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Abstract

In a seminal paper on finding large matchings in sparse random graphs, Karp and
Sipser [12] proposed two algorithms for this task. The second algorithm has been
intensely studied, but due to technical difficulties, the first algorithm has received less
attention. Empirical results in [12] suggest that the first algorithm is superior. In this
paper we show that this is indeed the case, at least for random k-regular graphs. We
show that w.h.p. the first algorithm will find a matching of size n/2 − O(log n) in a
random k-regular graph, k = O(1). We also show that the algorithm can be adapted
to find a maximum matching w.h.p. in O(n) time, as opposed to O(n3/2) time for the
worst-case.

1 Introduction

Given a graph G = (V,E), a matching M of G is a subset of edges such that no vertex is
incident to two edges in M . Finding a maximum cardinality matching is a central problem
in algorithmic graph theory. The most efficient algorithm for general graphs is that given
by Micali and Vazirani [13] and runs in O(|E||V |1/2) time.

In a seminal paper, Karp and Sipser [12] introduced two simple greedy algorithms for finding
a large matching in the random graph Gn,m,m = cn/2 for some positive constant c > 0. Let
us call them Algorithms 1 and 2 as they are in [12]. Algorithm 2 is simpler than Algorithm 1
and has been intensely studied: see for example Aronson, Frieze and Pittel [1], Bohman and
Frieze [3], Balister and Gerke [2] or Bordenave and Lelarge [6]. In particular, [1] together
with Frieze and Pittel [9] shows that w.h.p. Algorithm 2 finds a matching that is within
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Θ̃(n1/5) of the optimum, when applied to Gn,m. Subsequently, Chebolu, Frieze and Melsted
[5] showed how to use Algorithm 2 as a basis for a linear expected time algorithm, when c
is sufficiently large.

Algorithm 2 proceeds as follows (a formal definition of Algorithm 1 is given in the next
section). While there are isolated vertices it deletes them. After which, while there are
vertices of degree one in the graph, it chooses one at random and adds the edge incident
with it to the matching and deletes the endpoints of the edge. Otherwise, if the current
graph has minimum degree at least two, then it adds a random edge to the matching and
deletes the endpoints of the edge.

In the same paper Karp and Sipser proposed another algorithm for finding a matching that
also runs in linear time. This was Algorithm 1, described below. The algorithm is more
careful with vertices of degree two and sequentially reduces the graph until it reaches the
empty graph. Then it unwinds some of the actions that it has taken and grows a matching
which is then output. Even though it was shown empirically to outperform Algorithm 2, it
has not been rigorously analyzed.

In this paper we analyze Algorithm 1 in the case where the underlying graph G is a random
k-regular graph. We will prove

Theorem 1. For 3 ≤ k = O(1) let Gn,k denote a simple random k-regular graph with vertex
set [n]. Then,

(a) Algorithm 1 finds a matching of size n/2−O(log n), w.h.p.

(b) Algorithm 1 can be modified to find a maximum matching in O(n) time w.h.p. and in
expectation.

We will in fact prove something stronger by analysing Algorithm 1 on random graphs with a
fixed degree sequence that satisfies a certain property. For a degree sequence d, let ni(d) be
the number of occurrences of i in d. We define the set of (3, k)-dominant degree sequences
C3,k to be those with minimum degree at least three and maximum degree k that satisfy

C3,k := {d : Dk,j(d) holds for all 3 < j ≤ k} (1)

where
Dk,j(d) := {nj(d) ≥ 1.3nj−1(d)− (log2 n− k)n0.8/2j}. (2)

(The factor 1.3 is obviously chosen to make the proof below correct. In what follows we
often replace 1.3 by α. We delineate the essential properties of this class that are of use to
us at the end of Section 2.)

We will slightly abuse the above notation by writing G ∈ C3,k to mean that G has a degree
sequence d ∈ C3,k. Observe that the degree sequence of a k-regular graph is (3, k)-dominant.
We prove Theorem 1 by proving

Theorem 2. Let G be a random graph with degree sequence d ∈ C3,k for some k = O(1).
Then,
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(a) Algorithm 1 finds a matching of size n/2−O(log n), w.h.p.

(b) Algorithm 1 can be modified to find a maximum matching in O(n) time w.h.p. and in
expectation.

We analyze the Reduce-Construct algorithm. Its description is given in the next section.
Under certain assumptions, see below, Algorithm 1 and Reduce-Construct are equiva-
lent.

We divide the rest of the paper as follows: We give a description of Reduce-Construct in
Section 2. In addition we define the main quantity of interest which we call excess and also
the typical behaviour that Reduce-Construct exhibits which we call good hyperactions.
We state our main lemmas and use them to prove Theorem 2. In Section 3 we prove lemmas
pertaining to the excess and the hyperactions. The proof of Theorem 2 uses an inductive ar-
gument. The base case is proven in Section 5.1. Its inductive step is proven by two lemmas,
in Sections 4 and 5 respectively.

2 The Reduce-Construct Algorithm: overview

Algorithm 1, given in [12], can be split into two parts. The first part repeatedly contracts
edges/vertices until the graph is empty. Then the second part unwinds part of this contrac-
tion and constructs a matching which is then output.

To reduce the graph, Algorithm 1 proceeds as follows:

(1) First, while there are vertices of degree 0 or degree 1 the algorithm removes them along
with any edge incident to them. The edges removed at this stage will be part of the
output matching.

(2) Second, while there are vertices of degree 2 the algorithm contracts them along with
their two neighbors. That is the induced path (x, y, z) is replaced by a single contracted
vertex yc whose neighbors are those of x, z other than y. The description in [12] does
not explicitly say what to do with loops or multiple edges created by this process. In
any case, such creations are very rare. We say a little more on this in Section 2.1.

(3) Finally if the graph has minimum degree 3 then a random vertex is chosen among those
of maximum degree and then a random edge incident to that vertex is deleted. These
edges will not be used in the unwinding. The aim is to delete a random non-essential
edge. Here we see a different philosophy to that of Algorithm 2, where when there is no
forced move we add a random edge to our matching.

(4) In the unwinding, if we have so far constructed a matching containing an edge {yc, ξ}
incident with yc and ξ is a neighbor of x then in our matching we replace this edge by
{x, ξ} and {y, z}. If there is no matching edge so far chosen incident with yc then we
add an arbitrary one of {x, y} or {y, z} to our matching.
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The idea of the algorithm is that it is possible to make optimal decisions about vertices
of degree at most two. In other words, a maximum matching in the graph G′ yielded by
operations (1), (2) on a graph G, can be used to construct a maximum matching in the
graph G itself. Operation (3) can lead to errors, but as we will see, errors come from the
existence of small cycles and these are rare.

2.1 The Reduce-Construct algorithm: details

The precise algorithm that we analyze is called Reduce-Construct. The description of
Algorithm 1 given in [12] is not explicit in how to deal with loops and multiple edges, as they
arise. We remove loops immediately, but keep the multiple edges until removed by other
operations.

We assume that our input (multi-)graph G = G([n], E) has degree sequence d and is gener-
ated by the configuration model of Bollobás [4]. Let W = [2ν], 2ν =

∑n
i=1 d(i), be our set

of configuration points and let Φ be the set of configurations i.e. functions φ : W 7→ [n] such
that |φ−1(i)| = d(i) for every i ∈ [n]. Given φ ∈ Φ we define the graph Gφ = ([n], Eφ) where
Eφ = {{φ(2j − 1), φ(2j)} : j ∈ [ν]}. Choosing a function φ ∈ Φ uniformly at random yields
a random (multi-)graph Gφ with degree sequence d.

It is known that conditional on Gφ being simple, i.e. having no loops or multiple edges, it
is equally likely to be any simple graph that has degree sequence d. Also, if the maximum
degree is bounded then the probability that Gφ is simple is bounded below by a positive
quantity that is independent of n. Thus results on this model can be translated immediately
to random simple graphs.

Reduced-Construct, displayed shortly, has as an input (i) G0 = Gφ where we condition
on there being no loops, (ii) a logical condition Ξ that dictates when the reduction phase
of the algorithm ends, and (iii) a pre-specified matching algorithm “Match(·)” that takes as
input a graph and outputs a matching. Ξ can be as simple as “Gi is not the empty graph”
or “Gi has at least so many vertices/edges left”.

Reduce-Construct can be naturally split into two parts: the Reduce and Construct
algorithms corresponding to the lines 3-12 and 14-22 respectively.

Lines 1–6 should be as expected by the reader. Lines 7–9 describe what is called an “auto-
correction contraction”. Suppose we have vertices u, v, w where u is joined to vertex w by
two parallel edges and by a sigle edge to vertex v. Now u has degree three, but from the point
of view of finding a matching, u should be treated as having degree two. An auto-correction
does this as the need arises.
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Algorithm 1 Reduce-Construct

1: Input: G0, Ξ = true, Match.
2: Reduce
3: i = 0.
4: while Ξ do
5: if δ(Gi) = 0 then Perform a vertex-0 removal: choose a vertex of degree 0 and

remove it from Vi.
6: else if δ(Gi) = 1 then perform a vertex-1 removal: choose a random vertex v of

degree 1 and remove it along with its neighbor w and any edge incident to w.
7: else if δ(Gi) = 2 then perform a contraction: choose a random vertex v of degree

2. Then replace v and its neighbors N(v) by a single vertex vc. For u ∈ V \ ({v}∪N(v)),
u is joined to vc by as many edges as there are in Gi from u to {v} ∪N(v). Remove any
loops created.

8: else perform a max-edge removal: choose a random vertex of maximum degree
and remove a random edge incident with it.

9: end if
10: if the last action was a max-edge removal, say the removal of edge {u, v} and in

the current graph (after the edge removal) we have the degree d(v) = 2 and v is joined
to a single vertex w by a pair of parallel edges then perform an auto correction
contraction: add back to the graph the edge {u, v} and then contract u, v, w into a
single vertex. Remove any loops created.

11: end if
12: i = i+ 1 and let Gi be the current graph.
13: end while
14: Construct
15: Now unwind and construct a matching.
16: Set τend = i, M0 =Match(Gτend

).
17: for j = 1 to τend do
18: if δ(Gτend−j) = 1 then let v be the vertex of degree 1 that was chosen at the

(τend − j)th step of the while loop at line 3 and let e be the edge that is incident to v in
Gτend−j. Then, set Mτend−j = Mτend−j+1 ∪ {e}.

19: else if at step (τend − j)th of the While loop at line 3, a contraction or an auto-
contraction was performed then let v be the vertex of degree 2 that was selected in
Gτend−j. Let N(v) = {u,w} and vc be the vertex resulting from the contraction of
u, v, w.

20: if vc is not covered by Mτend−j+1 then Mτend−j = Mτend−j+1 ∪ {u, v}
21: else Assume that {vc, z} ∈ Mτ−j+1 for some z ∈ V (Gτ−j+i). Without loss of

generality assume that in Gτend−j, z is connected to u. Set Mτend−j = Mτend−j+1 ∪
{{v, w}, {u, z}}) \ {vc, z}.

22: end if
23: else Set Mτend−j = Mτend−j+1.
24: end if
25: end for
26: Output M = Mτend

.
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For a diagram illustrating an auto-correction contraction, see the first diagram in the ap-
pendix.

During the execution of Reduce we only reveal edges (pairs of the form (φ(2j− 1), φ(2j)) :
j ∈ [ν]) of Gφ as the need arises in the algorithm. Moreover the algorithm removes any edges
that are revealed. Thus if we let di be the degree sequence of Gi then, given di we have that
Gi is uniformly distributed among all configurations with degree sequence di and no loops.

Call a contraction that is performed by Reduce in Line 6 and involves only 2 vertices bad
i.e. one where u = N(v). Otherwise call it good.

For an initial graph G = G0 and j ∈ {0, 1, ..., τend} denote by R0(G, j) and R2b(G, j) the
number of times that Reduce has performed a vertex-0 removal and a bad contraction
respectively until it generates Gj. For a graph G and a matching M denote by κ(G,M) the
number of vertices that are not covered by M . The following Lemma determines the quality
of the output of the Reduce-Construct algorithm.

Lemma 3. Let G be a graph and M be the output of the Reduce-Backtrack algorithm applied
to G. Then, for j ≥ 0,

κ(G,M) = R0(G, j) +R2b(G, j) + κ(Gj,Mj). (3)

Proof. Let G = G0, G1, ..., Gτend
be the sequence of graphs produced by Reduce and let

Mj,Mj−1, ...,M0 = M be the sequence of matchings produced by Construct. For i ≤ j
let R0(G, j, i) and R2b(G, j, i) be the number of vertex-0 removals and bad contractions
performed by Reduce going from Gj−i to Gj. We will prove that for every 0 ≤ i ≤ j,

κ(Gj−i,Mj−i) = R0(G, j, i) +R2b(G, j, i) + κ(Gj,Mj). (4)

Taking i = j yields the desired result.

