−1 +T, ti−1] followed by a first visit to wi at ti. If so, it is also an upper bound for the probability
there is no visit to wi, . . . , wd during [ti−1 +1, ti−1] followed by a visit to wi at ti. This bound hold
regardless of the first ti−1 steps of the walk. In fact this bound allows for visits to wi, wi+1, . . . , wd
during the time interval [ti−1 + 1, ti−1 + T − 1]. This is allowable as Ψi is an upper bound. Thus
some terms properly attributed to Sh, h > 0 are overcounted.

To prove (30), define a graph ΓAi obtained from G by contracting the vertices in Ai to a single
vertex γAi . The mixing time T does not increase, as explained above Lemma 4. By Lemma 1, the
probability a first visit to γAi in [ti−1 + T, ti] occurs at tt can be written as (d− i+ 1)Ψi. Given a
first visit has been made to Ai, we need to upper bound the probability of the event Ev that this
first visit was made to a given v ∈ Ai. Lemma 5 gives the answer as

Pr(Ev | EAi) ≤
pv
pγAi

(1 +O(Ld/n)) = (1 +O(1/d))
1

d− i+ 1
.

To obtain the right hand side above, we used πγ(Ai) = (1 + O(Td/n))(d − i + 1)/n and Rv, Rγ =
2 +O(1/d),which follows directly from Lemma 6(i),(iii). This establishes (30).

The final term in (29), given by 1+O(Td/n)

(1+(d−D)p)2t−ε−tD
+ o(e−Ω((t−ε−tD)/T )) bounds the probability that

the vertices in {wD+1, . . . , wd} are not visited in the interval [tD, 2t−ε]. This follows directly from
Corollary 2.

End of proof of (29).

The next step is to evaluate (29). Considering (30), the term p

(1+(d−i+1)p)ti−ti−1
= Ω((1/n)e(ti−ti−1)/n),

whereas the term o(e−Ω((ti−ti−1)/T ) = o(e(ti−ti−1)/T ). As ti − ti−1 ≥ L = KT log n the latter term
can be absorbed into the O(d−1) in the definition of p. Furthermore,

1

1 + (d− i+ 1)p
= exp

{
−(d− i+ 1)p+O

(
d2

n2

)}
.

Noting that
D+1∑
i=1

(d− i+ 1)(ti − ti−1) = (d−D)tD+1 + (t1 + · · ·+ tD),

we can write

S0 ≤ 2D!pD
∑

t1<t2···<tD

exp

{
−p

D+1∑
i=1

(d− i+ 1)(ti − ti−1)

}

= 2D!pDe−2(d−D)pt−ε
∑

t1<t2···<tD

exp

{
−p

D∑
i=1

ti

}

≤ 2e−2(d−D)pt−ε

(
p

2t−ε∑
t=1

e−pt

)D

≤ 3e−2(d−D)pt−ε

(
p

∫ 2t−ε

t=0
e−ptdt

)D
= 3e−2(d−D)pt−ε(1− e−2pt−ε)D. (31)
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We next show that S1, S2. . . . , SD are not much larger in total than S0.

We say a visit to vertex u is T -distinct, if it occurs at least T steps after a previous T -distinct visit,
or from the start of the walk. Thus if W(t) = u, and this visit is T -distinct, the next T -distinct
visit to u will be at the first step s ≥ t+ T such that W(s) = u. Once a T -distinct visit has taken
place, several secondary visits to the vertex u may occur within the next T − 1 steps, and thus
before the next T -distinct visit. We will consider such secondary visits separately in our proof.

We consider the case ti − ti−1 ≤ L in two parts, namely ti − ti−1 < T , and T ≤ ti − ti−1 ≤ L.
The first case is for secondary visits, and the second case close (together) visits. These require a
separate analysis.

Given t = (t1, . . . , tD) for arbitrary D ≤ d, let Z ≥ D−k be an upper bound on the total number of
secondary visits to W = N(v) occurring as a result of k ≤ D first visits to W which are T -distinct.
Let N2(v) denote the set of vertices at distance 2 from v. Then

Z(t) = N1 + · · ·+Nk

where Ni are the number of secondary visits to W = N(v) (i.e. returns to W via {v} ∪ N2(v))
which occur during [ti, ti + T ], i = 1, ..., k.

The values of Ni are independent and geometrically distributed with failure probability O(1/d).
From W = N(v) the particle moves to {v}∪N(v) with probability O(1/d), (this follows from P3).
Otherwise the particle moves to distance 2 away from v with probability 1 − O(1/d), and we can
use the value of P (2, T ) = O(1/d) from Lemma 6(ii). For any D ≤ d, the probability P̂ (`) of at
least ` secondary visits is

P̂ (`) =

(
D + `− 1

`

)(
O(1)

d

)`
≤
(
O(1)D

`d

)`
≤
(
O(1)

`

)`
= e−Θ(εdε log d),

on choosing ` = dε/100. Provided ε � 1/ log d, the probability of at least dε/100 secondary visits
to W is o(e−d

ε
).

