
An almost linear time algorithm for finding Hamilton cycles in

sparse random graphs with minimum degree at least three.

Alan Frieze∗ and Simi Haber
Department of Mathematical Sciences,

Carnegie Mellon University,
Pittsburgh PA15217.

December 20, 2013

Abstract

We describe an algorithm for finding Hamilton cycles in random graphs. Our model is the random
graph G = Gδ≥3

n,m. In this model G is drawn uniformly from graphs with vertex set [n], m edges and
minimum degree at least three. We focus on the case where m = cn for constant c. If c is sufficiently
large then our algorithm runs in O(n1+o(1)) time and succeeds w.h.p.

1 Introduction

The threshold for the existence of Hamilton cycles in random graphs has been known very precisely for
some time, Komlós and Szemerédi [15], Bollobás [4], Ajtai, Komlós and Szemerédi [1]. Computationally,
the Hamilton cycle problem is one of the original NP-complete problems described in the paper of Karp
[13]. On the other hand Angluin and Valiant [2] were the first to show that the Hamilton cycle problem
could be solved efficiently on random graphs. The algorithm in [2] is randomised and very fast, O(n log2 n)
time, but requires Kn log n random edges for sufficiently large K > 0. Bollobás, Fenner and Frieze [7] gave
a deterministic polynomial time algorithm that works w.h.p. at the exact threshold for Hamiltonicity, it is
shown to run in O(n3+o(1)) time.
The challenge therefore is to find efficient algorithms for graphs with a linear number of edges. Here we have
to make some extra assumptions because a random graph with cn edges is very unlikely to be Hamiltonian.
It will have isolated vertices. It is natural therefore to consider models of random graphs with a linear
number of edges and minimum degree δ at least two. In fact minimum degree three is required to avoid the
event of having three vertices of degree two having a common neighbor. For example, in the case of random
r-regular graphs, r = O(1) ≥ 3, Robinson and Wormald [18], [19] settled the existence question and Frieze,
Jerrum, Molloy, Robinson and Wormald [11] gave a polynomial time algorithm for finding a Hamilton cycle.
The running time of this algorithm was not given explicitly, but it is certainly Ω(n3).
We will work on a model where the assumption is that δ ≥ 3 as opposed to all vertices having degree exactly
three. It is tempting to think that existence results for the regular case r = 3 will help. Unfortunately, this
is not true. The proof for the regular case breaks if there is significant variance in the vertex degrees. The

∗Research supported in part by NSF Grant CCF2013110

1

model we consider here, the random graph Gδ≥3
n,m is uniformly sampled from the set Gδ≥3

n,m of graphs with
vertex set [n], m edges and minimum degree at least three. A quite natural model for studying Hamilton
cycles in sparse random graphs.
Frieze [9] gave an O(n3+o(1)) time algorithm for finding large cycles in sparse random graphs and this can
be adapted to find Hamilton cycles in Gδ≥3

n,cn in this time for sufficiently large c. The paper [10] gives an

algorithm that reduces this to n1.5+o(1) for c ≥ 10. The main aim of this paper is to construct an almost
linear time algorithm for this model, but only with the assumption of larger c.

Theorem 1.1. If c is sufficiently large then our algorithm finds a Hamilton cycle in Gδ≥3
n,m, m = cn, and

runs in O(n1+o(1)) time and succeeds w.h.p.

Remark 1.1. The no(1) term here is (log n)O(log logn) which is tantalisingly close to best possible(?) logO(1) n.

2 Outline of the paper

The paper [8] gave an efficient algorithm for finding the maximum matching in a sparse random graph. Its
approach was to (i) use the simple greedy algorithm of Karp and Sipser [14] and then (ii) augment it to a
maximum matching using alternating paths. In this paper we replace the Karp-Sipser algorithm with the
algorithm 2greedy that w.h.p. finds a 2-matching in G = Gδ≥3

n,m with O(log n) components and we replace
alternating paths with extensions and rotations. (A 2-matching is a spanning subgraph of maximum degree
at most two).
In Section 3 we will describe our algorithm. We will describe it in two subsections. We will describe 2greedy
for finding a good 2-matchingM in detail in Section 3.1. In Section 3.2 we will describe an algorithm extend-
rotate that uses extensions and rotations to convert M into a Hamilton cycle. In Section 4 we discuss some
“residual randomness” left over by 2greedy. In Section 5 we prove some structural properties of Gδ≥3

n,m. In
Section 6 we prove some properties relating the output of 2greedy to the execution of extend-rotate.
In Section 7 we do a final calculation to finish the proof. In Section 8 we point to our difficulties in proving
n logO(1) n and in Section 9 we make some final remarks.

3 Algorithm

As already stated, there are two phases to the algorithm. First we find a good 2-matching M and then we
convert it to a Hamilton cycle. We look first at how we find M .

3.1 Algorithm 2greedy

We greedily and randomly choose edges to add to M . Edges of M are deleted from the graph. We let
b(v) ∈ {0, 1, 2} denote the degree of v in M . Once b(v) = 2 its incident edges are no longer considered
for selection. The vertex itself is deleted from the graph. Thus the graph from which we select edges will
shrink as the algorithm progresses. We will use Γ to denote the current subgraph from which edges are to
be selected. When there are vertices v of degree 2 − b(v) (or less) in Γ, we take care to choose an edge
incident with such a vertex. Our observation being that there is a maximum cardinality 2-matching of Γ
that contains such an edge.
If every vertex v of Γ had degree at least 3 − b(v) then we choose an edge randomly from edges that are
incident with vertices v that have b(v) = 0. In this way, we quickly arrive at a stage where every vertex of Γ

2

has b(v) = 1. At this point we use the algorithm of [8] to find a (near) perfect matching M∗, which we add
to M to create our final 2-matching.
We describe 2greedy in enough detail to make some of its claimed properties meaningful. We let

• µ be the number of edges in Γ,

• Yk = {v ∈ [n] : dΓ(v) = k and b(v) = 0}, k = 0, 1, 2,

• Zk = {v ∈ [n] : dΓ(v) = k and b(v) = 1}, k = 0, 1,

• Y = {v ∈ [n] : dΓ(v) ≥ 3 and b(v) = 0},

• Z = {v ∈ [n] : dΓ(v) ≥ 2 and b(v) = 1},

• M is the set of edges in the current 2-matching.

Note that V (Γ) = [n] \ (Y0 ∪ Z0) and that b(v) ∈ {0, 1} for v ∈ V (Γ).
We will assume that the input to our algorithm is an ordered sequence σm = (e1, e2, . . . , em) where m = cn.
Here Em = {e1, e2, . . . , em} are the edges of Gδ≥3

n,m and σm is a random ordering of Em. Once these orderings
are given, the vertices and edges are processed in a deterministic fashion. Thus for example, if 2greedy
requires a random edge with some property, then it is required to take the first available edge in the given
ordering.
We now give details of the steps of

Algorithm 2greedy:
Step 1(a) Y1 6= ∅

Choose v ∈ Y1. We choose v by finding the first edge in the ordering σ that contains a member of Y1.
Suppose that its neighbour in Γ is w. We delete the edge (v, w) from Γ add (v, w) to M and move v
to Z0.

(i) If w is currently in Y then move it to Z. If it is currently in Y1 then move it to Z0. If it is
currently in Y2 then move it to Z1. Call this re-assigning w.

(ii) If b(w) = 1 then we move w to Z0 and make the requisite changes due to the loss of other edges
incident with w. In this case w is no longer a vertex of Γ. Call this tidying up.

Step 1(b): Y1 = ∅ and Y2 6= ∅
Choose v ∈ Y2. We choose v by finding the first edge in the ordering σ that contains a member of Y2.
Suppose that its neighbours in Γ are w1, w2.

We choose one of the neighbors at random, say w1. We move v to Z1. We delete the edge (v, w1) from
Γ and place it into M . In addition,

(i) If b(w1) = 0 then put b(w1) = 1. Re-assign w1 i.e. if wi ∈ Yk then move it to Zk−1.

(ii) If b(w1) = 1 then we delete w1 from Γ. Tidy up.

Step 1(c): Y1 = Y2 = ∅ and Z1 6= ∅
Choose v ∈ Z1. We choose v by finding the first edge in the ordering σ that contains a member of Z1.
Let u be the other endpoint of the path P of M that contains v. Let w be the unique neighbour of v
in Γ. We delete v from Γ and add the edge (v, w) to M . In addition there are two cases.

(1) If b(w) = 0 then we re-assign w.

3

(2) If b(w) = 1 then we delete vertex w and tidy up.

Step 2: Y1 = Y2 = Z1 = ∅ and Y 6= ∅
Choose the first edge (v, w) ∈ E(Γ) in the order σ incident with a vertex v ∈ Y . We delete the edge
(v, w) from Γ and add it to M . We move v from Y to Z. There are two cases.

(i) If b(w) = 0 then move w from Y to Z.

(ii) If b(w) = 1 then we delete vertex w and tidy up.

Step 3: Y1 = Y2 = Z1 = Y = ∅
At this point Γ will be distributed as Gδ≥2

ν,µ for some ν, µ where µ = O(ν). As such, it contains a (near)
perfect matching M∗ [12] and it can be found in O(ν) expected time [8]. This step comprises

Step 3a Apply the Karp-Sipser algorithm to Γ. W.h.p. this results in the construction of a matching M∗1
that covers all but O(ν1/5+o(1)) vertices U = {u1, u2, . . . , u`}.

Step 3b Now find augmenting paths from u2i−1 to u2i for i ≤ `/2. This produces the matching M∗.