For i = 0, equation (3) holds as R0(G, j, 0) = R2b(G, j, 0) = 0. Assume inductively that
(3) holds for i = k − 1 where k satisfies 0 < k ≤ j. For i = k, if a max-edge deletion was
performed on Gj−k then |Vj−k| = |Vj−k+1|. Furthermore, R0(G, j, k) = R0(G, j, k − 1) and
R2b(G, j, k) = R2b(G, j, k − 1) and hence (3) continues to hold. If a vertex-0 deletion or a
bad contraction was performed on Gj−k then |Vj−k| = |Vj−k+1| + 1 and Mj−k = Mj−k+1. In
the case of a vertex-0 deletion we have R0(G, j, k) = R0(G, j, k − 1) + 1 and R2b(G, j, k) =
R2b(G, j, k − 1) and both sides of (4) increase by one. In the case of a bad contraction we
have R0(G, j, k) = R0(G, j, k−1) and R2b(G, j, k) = R2b(G, j, k−1)+1 and again both sides
of (4) increase by one. Finally if a good contraction or a vertex-1 removal was performed
on Gj−k then R0(G, j, k) = R0(G, j, k − 1) and R2b(G, j, k) = R2b(G, j, k − 1). At the same
time we have that κ(Gj−i,Mj−i) = κ(Gj−i+1,Mj−i+1), completing the induction.

By introducing the auto correction contraction we replace a number of bad contractions
(those that would had followed a max-edge removal) with good ones. As a result we reduce
R2b(G, τend), consequently κ(G,M). Note that we do not claim that all bad contractions can
be dealt with in this way. We only show later that other instance of bad contractions are
very unlikely.

6



2.2 Organizing the actions taken by Reduce

We do not analyze the effects of each action taken by Reduce individually. Instead we group
together sequences of actions, into what we call hyperactions, and we analyze the effects of
the individual hyperactions. Hyperactions take a graph G of minimum degree at least 3 to
another smaller graph G′ with minimum degree at least 3. We divide them into good and
bad hyperactions. Only bad hyperactions increase R0 or R2b. Thus if reduce only executes
good hyperactions and ends up with a graph with a (near-)perfect matching then Lemma 3
implies that the initial graph has a (near-)perfect matching. Here a (near-)perfect matching
of a graph G is a matching of size b|V (G)|/2c. Furthermore, Construct will produce such
a matching.

We construct a sub-sequence Γ0 = G,Γ1, . . . ,Γτ of G0, G1, ..., Gτend
. Every hyperaction,

starts with a max-edge removal and it consists of all the actions taken until the next max-
edge removal or until Gτend

is reached. We let Γi be the graph that results from performing
the first i hyperactions. Thus Γi is the ith graph in the sequence G0, G1, ..., Gτend

that has
minimum degree at least 3 and going from Γi to Γi+1 Reduce performs a max-edge removal
followed by a sequence of vertex-0, vertex-1 removals and contractions. Thus Γ0,Γ1, ...,Γτ−1

consists of all the graphs in the sequence G0, G1, ..., Gτend−1 with minimum degree at least 3.

2.3 Excess and hyperactions of interest

The central quantity of this paper is the excess which we denote by ex`(·). For a graph G,
with degrees d(v), v ∈ V (G), and a positive integer ` we let

ex`(G) :=
∑

v∈V (G)

(d(v)− `)I(d(v) > `).

ex`(G) can be thought as a distance measure of the degree sequence of G from the set of
degree sequences of size |V (G)| with maximum degree `.

Hyperactions of interest
For the analysis of Reduce we consider 7 distinct hyperactions (sequences of actions) which
we call hyperactions of Type 1,2,3,4,5,33 and 34 respectively. We have put some diagrams of
these hyperactions at the end of the paper. In the case that the maximum degree is larger
than 3 we consider the following hyperactions:

Type 1: A single max-edge removal,

Type 2: A max edge-removal followed by an auto correction contraction.

Type 3: A single max-edge removal followed by a good contraction.

Type 4: A single max-edge removal followed by 2 good contractions. In this case
we add the restriction that there are exactly 6 distinct vertices v, u, x1, x2, w1, w2 in-
volved in this hyperaction and they satisfy the following: (i) v is a vertex of maxi-
mum degree, it is adjacent to u and {u, v} is removed during the max-edge removal,
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(ii) d(u) = d(x1) = d(x2) = 3, (iii) N(u) = {v, x1, x2}, N(x1) = {u, x2, w1} and
N(x2) = {u, x1, w2}. (Thus {u, x1, x2} form a triangle.) The two contractions have the
same effect as contracting {u, x1, x2, w1, w2} into a single vertex.

In the case that the maximum degree equals 3 we consider the following hyperactions:

Type 5: A max-edge removal followed by 2 good contractions that interact. In
this case the 5 vertices u, v, x1, x2, z involved in the hyperaction satisfy the follow-
ing: (i) {u, v} is the edge removed by the max-edge removal, (ii) N(v) = {u, x1, x2},
N(u) = {v, x1, z}, (so {u, v, x1} form a triangle), (iii) |(N(x1) ∪ N(x2) ∪ N(z)) \
{u, v, x1, x2, z} | ≥ 3. This hyperaction has the same effect as contracting all of
{u, v, x1, x2, z} into a single vertex.

Type 33: A max-edge removal followed by 2 good contractions that do not interact.
There are 6 distinct vertices involved v, v1, v2, u, u1, u2 where N(u) = {v, u1, u2} and
N(v) = {u, v1, v2}. During the max-edge removal {u, v} is removed. Thereafter each
of the 2 sets of vertices {v, v1, v2} and {u, u1, u2} is contracted to a single vertex.

Type 34: A max-edge removal followed by 3 good contractions. There are 8 distinct
vertices involved v, v1, v2, v, u, u1, u2, w1, w2. During the max-edge removal {u, v} is
removed. The conditions satisfied by v, u, u1, u2, w1, w2 and the actions that are per-
formed on them are the same as the ones in a hyperaction of Type 4 except that now v
has degree 3 before the hyperaction. In addition {v, v1, v2} is contracted into a single
vertex.

We divide hyperactions of Type 3 into three classes based on the number of loops created.
Assume that during a hyperaction of Type 3 the set {v, a, b} is contracted, v is the contracted
vertex and vc is the new vertex. Note that in general, d(vc) = d(a) + d(b)− 2− 2ηa,b, where
ηa,b is the number of parallel edges incident with a, b. Once the contraction takes place
those edges are turned into loops and then removed by the algorithm. We say that such a
hyperaction is of Type 3a if d(vc) = d(a) + d(b)− 2 (0 loops are created), is of Type 3b if
d(vc) = d(a) + d(b)− 4 (1 loop is created) and is of Type 3c if d(vc) < d(a) + d(b)− 4 (at
least 2 loops are created).

With the exception of a hyperaction of Type 3c, where ηa,b ≥ 2, we refer to the hyperactions
of interest as good hyperactions. We call any hyperaction that is not good, including a
hyperaction of Type 3c, bad.

We next state two lemmas. The proof of Lemma 4 is deferred to Section 3. It states that
as long as the excess stays “small” the algorithm only performs good hyperactions, w.h.p.
Later we will close the cycle by showing, for the class of graphs that we consider, that as
long as good hyperactions are performed the excess stays small.

Lemma 4. Let 0 ≤ i < τ and assume that Γi satisfies ex`(Γi) ≤ log2 |V (Γi)| for some
3 ≤ ` = O(1). Then with probability 1− o(|V (Γi)|−1.9) the hyperaction that Reduce applies
to Γi is good. In addition, a hyperaction of Type 1,3a or 33 is applied with probability
1− o(|V (Γi)|−0.9).
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Given Lemma 4 we can now prove the following:

Lemma 5. Let ω = ω(n) be a function of n that tends to infinity as n tends to infinity. For
` ∈ N let Q`,ω(G) be the event that Reduce only applies good hyperactions to every graph Γ′

of the sequence Γ0,Γ1, ...,Γτ − 1 that satisfies ex`(Γ
′) ≤ log2 |V (Γ′)| and |E(Γ′)| ≥ ω. Then

Pr(Q`,ω(G)) = 1− o(ω−0.9).

Furthermore if Γ′ is such a graph then Reduce applies a bad hyperaction to Γ′ with probabil-
ity o(ω−1.9), while it applies a hyperaction of Type 1, 3a, 33 to Γ′ with probability 1−o(ω−0.9).

Proof. For 0 ≤ i ≤ τ − 1, ex`(Γi) ≤ log2 |V (Γi)| implies,

2|E(Γi)| ≤ `|V (Γi)|+ log2 |V (Γi)| ≤ 2`|V (Γi)|. (5)

In addition |E(Γi)| is decreasing with respect to i. Therefore the probability the event
Q`,ω(G) does not occur is bounded by∑

i:|E(Γi)|≥ω

o(|V (Γi)|−1.9) ≤
∑

i:|E(Γi)|≥ω

o(|E(Γi)|−1.9) ≤
∑
j≥ω

j−1.9 = o(ω−0.9).

The second part of Lemma 5 follows directly from (5) and the second part of Lemma 4.

2.4 Proof of Theorem 2

For ` ∈ N define the stopping times

τ` := min{i : Γi has maximum degree ` or |E(Γi)| ≤ n0.9}. (6)

The first step in the proof of Theorem 2 is the following lemma:

Lemma 6. Let 8 ≤ k = O(1) and Γ0 = G be a random (multi)-graph with degree sequence
d ∈ C3,k, n vertices, maximum degree k, minimum degree at least 3 and no loops. Then with
probability 1− o(n−0.5),

i) the first τk−1 − 1 hyperactions applied by Reduce to Γ0 are good,

ii) Γi ∈ C3,k−1 for i ≤ τk−1,

iii) |E(Γτk−1
)| ≥ (1− 4/k)|E(Γ0)| = Ω(n),

It follows from this lemma that w.h.p. Reduce contracts G to a graph of maximum degree
at most 7. And that along the way, the existence of a perfect matching has been preserved.
Furthermore, the graph that remains has Ω(n) vertices. After this, the following lemma
shows that w.h.p. Reduce lowers the maximum degree to 4 via good hyperactions.
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Lemma 7. Let k ∈ {5, 6, 7} and Γ0 = G be a random (multi)-graph with degree sequence
d ∈ {3, 4, ..., k}n. Then with probability 1− o(n−0.5),

i) the first τk−1 − 1 hyperactions applied by Reduce to Γ0 are good,

ii) |E(Γτk−1
)| ≥ |E(Γ0)|/1025 = Ω(n),

It follows from Lemmas 6 and 7 that w.h.p. a sequence of good hyperactions will reduce
the maximum degree to at most 4. And then we have need to deal with the case where the
degrees of G are 3 or 4. For this we show that once again w.h.p. only good hyperactions
are executed, this time until we have a graph with ω = o(n), ω → ∞ vertices. We show
in addition that as long as the remaining graph has ω(n) vertices, it has a (near-)perfect
matching w.h.p. This is summarised in the following lemma.

Lemma 8. Let Γ0 = G be a random (multi)-graph with vertex degrees 3 or 4 only. Suppose
that ω = Ω(log n) and that the stopping condition Ξ in reduce is |V (Gi)| ≤ ω. Then with
probability 1−O(ω−3/4)

(i) Reduce only executes good hyperactions.

(ii) On termination, Γτend
has a (near) perfect matching.

Proof of Theorem 2a: We prove Theorem 2a where we assume that Algorithm 1 treats
loops and parallel edge the same way that Reduce-Construct does i.e. it is equivalent
to the Reduce-Construct algorithm applied to G with the stopping condition Ξ being
E(Gi) 6= ∅. Let Gj be the first graph in the sequence satysfying |V (Gj)| ≤ log n and
∆(Gj) ≤ 4. Then, by taking ω = log n in Lemma 8, Lemmas 6, 7 and 8 imply that w.h.p.
R(G, τend) = R2b(G, τend) = 0. Substituting in (3) gives that w.h.p.

κ(G,M) = κ(Gτend
,Mτend

) ≤ |V (Gτend
)| ≤ log n.

Hence w.h.p. Reduce-backtrack matches at least n− log n vertices.