We next consider close together visits. For convenience, replace D by D′ = D − Z i.e. remove any
entries in t corresponding to secondary visits. Let h count those T -distinct first visits which are
close together i.e. T ≤ ti − ti−1 ≤ L. After t ≥ T steps, the distribution of the walk is close to
stationary, so the probability that the walk is within distance 2 of vertex v is O(d2/n). If the walk
is at least distance 3 from v, by Lemma 6(ii) the probability of a visit to W = N(v) in L steps is at
most P (3, L) = O(1/d2). It follows that, independently of any previous ones, each close visit has
probability O(d2/n) +O(1/d2) = O(1/d2), assuming d = o(n1/4) (see P2).

To bound Sh we note that the remaining k = D − h first visits are ‘well spaced’ i.e. L ≤ ti − ti−1.
There are

(
D−1
h

)
ways to assign the h ‘close together’ events to the k = D − h ‘well spaced’ ones.

To do so, we choose an allocation n1, n2, . . . , nk ≥ 0 such that n1 + n2 + · · ·+ nk = h.

Note that S0 = S0(D) so changing D to D − h, for h ≥ 1, from (31) we have

Sh(D) ≤ S0(D − h)

(
D − 1

h

)(
O(1)

d2

)h
≤ S0(D)

(
e2pt−ε

1− e−2pt−ε

)h(
O(D)

hd2

)h
≤ S0(D)

(
O(d−ε)

h

)h
.

(32)
The value of p is from (28), and t−ε = (1 − ε)n log d. Inequality (32), along with (31) completes
the proof of (27), and the lemma follows. 2
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We can now easily show that w.h.p. at time 2t−ε, there is a component of size much larger than
log n.

Lemma 9 W.h.p. the graph induced by unvisited vertices contains a component of size at least
eΩ(dε/2).

Proof Let n0 = n

5(ed1−ε/2)d
ε/2

d1−ε
. We begin by greedily choosing v1, v2, . . . , vn0 ∈ U such that

vi, vj are at distance greater than dε/2. This is easily done, because there are 1 +
(
d
1

)
+
(
d
2

)
+ · · ·+(

d
dε/2

)
< 2

(
d

dε/2

)
≤ 2(ed1−ε/2)d

ε/2
vertices within distance dε/2 of any given vertex. Having chosen

v1, v2, . . . , vk, k ≤ n0, there will w.h.p. be at least n
2d1−ε − 2k(ed1−ε/2)d

ε/2
> 0 choices for vk+1. For

each i let Vi denote the set of vertices within distance dε/2 of vi. The Vi are disjoint and so from
Lemma 8 there are w.h.p. at least n0 − ne−d

ε/10 > 0 indices i such that Vi ∩B = ∅.

Choose i such that Vi ∩B = ∅. From vi we can do breadth first search, but only including vertices
in U . If Lr denotes the rth level of this search where L0 = {vi} then we see that |Lr+1| ≥ dε|Lr|

2ρ2(r+1) .
Thus Vi contains a component of size at least

dε/2/2∑
i=0

(
dε/2

i

)
1

(2ρ2)i
= eΩ(dε/2).

2

4 Proof of Theorem 1(b)

Let

s =
2 log n

ε log d
= o(log n).

We will show that w.h.p. there is no component of size s or more at time t ≥ 2t+ε in Γ(t), with
respect to the lazy walk.

Lemma 10 For v ∈ V there are at most (ed)s−1 sets S such that (i) v ∈ S, (ii) |S| = s and (iii)
G[S] is connected.

Proof The number of such sets is bounded by the number of distinct s-vertex trees which are
rooted at v. This in turn is bounded by the number of distinct d-ary rooted trees with s vertices.
This is equal to

(
ds
s

)
/((d− 1)s+ 1), see Knuth [13]. 2

We fix a set S of size s that induces a connected subgraph of G. To estimate the probability that
S is unvisited at time t ≥ 2t+ε we contract S to a vertex γS as in the proofs of Lemmas 7 and 8.
We need to estimate the probability that γS is unvisited by a lazy random walk on the associated
graph ΓS during the time interval [T, 2t+ε]. For this we need to prove

Lemma 11 RγS = 2 + o(1).

Proof Let e(S) denote the number of edges contained in S. It follows from P4 that e(S) =
o(ds). This means that γS has degree ds, of which o(ds) comes from loops associated with internal
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edges of S. It then follows that when the walk on ΓS is at γS then it leaves γS with probability
1
2 − o(1). It is then straightforward to use the argument of Lemma 6 to finish the proof of the
lemma. 2

Using Lemma 10 and Lemma 11 we see that if pγ = (1+o(1))s
2 then

Pr(there exists a component of size s) ≤ n(ed)s−1

(
1 +O(Ts/n))

(1 + pγ)2t+ε
+O(T 2se−Ω(t+ε/T ))

)
≤ 2n(ed · e−(1−o(1))(1+ε) log d)s

≤ 2nd−2εs/3 = o(1).

2
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