The output of 2greedy is set of edges M ←M ∪M∗.

3.2 Extension-Rotation Algorithm

We now describe an algorithm, extend-rotate that w.h.p. converts M into a Hamilton cycle. The main
idea is that of a rotation. Given a path P = (u1, u2, . . . , uk) and an edge e = (uk, ui) where i ≤ k− 2 we say
that the path P ′ = (u1, . . . , ui, uk, uk−1, . . . , ui+1) is obtained from P by a rotation. u1 is the fixed endpoint
of this rotation. We say that e is the inserted edge.
Given a path P with endpoints a, b we define a restricted rotation search RRS(ν) as follows: We start by
doing a sequence of rotations with a as the fixed endpoint. Furthermore

R1 We do these rotations in “breadth first manner”, described in detail in Section 6.

R2 We stop this process when we have either (i) created ν endpoints or (ii) we have found a path Q with
an endpoint that has a neighbor w outside of Q. The path Q + w will be longer than P . We say that
we have found an extension.

Let END(a) be the set of endpoints, other than a, produced by this procedure. Assuming that we did not
find an extension and having constructed END(a), we take each x ∈ END(a) in turn and starting with the
path Px that we have found from a to x, we carry out R1,R2 above with x as the fixed endpoint and either
find an extension or create a set of ν paths with x as one endpoint and the other endpoints comprising a set
END(x) of size ν.
Algorithm extend-rotate

Step ER1 Let K1,K2, . . . ,Kr be the components of M where |K1| = max {|Kj | : j ∈ [r]}. If K1 is a path
then we let P0 = K1, otherwise we let P0 = K1 \ {e} where e is any edge of K1.

Step ER2 Let P be the component of the current 2-matching M that contains P0. If P is not a cycle, go
directly to ER3. If P is a Hamilton cycle we are done. Otherwise there is a vertex u ∈ P and
a vertex v /∈ P such that f = (u, v) is an edge of G, assuming that G is connected, see Lemma
6.3. Let Q be the component containing v. By deleting an edge of P incident to u and (possibly)
an edge of Q incident with v and adding f we create a new path of length at least |P | + 1 with
vertex set equal to V (P) ∪ V (Q). Rename this path P .

4

Step ER3 Carry out RSS(ν) until either an extension is found or we have constructed ν endpoint sets.

Case a: We find an extension. Suppose that we construct a path Q with endpoints x, y such
that y has a neighbour z /∈ Q.

(i) If z lies in a cycle C then let R be a path obtained from C by deleting one of the edges
of C incident with z. Let now P = x,Q, y, z,R and go to Step ER2.

(ii) If z = uj lies on a path R = (u1, u2, . . . , uk) where the numbering is chosen so that
j ≥ k/2 then we let P = x,Q, y, z, uj−1, . . . , u1 and go to Step ER2.

Case b: If there is no extension then we search for an edge f = (p, q) such that p ∈ END(a) and
q ∈ END(p). If there is no such edge then the algorithm fails. If there is such an edge we
let Q be the corresponding path from p to q. We replace P in our 2-matching by the cycle
Q+ f and go to ER2.

3.3 Execution Time of the algorithm

The expected running time of 2greedy is O(n) and w.h.p. it completes in O(n) time with a 2-matching M
with at most K1 log n components for some constant K1 > 0. This follows from the results of [8] and [10].
To bound the execution time of extend-rotate we first observe that it follows from [2] that RSS(ν) can
be carried out in O(ν2 log n) time. We will take

ν = n1/2+ε

where

ε =
K(log log n)2

log n
(1)

where K is a sufficiently large positive constant.
We now bound the number of executions of RSS(ν). Each time we execute Step ER3, we either reduce the
number of components by one or we halve the size of one of the components not on the current path. So if
the component sizes of M are n1, n2, . . . , nκ then the number of executions of Step ER3 can be bounded by

κ+

κ∑
i=1

log2 ni = O(log2 n).

So the total execution time is w.h.p. of order

n+ (n1/2+O(ε))2 log2 n = O(n1+O(ε)).

This clearly suffices for Theorem 1.1.
We will now turn to discuss the probability that our algorithm succeeds after we have described 2greedy.
We remind the reader that the analysis assumes that c is sufficiently large.

4 Residual Randomness

Let G be a graph with an ordering of its edges and consider a run of 2GREEDYon that graph. At every
point of time each vertex is in one of the sets Y0, Z0, Y1, Y2, Z1, Y and Z as defined above.

5

We let the set of vertices that were removed from the graph while in Z be denoted by R. We call them
“regular vertices”. These vertices are removed from Γ in the execution of a Step 1 or Step 2 of 2greedy
and they are internal vertices of paths of M at the start of Step 3.
For a vertex v let tv be the time(=step number) at which 2greedy deletes v from Γ. Vertices w that are
not deleted before the start of Step 3 are given tw = ∞. A vertex is early if tv ≤ n1−ε and late otherwise.
An edge ei is punctual if i ≤ (1− α)m and tardy otherwise, where α is a small positive constant.
When a vertex v ∈ R gets matching degree two we take the incident non-matching edge e with the lowest
index in σ to be its Z-witness. The fact that v ∈ Z just before this happens implies that e exists. We let W
denote the set of Z-witnesses. We next define two sets R0 and Λ0:
We let

R0 = {v ∈ R : v is early and the Z-witness of v is punctual} .
and

Λ0 =
{
v : v has punctual degree at least three in Γ(n1−ε)

}
where Γ(t) is the graph Γ after t steps of 2greedy. The punctual degree of a vertex is the number of punctual
edges incident to it.
We may now state and prove the main lemma of this section.

Lemma 4.1. In what follows R0,Λ0 are defined with respect to G and an ordering of its edges. Let e = {x, y}
be a tardy edge of G where x ∈ R0 and y ∈ Λ0. Let G′ be the graph obtained from G by deleting e. Assume that
running 2greedy on G up until Step 3 gives a 2-matching M and a witness set W and running 2greedy
on G′ up until Step 3 gives M ′,W ′, R′0 and Λ′0. Then M = M ′,W = W ′, R0 = R′0 and Λ0 = Λ′0.

Proof We claim that up to time tx, 2greedy will delete the same vertices and edges from Γ(t) and
Γ(t)′ and then delete x from both. After this the two graphs will coincide. We do this by induction on t.
This is clearly true for t = 0 and assume that Γ(t) and Γ(t)′ differ only in e and t < tx. Consider the edge
(v, w) chosen by 2greedy. We have x /∈ {v, w} since t < tx. We cannot have y ∈ {v, w} at time t because
y ∈ Λ0 and so it will have degree at least three at this point, in both Γ(t) and Γ(t)′.
Note that the induction hypothesis implies that the sets Y0, Y1, . . . , Z are the same in Γ(t),Γ(t)′. Indeed,
deleting e can only affect the status of x or y. This cannot affect the status of x because e comes after the
Z-witness for x. Deleting e does not affect the status of y because e is tardy and y has punctual degree at
least three at time t. Because the sets Y0, Y1, . . . , Z are unchanged, the choice of step is the same in Γ(t)
and Γ(t)′.
Because e is tardy, deleting it cannot affect the punctual degree of any vertex and so Λ0 is unchanged. We
have argued that its deletion does not affect whether or not a vertex is early and it cannot affect punctual
Z-witnesses and so R0 remains unchanged. �

Remark 4.1. Suppose that ei = (v, w) and that (i) v ∈ R0, (ii) w ∈ Λ0 and (iii) ei is tardy. Then replacing
ei by (v′, w′) such that (i) v′ ∈ R0 and (ii) w′ ∈ Λ0 results in the the same output M,W .
The net effect of this is that if we condition on all edges except for the tardy edges between R0 and Λ0 then
the unconditioned tardy R0 : Λ0 edges are uniformly random. This is what we mean by there being residual
randomness.

5 Degree Sequence of Gδ≥3
n,m

The degrees of the vertices in G are distributed as truncated Poisson random variables Po(λ;≥ 3), see for
example [3]. More precisely we can generate the degree sequence by taking random variables Z1, Z2, . . . , Zn

6

where

P(Zi = k) =
λk

k!f3(λ)
for i = 1, 2, . . . , n and k ≥ 3, (2)

where fj(λ) = eλ −
∑j−1
k=0

λk

k! for j ≥ 0. (f0(λ) = eλ).
Then we condition on Z1 + Z2 + · · ·Zn = 2m. The resulting Z1, Z2, . . . , Zn can be taken to have the same
distribution as the degrees of G. This follows from Lemma 4 of [3]. If we choose λ so that

E(Po(λ;≥ 3)) =
2m

n
or

λf2(λ)

f3(λ)
=

2m

n

then the conditional probability, P(Z1 +Z2 + · · ·Zn = 2m) = Ω(1/
√
n) and so we will have to pay a factor of

O(
√
n) for removing the conditioning i.e. to use the simple inequality P(A | B) ≤ P(A)/P(B). (This factor

O(n1/2) can be removed but it will not be necessary to do this here).
When c is large we find that λ is close to c. To make this precise we have

Lemma 5.1. If c is sufficiently large, then λ ≥ 2c− 1.

Proof We have

λ

2c
= 1− λ2

2f2(λ)

≥ 1− c2

2(2c− λ)f1(c)
.