Proof of Theorem 1b: We prove Theorem 1b where the modified version of Algorithm 1
corresponds to a 2-phase algorithm A. In its first phase, A applies the Reduce-Construct
algorithm with the stopping condition Ξ being |V (Gi)| ≤ n2/3 and ∆(Gi) ≤ 4 and the
matching algorithm Match being the Micali-Vazirani algorithm. Lemmas 6, 7 and 8 imply
that with probability 1−o(n−1/2), Γτ has a (near) perfect matching. Such a matching is then
found in O((n2/3)3/2) = O(n) time by Match and expanded to a (near)-perfect matching of
the original graph G.

In the event that the output matching is not (near) perfect then A proceeds to its sec-
ond phase where it applies the Micali-Vazirani algorithm to the original graph and finds a
maximum matching.

The complexity of the first and the second phase of A are O(n + (n2/3)3/2) and O(n3/2)
respectively. Hence A outputs a maximum matching in O(n+n−1/2 ·n3/2) = O(n) expected
time.
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We briefly discuss the important properties of C3,k. These are (a) p3 says small (hence the
excess stays small and only good hyperactions occur. Thus we can control most things. (b)
The graph belongs to C3,k−1 up to the point where its maximum degree becomes k−1. Hence
we can invoke (a) (i.e p3 is small ) throughout the analysis and we can apply an induction
argument.

3 Notation - Preliminaries Results

We start this section by displaying various pieces of notation that we will use in later sections
for ease of reference. Later, in Section 3.2, we state and prove results about the excess and
hyperactions. These results are used in multiple later Sections.

3.1 Notation

Γ0,Γ1, ...,Γτ is a sequence of graphs that is generated by Reduced. Γ0 = G is the input
and Γτ is the empty graph. Every graph in the sequence has minimum degree 3 except the
last one. To go from Γi to Γi+1 Reduce performs a hyperaction which may be one of the
hyperactions of Interest (a.k.a. good hyperactions), listed in Subsection 2.2. Furthermore
given the degree sequence di of Γi we have that Γi is a random (multi)-graph with degree
sequence Γi and no loops.

Observe that at every hyperaction a max-edge removal is performed, therefore ei ≤ e0− i for
i ≤ τ . Thus, if our initial graph has n vertices and maximum degree k then 2ei ≤ kn − 2i.
eτ ≥ 0 implies that every i ≤ τ satisfies

i ≤ τ ≤ kn/2. (7)

For a graph G, j, ` ∈ N:

• δ(G) and ∆(G) are the minimum and maximum degrees of G respectively,

• nj(G) is the number of vertices of G of degree j,

• nj(d) is the number of times element j appears in d, for a degree sequence d,

• pj(G) :=
jnj(G)

2|E(G)| ,

• p>j(G) :=
∑

h>j ph(G),

• ex`(G) :=
∑

v∈V (G)(d(v)− `)I(d(v) > `),

• d(G) is the degree sequence of G.
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We denote by δi,∆i, nj,i, pj,i, p>j,i and ex`,i the corresponding quantities of Γi. Furthermore
we let ei := |E(Γi)| and ni := |V (Γi)|.

Observe that from the definitions (1), (2), it follows that C3,` ⊆ C3,`−1. We denote D`,j(di)
by D`,j,i.

Given the sequence Γ0,Γ1, ...,Γτ , for 3 ≤ j = O(1) we define the following stopping times,
in addition to τj in (6).

• tj := min{i : Γi /∈ C3,j or ei ≤ n0.9} and

• t∗j := min{τj, tj}.

For a function ω = ω(n) that tends to infinity as n tends to infinity we define

σω := min{i : ei ≤ ω}.

We later show that if Γ0 ∈ C3,k ⊆ C3,k−1 then w.h.p. t∗k−1 = τk−1 < tk−1 for k ≥ 8.

For ` ∈ N and a stopping time σ we let Fk,`,σ(G) be the event that

i) ex`,i ≤ log2 ni for 0 ≤ i < σ,

ii) Reduce applies a good hyperaction to Γi for 0 ≤ i < σ,

iii) for every i ≤ σ there exists zi, i− log2 ni/(k − 2) ≤ zi < i such that ex`,zi = 0.

We let Q`,ω(G) be the event that Reduce applies a good hyperaction to every graph Γ′ of
the sequence Γ0,Γ1, ...,Γτ that satisfies ex`(Γ

′) ≤ log2 ni and e(Γ′) ≥ ω.

We are going to use the following Azuma-Hoeffding inequality ([11]), in multiple places:

Lemma 9. Let b ∈ N. For i1 ≤ i < i2 let Xi be a random variable that is bounded by b and
let Yi = E [Xi|Γi]. Then for any t > 0,

Pr

(∣∣∣∣ i2−1∑
j=i1

(Yj −Xj)

∣∣∣∣ > t

)
≤ 2 exp

{
− t2

2b2(i2 − i1)

}
.

Notation 10. We sometimes write A ≤O B in place of A = O(B) for aesthetic purposes.

3.2 Preliminary Results

We start by proving Lemma 4.

Notation 11. Let K be an arbitrary positive integer and b ∈ {0, 1}. For a random graph G
and v ∈ V (G), let BK(G, v, b) be the event that G spans a subgraph that contains v, spans
a ≤ K vertices and a+ b edges.
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We show that Reduce either performs one of the good hyperactions given in Section 2.3 or
BK(G, v, 1) occurs where v is the vertex of maximum degree chosen by Reduce.

Lemma 12. Let K be an arbitrary fixed positive integer. Let d be a degree sequence of
length n and G be a random graph with degree sequence d and no loops. Assume that
ex`(G) ≤ log2 n for some 3 ≤ ` = O(1) and let b ∈ {0, 1}. Then,

Pr(BK(G, v, b)) = o(n−0.9−b).

Proof. ex`(G) ≤ log2 n implies that G has no loops with probability bounded below by
a positive constant (see for example [7]). Hence the condition of having no loops can be
ignored in the proof that events have probability o(1). The condition also implies that
∆ = ∆(G) ≤ `+ ex`(G) ≤ `+ log2 n.

Let 2m =
∑n

i=1 d(i) ≤ `n+ex`(G) = Θ(n). Then for vertex v and for b = 0, 1 the probability
that G spans a subgraph that covers v, spans a ≤ K vertices and a+b edges can be bounded
above by

≤O
K∑
a=2

(
n

a− 1

)
(∆a)2(a+b) (2m− 2(a+ b))!

2m−(a+b)(m− (a+ b))!
× 2mm!

(2m)!

≤O
K∑
a=2

na−1∆2(a+b) m(m− 1)...(m− (a+ b) + 1)

2m(2m− 1)...(2m− 2(a+ b) + 1)

≤O
K∑
a=2

na−1∆2(a+b)m−(a+b)

= o(n−0.9−b).

We will now drop the subscript K from B. Taking K = 20 will easily suffice for the rest of
the proof. Thus B(G, v, b) = B20(G, v, b) from now on.

Proof of Lemma 4. As might be expected, this involves a lengthy case analysis that
depends on the local structure of Γi at a vertex of maximum degree. Let v be the vertex of
maximum degree chosen by Reduce and let u be the vertex adjacent to v such that {u, v}
is chosen for removal. We will show that if B(Γi, v, 1) does not occur then Reduce performs
one of the hyperactions given in Section 2.3. Also observe that if a good hyperaction occurs
but not one of Type 1, 3a or 33 then B(Γi, v, 0) occurs. Also note that if a hyperaction of
Type 3c occurs, corresponding to a bad hyperaction, then B(Γi, v, 1) occurs. The probability
estimates are deferred to Lemma 12 where it is shown that Pr(B(Γi, v, 0)) = o(|V (Γi)|−0.9)
and Pr(B(Γi, v, 1)) = o(|V (Γi)|−1.9).

Case A: d(v) ≥ 4.
If d(u) ≥ 4 then a hyperaction of Type 1 is performed. Thus assume d(u) = 3 and consider
the cases where |N(u)| = 1, 2, 3, (recall that we allow parallel edges but not self-loops).
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Case A1: |N(u)| = 1.
u is connected to v by 3 parallel edges and so B(Γi, v, 1) occurs.

Case A2: |N(u)| = 2.
Let N(u) = {v, u′} and S = {u, u′, v} and note that d(S) ≥ 10. Let T = (N(u′)∪N(v)) \S.
If |T | ≤ 2 then either S spans more than 3 edges or S ∪ T spans at least 7 edges. In both
cases B(Γi, v, 1) occurs. Assume then that |T | ≥ 3. Now exactly one of {u, u′}, {u, v} is
repeated, else B(Γi, v, 1) occurs. If {u, u′} is repeated then we perform an auto correction
contraction resulting to a hyperaction of Type 2 . If {u, v} is repeated then we contract the
remaining path (u′, u, v). Hence we have performed a hyperaction of Type 3b.

Case A3: |N(u)| = 3.
Let N(u) = {v, x1, x2} and T = (N(x1) ∪N(x2)) \ {u, x1, x2}.

Sub-case A3a: |T | ≤ 1.
{u, x1, x2} ∪ T spans at least (2 + d(x1) + d(x2) + |T |)/2 ≥ 4 + |T |/2 edges and the event
B(Γi, v, 1) occurs.

Sub-case A3b: T = {w1, w2}.
Let Γ′i denote the graph obtained by deleting the edge {u, v} from Γi. If v is at distance less
than 6 from {u} ∪ N(u) in Γ′i then B(Γi, v, 1) occurs. To see this consider the subgraph H
spanned by {u, v, x1, x2, w1, w2, y} and the vertices on the shortest path P from v to u in Γ′i.
Here y is the neighbor of v on P . It must contain at least two distinct cycles. One spanned
by each of {u, x1, x2, w1, w2} and {u, v, } ∪ V (P ).

Thus we may assume that v is at distance at least 6 from {u} ∪ N(u) in Γ′. Now, if there
is no edge from x1 to x2 then {v, u, x1, x2, w1, w2} spans at least 7 edges and so B(Γi, v, 1)
occurs. Thus we may additionally assume that N(x1) = {u, x2, w1}, N(x2) = {u, x1, w2}
and v /∈ {w1, w2} ∪ N(w1) ∪ N(w2). We may also assume that {w1, w2} is not an edge of
Γ, for otherwise {u, x1, x2, w1, w2} contains two distinct cycles and B(Gi, v, 1) occurs. The
algorithm Reduce proceeds by contracting u, x1, x2 into a single vertex x′. x′ has degree
2 and then Reduce proceeds by performing a contraction of x′, w1, w2 into a new vertex
w′. Let S = N{w1, w2} \ {x1, x2}. If |S| ≤ 3 then B(Γi, u, 1) occurs. To see this observe
that w1, w2 must then have a common neighbor w3 say. Consider the subgraph H spanned
by {u, x1, x2, w1, w2, w3}. H contains at least 7 edges and 6 vertices. If |S| ≥ 4 then the
new vertex has degree 4 and the sequence of actions taken by Reduce corresponds to a
hyperaction of Type 4.

Sub-case A3c: |T | ≥ 3. After the removal of {v, u} we contract {u, x1, x2} into a single
vertex of degree at least 3, hence a hyperaction of Type 3 is performed.

Case B: d(v) = d(u) = 3.
Case B1: In Γ′i, u and v are at distance at least 4.
Let N ′ refer to neighborhoods in Γ′i. If |N ′(N ′(u))| and |N ′(N ′(v))| ≤ 3 then B(Γi, v, 1)
occurs. Thus we can assume that either |N ′(N ′(u))| = 4 and/or |N ′(N ′(v))| = 4. If both
|N ′(N ′(u))|, |N ′(N ′(v))| = 4 then Reduce will perform 2 good contractions and this amounts
to a hyperaction of Type 33. Assume then that |N ′(N ′(u))| = 4 and that |N ′(N ′(v))| ≤ 3.
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If |N ′(N ′(v))| = 2 or 3 then B(Γi, v, 0) occurs and Reduce will perform 2 good contractions
amounting to a hyperaction of Type 33 or 34. Finally, if |N ′(N ′(v))| = 1 then B(Γi, v, 1)
occurs.

Case B2: In Γ′i, u and v are at distance 3.
In Γi there is a cycle C of length 4 containing u, v. If |N ′(N ′(u))| ≤ 3 or |N(N(v))| ≤ 3 or
|N ′(u) ∩N ′(N ′(v))| > 1 or |N ′(v) ∩N ′(N ′(u))| > 1 then B(Γi, v, 1) occurs. This is because
the graph spanned by {u, v} ∪N(u) ∪N(v) ∪N(N(u) ∪N(N(v)) in Γi will contain a cycle
distinct from C. Assume this is not the case. W.l.o.g we may assume that after the max-edge
removal of {u, v} we have a contraction of {u}∪N(u) followed by a contraction of {v}∪N(v).
Observe that neither contraction Reduces the size of N(N(u)) or N(N(v)). Thus Reduce
performs a hyperaction of Type 33.