Here we have used the convexity of f2 and the fact that f ′2 = f1.
So if λ < 2c− 1 then

1− 1

2c
≥ 1− c2

2f1(c)

which is a contradiction for large c. �
The maximum degree ∆ in G is less than log n q.s.1 and equation (7) of [3] enables us to claim that that if
νk, 2 ≤ k ≤ log n is the number of vertices of degree k then q.s.∣∣∣∣νk − nλke−λ

k!f3(λ)

∣∣∣∣ ≤ K1

(
1 +

√
nλke−λ/(k!f3(λ))

)
log n, 2 ≤ k ≤ log n. (3)

for some constant K1 > 0.
In particular, this implies that if the degrees of the vertices in G are d1, d2, . . . , dn then q.s.

n∑
i=1

di(di − 1) = O(n). (4)

Given the degree sequence we make our computations in the configuration model, see Bollobás [5]. Let
d = (d1, d2, . . . , dn) be a sequence of non-negative integers with m = cn. Let W = [2cn] be our set of points
and let Wi = [d1 + · · · + di−1 + 1, d1 + · · · + di], i ∈ [n], partition W . The function φ : W → [n] is defined
by w ∈ Wφ(w). Given a pairing F (i.e. a partition of W into m = cn pairs) we obtain a (multi-)graph GF

1A sequence of events, En occurs quite surely (q.s.) if P(¬En) = o(n−C) for any C > 0.

7

with vertex set [n] and an edge (φ(u), φ(v)) for each {u, v} ∈ F . Choosing a pairing F uniformly at random
from among all possible pairings of the points of W produces a random (multi-)graph GF .
This model is valuable because of the following easily proven fact: Suppose G ∈ Gn,d, the set of (simple)
graphs with vertex set [n] and degree sequence d. Then

P(GF = G | GF is simple) =
1

|Gn,d|
.

It follows that if G is chosen randomly from Gn,d, then for any graph property P

P(G ∈ P) ≤ P(GF ∈ P)

P(GF is simple)
. (5)

Furthermore, applying Lemmas 4.4 and 4.5 of McKay [17] we see that if the degree sequence of G satisfies
(4) then P(GF is simple) = Ω(1). In which case the configuration model can substitute for Gn,d (and hence
Gδ≥3
n,m) in dealing with events of probability o(n−1/2).

Lemma 5.2. W.h.p.

(a) Gδ≥3
n,m contains no set S ⊆ [n], 3 ≤ s = |S| ≤ s0 = 1

5 logc n such that S contains at least s+ 1 edges.

(b) Let W1 denote the set of vertices v that are within distance `0 = 2 log log n of a cycle of length at most
2`0 in Gδ≥3

n,m. Then w.h.p. |W1| ≤ n1/2 log7`0 n.

(c) W.h.p. there does not exist a connected subset of Kc log n ≤ s ≤ n3/5 vertices that contain s/10 vertices
of degree at most 30. Here Kc is some sufficiently large constant.

Proof (a) The expected number of sets S containing |S|+ 1 edges can be bounded by

O(n1/2)

s0∑
s=3

∑
|S|=s

∑
D≥3s

∑
d1+···+ds=D
d1,...,ds≥3

s∏
i=1

λdi

f3(λ)di!

(
D

s+ 1

)(
D

cn− 2s

)s+1

≤ (6)

O(n1/2)

s0∑
s=3

∑
|S|=s

∑
D≥3s

(
De

s+ 1

)s+1(
D

cn− 2s

)s+1
λDsD

D!f3(λ)s
. (7)

Explanation: For (6) we choose a set of size s with vertices of degree d1, d2, . . . , ds ≥ 3 and d1+· · ·+ds = D.

The term
∏s
i=1

λdi

f3(λ)di!
(modulo O(n1/2)) accounts for the probability of these degrees. We then choose

s+ 1 configuration points and bound from above the probability that they are all paired with other points

associated with s by
(

D
cn−2s

)s+1

. We use
∑
d1+···+ds=D

∏s
i=1

1
di!

= sD

D! to get (7).

Continuing we observe that (D/cs)2s+2 ≤
(
1 + 3

c

)D
for D ≥ 3s. This is clearly true for D ≤ cs and follows

by induction on D ≥ cs. Therefore,∑
D≥3s

D2s+2λDsD

D!
≤ (cs)2s+2

∑
D≥3s

((λ+ 3)s)D

D!
≤ (cs)2s+2e(λ+3)s.

Plugging this into (7) and using (s+ 1)(cn− 2s) ≥ scn for s ≤ s0 we get a bound of

O(n1/2)

s0∑
s=3

∑
|S|=s

ces

n

(
ceseλ+3

nf3(λ)

)s

8

≤O
(cs

n1/2

) s0∑
s=3

(ne
s

)s(ceseλ+3

nf3(λ)

)s
≤O

(cs

n1/2

) s0∑
s=3

(
ceλ+5

f3(λ)

)s
≤O

(cs

n1/2

) s0∑
s=3

(2ce5)s (8)

=o(1).

To obtain (8) we use the fact that c large implies that λ is large and then eλ ≤ 2f3(λ).
(b)

E(|W1|) ≤ O(n1/2)
∑

k≤`0,`≤2`0

(
n

k + `

)
(k + `)!`

(
∆2

2m− 6`0

)k+`

≤ O(n1/2)`20 log6`0 n.

Explanation: We choose the k + ` vertices in the path plus cycle and then order them in at most (k + `)!

ways and then choose a place to close the cycle in at most ` ways. The factor
(

∆2

2m−6`0

)k+`

bounds the

probability that the edges exist (in the configuration model).
(We remind the reader that it is possible to remove the O(n1/2) factor here. This would be worth doing if
we could reduce ε to O(log log n/ log n). This should become apparent in the proof of Lemma 6.8, equation
(37)).
Part (b) follows from the Markov inequality.
(c) For a fixed s, the probability such a set exists can be bounded by

O(n1/2)
∑
|S|=s

(
s

s/10

) ∑
D≥3s

∑
d1+···+ds=D

3≤di, i∈[s]
di≤30, i∈[s/10]

s∏
i=1

λdi

di!f3(λ)

(
D

s− 1

)(
D

cn

)s−1

.

Explanation: We choose a set S and we let the degrees in S be d1, d2, . . . , ds where D is the total degree.
Since the induced subgraph is connected, it must contain a spanning tree. We weaken this to it must contain
s− 1 edges.

(
D
s−1

)
enumerates the lower numbered points of the edges and then Ds−1 enumerates the other

possible endpoints and then
(

1
cn−2s

)s−1

= 1+o(1)
(cn)s−1 bounds the probability the selected pairs exist.

We bound this by

O(n1/2)

(
n

s

)(
s

s/10

) ∑
D≥3s

(
D

s

)(
D

cn

)s−1

f3(λ)−s[xD]

(
30∑
i=3

λixi

i!

)s/10

f3(λx)9s/10 (9)

≤ O(n3/2)
(e
s

)s
(10e)s/10

∑
D≥3s

(
De

s

)s(
D

c

)s−1
1

f3(λ)s(1 + ξ)D

(
30∑
i=3

λi(1 + ξ)i

i!

)s/10

f3(λ(1 + ξ))9s/10

(10)

for any positive ξ.

9

Explanation: The coefficient of xD in g(x) =
(∑30

i=3
λixi

i!

)s/10

f3(λx)9s/10 is
∑

d1+···+ds=D
3≤di, i∈[s]

di≤30, i∈[s/10]

s∏
i=1

λdi

di!
. This

is the explanation for (9). To get (10) we use the usual approximations plus [xD]g(x) ≤ g(ζ)/ζD for any
positive ζ. We use ζ = 1 + ξ.
Now if λ is large then f3(λ) ≥ eλ/2. Also, f3(λ(1 + ξ)) ≤ eλ(1+ξ). Furthermore,

30∑
i=3

λi(1 + ξ)i

i!
≤ 2

λ30e30ξ

30!
≤ 2

(
λe1+ξ

30

)30

.

We will take ξ to be small but fixed. Then the bound becomes

O(n3/2)(10e)s/10

(
e2

cs2

)s
2se9λξs/10

eλs/10

(
2

(
λe1+ξ

30

)30
)s/10 ∑

D≥3s

D2s−1

(1 + ξ)D
.

We argue next that there exists C = C(ξ) such that∑
D≥3s

D2s−1

(1 + ξ)D
≤ (Cs)2s. (11)

Indeed, D2s−1/(1 + ξ)D is log-concave as a function of D and so has a unique maximum for D ≥ 3s. We
then have

∞∑
D=3s

D2s−1

(1 + ξ)D
≤ 2

∫ ∞
x=s

x2s−1

(1 + ξ)x
dx = 2s2s

∫ ∞
y=1

(
y2

(1 + ξ)y

)s
dy ≤ 2s2s

∫ ∞
y=1

(Ke−ξy/2)sdx

for K = K(ξ) sufficiently large. This verifies (11). (The factor 2 after the first inequality comes from splitting
the range of summation into two places within which the summand is monotone).
Continuing, we get a bound of

≤ O(n3/2)(10e)s/10

(
e2

cs2

)s
2se9λξs/10

eλs/10

(
2

(
λe1+ξ

30

)30
)s/10

(Cs)2s

= O(n3/2)

(
2C(10e)1/10e2

ceλ(1−9ξ)/10

(
λe1+ξ

30

)3
)s

= o(1)

if we take ξ = 1/10 and c and hence λ sufficiently large.
�

6 Finding a Hamilton cycle

We assume that we have a path P with endpoints a, b and we do rotations with a as the fixed endpoint to
try to find an extension. In the next section we show that if no extensions are found, then w.h.p. we create
sufficient endpoints other than b on paths of length equal to P . Throughout this description, we will assume
that no extension is found i.e. all neighbors of endpoints turn out to be vertices of P . We associate the
search with something similar to an alternating tree of matching theory.

10

6.1 Tree Growth

In this section we describe our search for a longer path than P using extend-rotate in terms of growing
a tree structure T , where each vertex determines a path. We initialise T to be a sngle vertex b. We expose
what happens w.h.p. if we fail to find an extension. Let A0 = {b} and let B0 be the set of neighbors of b
on P , excluding b’s path neighbor. We now define the sets Ai, Bi, i = 1, . . . , and Ci =

⋃
j≤i(Aj ∪Bj). Here

every vertex v in Ai will be the endpoint of a path of the same length as P . It will be obtained from P by
exactly i rotations with a as the fixed endpoint. Fix i ≥ 0 and let Ai = {v1, v2, . . . , vk}. We build Ai+1, Bi+1

by examining v1, v2, . . . , vk in this order. Initially Ai+1 = Bi+1 = ∅ and we will add vertices as we process
the vertices of Ai. Fix v = vj . We have a path Pv with endpoints a, v. We consider two cases:
Case 1: |Ci| ≤ i0 = 1

20 logc n.
Let Nv = {u1, u2, . . . , ud} be the neighbors of v, excluding its neighbor on Pv. We also exclude from Nv
those neighbors already in Bi+1 (as defined so far). Let wj be the neighbor of uj on Pv that lies between uj
and v for j = 1, 2, . . . , d. Let N ′v = {w1, w2, . . . , wd}. We exclude from N ′v those vertices already in Ai+1 (as
defined so far). We add Nv to Bi+1 and N ′v to Ai+1 and we add edges (v, uj) and (uj , wj) to T . The edge
(uj , wj) will be called a lost edge. Furthermore, we define Pwj

= Pv + (v, uj) − (uj , wj) and observe that
Pwj has endpoints a,wj .
Case 2: |Ci| > i0.
Now let Nv = {u1, u2, . . . , ud} be its neighbors as above. We now exclude from Nv those neighbors already
in Ci+1 (as defined so far) as well as those uj for which wj ∈ Ci+1. We define N ′v and update Ai+1, Bi+1, T
with this restricted Nv.
We define the subgraph T = T (P, a, k) as follows: It has vertex set Ck plus the edges of the form (v, uj)
and (uj , wj) used above. T suggests a tree. It is usually a tree, but in rare cases it may be unicyclic. This
follows from Lemma 5.2. When this happens, some v ∈ Ai (Case 1) has a neighbor in Bj , j ≤ i.
We see from this that w.h.p. T has at most one cycle. By construction, cycles of T are contained in the first
i0 levels. If there are two cycles inside the first i0 levels then there is a set S (consisting of the two cycles
plus a path joining them) with at most 4i0 vertices and at least |S|+ 1 edges.
We argue next that w.h.p. T can be assumed to grow to a certain size and we can control its rate of growth.

Lemma 6.1. Let β be some small fixed positive constant. If c is sufficiently large, then for all paths P and
endpoints a such that extension does not occur, w.h.p.

(a) There exists k such that |Ck| ≥ L0 = 1
15 logc n.

(b) If L0 ≤ |Ck| ≤ n.6 then |Ak+1| ∈ [2(1−β)c|Ck|, 2(1 +β)c|Ck|], even if only punctual edges are used once
|Ak| reaches size at least nε.

(c) There exists k0 = O(logc n) such that |Ak0 | ∈ [(2c(1 + β))−1n1/2+9ε, 2c(1 + β)n1/2+9ε].

(d) Let k1 = k0 − `0 where `0 = 2 log log n and let x ∈ Ak1 . Let S be the set of descendants of x in Ak0 and
let s = |S|. Let S0 = {y ∈ S : d(y) ≥ 30} and let s0 = |S0|. Then, where W1 is as in Lemma 5.2,

(i) x /∈W1 and s ≥ (2c(1− β))k0−k1/4 implies that s0 ≥ 99s/100.

(ii) s ≤ (2c(1 + β))k0−k1 log n.

Proof (a) Lemma 2.1 of [12] proves the following: Suppose that S is the set of endpoints that can be
produced by considering all possible sequences of rotations starting with some fixed path P and keeping one
endpoint fixed. Let T be the set of external neighbors of S. Here S ∩ T = ∅. Then |T | ≤ 2|S| and S ∪ T

11

contains strictly more than |S ∪ T | edges. The assumption here is that the graph involved has minimum
degree at least three. It follows from Lemma 5.2 that |S| ≥ 1

15 logc n w.h.p. As a final check, if |Ck| never
reached L0 in size then it would have explored all possible sets of endpoints i.e. the breadth first search is
no restriction.
(b) If the condition in (b) fails then the following structure appears: Let δ = 1 if T is not a tree and 0

otherwise. Let EV EN(T) =
⋃k
i=0Ai and ODD(T) =

⋃k
i=0Bi where k is the number of iterations involved

in the construction of T . Then with |EV EN(T)| = l and |N(EV EN(T))| = r we have (i) 2(l−1)+δ edges of
T connecting EV EN(T) to ODD(T), (ii) r− l+1 edges connecting EV EN(T) to N(EV EN(T))\ODD(T)
and (iii) none of the l(n− r − l) edges between EV EN(T) and V \N(EV EN(T)) are present.
Assume first that T is actually a tree and that l ≤ nε so that the edges of T need not be punctual. The next
calculation will however be conducted assuming only that l ≤ n.6. This will enable us to use the calculations
for the case l > nε too.
Given the vertices of T and N(EV EN(T)), the probability of the existence of a T with L0 ≤ l ≤ n.6 and
r ≤ 2(1− β)cl can be bounded by

O(
√
n)

(
1

2m− 2(l + r)

)l+r−1 ∑
di≥3, i∈[r+l−1]∑l

i=1 di=r+l−1

(
l∏
i=1

λdidi!

di!f3(λ)

2l−1∏
i=l+1

λdidi(di − 1)

di!f3(λ)

r+l∏
i=2l

λdidi
di!f3(λ)

)
(12)

Explanation: The quantities involving λ give the probability that the relevant degrees are di, i ∈ [r+ l−1].
The probability that an edge exists between vertices u and v of degrees du and dv, given the existence of

other edges in T , is at most
d′ud
′
v

2m−2(l+r)+3 where d′u = du less the number of edges already assumed to be

incident with u. Hence, given the degree sequence, the probability that T exists is at most

(
1

2m− 2(l + r)

)l+r−1 l∏
i=1

di!

2l−1∏
i=l+1

di(di − 1)

r+l∏
i=2l

di.

(We dropped the +3 in 2m− 2(l + r) + 3).
Here the first product corresponds to EV EN(T), the second product corresponds to ODD(T) and the final
product corresponds to neighbours of T (not in T).
We will implicitly use the fact that if c is sufficiently large, then so is λ.
We now simplify the expression (12) obtained for the probability to

O(
√
n)

(
1

2m− 2(l + r)

)l+r−1

×

λ2r+2l−3

f3(λ)r+l−1

∑
∑l

i=1 di=r+l−1

 ∑
di≥3, i∈[r+l−1]

2l−1∏
i=l+1

λdi−2

(di − 2)!

r+l∏
i=2l

λdi−1

(di − 1)!

≤ O(

√
n)

(
1

2m− 2(l + r)

)l+r−1

×

λ2r+2l−3

f3(λ)r+l−1

∑
∑l

i=1 di=r+l−1
di≥3,i∈[l]

 2l−1∏
i=l+1

∑
di≥3

λdi−2

(di − 2)!

 r+l∏
i=2l

∑
di≥3

λdi−1

(di − 1)!

12

≤ O(
√
n)

(
1

2m− 2(l + r)

)l+r−1
λ2r+2l−3

f3(λ)r+l−1

(
r

l

)
f1(λ)l−1 f2(λ)r−l+1 (13)

≤ O(
√
n)

(
1

2m− 2(l + r)

)l+r−1
λ2r+2l−3

f3(λ)r+l−1

(er
l

)l
f1(λ)l−1 f2(λ)r−l+1

= O(
√
n)

(
1

2m− 2(l + r)

)l+r−1 (er
l

)l (2cλ)r

λ

(
2cλf1(λ)

f2(λ)2

)l−1

(14)

using
λf2(λ)

f3(λ)
= 2c

≤ O(
√
n)

(
1

2m− 2(l + r)

)l+r−1

(2cλ)r
(

4(1− β)ec2λf1(λ)

f2(λ)2

)l−1

using r/l ≤ 2(1− β)c (15)

≤ O(
√
n)

(
1

2m− 2(l + r)

)l+r−1

(2cλ)r
(

4(1− β2)ec2λ

f2(λ)

)l−1

using
f1(λ)

f2(λ)
< 1 + β

≤ O(
√
n)

(
1

2cn

)l+r−1

e3(l+r)2/2cn(2cλ)r
(

4(1− β2)ec2λ

f2(λ)

)l−1

using m = cn

= O(
√
n)

(
1

n

)l+r−1

eo(l) λr
(

2(1− β2)ecλ

f2(λ)

)l−1

(16)

since r = O(l).
We now count the number of such configurations. We begin by choosing EVEN(T) and the root vertex of
the tree in at most n

(
n
l−1

)
ways. We make the following observation about T . The contraction of the lost

edges of the tree yields a unique tree on the l even vertices. We note, by Cayley’s formula, that the number
of trees that could be formed using l vertices is ll−2. Reversing this contraction, we now choose the sequence
of l vertices from ODD(T), that connect up vertices in EVEN(T) in (n− l)(n− l−1)...(n−2l+ 1) = (n− l)l
ways. We pick the remaining r − l vertices from the remaining n − 2l vertices in