Case B3: In Γ′i, u and v are at distance 2.
In the case that u, v have 2 common neighbors in Γ′i we see that B(Γi, v, 1) occurs. Assume
then that they have a single common neighbor x1. Let z, x2 be the other neighbors of u, v
respectively. Then either B(Γi, v, 1) occurs or Reduce performs a hyperaction of Type 5.

Case B4: In Γ′i, u and v are at distance 1.
So here we have that {u, v} is a double edge in Γi. Let x, y be the other neighbors of u, v
repectively in Γ. Assuming that B(Γi, v, 1) does not occur, Reduce performs a max-edge
removal followed by a single good contraction and this will be equivalent to a hyperaction
of Type 3, involving the contraction of one of x, u, v or u, v, y.

Now that we have proved Lemma 4 we must verify its key assumption viz. that ex`(Γ)
remains small for ` = O(1). This is the aim of Lemmas 13 and 16. In these two lemmas we
study how the good hyperactions effect the expected changes of nr,i and ex`,i respectively. As
discussed earlier given the degree sequence of Gi, di, we have that Gi is uniformly distributed
among all configurations with degree sequence di and no loops. The mild conditioning
resulting from imposing the condition that Γi has no loops is insignificant and results in
constant factors. These will be insignificant as they will only affect tems of value o(1). For
the clarity of the presentation we omit such factors.

Lemma 13. Let 4 ≤ k = O(1). Let Γ0 = G be a random (multi)-graph with degree sequence
d, maximum degree k, minimum degree 3 and no loops. Suppose that Γi has maximum degree
at least k and satisfies exk,i ≤ log2 ni. Conditioned on the event that a good hyperaction is
applied to Γi, we have,

nr,i − nr,i+1 ≤ 5, for 3 ≤ r ≤ k − 1 . (8)

Furthermore for 3 ≤ r ≤ k − 2,

E [nr,i+1 − nr,i|Γi] = pr+1,i − pr,i + p3,i

( ∑
j1+j2−2=r

pj1,ipj2,i − 2pr,i − p2
r,i

)
(9)

− p3
r,iI(r = 3) + o(n−0.9

i ),

15



and for r = k − 1,

E [nk−1,i+1 − nk−1,i|Γi] = pk,i − pk−1,i + p3,i

( ∑
j1+j2−2=k−1

pj1,ipj2,i − 2pk−1,i

)
(10)

+ I(∆i = k) + o(n−0.9
i ).

In addition

ei − ei+1 ≤ 6, (11)

and

E [ei+1 − ei|Γi] = −1− 2p3,i + o(n−0.9
i ) (12)

Proof. Fix r, 3 ≤ r ≤ k− 2. Throughout this lemma we condition on the event that the ith
hyperaction is good. We have that ∆i ≥ k > 3 and so Reduce performs a hyperaction of
Type 1, 2, 3a, 3b or 4 with probability 1−p3,i, o(n

−0.9
i ), p3,i, o(n

−0.9
i ) and o(n−0.9

i ) respectively.
All of the hyperactions start with a max-edge removal. That is a random vertex of maximum
degree v is chosen along with a random neighbor u and the edge {v, u} is removed. v is a
vertex of maximum degree and thus d(v) ≥ k. We summarize the case analysis that follows
in Tables 1 and 2 given below.

If d(u) > 3 then a hyperaction of Type 1 occurs. As a result, a vertex of degree d(v) and d(u)
respectively becomes of degree d(v)−1 and d(u)−1 resp. Given the above for 4 ≤ r ≤ k−2
we have the following two cases:

• Case a: d(u) = r + 1. Then, nr,i+1 − nr,i = 1. Case (a) occurs with probability pr+1,i.
Actually it occurs with probability pr+1,j +O(n−1

i ). The error term O(n−1
i ) is absorbed into

the o(n−0.9
i ) term that arises and so we omit it here, hopefully without confusion.

• Case b: d(u) = r. Then, nr,i+1 − nr,i = −1. Case (b) occurs with probability pr,i.

If d(u) = 3 then a hyperaction of Type 2, 3a, 3b or 4 occurs. Assume that a hyperaction of
Type 3a occurs, that is u has 3 neighbors in Γi, let them be {v, x1, x2}. There is no edge
from x1 to x2. In this case Reduce contracts {v, x1, x2}. The new vertex, say vc, has degree
d(x1)+d(x2)−2. For r ≥ 3, nj,i is decreased by 1 for every vertex of degree r in {v, u, x1, x2}.
And nr,i is increased by 1 for every element of {d(v)− 1, d(x1) + d(x2)− 2} that is equal to
r.

First we let 4 ≤ r ≤ k − 2 and consider the following 3 cases:

• Case c: d(x1) = d(x2) = r. Then nr,i+1 − nr,i = −2. Case (c) occurs with probability
p3,ip

2
r,i.

• Case d: d(x1) = r, d(x2) 6= r or d(x1) 6= r, d(x2) = r . Then nr,i+1 − nr,i = −1. Case (d)
occurs with probability p3,ipr,i(2− pr,i).

• Case e: d(x1) + d(x2) − 2 = r. Then the new vertex has degree r and nr,i+1 − nr,i = 1.
Case (e) occurs with probability p3,i · pd(x1),i · pd(x2),i.
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If r = 3 then the above cases are modified as follows (recall that d(u) = 3):

• Case c′: d(x1) = d(x2) = 3. Then n3,i+1 − n3,i = −3. Case (c′) occurs with probability
p3

3,i.

• Case d′: d(x1) = 3, d(x2) 6= 3 or d(x1) 6= 3, d(x2) = 3. Then n3,i+1 − n3,i = −2. Case (d′)
occurs with probability p2

3,i(2− p3,i).

• Case e′: d(x1), d(x2) > 3. Then n3,i+1 − n3,i = −1. Case (e′) occurs with probability
p3,i(1− p3,i)

2.

This completes the analysis of Case r = 3. From the case analysis above and the definition
of the hyperactions it follows that (8) holds for 3 ≤ r ≤ k − 2.

For 4 ≤ r ≤ k − 2 we summarize the case analysis in Table 1.

Case d(u) hyperaction that nr,i+1 − nr,i probability of occurring
takes place

Case a r + 1 Type 1 1 pr+1,i

Case b r Type 1 -1 pr,i
Case c 3 Type 3a -2 p3,ip

2
r,i

Case d 3 Type 3a -1 p3,ipr,i(2− pr,i)
Case e 3 Type 3a 1 p3,i

∑
j1+j2−2=r pj1,ipj2,i

Table 1: Case analysis for 4 ≤ r ≤ k − 2

A hyperaction of Type 2, 3b or 4 occurs with probability o(n−0.9
i ). The upper bound in

(8) is achieved when a hyperaction of Type 4 takes place and all 5 vertices involved in the
contractions have degree 3. Thus,

E [nr,i+1 − nr,i|Γi] = pr+1,i − pr,i − 2p3,ip
2
r,i − p3,ipr,i(2− pr,i)

+ p3,i

∑
j1+j2−2=r

pj1,ipj2,i + o(n−0.9
i )

= pr+1,i − pr,i + p3,i

( ∑
j1+j2−2=r

pj1,ipj2,i − 2pr,i − p2
r,i

)
+ o(n−0.9

i ).

If r = 3 then Case (b), where we assume d(u) = r > 3, does not apply. In place of Table 1
we have Table 2 given below.

Case d(u) hyperaction that n3,i+1 − n3,i probability of occurring
takes place

Case a 4 Type 1 1 p4,i

Case c′ 3 Type 3a -3 p3
3,i

Case d′ 3 Type 3a -2 p2
3,i(2− p3,i)

Case e′ 3 Type 3a -1 p3,i(1− p3,i)
2

Table 2: Case analysis for r = 3
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A hyperaction of Type 2, 3b or 4 occurs with probability o(n−0.9
i ). Thus, using the identity

p3,i

∑
j1+j2−2=3 pj1,ipj2,i = 0 (pj,i = 0 for j < 3) we have,

E [n3,i+1 − n3,i|Γi] = p4,i − 3p3
3,i − 2p2

3,i(2− pr,i)− p3,i(1− p3,i)
2

+ p3,i

∑
j1+j2−2=3

pj1,ipj2,i + o(n−0.75)

= p4,i − p3,i + p3,i

( ∑
j1+j2−2=3

pj1,ipj2,i − 2p3,i − p2
3,i

)
− p3

3,i + o(n−0.9
i ).

This completes the verification of (9). The derivation of (8) for r = k−1 and (10) follows the
same analysis except for the fact that if d(v) = ∆i = k, then because of the initial max-edge
removal, nk−1,i is initially increased by one resulting in the additional I(∆i = k) term found
in (10).

Equation (11) is easy to verify from the definition of the Hyperactions. Finally for (12) we
have the following table:

Hyperaction ei+1 − ei probability occurring
Type 1 -1 1− p3,i

Type 3a -3 p3,i

Type 2/3b/4 O(1) o(n−0.9
i )

Therefore,

E [ei+1 − ei] = −(1− p3,i)− 3p3,i − o(n−0.9
i ) = −1− 2p3,i + o(n0.9

i ).

Corollary 14. Suppose that i1 < i2 and assume that the first i2 − 1 hyperactions are good.
If i2 − i1 ≤ n0.8 and ei2−1 ≥ n0.9 then |pj,i2 − pj,i1| ≤ o(n−0.05) for all j ∈ N.

Proof. This follows directly from (11).

In the proof of Lemma 6 we will use (10) to control nk−1,i1 − nk−1,i2 . We use the following
lemma to control the change in the most problematic term appearing in (10), namely of the
term I(∆i = k).

Lemma 15. Suppose that 8 ≤ ∆i ≤ k = O(1) and that σ is a stopping time. Assume that
the event Fk,k,σ occurs. In addition assume that eσ−1 ≥ n0.9. Let i1 < i2 ≤ σ be such that
n0.7 ≤ i2 − i1 ≤ n0.8. Then w.h.p.

i2−1∑
i=i1

I(∆i = k) ≥ (i2 − i1)(0.999− (k − 2)p3,i1). (13)
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Proof. The occurrence event Fk,k,σ implies that exk,i < log2 ni and the ith hyperaction is
good for i < i2 ≤ τσ.

Let Zi = d(uc)−k if the ith hyperaction is of Type 2, 3a, 3b or 4, and the new vertex created
uc has degree d(uc) > k. Here the edge {u, v} was deleted and v was the selected vertex of
maximum degree. Otherwise let Zi = 0.

The inequality exk,i < log2 ni implies that pd,i ≤ (log2 ni + k)/2ei = o(n−0.9
i log2 n) for

k < d ≤ log2 ni + k and pd,i = 0 for d > log2 ni + k. Hence for 2 log2 ni + k ≥ ` > k,
Zi = ` − k if a Hyperaction of Type 3a took place and the vertices involved had degrees
3, d1, d2 (this occurs with probability p3,ipd1,ipd2,i) or a hyperaction of Type 2,3b or 4 took
place (this occurs with probability o(n−0.9

i ). Therefore,

Pr(Zi = `− k) = p3,i

∑
d1+d2−2=`

pd1,ipd2,i + o(n−0.9
i ) = p3,i

∑
d1+d2−2=`
3≤d1,d2≤k

pd1,ipd2,i + o(n−0.9
i log2 n).

The inequality exk,i < log2 ni implies Pr(Zi = `− k) = 0 for ` ≥ 2 log2 ni. Thus,

E [Zi|Γi] = p3,i

∑
3≤j1,j2≤k

pj1,ipj2,i · (j1 + j2 − 2− k)I(j1 + j2 − 2− k ≥ 0) + o(1) (14)

≤ (k − 2)p3,i + o(1) ≤ (k − 2)p3,i1 + o(1). (15)

Equation (15) uses Corollary 14. Now observe that

0 ≤ exk,i2 = exk,i1 +

i2−1∑
i=i1

(exk,i+1 − exk,i) ≤ exk,i1 +

i2−1∑
i=i1

{Zi − (1− I(∆i = k))}. (16)

The −(1− I(∆i > k)) term accounts for the fact that when ∆i > k, exk,i is decreased by 1,
due to the max-edge removal.