(
n−2l
r−l
)

ways. These r − l
vertices can connect to EVEN(T) in at most lr−l ways. Hence, the total number of choices for T is at most(

n

l

)
ll−2(n− l)l

(
n− 2l

r − l

)
lr−l ≤ nr+ler

(
l

r − l

)r−l
. (17)

Combining the bounds for probability and choices of T , we get an upper bound of

nr+ler
(

l

r − l

)r−l
O(
√
n)

(
1

n

)l+r−1

λr
(

2ecλ

f2(λ)

)l−1

≤ O(n3/2) ·
(
eλl

r − l

)r−l(
2e2cλ2

f2(λ)

)l−1

(18)

The expression
(
eλl
x

)x
is maximized at x = λl. Our assumptions imply that r ≤ 2(1− β)cl < λl. Hence, we

have the bound

O(n3/2) ·
(

eλl

2(1− β)cl

)2(1−β)cl(
2e2cλ2

f2(λ)

)l
≤ O(n3/2) ·

((
e

1− β

)2(1−β)c

· 2e2c3

f2(λ)

)l
using λ < 2c

≤ O(n3/2) · e−β
2cl/2 (19)

13

using

f2(λ) >
2e2c3e2(1−β)c

(1− β)2(1−β)c

for c sufficiently large. Here we use Lemma 5.1 and (e/(1− β))2−2β ≤ e2−β2+O(β3), so that the inequality is
true for small positive β.
We sum O(n3/2) ·e−β2cl/2 over all r and l with L0 ≤ l ≤ n0.6 and l ≤ r ≤ (1−β)cl and we get the probability
to be at most

O(n7/2)e−β
2cL0/2 = o(1) (20)

for c sufficiently large.
We now consider the probability of the existence of a T having L0 ≤ l ≤ n0.6 and r ≥ 2(1 + β)cl. Note that
we can assume r ≤ l∆ ≤ l log n here.
The bound (14) remains valid. Replacing r by r + 1 multiplies this by a factor O(cn−1el/r) and so for this
bound we can just assume that r = 2(1 + β)cl. This changes the 1− β in (15) to 1 + β and we replace (16)
by

O(
√
n)

(
1

n

)l+r−1

eo(l) λr
(

2ec(1 + β)2λ

f2(λ)

)l−1

.

We re-use (17) and replace (18) by

O(n3/2) ·
(
eλl

r − l

)r−l(
2e2+o(1)(1 + β)2cλ2

f2(λ)

)l−1

. (21)

≤ O(n3/2) ·

((
e

1 + β − 1/2c

)2(1+β)c−1

· 2e2+o(1)(1 + β)2c3

f2(λ)

)l
using λ < c

≤ O(n3/2) · e−β
2cl/2

using

f2(λ) >
2e2+o(1)(1 + β)2c3e(2+2β+?)c

(2(1 + β)− 1/c)2(1+β)c−1

for c sufficiently large. Here we again use Lemma 5.1 and (e/(1 + β))2+2β ≤ e2−β2+O(β3), so that the
inequality is true for small positive β.
We sum O(n3/2) · e−β2cl/2 over all r and l with L0 ≤ l ≤ n0.6 and r ≥ 2(1 + β)cl and we get the probability
to be at most

O(n7/2)e−β
2cL0/2 = o(1) (22)

for c sufficiently large.
We next consider the case where l ≥ nε and r ≤ 2(1− β)c and we can use at most nε tardy edges. We will
use (17), which is still a valid upper bound and only modify (12). Let

b(d, d′, d′′, α) =

(
d

d′, d′′, d− d′ − d′′

)
((1− α)m)d′(αm)d−d′

(m)d
=

14

(
d

d′, d′′, d− d′ − d′′

)
(1− α)d

′
αd−d

′
(

1 +O

(
log2 n

n

))
for d ≤ ∆ ≤ log n.
We modify (12). In the following, t will be the number of tardy edges used. We relax our requirements and
allow these edges to occur anywhere in T . In the expression (23) below, di is the degree of vertex i and for
i ∈ [l], d∗i = d′i + d′′i is its degree in T . For i ∈ [l] the punctual degree is d′i and its tardy degree in T is
d′′i . The factor b(di, d

′
i, d
′′
i , α) is justified as follows: Given that i has degree di, we count the partition of

its incident edges into d′i punctual edges and d′′i tardy T -edges and di − d∗i tardy non-T edges. The factor
((1−α)m)d′

i
(αm)di−d′

i

(m)d
is the probability that the relevant edges are punctual or tardy. The final factor of (1−α)

in (23) accounts for the r− l+ 1 edges connecting EV EN(T) to N(EV EN(T)) \ODD(T) being punctual.

O(
√
n)

(
1

2m− 2(l + r)

)l+r−1

×

∑
di≥3

nε∑
t=0

∑
d∗i =d′i+d

′′
i ≤di, i∈[l]∑l

i=1 d
′
i=r+l−1−t∑l

i=1 d
′′
i =t

(
l∏
i=1

λdid∗i !

di!f3(λ)
b(di, d

′
i, d
′′
i , α)

2l−1∏
i=l+1

λdidi(di − 1)

di!f3(λ)

r+l∏
i=2l

λdidi
di!f3(λ)

(1− α)

)
(23)

= O(
√
n)

(
1

2m− 2(l + r)

)l+r−1

× λ2r+2l−3(1− α)2r

f3(λ)r+l−1
×

∑
di≥3

nε∑
t=0

∑
d∗i =d′i+d

′′
i ≤di, i∈[l]∑l

i=1 d
′
i=r+l−1−t∑l

i=1 d
′′
i =t

l∏
i=1

(λα)di−d
∗
i αd

′′
i d∗i !

d′i!d
′′
i !(di − d∗i)!

 2l−1∏
i=l+1

∑
di≥3

λdi−2

(di − 2)!

 r+l∏
i=2l

∑
di≥3

λdi−1

(di − 1)!

≤ O(
√
n)

(
1

2m− 2(l + r)

)l+r−1

× λ2r+2l−3(1− α)2r

f3(λ)r+l−1
×

nε∑
t=0

∑
∑l

i=1 d
∗
i =r+l−1∑l

i=1 d
′′
i =t

d′′i ≤d
∗
i ,i∈[l]

l∏
i=1

(
d∗i
d′′i

)
αd
′′
i

∑
k≥0

(λα)k

k!

l 2l−1∏
i=l+1

∑
di≥3

λdi−2

(di − 2)!

 r+l∏
i=2l

∑
di≥3

λdi−1

(di − 1)!

≤ O(
√
n)

(
1

2m− 2(l + r)

)l+r−1

× λ2r+2l−3(1− α)2r

f3(λ)r+l−1
×

nε∑
t=0

∑
∑l

i=1 d
∗
i =r+l−1∑l

i=1 d
′′
i =t

d′′i ≤d
∗
i ,i∈[l]

l∏
i=1

(
αed∗i
d′′i

)d′′i
eλαlf1(λ)l−1f2(λ)r−l (24)

≤ O(n1/2+ε)

(
1

2m− 2(l + r)

)l+r−1
λ2r+2l−3(1− α)2r

f3(λ)r+l−1
×

15

2l
(
r − 1

l − 1

)(
t+ l − 1

l − 1

)
eα(r+l−1)eλαlf1(λ)l−1f2(λ)r−l (See below for an explanation). (25)

≤ O(n1/2+ε)

(
1

2m− 2(l + r)

)l+r−1

× λ2r+2l−3(1− α)2r

f3(λ)r+l−1
×
(
r

l

)
8leα(r+l−1)eλαlf1(λ)l−1f2(λ)r−l. (26)

Explanation for (24)−→(25): We bound (αed∗i /d
′′
i)d
′′
i by eαd

∗
i when d∗i ≥ 2 and by one when d∗i = 1. If

L = {i : d∗i = 1} then
∏
i/∈L(αed∗i /d

′′
i)d
′′
i ≤ eα(r+l−1). There are at most 2l choices for L and after this there

are at most
(
r−1
l−1

)
choices for the d∗i ≥ 2.

Observe now that the expression in (26) is precisely

8leα(r+l−1)eλαl(1− α)2r ≤ 8leα((λ+1)l−r)

times the expression in (13). It follows that the probability bound (19) can be replaced by

O(n3/2+ε) · e−β
2cl/2 · 8leα((λ+1)l−r) ≤ O(n3/2+ε) · e−β

2cl/3

if we take α = β2/10.
We sum this over l, r to get the required conclusion.