We observe next that if
∑i2−1

i=i1
I(∆(Γi) = k) < (i2− i1)(0.999− (k−2)p3,i1), then (16) implies

that

(i2 − i1)(0.999− (k − 2)p3,i1) >

i2−1∑
i=i1

I(∆i = k) ≥ (i2 − i1)− exk,i1 −
i2−1∑
i=i1

Zi

≥ (i2 − i1)− log2 ni1 −
i2−1∑
i=i1

Zi.

This implies that

i2−1∑
i=i1

Zi ≥ (i2 − i1)(0.001 + (k − 2)p3,i1)− log2 ni1 . (17)

Note that Zi ≤ 2 log2 n. Then, (15) and (17) together with the Azuma-Hoeffding inequality
imply,

Pr

( i2−1∑
i=i1

I(∆(Γi) = k) < (i2 − i1)(0.999− (k − 2)p3,i1

)
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≤ Pr

( i2−1∑
i=i1

Zi ≥ (i2 − i1)(0.001 + (k − 2)p3,i1)− log2 ni1

)
≤ 2 exp

{
((0.001− o(1))(i2 − i1))2

8(i2 − i1) log4 n

}
= o(n−0.5).

In the last equation we used that n0.7 ≤ i2 − i1.

We now proceed to estimate the expected change in ex`,i in terms of p3,i and p`+1. Later in
Lemma 17 we will argue that as long as it is negative, w.h.p. only good hyperactions occur.

Lemma 16. Let 4 ≤ k = O(1). Let Γ0 = G be a random (multi)-graph with degree sequence
d, maximum degree k, minimum degree 3 and no loops. Suppose that Γi has maximum
degree at least k and satisfies satisfies exk,i ≤ log2 ni. Conditioned on the event that a good
hyperaction is applied to Γi, we have for 4 ≤ ` ≤ k,

|ex`,i+1 − ex`,i| ≤ `− 3 + I(ex`,i = 0). (18)

Moreover, either ex`,i = 0 or

E [ex`,i+1 − ex`,i|Γi] ≤ −(1− p3,i)− p`+1,i − p3
3,i + (`− 3)p3,i(1− p3,i)

2 + n−0.9
i log2 n. (19)

Proof. As in Lemma 13 we condition on the event that the ith hyperaction is good. The
following case analysis is summarized in Table 3 given below.

Fix 4 ≤ ` ≤ k. Initially a vertex v of maximum degree is chosen along with a neighbor u
and the edge {v, u} is removed.

If d(u) > 3 then a hyperaction of Type 1 occurs and ex`,i is decreased by 1 for each vertex
of degree greater than ` ≥ 3 in {v, u}. d(v) = ∆i and therefore d(v) = ∆i > ` if and only if
ex`,i > 0. We consider the following cases, depending on the value of d(u) :

• Case 1: d(u) > `. Then d(v) ≥ d(u) > ` and ex`,i+1 − ex`,i = −2. Case 1 occurs with
probability p≥`+1,i.

• Case 2: 3 < d(u) ≤ `. If Case 2 occurs then ex`,i+1− ex`,i = −I(ex`,i > 0). Case 2 occurs
with probability 1− p3,i − p≥`+1,i.

If d(u) = 3 then a hyperaction of Type 2, 3a, 3b or 4 occurs. Assume that a hyperaction of
Type 3a occurs, that is u has 3 neighbors in Γi. Let them be {v, x1, x2} and observe that
there is no edge from x1 to x2. In this case Reduce contracts {v, x1, x2}. The new vertex
vc has degree d(x1) + d(x2) − 2. For the change in ex`, ` ≥ 3 we consider 3 cases. In all 3
cases the max-edge removal results in the decrease of ex`,i by the amount of I(d(v) > `).

• Case 3: d(x1) = d(x2) = 3. The new vertex vc has degree 4. Thus it does not contribute
to ex`,i and ex`,i+1 − ex`,i = −I(ex`,i > 0). Case 3 occurs with probability p3

3,i

• Case 4: d(x1) = 3, d(x2) 6= 3. The new vertex vc contributes to ex`,i+1 by the amount of
d(vc) − ` = (d(x2) + 3 − 2) − ` = (d(x2) + 1) − ` only if d(vc) = d(x2) + 1 > ` i.e. only if
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d(x2) ≥ `. If d(x2) > ` then x2 contributes to ex`,i by the amount of d(x2)− `. Thus,

ex`,i+1 − ex`,i = −I(d(v) > `) + (d(x2) + 1− `)I(d(x2) + 1 > `)− (d(x2)− `)I(d(x2) > `)

= −1 or 0.

Case 4 occurs with probability at most p2
3,i(2− p3,i).

• Case 5: d(x1) = j1 > 3, d(x2) = j2 > 3. xh contributes to ex`,i by the amount of
(jh− `)I(jh > `) for h = 1, 2, while the new vertex has degree j1 + j2− 2 and contributes by
the amount of

((j1 + j2 − 2)− `)I(j1 + j2 − 2 > `).

Therefore,

ex`,i+1 − ex`,i = −I(d(v) > `) + ((j1 + j2 − 2)− `)I(j1 + j2 − 2 > `)

− (j1 − `)I(j1 > `)− (j2 − `)I(j2 > `))

≤ `− 2− I(d(v) > `) = `− 3 + I(ex`,i = 0). (20)

In the last line we used d(v) = ∆i implies that ∆i > ` iff ex`,i > 0. Therefore I(d(v) > `) =
I(ex`,i > `) = 1− I(ex`,i = 0). From (20) we can conclude that if ex`,i > 0 then

ex`,i+1 − ex`,i ≤ `− 3. (21)

Case 5 occurs with probability p3,i · pj1,i · pj2,i (recall j1 = d(x1) > 3, j2 = d(x2) > 3).

• Case 6: A hyperaction of Type 2, 3b or 4 occurs. The analysis is similar to Cases 3, 4
and 5. It follows that

ex`,i+1 − ex`,i ≤ `− 3 + I(ex`,i = 0).

Case 6 occurs with probability o(n−0.9
i ).

We summarize the above case analysis in Table 3. Either ex`,i = 0 or

Case d(u) Hyperaction that ex`,i+1 − ex`,i probability
takes place occurring

Case 1 `+ 1 ≤ d(v) Type 1 -2 p≥`+1,i

Case 2 3 < d(u) ≤ ` Type 1 −I(ex`,i > 0) 1− p3,i − p≥`+1

Case 3 3 Type 3a -1 p3
3,i

Case 4 3 Type 3a -1 or 0 p2
3,i(2− p3,i)

Case 5 3 Type 3a ∈ [−1, u`] p3,i

∑
j1,j2>3 pj1,ipj2,i

Case 6 Type 3b/4/2 ∈ [−1, u`] o(n−0.9
i )

Table 3: Case analysis for 4 ≤ ` ≤ k, u` = `− 3 + I(ex`,i = 0)

Therefore (18) is satisfied. In addition if ex`,i > 0 then −I(ex`,i > 0) = −1 and u` = ` − 3.
Thus either ex`,i = 0 or

E(ex`,i+1 − ex`,i|Γi) ≤ −2p`+1,i − (1− p3,i − p`+1,i)− p3
3,i
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+ (`− 3)
∑
j1,j2>3

pj1,ipj2,i + (`− 3)o(n−0.9
i )

≤ −1− p`+1,i − p3
3,i + (`− 3)p3,i(1− p3,i)

2 + n−0.9
i log2 n.

In Lemma 17 and Corollary 18, using (18) and (19), we show that Fk,k,σ occurs w.h.p.
for various stopping times σ. Hence for the corresponding σ we have that w.h.p. the ith
hyperaction is good for i < σ.

Lemma 17. Let k ≥ 4 and ω = ω(n) → ∞. Let Γ0 = G be a random (multi)-graph with
degree sequence d, n vertices, minimum degree at least 3 and no loops that satisfies exk,0 = 0.
Let σ be a stopping time such that the inequalities i < σ and 0 < exk,i ≤ log2 ni imply

E(exk,i+1 − exk,i|Γi, Qk,ω(G)) < C and ei ≥ ω. (22)

for some constant C < 0. Then with probability 1− o(ω−0.9) the event Fk,k,σ(G) occurs.
(See Section 3.1 for the definitions of the events Fk,k,σ, Qk,ω.)

Proof. We have exk,0 = 0, and so conditioned on Qk,ω(G) occurring, (18) implies that if
Fk,k,σ(G) does not occur then there exists i ≤ σ such that:

i) 0 ≤ exk,i−log2 ni/(k−2) ≤ k − 2,

ii) 0 < exk,j < log2 nj for i− log2 ni/(k − 2) ≤ j < i and

iii) exk,i > 0.

Indeed, conditioned on Qk,ω(G) occurring, (18) implies that for i− log2 ni/(k − 2) ≤ j < i

exk,j ≤ exk,i−log2 ni/(k−2) + (j − (i− log2 ni/(k − 2)))(k − 2) ≤ log2 ni ≤ log2 nj.

Thus the inequality

E(exk,i+1 − exk,i|Γi, Qk(G)) < C holds for i− log2 ni/(k − 2) ≤ j ≤ i.

The Azuma-Hoeffding inequality (see Lemma 9) implies that

Pr(Fk,k,σ(G) does not occur ) ≤∑
Γi:ei≥ω

exp

{
−

((k − 2)− C · ( log2 ni

k−2
− 1))2

2 · log2 ni

k−2
· (k − 2)2

}
+ Pr(¬Qk,ω(G)) = o(ω−0.9).

For the second inequality, we used Lemma 5 and the observation that exk,i ≤ log2 ni implies
kni + log ni ≥ 2ei and the fact that ei is decreasing.
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Corollary 18. (a) Let Γ0 = G be a random graph with degree sequence d, minimum
degree 3, maximum degree 4 and no loops. Let ω = ω(n) be a function of n that tends
to infinity as n tends to infinity and σ = min{i : |E(Γi)| ≤ ω}. Then, with probability
1− o(ω−0.9) the event F4,4,σ occurs.

(b) For k ∈ {5, 6, 7} let Γ0 = G be a random graph with degree sequence d, minimum
degree 3, maximum degree k and no loops. Then, with probability 1−o(n−0.5) the event
Fk,k,τk−1

occurs.

(c) For 8 ≤ k let Γ0 = G ∈ C3,k be a random graph with degree sequence d, minimum
degree 3, maximum degree k and no loops. Then, with probability 1−o(n−0.5) the event
Fk,k,tk−1

occurs.

Proof. We apply Lemma 17, with ω = n0.9 for parts (b),(c). Recall that for i < τk−1 we have
ei ≥ n0.9. Thus it remains to verify that the first condition in (22) is also satisfied in each of
the settings of (a), (b) and (c). By setting ` = k, (19) implies

E [exk,i+1 − exk,i|Γi, Qk(G)] ≤ −(1− p3,i)− p3
3,i + (k − 3)p3,i(1− p3,i)

2 + n−0.9
i . (23)

a) Maximizing (23) with k = 4 and p3,i ∈ [0, 1] yields a maximum of −0.5 + o(1), attained
at p3,i = 0.5.

b) Maximizing (23) with k ∈ {5, 6, 7} and p3,i ∈ [0, 1] yields a maximum of −0.08791,
attained at k = 7, p3,i = 0.40457.

c) Lemma 19 (below) is applicable for i < tk−1. Thus

p3,i ≤
3∑k−1

j=3 α
j−3j

+ o(1) ≤ 1

k − 2
+ o(1). (24)

Maximizing (23) over 8 ≤ k and p3,i ≤ 1/(k − 2) yields a maximum of −((k − 1)(k − 3)2 +
1− (k − 3)3)/(k − 2)3 + o(1) attained at p3,i = 1/(k − 2).

4 Proof of Lemma 6

We split the proof of Lemma 6 into a series of three Lemmas. The first one, Lemma 20,
implies that w.h.p. tk−1 is determined by the event Dk−1,k−1,i. Observe that i < tk−1 implies
that nr,i − αnr−i,i > −(log2 n− (k− 1))n0.8/2r for 4 ≤ r ≤ k− 2. The proof of Lemma 20 is
based on the fact that if nr,i − αnr−1,i is close to (log2 n− (k − 1))n0.8/2r then after the ith
hyperaction it will increase in expectation for i < tk−1.