The case r ≥ 2(1 + β)cl for l ≥ nε, using only punctual edges follows a fortiori from the case where we can
use any edge in T , punctual or tardy.
We finally consider the case where T is not a tree. When this happens, it will be because of a unique (Lemma
5.2) edge introduced in Case 1. We can handle this by multiplying our final estimates by O(i20n

−1 log2 n).
The factor O(i20) accounts for choosing a pair of vertices in T in Case 1 and O(n−1 log2 n) bounds the
probability of the existence of this edge, given previous edges.
Part (c) follows from (b).
(d) If we consider the growth of the sub-tree emanating from x then we can argue that it grows as fast as
described in (a) and (b). We just have to deal with the edges pointing into the part of T that has already
been constructed. We can argue that (23) with α = o(1) and d∗i = di gives a valid upper bound here. This
is because the chances of choosing an endpoint in T is o(1) at each point, as opposed to an edge being tardy.
If x /∈ W1 then the descendants Di of x at levels k0 + i grow at a rate of at least two (i.e. |Di+1| ≥ 2|Di|)
for O(log log n) steps until |Di| � log n and after this will grow at a rate of at least 2c(1− β). In which case
the leaves of Tx, the sub-tree of T rooted at x, will constitute a fraction 1 − O(1/c) of the vertices of Tx.
The result now follows from Lemma 5.2(c).
If x ∈W1 then |Di| grows at a rate of at most 2c(1 + β) once it has reached size log n. �

Remark 6.1. It follows from this lemma that only O(n1/2+O(ε)) tardy edges are needed to build all of the
instances of Ak0 needed by extend-rotate. If one looks at Section 4.3.1 of [8] one sees, in conjunction with
equation (1) of that paper that the total running time of Step 3b of this paper is O(n.995+o(1)) and so we can
use this as a bound on the number of punctual edges examined by Step 3b. We can drastically reduce this in
the same way we did for building the trees in extend-rotate, but since we are only claiming our result for c
sufficiently large and ε� .005, this is not necessary, since there will w.h.p. be Ω(n1−2ε) tardy R0 : Λ0 edges,
see Lemma 6.5 below. In other words, almost all of the tardy R0 : Λ0 edges are not used for tree building.
They can therefore be called on to close cycles in Case b of Step ER3 of Algorithm extend-rotate.

The above lemma shows that Ak can be relied on to get large. Unfortunately, we need to do some more
analysis because we do not have full independence, having run 2greedy. Normally, one would only have to

16

show that END(a) is large for all relevant vertices a and this would be enough to show the existence w.h.p.
of an edge joining a to b ∈ END(a) for some a, b. We will have to restrict our attention to the case where
a ∈ R0 and b ∈ Λ0, see Remark 4.1. So first of all we will show that w.h.p. there are many a ∈ R0, see
Lemma 6.8. For this we show that every path we come across contains many consecutive triples u, v, w ∈ R0.
In which case, an inserted edge (x, v) produces a path with an endpoint in R0. We also need to show that
w.h.p. there are many b ∈ Λ0, see Lemma 6.7. We will also need to show that there are many edges that
can be (a, b), see Lemma 6.5.
For the Lemma 6.3 below we need some results from [10]. Let u = u(t) denote (y(t), z(t), µ(t)) and let
û = û(t) denote (ŷ(t), ẑ(t), µ̂(t)) where y(t) etc. denotes the value of y = |Y |, z = |Z|, µ = |E(Γ(t)| at time t
and ŷ(t) etc. denotes the deterministic value for the solution to the associated set of differential equations,
summarised in equation (152) of that paper:

dŷ

dt
= Â+ B̂ − Ĉ − 1;

dẑ

dt
= 2Ĉ − 2Â− 2B̂;

dµ̂

dt
= −1− D̂. (27)

where

Â =
ŷẑλ̂5f0(λ̂)

8µ̂2f2(λ̂)f3(λ̂)
, B̂ =

ẑ2λ̂4f0(λ̂)

4µ̂2f2(λ̂)2
, Ĉ =

ŷλ̂f2(λ̂)

2µ̂f3(λ̂)
, D̂ =

ẑλ̂2f0(λ̂)

2µ̂f2(λ̂)
. (28)

and
ŷλ̂f2(λ̂)

f3(λ̂)
+
ẑλ̂f1(λ̂)

f2(λ̂)
= 2µ̂.

Lemma 7.1 of [10] proves that u(t) and û(t) are close w.h.p.:

Lemma 6.2.
||u(t)− û(t)||1 ≤ n8/9, for 1 ≤ t ≤ min

{
T0, T̂0

}
w.h.p..

Here T0 is a stopping time and T̂0 is a deterministic time such that w.h.p. Step 3 of 2greedy begins before

min
{
T0, T̂0

}
.

Note that ε� 1/9. Let
i0 = n3/4−ε and ρ = n1/4.

Equation (163) of [10] states that w.h.p.

|θξ(û(t))−∆ξ| = O

(
ρ−1 log2 n+

||u(t)− û(t)||1
n

)
for ξ = a, b, c, 2. (29)

Here
θa = 0, θb = Â, θc = Â+ B̂ and θ2 = 1− θa − θb − θc

and ∆ξ is the proportion of steps of 2greedy in [t, t+ ρ] that are Step 1ξ, ξ = a, b or Step 2, if ξ = 2.

Now if ẑ = o(n) µ̂ = Ω(n) and λ̂ = Ω(1) then we have from (28) that Â, B̂ = O(ẑ/n) and that

θb = O(ẑ/n), θc = O(ẑ/n), θ2 = 1− o(1).

Then from (27) we see that ẑ grows at the rate 2−o(1) per time step, so long as t = o(n) and hence ẑ = o(n).

It is shown in [10] that if c ≥ 10 then w.h.p. λ̂ = Ω(1) up until the (random) time when Step 3 of 2greedy
begins. See equation (190) of that paper. Furthermore, it follows from Lemma 6.2 that w.h.p.

17

X1 If t = γn1−ε for some constant γ then w.h.p. z(t) ∼ 2t.

X2 If t = γn1−ε for some constant γ then w.h.p. there will be O(n1−2ε) instances of Step 1 in [0, t].

X3 λ = Ω(1) up until the start of Step 3.

Lemma 6.3. W.h.p., all the paths in Steps 1 and 2 of extend-rotate contain at least n0 = Ω(n1−4ε/ log n)
pairs of consecutive edges (u, v), (v, w) such that u, v, w ∈ R0.

Proof First consider the steps in the range [0, i0ρ/8]. It follows from X1 that at the end of this period,
there will w.h.p. be at least i0ρ/5 vertices in Z. Now consider the range [i0ρ/8, i0ρ/4]. We know that w.h.p.
θ2 = 1− o(1) throughout this range. Consider the edge (v, w) of Step 2 at some time in [i0ρ/8, i0ρ/4]. The
probability that w ∈ Z is Ω(n−ε) and the probability it has a punctual Z-witness is 1−α− o(1). This holds
regardless of the previous history, assuming X1,X2, and so Z dominates a binomial with mean Ω(n1−ε) and
we can use Chernoff bounds to bound this from below w.h.p.
On the other hand, the probability that w ∈ Z is O(n−ε∆) = O(n−ε log n). This implies that the number of
times we create a component of M containing more than two vertices is O(n1−2ε log n). Thus w.h.p. almost
all components of M at the end of the period [0, i0ρ/4] consist of isolated edges. Let us assume then that
there are at least A1n

1−ε such edges where in the following A1, A2, . . . , are positive constants. Let S1 denote
this set of components.
Now consider the steps in the range [i0ρ/4, i0ρ/2], which again are almost all Step 2 and consider the edge
(v, w) of Step 2. We have w ∈ V (S1) with probability at least A2n

−ε. This is because w.h.p. the total degree
of V (S1) will be Ω(n1−ε) and the total degree of G is at most 2cn. The vertex w is early by definition.
Also the Z-witness of w will be punctual with probability at least 1 − α − o(1). We next observe that

with probability at least
(
1− Ω

(
∆
n

))n1−ε/4
= 1 − o(1), this component will not be absorbed into a larger

component in [i0ρ/4, i0ρ/2]. Thus, in expectation, at time i0ρ/2 there is a set S2 of A3n
1−2ε components of

M consisting of a path of length two with its middle vertex in R0. A second moment calculation will show
concentration around the mean, for |S2|.
We can repeat this argument for the periods [i0ρ/2, 3i0ρ/4],[3i0ρ/4, i0ρ] to argue that by time n1−ε, M will
contain a set S3 of at least A4n

1−4ε components consisting of paths of length four in which the internal
vertices are all in R0.
We can argue that w.h.p. at least half of the components in S3 will have both end vertices of degree at
most 3c. Indeed the number of edges incident with vertices of degree more than 3c is relatively small. The
expected number of such edges is asymptotically equal to

∑
k≥3c

kλk

k!f3(λ)
≤ 3cλ3c

(3c)!f3(λ)

(
1 +

λ

3c+ 1
+ · · ·

)
≤ 6c(3c)3c

(3c)!f3(λ)
≤ εc = (e/3)3c.

The number of such edges is concentrated around its mean. If we assume degrees are independent and less
than log n then we can use Hoeffding’s Theorem and then correct by a factor O(n1/2) to condition on the
total degree. Given this, we see that w.h.p. at least a 2(1− εc)2/3 fraction of the components of S3 will be
created in two executions of Step 2 with the degree v less than 3c.

Observe now that with probability at least
(

1− 6c
Ω(n)

)2cn

= Ω(1) a component C ∈ S3 will survive as a

component of M until the execution of Step 3. The Ω(n) in the denominator comes from the fact that w.h.p.
Step 3 begins with |Z| = Ω(n). Let S4 denote this set of components and note that w.h.p. there will be at
least A5n

1−4ε components in S4.

18

Step 3 of 2greedy adds a matching M∗ that is disjoint from the edges in the contraction of S4 to a matching.
The matching M∗ is independent of S4. This implies that w.h.p. any cycle (or possibly path) of the union
of M and M∗ of length ` ≥ n8ε, contains at least A5`n

−4ε members of S4. Here we are using concentration
of the hypergeometric distribution i.e. sampling without replacement.
In extend-rotate we start with a path of length ` = Ω(n/ log n) and w.h.p. every path is generated by
deleting at most O(log2 n) edges. This completes the proof of the lemma. �

6.2 Batches

Let Γ(t) denote the graph Γ after t steps of 2greedy. Suppose that t1 < t2 ≤ n1−ε and that 2greedy
applies Step 2 at times t1, t2 and Step 1 at times t1 < t < t2. We consider the set of edges and vertices
removed from time t1 to time t2, i.e. the graph Γ(t1) \ Γ(t2) and call it a batch. Note that batches are
connected subgraphs since each edge/vertex removed is incident to some edge that is previously removed.
We also claim that each batch w.h.p. is constructed within O(log2 n) steps and contains O(log3 n) vertices.
This follows from [10] as we now explain. Let ζ = y1 + 2y2 + z1 and let v be the state vector (y0, y1, . . . , µ).
Equations (67), (68), (69) of [10] show that

E[ζ ′ − ζ | |v|] = −(1−Q)− o(1)

where

Q = Q(v) =
yz

4µ2

λ3

f3(λ)

λ2f0(λ)

f2(λ)
+

z2

4µ2

λ4f0(λ)

f2(λ)2
.

Lemma 6.2 of [10] shows that 1−Q = −Ω(1) if λ = Ω(1), and X3 is our justification for assuming this.
Thus the expected change in ζ is −Ω(1) when ζ > 0. We carry out Step 2 iff ζ = 0. Now ζ can change
by at most O(∆) = O(log n) and has a negative drift whenever it is positive. This implies that it must
return to zero within O(log2 n) steps. Another ∆ ≤ log n factor will allow at most log n edges to be removed
in one step. By making the hidden constant sufficiently large, we can replace w.h.p. by with probability
1−O(n−10).

Lemma 6.4.

(a) W.h.p. there are at most n1−4ε vertices v ∈ G that are within distance `0 = 2 log log n of 6 distinct
batches.

(b) W.h.p. no vertex has degree more than 4 in a single batch.

Proof
(a) We bound the probability of vertex v being within distance `0 of s batches by

ρs =

(
n1−ε

s

) s∏
i=1

P(dist(v,Bi) ≤ `0 | dist(v,Bj) ≤ `0, 1 ≤ j < i).

Explanation: Here
(
n1−ε

s

)
is the number of choices for the start times of the batches

B1, B2, . . . , Bs.
We claim that for each i, v,

P(dist(v,Bi) ≤ `0 | dist(v,Bj) ≤ `0, 1 ≤ j < i) = O

(
log2+`0 n

n

)
. (30)

19

This gives
ρs ≤ exp

{
−(K − 2− o(1))(log log n)2s

}
≤ n−5ε,

assuming K ≥ 13 in (1). This implies that the expected number of vertices within distance `0 of 6 batches
is less than n1−5ε. The result now follows from the Markov inequality.
Proof of (30): Suppose that Bi is constructed at time ti. It is a subgraph of Γ(ti) and depends only on
this graph. We argue that

P(∃w ∈ Bi : dist(v, w) ≤ `0 | dist(v,Bj) ≤ `0, 1 ≤ j < i) ≤ O(n−10) +O

(
log2+`0 n

n

)
. (31)

Explanation: The O(n−10) term is the probability that the batch Bi is large. The term O
(
i log2+`0 n

n

)
in (31) arises as follows. We can assume that |N`0(v)| ≤ ∆`0 ≤ log`0 n, where N`0(v) is the set of vertices
within distance `0 of v. Suppose as in [3] we expose the graph Γ at the same time that we run 2greedy.
For us it is convenient to work within the configuration model of Bollobás [5]. Assume that we have exposed
N`0(v). At the start of the construction of a batch we choose a random edge (x, y) of the current graph.
The probability this edge lies in N`0(v) is O(log`0 n/n). In the middle of the construction of a batch, one
endpoint of an edge is known and the the other endpoint is chosen randomly from the set of configuration
points associated with Γ(t). The probability this new endpoint lies in N`0(v) is also O(log`0 n/n) and there
are only O(log2 n) steps in the creation of a batch.
(b) The probability that vertex v appears k + 3 times in a fixed batch can be bounded above by(
O(log2 n)

k

) (
O
(

∆
n

))k
= O

(
logk+3 n
nk

)
. Indeed, if v has degree at least 3 at any time, then the probability its

degree in the current batch increases in any step is O
(

∆
n

)
. �

We now argue that there will be a sufficient number of tardy R0 : Λ0 edges.

Lemma 6.5. W.h.p. there will be Ω(n1−2ε) tardy R0 : Λ0 edges.

Proof We first consider the set F1 of tardy edges e = (u, v) such that (i) u appears at least twice in the
first n1−ε/10 edges and in at least 30 other punctual edges and (ii) vertex v has punctual degree at least 30
and does not appear in the first n1−ε/2 edges in σ. To bound the number of choices Z1 for u we can consider
the number of times the vertex w in a step of 2greedy is a repeat. This has expectation Ω(n1−2ε) since
in the interval [n1−ε/20, n1−ε/10] the chances of a repeat are Ω(n1−ε/n). Furthermore, there is always an
Ω(1) chance that the vertex w chosen is in 40 edges ei, i ∈ [n1−ε, (1− α)n]. It is however conceivable that u
is adjacent to more than 10 vertices whose degree in Γ is reduced in the first n1−ε steps. In which case u’s
punctual degree could be less than 30. However, the expected number of such u is O(n × (n−ε log2 n)10).
(Each loss requires that the chosen w is within distance two of u). Thus the Markov inequality implies that
w.h.p. the number of such u is o(n1−2ε). A change of choice for w only changes Z1 by one or less. Thus
an application of a martingale tail inequality shows that Z1 = Ω(n1−2ε) q.s. Here the probability space is a
random permutation of W in the configuration model that we get after conditioning on the degree sequence
and permuting the edges. We can use a result of McDiarmid [16] or Lemma 11 of Frieze and Pittel [12] to
prove concentration, as interchanging a pair in the permutation only affects Z1 by at most one. Given these
choices, the expected size of |F1| is Ω(mn−2ε) and a similar martingale argument shows that q.s. we have
|F1| = Ω(mn−2ε).
Suppose that u satisfies (i). Lost edges are all part of batches. Thus it loses at most 24 edges (Lemma
6.4(a),(b)) before the second edge incident with u is chosen and then u will be in R0. This is because u
will be in Z just before this point and will then be placed in R. and it will have at least six choices for a

20

punctual Z-witness. We use the fact that almost all of the first n1−ε steps are Step 2 to see that the edges
incident with u occurring in the first n1−ε/10 steps will indeed be selected before time n1−ε.
If v satisfies (ii) and loses at most 24 punctual edges because of Step 1 in the first n1−ε steps then v will be
in Λ0. This is because it will have punctual degree at least six in Γn1−ε . �
We now consider the probability that Ak0 contains many vertices that lie in Λ1 = Λ2 ∪ Λ3 where

Λ2 =
{
v : v appears in the first n1−ε/2 edges in σ

}
Λ3 =

{
v /∈ Λ2 : v loses 24 edges because of Step 1 in the first n1−ε steps

}
.

In the proof of Lemma 6.5 we used the fact that

if the degree of v is at least 30 and v /∈ Λ1 then v ∈ Λ0. (32)

Lemma 6.6. W.h.p., every extension-rotation tree T has |Ak0 ∩ Λ1| ≤ |Ak0 |/30.

Proof We first estimate |Ak0 ∩ Λ2|. We go back to (21) and estimate, for fixed r, l,

P(∃T : |Ak0 ∩ Λ2| ≥ l/100) ≤ O(n3/2) ·
(
eλl

r − l

)r−l(
4e2+o(1)(1 + β)2cλ2

f2(λ)

)l−1(
l

l/100

)(
n1−ε/2∆

m

)l/100

.

(33)
Explanation: We have taken the RHS of (21) and multiplied by a bound on the probability that there are
at least l/100 members of EV EN(T) appearing in the first n1−ε/2 edges of σ. Note the the permutation σ
is independent of T . We use (21) and not (18) because we can only assume that r ≤ 2(1 + β)cl.
Thus,

P(∃T : |Ak0 ∩ Λ2| ≥ l/100) ≤

O(n3/2) ·

((
eλl

r − l

)(r−l)/l

· 4e2+o(1)(1 + β)2cλ2

f2(λ)
· (100e)1/100 ·

(
n1−ε/2 log n

cn

)1/100
)l
≤ n−εl/300. (34)

Now we are interested here in the case where l = n1/2+o(1) and so the RHS of (34) is easily strong enough
so that we can apply the union bound over r, l.
We next estimate |Ak0 ∩ Λ3|. We replace (33) by

P(∃T : |Ak0 ∩ Λ3| ≥ l/100) ≤

O(n3/2) ·
(
eλl

r − l

)r−l(
4e2+o(1)(1 + β)2cλ2

f2(λ)

)l−1(
l

l/100

) 24l/100∑
k=23l/100

(
n1−ε

k

)(
l log n

100m

)k
. (35)

Explanation; We have taken the RHS of (21) and multiplied by a bound on the probability that there is
a set of leaves S of size l/100 such that at least 24l/100 times during the first n1−ε steps the vertex w, the
neighbor of the selected v, is in S. This is computed assuming that we have exposed the edges of T . The
count k ∈ [23l/100, 24l/100] excludes the edges of T that are assumed to be exposed. The sum in (35) is
dominated by k = 23l/100. Equation (34) is therefore replaced by

P(∃T : |Ak0 ∩ Λ3| ≥ l/100) ≤

21

O(n3/2) ·

((
eλl

r − l

)(r−l)/l

· 4e2+o(1)(1 + β)2cλ2

f2(λ)
· (100e)1/100 ·

(
100en1−ε

23l

)23/100

·
(
l log n

100cn

)23/100
)l

≤ n−εl/20.