In Lemma 21, using similar arguments to those in Lemma 20, we show that Dk−1,k−1,i occurs
for i ≤ t∗k−1. Hence t∗k−1 = τk−1 < tk−1. Lemmas 20 and 21 together with part (c) of
Corollary 18 imply parts (i) and (ii) of Lemma 6. Part (iv) follows from the definition of the
graph sequence Γ0,Γ1, ...,Γτ .
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To prove part (iii) of Lemma 6, as we do in Lemma 22 we first argue that t∗k−1 < 1.5nk,0+n0.6.
Then we use (12) to bound ei+1 − ei in terms of p3,i. An upper bound on p3,i is provided by
Lemma 19 stated below.

Lemma 19. Let p3,i = 3n3/2ei and assume that ei ≥ n0.9. Then, Γi ∈ C3,k−1 implies that

p3,i ≤
3∑k−1

j=3 α
j−3j

+ o(1).

Hence p3,i ≤ 0.051 for k ≥ 8.

Proof. Γi ∈ C3,k−1 implies that nj,i ≥ αj−3n3,i − o(n0.85) for 3 ≤ j ≤ k − 1. Therefore

p3,i =
3n3,i

2ei
=

3n3,i∑k−1
j=3 jnj,i

≤ 3∑k−1
j=3 α

3−jj
+ o(1). (25)

Finally for k ≥ 8, equation (25) implies p3,i ≤ 0.051.

Lemma 20. Let 8 ≤ k = O(1). Let d ∈ C3,k ⊆ C3,k−1 be a degree sequence with maximum
degree k and minimum degree at least 3. Let G = G0 be a random (multi)-graph with degree
sequence d, and no loops. Then the event Dk−1,r,tk−1

holds w.h.p. for 4 ≤ r ≤ k − 2.

Proof. Fix r, 4 ≤ r ≤ k − 2. We condition on the event Fk,k,tk−1
occurring. Corollary 18

states that it occurs w.h.p. Hence for every 0 ≤ i < tk−1 the ith hyperaction is good. Also
recall Γi ∈ C3,k−1 ⊇ C3,k and ei ≥ n0.9 for i < tk−1.

For 4 ≤ r ≤ k − 2, if the event ¬Dk−1,r,tk−1
occurs then

nr,tk−1
− αnr−1,tk−1

< −(log2 n− (k − 1))n0.8

2r

and

nr+1,i − αnr,i ≥ −
(log2 n− (k − 1))n0.8

2r+1
for i < tk−1. (26)

For i < tk−1 let Xr,i = nr,i − αnr−1,i. Equation (8) implies,

|Xr,i+1 −Xr,i| ≤ 12 (27)

Equation (27), Γ0 ∈ C3,k and Γi ∈ C3,k−1 for i < tk−1 imply that for

tk−1 −
n0.8

12 · 2r
≤ i ≤ tk−1 − 1

we have

nr,i − αnr−1,i ≤ nr,tk−1
− αnr−1,tk−1

+ 12(tk−1 − i)
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≤ −(log2 n− (k − 1))n0.8

2r
+ 12 · n0.8

12 · 2r
≤ −(log2 n− k)n0.8

2r
.

Thus

nr−1,i ≥ α−1

(
nr,i +

(log2 n− k)n0.8

2r

)
. (28)

We now embark on a long chain of calculations in order to show that E(Xr,i+1 −Xr,i|Γi) ≥
n−0.2, see (32).

Using (9), the following holds:

E(Xr,i+1 −Xr,i|Γi) = E(nr,i+1 − nr,i|Γi)− αE(nr−1,i+1 − nr−1,i|Γi)

= pr+1,i − pr,i + p3,i

( ∑
j1+j2−2=r

pj1,ipj2,i − 2pr,i − p2
r,i

)
− αpr,i + αpr−1,i − αp3,i

( ∑
j1+j2−2=r−1

pj1,ipj2,i − 2pr−1,i − p2
r−1,i

)
− o(n−0.9

i )

= pr+1,i − (1 + α + 2p3,i)pr,i + (α + 2αp3,1)pr−1,i

+ p3,i

∑
j1+j2−2=r

pj1,ipj2,i − p3,ip
2
r,i − αp3,i

∑
j1+j2−2=r−1

pj1,ipj2,i + αp3,ip
2
r−1,i

≥ pr+1,i − (1 + α + 2p3,i)pr,i + (α + 2αp3,1)pr−1,i − 0.231p3,ip
2
r,i − o(pr,i)− o(n−0.9) (29)

=
(r + 1)nr+1,i

2ei
− (1 + α + 2p3,i)rnr,i

2ei
+

(α + 2αp3,1)(r − 1)nr−1,i

2ei
− 0.231p3,ip

2
r,i − o(pr,i)− o(n−0.9) (30)

To derive (29) we used

p3,i

∑
j1+j2−2=r

pj1,ipj2,i − p3,ip
2
r,i − αp3,i

∑
j1+j2−2=r−1

pj1,ipj2,i + αp3,ip
2
r−1,i

≥ p3,i

∑
j1+j2−2=r

pj1,ipj2,i − αp3,i

∑
j1+j2−2=r−1

pj1,i(pj2+1,i + n−0.09)/α

− p3,ip
2
r,i + αp3,i((pr,i + n−0.09)/α)2

≥ (1/α− 1)p3,ip
2
r,i + o(p3,i)− p3,i

∑
3≤j1≤r

pj1,in
−0.09 ≥ −0.231p3,ip

2
r,i − o(pr,i).

In the second line of the above calculations we used that for 3 ≤ b2 ≤ b1 ≤ k− 1, Γi ∈ C3,k−1

implies

pb1,i =
b1nb1,i

2ei
≥ αb1−b2b1nb2,i −O(n0.8 log2 n)

2ei

≥ αb1−b2b1b2nb2,i
2b2ei

−O
(
n0.8 log2 n

2n0.9

)
≥ αb1−b2pb2,i − n−0.09.
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Using (26) and (28) in order to upper bound nr+1,i and nr−1,i respectively by terms involving
only nr,i, (30) implies

E(Xr,i+1 −Xr,i|Γi) ≥
(r + 1)(αnr,i − (log2 n− (k − 1))n0.8/2r+1)

2ei
− (1 + α + 2p3,i)rnr,i

2ei

+
(α + 2αp3,i)(r − 1)(nr,i + (log2 n− k)n0.8/2r)

α · 2ei
− 0.231p3,ip

2
r,i − o(pr,i)− o(n−0.9

i )

=
(α− 1− 2p3,i)nr,i

2ei
− 0.231p3,ip

2
r,i − o(pr,i)− o(n−0.9

i )

+
(2(r − 1)(1 + 2p3,i)(log2 n− k)− (r + 1)(log2 n− (k − 1)))n0.8

2r+2ei

≥ 0.198nr,i
2ei

− 0.231p3,ip
2
r,i − o(pr,i)− o(n−0.9

i ) +
n0.8 log2 n

ei
(31)

≥ 0.197pr,i
r

− 0.231 · 3
1.3k−4(k − 1) + 1.3k−5(k − 2)

p2
r,i + n−0.2 − o(n−0.9

i ) ≥ n−0.2. (32)

In (31) and (32) we used Lemma 19 to bound p3,i. In addition to (32), if the event ¬Dk−1,r,tk−1

occurs then

Xr,tk−1
< −(log2 n− (k − 1))n0.8

2r
≤ Xr,tk−1−n0.8/12·2r

and hence

Xr,tk−1
−Xr,tk−1−n0.8/12·2r =

tk−1−1∑
j=tk−1−n0.8/12·2r

(Xr,j+1 −Xr,j) ≤ 0. (33)

Using (27), (32) and (33), the Azuma-Hoeffding inequality gives us,

Pr(¬Dk−1,j,tk−1
for some 3 ≤ j ≤ r − 2)

≤
k−2∑
r=4

Pr

( tk−1−1∑
j=tk−1−n0.8/12·2r

Xr,j+1 −Xr,j ≤ 0

∣∣∣∣Fk,k,tk−1

)
+ Pr(¬Fk,k,tk−1

)

≤ 2 exp

{
− (n−0.2 · n0.8/12 · 2r)2

2 · 122 · n0.8/12 · 2r

}
+ o(n−0.5) = o(n−0.5).

We use similar techniques, to those used in the proof of Lemma 20, to prove the following
Lemma.

Lemma 21. Under the same assumptions as in Lemma 20, we have that w.h.p.

t∗k−1 = τk−1 < tk−1.

Proof. Given Lemma 20 it suffices to show that w.h.p. the inequality

nk−1,τk−1
− αnk−2,τk−1

≥ −(log2 n− (k − 1))n0.8

2k−1
. (34)
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holds. Assume otherwise. Then,

nk−1,τk−1
− αnk−2,τk−1

< −(log2 n− (k − 1))n0.8

2k−1
. (35)

Equations (35) and (8) imply that the following inequality holds for τk−1−n0.8/(12 · 2k−1) ≤
i ≤ τk−1 − 1:

nk−1,i − αnk−2,i < −
(log2 n− (k − 1))n0.8

2k−1
+ 12 · i ≤ −(log2 n− k)n0.8

2k−1
. (36)

Let Xk−1,i = nk−1,i − αnk−2,i. In a similar manner to the derivation of (30) from (9), we see
that equation (10) implies that we have:

E(Xk−1,i+1−Xk−1,i|Γi) ≥ −
(1 + α + 2p3,i)(k − 1)nk−1,i

2ei

+
(α + 2p3,i)(k − 2)nk−2,i

2ei
+ I(∆i = k)− 0.231p3,ip

2
k−1,i − o(1)

≥ −(1 + α + 2p3,i)(k − 1) · αnk−2,i

2ei
(37)

+
(α + 2p3,i)(k − 2)nk−2,i

2ei
+ I(∆i = k)−

0.231α2p3,ip
2
k−2,i(k − 1)2

(k − 2)2
− o(1)

= −(α + α2(k − 1) + 2αp3,i + 2(k − 2)(α− 1)p3,i)nk−2,i

2ei

+ I(∆i = k)−
0.231α2p3,ip

2
k−2,i(k − 1)2

(k − 2)2
− o(1)

= −
(
α2 + α + 2αp3,i

k − 2
+ α2 + 2(α− 1)p3,i

)
pk−2,i

−
0.231α2p3,ip

2
k−2,i(k − 1)2

(k − 2)2
+ I(∆i = k)− o(1)

≥ −2.25pk−2,i + I(∆i = k)− o(1).

To derive (37) we used the LHS of (36), which implies that nk−1,i ≤ αnk−2,i. In the last line
we used p3,i ≤ 0.051 (Lemma 19) and the inequality k ≥ 8.

Let t` = τk−1 − n0.8/(12 · 2k), tu = τk−1 − 1. Corollary 14 and Lemma 15 imply that,

tu∑
i=t`

E(Xk−1,i+1 −Xk−1,i|Γi) ≥
tu∑
i=t`

(−2.25pk−2,i + I(∆i = k)− o(1))

≥ (tu − t`)(−2.25pk−2,t` + 0.999− (k − 2)p3,t` − o(1))

≥ (tu − t`)

(
−2.25pk−2,t` + 0.999− 3(k − 2)∑k−1

j=3 α
j−3j

− o(1)

)
(38)

≥ 0.01(tu − t`). (39)
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For (38) we have used (24) to bound p3,t` and a bound of 1/2.3 on p3,t` . To derive this bound
on pk−2,t` observe that αnk−2,t` ≤ nk−1,t` + o(1) implies αpk−2,t` ≤ pk−1,t` + o(1). Therefore,

pk−2,t` ≤
pk−2,t` + pk−1,t`

1 + α
+ o(1) ≤ (1 + α)−1

(
1−

k−3∑
j=3

pj,t`

)
+ o(1) ≤ 1

2.3
.

On the other hand (34), (36) imply

tu∑
j=t`

Xk−1,j+1 −Xk−1,j = Xk−1,tu −Xk−1,t` ≤ 0.

Also (8) implies |Xk−1,i+1 −Xk−1,i| ≤ 12. Thus the Azuma-Hoeffding inequality gives us,

Pr(tk−1 ≤ τk−1) ≤ Pr

( tu∑
j=tl

Xk−1,j+1 −Xk−1,j ≤ 0

∣∣∣∣Fk,tk−1

)
+ o(n−0.5)

≤ 2 exp

{
− (0.01n0.8/12 · 2k−1)2

2 · 122 · (n0.8/12 · 2k−1)

}
+ o(n−0.5) = o(n−0.5).

For the final part of Lemma 6 we have

Lemma 22. Under the same assumptions as in Lemma 20, we have that with probability
i− o(n−0.5),

τk−1 ≤ 1.5nk,0 + n0.6 and eτk−1
≥
(

1− 4

k

)
e0 = Ω(n).

Proof. We condition on the event Fk,k,τk−1
occurring and we note that Lemmas 20 and 21

imply that the event Fk,k,τk−1
occurs with probability 1−o(n−0.5). Using the bound provided

by (19) (with ` = k − 1) we get:

E [exk−1,i+1 − exk−1,i|Γi] ≤ −(1− p3,i)− pk,i − p3
3,i + (k − 4)p3,i + n−0.75

≤ −1 + (k − 3)p3,i + n−0.75 ≤ −0.9.

For the last inequality we use (k − 3)p3,i ≤ (k − 3) · 3/(
∑k−1

i=3 i · αi−3) + o(1) ≤ 0.33 for
k ≥ 8 (see Lemma 19). Since exk−1,0 = nk,0 and exk−1,τk−1

= nk,τk−1
= 0, using (18) and the

Azuma-Heoffding inequality we get

Pr(τk−1 ≥ 1.5nk,0 + n0.6) ≤ Pr(exk−1,i > 0 for i ≤ 1.5nk,0 + n0.6)

≤ 2 exp

{
− (nk,0 − 0.9 · (1.5nk,0 + n0.6))2

2(k − 2)2(1.5nk,0 + n0.6)

}
= o(n−0.5).

For i ≤ τk−1 < tk−1, using p3,i ≤ 0.051 from Lemma 19) and (12) we see that E(ei+1−ei|Γi) ≥
−1.2. Conditioned on the event τk−1 ≤ 1.5nk,0 + n0.6 and using (11), the Azuma-Hoeffding
inequality gives,

Pr(e0 − eτk−1
≥ 1.9nk,0 + n0.7) ≤ 2 exp

{
− (1.9nk,0 + n0.7 − 1.2(1.5nk,0 + n0.6))2

2 · 62 · (1.5nk,0 + n0.6)

}
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= o(n−0.5).

Finally, k ≥ 8 implies,

eτk−1
≥ e0 − 1.9nk,0 − n0.7 ≥ 1

2

k−1∑
j=3

jnj,0 +
1

2
knk,0 − 1.9nk,0 − n0.7

≥
(

1− 4

k

)
1

2

k−1∑
j=3

jnj,0 +
1

2

(
1− 4

k

)
knk,0 =

(
1− 4

k

)
e0.

5 Proof of Lemma 7

In this section, we fix k ∈ {5, 6, 7}. Let d be a degree sequence with minimum degree at
least 3 and maximum degree k. We also let G = Γ0 be a random graph with degree sequence
d and no loops. For the rest of this section we condition on Fk,k,τk−1

occurring. Corollary 18
states that it occurs with probability 1− o(n−0,5).

The proof of Lemma 7 is split into two parts. In the first part, Lemma 24, we let

t∗ = min{i : exk−1,i ≤ 10−2ei}

and we show that et∗ ≥ e0/1025 = Ω(n). In the second part, Lemma 25, we show that
τk−1 ≤ t∗ + 6et∗/102.

Let

Xi =

(
(exk−1,i+1 − exk−1,i)− 2.4

exk−1,i

ei
(ei+1 − ei)

)
Roughly speaking Xi compares the rates of decrease of exk−1,i and ei after the ith hyperac-
tion. In Lemma 23 we show that Xi decreases in expectation. Using this fact, we show that
after a number of hyperactions the ratio exk−1,i/ei decreases. As a consequence we prove
that there exists t∗ such that et∗ ≥ e0/1025 = Ω(n) and exk−1,t∗ ≤ 10−2et∗ .

To prove part (ii) of Lemma 7 it suffices to argue that exk,i is decreased by at least 0.2 in
expectation after the ith hyperaction for i ≤ τk−1 (done in Lemma 23). From Lemma 24
we have that exk−1,t∗ ≤ et∗/100 and therefore, in expectation, exk−1,t∗ reaches 0 in et∗/20
hyperactions. At the same time the number of edges is decreased by at most 6 per iteration
(see (11)) and hence after et∗/20 hyperactions it remains linear in n.

We start with a technical Lemma. Equations (40) and (41) are used in the proofs of Lemmas
25 and 24 respectively.

Lemma 23. For i < τk−1

E [exk−1,i+1 − exk−1,i|Γi] ≤ −0.2. (40)
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Furthermore,

E [Xi|Γi] < 0 and |Xi| ≤ k + 11. (41)

Proof. i < τk−1 implies that exk−1,i > 0. By setting ` = k − 1 in (19) we get

E [exk−1,i+1 − exk−1,i|Γi] ≤ −(1− p3,i)− p3
3,i + (k − 4)p3,i(1− p3,i)

2 + n−0.9
i log2 n ≤ −0.2.

The last inequality can be easily verified numerically. Its maximum over k ∈ {5, 6, 7}, p3,i ∈
[0, 1] is −0.23020 and it is attained at k = 7, p3,i = 0.42265.

In the high probability event Fk,k,τk−1
, we have for i < τk−1,

exk−1,i = nk,i + exk,i = nk,i +O(log2 n).

Also i < τk−1 implies that ei > n0.9. Thus,

kexk−1,i

2ei
=
knk,i +O(log2 n)

2ei
= pk,i + o(1). (42)

Equations (12) and (42) imply that

E

[
exk−1,i

ei
(ei+1 − ei)

∣∣∣∣Γi] =

(
2pk,i
k

+ o(1)

)
· (−1− 2p3,i + o(1))

= −2pk,i(1 + 2p3,i)

k
+ o(1). (43)

Equation (19) (with ` = k − 1) and (43) imply

kE [Xi|Γi] ≤ k(−(1− p3,i)− pk,i − p3
3,i + (k − 4)p3,i(1− p3,i)

2) + 4.8pk,i(1 + 2p3,i) + o(1)

The maximum of the above expression over k ∈ {5, 6, 7}, p3,i, pk,i, p3,i + pk,i ∈ [0, 1] is
−391/1960 attained at k = 5, p3,i = 99/196 and p5,i = 97/196. equations (11) and (18)
imply that |ei+1 − ei| ≤ 6 and |exk−1,i+1 − exk−1,i| ≤ k − 4 respectively. Therefore |Xi| ≤
(k − 4) + 2.4 · 1 · 6 ≤ k + 11.

Lemma 24. Let
t∗ = min{i : exk−1,i ≤ 10−2ei}.

Then w.h.p. et∗ ≥ e0/1024 = Ω(n).

Proof. We start by proving Claim 1. We later use Claim 1 to show that there exists t∗ < τk−1

such that exk−1,t∗ ≤ et∗/102 and et∗ ≥ e0/1024 = Ω(n).

Claim 1: W.h.p. for every j ∈ N such that ej = Ω(n) and j < τk−1 at least one of the
following hold:

i) there exists sj ≥ j such that esj ≥ ej/103 = Ω(n) and exk−1,sj ≤ esj/102
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ii) there exists s∗j ≥ j such that esj ≥ ej/103 = Ω(n) and exk−1,sj/esj ≤ 0.5exk−1,j/ej.

Proof of Claim 1: Let j ∈ N be such that ej = Ω(n). Let

sj := min{i ≥ j : exk−1,i ≤ 0.11exk−1,j}.

Then for j ≤ i < sj,

ei ≥ exk−1,i ≥ 0.11exk−1,j ≥
0.11ej

102
= Ω(n).

Thus for j ≤ i < sj the inequalities ei = Ω(n), exk−1,i > 0 hold. Therefore sj ≤ τk−1. Lemma
23 implies that E(Xi|Γi) ≤ 0 and |Xi| ≤ k + 11 for every i < sj. Now sj ≤ kn/2 ≤ 3.5n.
Hence, from the Azuma-Hoeffding Inequality we have,

Pr

( sj−2∑
r=j

Xr > n0.6

)
≤ sj · 2 exp

{
− (n0.6)2

2(k + 11)2 · 3.5n

}
+ Pr(¬Fk,τk−1

)

≤ 7ne−n
0.19

+ o(n−0.5) = o(n−0.5). (44)

Now for j ≤ i < sj let

Yi =
(
(exk−1,i+1 − exk−1,i)− 1.2

exk−1,j

ej
(ei+1 − ei)

)
.

Assume that (ii) does not hold and that for j ≤ i < sj, exk−1,i/ei > 0.5exk−1,j/ej. In this
case (44), the definitions of Xi, Yi and the fact that ei is decreasing with respect to i imply
that w.h.p.

n0.6 ≥
sj−2∑
r=j

Xi ≥
sj−2∑
r=j

Yi.

Hence,

0.11exk−1,j ≤ exk−1,sj−1 = exk−1,j −
sj−2∑
i=j

(exk−1,i − exk−1,i+1)

≤ exk−1,j −
sj−2∑
i=j

((exk−1,i − exk−1,i+1) + Yi) + n0.6

≤ exk−1,j +

sj−2∑
i=j

1.2
exk−1,j

ej
(ei+1 − ei) + n0.6

= exk−1,j + 1.2
exk−1,j

ej
(esj−1 − ej) + n0.6

= −0.2exk−1,j + 1.2
exk−1,j

ej
esj−1 + n0.6.
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The last equality implies that 0.31exk−1,j ≤ 1.2
exk−1,j

ej
esj−1 + n0.6 and hence

0.25ej ≤ esj−1 +
ej

1.2ek−1,j

· n0.6. (45)

Now assume that in addition to condition (ii), condition (i) does not hold. Then, ej <
102exk−1,j. Substituting into (45) gives,

0.25ej ≤ esj−1 + 102n0.6. (46)

Conditioned on Fk,k,τk−1
the (sj − 1)th hyperaction is good and therefore (11) gives,

esj ≥ esj−1 − 6. (47)

In addition,

exk−1,j = nk,i +O(log2 ni) ≤ ej. (48)

The definition of sj, (46), (47), (48) and ej = Ω(n) imply,

exk−1,sj

esj
≤ 0.11exk−1,j

0.25ej − 102n0.6 − 6
≤ 0.5

exk−1,j

ej
, (49)

contradicting the assumption that (ii) does not hold.

By iteratively applying Claim 1 we get that w.h.p. there exists a sequence 0 = σ0, σ1, σ2, ..., σ8

such that

i) exk−1,σi/eσi ≤ 0.5exk−1,σi−1
/eσi−1

or exk−1,σi ≤ eσi/100 for i ≤ 8 and

ii) eσi ≥ eσi−1
/103 for i ≤ 8.

Supose first that exk−1,σi/eσi ≤ 0.5exk−1,σi−1
/eσhi−1

for i ≤ 8. Then,

exk−1,σ8

eσ8
≤ 0.5

exk−1,σ7

eσ7
≤ 0.52 exk−1,σ6

eσ6
≤ · · · ≤ 0.58 exk−1,σ0

eσ0
= 0.57 exk−1,σ0

2eσ0
≤ 0.57 ≤ 0.01.

So there exists t∗ = min{σi : exk−1,σi ≤ eσi/100} and t∗ ≤ σ8 and et∗ ≥ eσ8 ≥ e0/(103)8 =
e0/1024.

Lemma 7 now follows from Lemma 25 and Corollary 18. Corollary 18 states that w.h.p.
Fk,k,τk−1

occurs and hence the first τk−1 − 1 hyperactions are good.

Lemma 25. W.h.p. τk−1 ≤ t∗ + 6 · 10−2et∗ and eτk−1
≥ e0/2

25.

Proof. Let t∗ be as in Lemma 24 and let Z(Γt∗) be the event that exk−1,j > 0 for j ≤ t∗1 =
t∗+6et∗/102. If Z(Γt∗) occurs, conditioned on Fk,k,τk−1

(G), the first t∗+6et∗/102 hyperactions
are good. Thus for t∗ ≤ j ≤ t∗1 the inequality |ej+1 − ej| ≤ 6 holds (see (18)) which implies

et∗+i ≥ et∗ − 6i ≥ 0.5et∗ ≥ e0/1025 = Ω(n) for i ≤ 6et∗/102. (50)
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Moreover (40) and (18) state

E(exk−1,j+1 − exk−1,j|Γj) = −0.2 and |exk−1,j+1 − exk−1,j| ≤ k − 4.

So,

E(exk−1,t∗1
| Γj) =

t∗1∑
j=t∗

E(exk−1,j+1 − exk−1,j|Γj) + exk−1,t∗ ≤

− 0.2 · 6et∗/102 + et∗/102 < −0.2et∗/102.