�
The next lemma puts a lower bound on |Λ0 ∩Ak0 | (see Lemma 6.1).

Lemma 6.7. W.h.p. |Λ0 ∩Ak0 | ≥ |Ak0 |/2.

Proof Let k1 = k0 − `0 where `0 = 2 log log n. and consider Ak1 = {a1, a2, . . . , aρ}. Note that

ρ ≥ n1/2+9ε

(2c(1 + β))1+`0
.

This is because |Ak−1| ≥ |Ak|/(2c(1 + β) for k1 < k ≤ k0 and |Ak0 | ≥ n1/2+9ε/(2c(1 + β)), see Lemma 6.1.
Let si be the number of descendents of ai in Ak0 and let s′i be the number of early descendents of ai in
Ak0 ∩ Λ1.
Let s′′i be the number of descendents of ai in Ak0 that have degree at most 30. We observe from Lemma
6.1(b) that

|Ak0 | =
ρ∑
i=1

si ≥ ρ(2c(1− β))k0−k1 . (36)

Next let I =
{
i ∈ [ρ] : ai /∈W1 and si ≥ (2c(1− β))k0−k1/4

}
(whereW1 is from Lemmas 5.2, 6.1) and observe

that ∑
i/∈I

si ≤ ρ(2c(1− β))k0−k1/4 + n1/2 log4`0+1 n(2c(1 + β))k0−k1 ≤ |Ak0 |/3. (37)

It follows from Lemma 6.1(d) that
s′′i ≤ si/100 for i ∈ I.

It follows from Lemma 6.6 that w.h.p.
ρ∑
i=1

s′i ≤ |Ak0 |/30.

Now, after using (32), we see that

|Λ0 ∩Ak0 | ≥
∑
i∈I

(si − s′′i)−
ρ∑
i=1

s′i ≥
(

99

100
· 2

3
− 1

30

)
|Ak0 |.

�
We now consider going one iteration further and building Ak0+1.

Lemma 6.8. W.h.p. Ak0+1 contains at least Ω(n1/2+2ε) vertices of R0. Furthermore, we can find these R0

vertices by examining n1−3ε log n tardy R0 : Λ0 edges.

Proof Assume from Lemmas 6.1 and 6.7 that Ak0 contains at least n1 = n1/2+9ε

4c(1+β) vertices in Λ0. Assume

also from Lemma 6.3 that all of the paths corresponding to Ak0 have n0 = Ω(n1−4ε/ log n) consecutive triples

22

u, v, w ∈ R0. If the middle vertex v is the neighbour of an endpoint, then it yields a new endpoint of Ak0+1

in R0. Then the expected number of rotations leading to an endpoint in R0 is at least

C1 × n1−3ε log n× n1/2+9ε

4c(1 + β)
× n1−4ε

log n
× 1

|R0| × n
= Ω(n1/2+2ε)

for some constant C1 > 0, assuming that |R0| = O(n1−ε log n).
We can claim a q.s. lower bound because almost all of the tardy R0 : Λ0 edges are unconditioned, see remark
6.1. �

7 Finishing the proof

We have argued that we only need to do `1 = O(log2 n) extensions w.h.p. The tardy R0 : Λ0 edges are our
scarce resource of residual randomness. Remark 6.1 explains that we only need to use an o(1) proportion in
building trees up to the k0th level. We will only use the result of Lemma 6.8 for growing the first extension-
rotation tree of each of the O(log2 n) path extensions. Lemma 6.8 tells us that we only need to use an o(1)
fraction of the available R0 : Λ0 edges for producing many paths that have an R0 endpoint.
Consider a round of extend-rotate where we are trying to extend path P . We start with a path and then
we construct a BFS “tree”. After the first tree construction of each round, we construct Ak0 and create one
more level Ak0+1. From Lemma 6.8, we should obtain Ω(n1/2+2ε) paths with early endpoints. Now we grow
trees from each of these paths and try to close them using the set EL = {f1, f2, . . . , fM} of unused tardy
R0 : Λ0 edges. We can examine these edges in σ order. The probability that the next edge fi fails to close a
path to a cycle is p = Ω(n1/2+2ε × n1/2+9ε × n−2). So the probability we fail is at most P(Bin(M,p) < `1).
Now Mp = Ω(n9ε)� `1 and so the Chernoff bounds imply that we succeed w.h.p.

Remark 7.1. As a final thought, although we have proved that we can find a Hamilton cycle quickly, being
very selective in our choice of edges for certain purposes, the breadth first nature of our searches imply that
we can proceed in a more natural manner and use all edges available to us. In the worst-case we would have
to use the designated ones.

8 Why not ε = O
(

log log n
log n

)
?

In the proof of Lemma 6.1 we need to choose `0 = 2 log log n so that 2`0 � L0 of that lemma. But then
in (30) we want nε � log`0 n. With some work we could replace the bound log`0 n by O(c)`0 which would
allow us to take ε = K log logn

logn . The catch here is that in this case we would need K to grow with c. This is

not satisfactory and so we content ourselves for now with (1).

9 Final Remarks

We have shown that a Hamilton cycle can w.h.p. be found in O(n1+o(1)) time. It should be possible to replace

no(1) by logO(1) n and we have explained the technical difficulty in Section 8. We think that O(n log2 n) should
be possible. It should also be possible to apply the ideas here to speed up the known algorithms for random
regular graphs, or graphs with a fixed degree sequence.

23

We have seen that our approach is to use extensions and rotations and show that a carefully selected set EL
of (near) random edges can be used to close cycles when necessary. The reader might feel that one could
possibly simplify the paper by splitting the edge set into two random sets. The first could be used to do
the extensions and rotations and the second could be used to close cycles. This was the approach taken in
[10]. Unfortunately, if we remove more than o(n1/2) random edges, then we seem to substantially change
the distribution of the remaining edges and then we cannot apply the results of [10] to argue directly that
2greedy works as claimed. If we only remove o(n1/2) edges then we need to build endpoint sets of size
n3/4+o(1), explaining the n3/2+o(1) running time of the algorithm in [10]. The approach in this paper has
been to “re-use” edges, barely looked at by 2greedy, giving us n1−o(1) random edges to close cycles.

References

[1] M. Ajtai, J. Komlós and E. Szemerédi. The first occurrence of Hamilton cycles in random graphs.,
Annals of Discrete Mathematics 27 (1985), 173–178.

[2] D. Angluin and L.G. Valiant, Fast probabilistic algorithms for Hamilton circuits and matchings, Journal
of Computer and System Sciences 18 (1979), 155–193.

[3] J. Aronson, A.M. Frieze and B.G. Pittel, Maximum matchings in sparse random graphs: Karp-Sipser
re-visited, Random Structures and Algorithms 12 (1998), 111–178.

[4] B. Bollobás, The evolution of sparse graphs, In: Graph Theory and Combinatorics, Proc. Cambridge
Combin. Conf. in honour of Paul Erdős (B. Bollobás, ed.), Academic Press, 1984, pp. 35–57.

[5] B. Bollobás, A probabilistic proof of an asymptotic formula for the number of labelled regular graphs,
European Journal on Combinatorics 1 (1980), 311–316.

[6] T.I.Fenner and A.M.Frieze, On the existence of Hamiltonian cycles in a class of random graphs, Discrete
Mathematics 45 (1983), 301–305.

[7] B.Bollobás, T.I.Fenner and A.M.Frieze, An algorithm for finding Hamilton paths and cycles in random
graphs, Combinatorica 7 (1987), 327–341.

[8] P. Chebolu, A.M. Frieze and P. Melsted, Finding a Maximum Matching in a Sparse Random Graph in
O(n) Expected Time JACM 57, (2010), 161–172.

[9] A.M. Frieze, Finding Hamilton cycles in sparse random graphs, Journal of Combinatorial Theory B 44
(1988), 230–250.

[10] A.M. Frieze, On a Greedy 2-Matching Algorithm and Hamilton Cycles in Random Graphs with Minimum
Degree at Least Three, to appear.

[11] A.M. Frieze, M.R.Jerrum, M.Molloy, R.Robinson and N.C.Wormald, Generating and counting Hamilton
cycles in random regular graphs, Journal of Algorithms 21 (1996) 176-198.

[12] A.M. Frieze and B. Pittel, On a sparse random graph with minimum degree three: Likely Posa’s sets
are large, to appear.

24

[13] R.M. Karp, Reducibility among combinatorial problems, Complexity of computer computations (Proc.
Sympos., IBM Thomas J. Watson Res. Center, Yorktown Heights, N.Y., 1972), Plenum, New York,
1972, pp. 85–103.

[14] R.M. Karp and M. Sipser, Maximum matchings in sparse random graphs, Proceedings of the 22nd
Annual IEEE Symposium on Foundations of Computing (1981) 364-375.

[15] J. Komlós and E. Szemerédi, Limit distributions for the existence of Hamilton circuits in a random
graph, Discrete Mathematics 43 (1983), 55–63.

[16] C. McDiarmid, Concentration for independent permutations, Combinatorics, Probability and Computing
1 (2002) 163-178.

[17] B. McKay, Asymptotics for 0-1 matrices with prescribed line sums, in Enumeration and Design, (Aca-
demic Press, 1984) 225-238.

[18] R.W. Robinson and N.C. Wormald, Almost all cubic graphs are Hamiltonian, Random Structures and
Algorithms 3 (1992) 117-125.

[19] R.W. Robinson and N.C. Wormald, Almost all regular graphs are Hamiltonian, Random Structures and
Algorithms 5 (1994) 363-374.

25