Therefore, since et∗ = Ω(n), the Azuma-Hoeffding inequality (see Lemma 9) implies

Pr(Z(Γt∗)) ≤ 2 exp

{
− (0.2et∗/102)2

2(6et∗/102) · (k − 4)2

}
+ o(n−0.5) = o(n−0.5).

Hence τk−1 ≤ t∗ + 6 · 10−2et∗ . Equation (50) implies that eτk−1
≤ e0/1025.

5.1 Proof of Lemma 8

Proof. Let τ = τend and Γτ be the graph that is generated by Reduce-Construct with
the stopping condition Ξ being |V (Gi)| ≤ ω and ∆(Gi) ≤ 4. Let E be the event that there
exist i ≤ τ such the first i hyperactions performed by Reduce are good and Γi has minimum
degree 3 and maximum degree 4 and assume that Pr(E) ≥ 1 − p. Let E ′ be the event that
nτ ≥ ω(n)/2 and all the hyperactions are good.

Claim 26. Pr(E ′) ≥ 1− p− o(ω−0.9).

Given Claim 26, conditioned on E ′, we have that R0(G, τ) = R2b(G, τ) = 0. In addition

Theorem 27. Let d be a degree sequence where 3 ≤ d(i) ≤ 4 for all i. Let G be a random
graph with degree sequence d and no loops. Then G has a (near)-perfect matching with
probability 1−O(n−3/4).

The proof of this is given in Section 6. Theorem 27 implies that with probability 1−O(ω−3/4),
Γτ has a (near) perfect matching completing the proof of Lemma 8.

Proof of Claim 26: Assume that nτ < ω(n)/2. Corollary 18 implies that there exists
τ − log2 nτ/(k − 2) ≤ j < τ such that ex4,j = 0, implying that ∆(Gj) ≤ 4. Equation (11)
implies that nj − nj+1 ≤ 6 for j ≤ τ . Therefore

nj ≤ nτ + 6 log2 nτ ≤
ω

2
+ 6 log2

(ω
2

)
< ω,

contradicting the definition of τ . Finally Corollary 18 implies that the hyperactions per-
formed on Γi,Γi+1, ...,Γτ−1 are good with probability 1− o(ω−0.9).
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6 Existence of a Perfect Matching

We devote this section to the proof of Lemma 27. As discussed in the previous section
it is enough to prove that G is given a degree sequence d = (d(1), ..., d(n)) that satisfies
3 ≤ d(i) ≤ 4 for all i, then w.h.p. G has a (near)-perfect matching. We will first assume
that n is even and verify Tutte’s condition. That is for every W ⊂ V the number of odd
components q(V/W ) induced by V \W , is at most |W |. We split the verification of Tutte’s
condition into

Lemma 28. Let W ⊂ V be a set of minimum size that satisfies q(V/W ) > |W |. Then with
probability 1−O(n−3/4), |W | > 10−5n.

Lemma 29. Let W ⊂ V be a set of maximum size that satisfies q(V/W ) > |W |. Then with
probability 1−O(n−3/4), |W | < 10−5n.

Lemmas 28 and 29 together imply that Tutte’s condition is satisfied w.h.p. In the proof of
these lemmas we use the following estimates.

Lemma 30. The number of distinct partitions of a set of size 2r into 2-element subsets,

denoted by φ(2r), satisfies φ(2r) = Θ
((

2r
e

)r)
. Also for ` < r we have φ(2r) ≤ 2rr−`

(
2`
e

)`
.

Proof. To generate a matching we first choose a permutation of the 2r items and then we
pair the (2i − 1)th item with the 2ith item. Therefore, using Stirling’s approximation we
have

φ(2r) =
(2r)!

2rr!
=

Θ(
√

2r
(

2r
e

)2r
)

Θ(2r
√
r
(
r
e

)r
)

= Θ

((
2r

e

)r )
.

Also

φ(2r) =
(2r)!

2rr!
≤ (2r)r−`(2`)!

2r−`2``!
≤ 2rr−`

(
2`

e

)`
,

where we have used (2r)! ≤ (2r)2(r−`)(2`)!.

6.1 Proof of Lemma 28:

Let W be a set satisfying q(V \W ) > |W | of minimum size and assume 2 ≤ w = |W | ≤ 10−5n.
We can rule out the case w = 1 from the fact that with probability 1 − O(1/n), G will be
3-connected, see e.g. the proof of Theorem 10.8 in [7] . Let Cz be a component spanned by
V \W of maximum size and let r = |Cz|.

Case 1: r = |Cz| ≤ 0.997n. In this case we can partition V \ W into two parts V1, V2

such that (i) each Vl, l = 1, 2 is the union of components of V \W , (ii) |V1| ≥ |V2|, and (iii)
|V2| ≥ (n− (r + w))/2 ≥ 10−3n.

Let d2 = d(V2) and dW = d(W ). Out of the dW endpoints in W (i.e. configuration points
that correspond to vertices in W ), suppose that ` ≤ dW are matched with endpoints in V2

and the rest with endpoints in V1.
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For fixed i, w, d2, dW the probability that there are sets V1, V2,W with w = |W |, d(W ) = dW
and |V2| = i, d(V2) = d2 satisfying 1 ≤ w ≤ 10−5n, 10−3n ≤ i ≤ 0.5n and dW ≤ 4w, such
that V1 × V2 spans no edges is bounded by

p1 ≤
dW∑
`=0

(
n

i

)(
n− i
w

)(
dW
`

)
φ(d2 + `) · φ(2m− d2 − `)

φ(2m)

≤O
dW∑
`=0

(en
i

)i (en
w

)w
2dW

(
d2+`
e

)(d2+`)/2 (2m−d2−`
e

)(2m−d2−`)/2(
2m
e

)m
≤

dW∑
`=0

(en
i

)i(100en

i

)i/100

2i/25

(
d2 + `

2m

)(d2+`)/2(
1− d2 + `

2m

)(2m−d2−`)/2

≤O
dW∑
`=0

(
1600(en)101

i101

)i/100(
d2 + `

2m

)(d2+`)/2

exp

{
−d2 + `

2

(
1− d2 + `

2m

)}
For the third line we used the fact that w ≤ i/100 and dW ≤ 4w ≤ i/25.

Let f(x) = xxe−x(1−x) and L(x) = log f(x). Then L′′(x) = x−1 + 2 and so L and hence f is
convex for x > 0. Now 3i ≤ d2 ≤ 4i and ` ≤ dW ≤ i/25 and so d2 + ` ∈ J = [3i, 4.04i]. Since(

d2 + `

2m

)(d2+`)/2

exp

{
−d2 + `

2

(
1− d2 + `

2m

)}
= f

(
d2 + `

2m

)m
we see that its maxima are at the endpoints of J . In general 3i ≤ 3n/2 ≤ m. However when
d2 + ` = 4.04i we have that

2m ≥ 4.04i+ 3(n− i− w) ≥ 4.04i+ 3(n− 1.01i) = 3n+ 1.01i. (51)

Case 1a: d2 + ` = 3i.
We have d2+`

2m
≤ 3i

3n
≤ 1

2
and (d2 + `)(1− d2+`

2m
) ≥ 3i/2. Therefore,

p1 ≤O w
(

1600(en)101

i101

)i/100(
i

n

)3i/2

e−3i/4

= w

(
1600e26

249

(
2i

n

)49)i/100

≤ w

(
e−1/2

(
2i

n

)49)i/100

≤ we−i/200.

Case 1b: d2 + ` = 4.04i.
It follows from (51) that d2+`

2m
≤ 4.04i

3n+1.01i
≤ 0.577 where the second inequality uses i ≤ n/2.

It follows from this that (d2 + `)(1− d2+`
2m

)/2 ≥ 0.85i. Hence,

p1 ≤O w
(

1600(en)101

i101

)i/100(
4.04i

3n+ 1.01i

)2.02i

e−0.85i
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≤O w
(

1600e16

(
n

i

)101(
4.04i

3n

)101(
4.04i

3n+ 1.01i

)101)i/100

≤O w
(

1600e16

(
4.04

3
· 0.577

)101)i/100

≤O we−i/100.

Therefore the probability that Case 1 is satisfied is bounded by a constant times

10−5n∑
w=1

0.5n∑
i=10−3n

we−i/200 = O(n−3/4).

Case 2: r = |Cz| ≥ 0.997n. Let V1 = V (Cz), V2 = V \ (V1 ∪W ). First note that V2 spans
at least w components. Therefore |V2| ≥ w. We use the following claim to lower bound
e(V2 : W ).

Claim 1 Every vertex in W is adjacent to at least 3 distinct components in V \W , and
hence to at least 2 vertices in V2.

Proof of Claim 1: Let v ∈ W be such that it is adjacent to t ∈ {0, 1, 2} components in
V \W . Consider W ′ = W \{v}. Thus |W ′| = |W |−1 . If t = 0 then q(V \W ′) = q(V \W )+1.
If t = 1 then q(V \W ′) ≥ q(V \W ) − 1. If t = 2 then if the both of the corresponding
components have odd size then the new component will also have odd side, while if only one
of them has odd size then the new one has even size. Finally if both have even size the new
one has odd size. In all three cases the inequality q(V \W ′) ≥ q(V \W ) − 1 is satisfied.
Therefore q(V \ W ′) ≥ q(V \ W ) − 1 > |W | − 1 = |W ′| contradicting the minimality of
W .

From Claim 1 it follows that W : V2 spans at least 2w edges. We also have that |V2| ≤
n−r−w ≤ 0.003n and i ≥ q(V \W )−1 ≥ w. For fixed 2 ≤ w ≤ 10−5n, 3w ≤ dW ≤ 4w and
w ≤ i the probability that there exist such sets V1, V2,W , |V2| = i, w = |W |, d(W ) = dW
and 2w ≤ ` = e(V2 : W ) ≤ 4w is bounded by

dW∑
`=2w

(
n

i

)(
n− i
w

)(
dW
`

)
φ(d2 + `) · φ(2m− d2 − `)

φ(2m)

≤O
dW∑
`=2w

(en
i

)i (en
w

)w
24w

(
d2+`

2

)(d2+`−2w)/2 (2w
e

)w (2m−d2−`
e

)(2m−d2−`)/2(
2m
e

)m
=

dW∑
`=2w

(en
i

)i (en
w

)w
24w

(
2w

2m

)w (
d2 + `

2m
· e

2

)(d2+`−2w)/2(
1− d2 + `

2m

)(2m−d2−`)/2

≤O w
(en
i

)i(16e

3

)w (
5i

3n
· e

2

)3i/2

= w

(
e5

8

(
16e

3

)2w/i
53i

33n

)i/2

.
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For the second line we used the second inequality of Lemma 30. For the fourth line we

used that 2w ≤ `, d2 + ` ≤ 4|V2| + 4w ≤ 0.01204n and so
(
d2+`
2m
· e

2

)(d2+`−2w)/2
is maximized

when d2, ` are as small as possible, that is d2 = 3i, ` = 2w ≤ 2i. Furthermore note that
d2 + ` − 2w ≥ d2 ≥ 3i. Therefore the probability that Case 2 is satisfied is bounded by a
constant times

10−5n∑
w=2

0.003n∑
i=w

(
e5

8

(
16e

3

)2w/i
53i

33n

)i/2

≤O
10−5n∑
w=2

2w∑
i=w

(
C1i

n

)i/2
+

10−5n∑
w=2

0.003n∑
i=2w

(
C2i

n

)i/2
where C1 = 16253e7/(8 · 35), C2 = 16 · 53e5/(8 · 34),

≤
n1/4∑
i=2

i

((
C1

n3/4

)i/2
+

(
C2

n3/4

)i/2)
+

2·10−5n∑
i=n1/4

i

(
2C1

105

)i/2
+

0.003n∑
i=n1/4

i

(
3C2

103

)i/2
= O(n−3/4).

Finally, since G has an even number of vertices, for W = ∅ we have |W | = q(V \W ) = 0.

6.2 Proof of Lemma 29:

Let W be a set satisfying q(V \W ) > |W | of maximum size and assume w = |W | ≥ 10−5n.

Claim 2 No component induced by V \W is a tree with more than one vertex.

Proof of Claim 2: Indeed assume that Ci is such a component. If |Ci| is even then let v
be a leaf of Ci and define W ′ = W ∪{v}. Then Ci \ {v} is an odd component in V \W ′ and
q(V \W ′) = q(V \W ) + 1 > |W |+ 1 = |W ′| contradicting the maximality of W .

Thus assume that |Ci| is odd. Let L1 be the set of leaves of Ci and L2 be the neighbors of L1.
Set W ′ = W ∪ L2. Then |L1| ≥ |L2|. Furthermore every vertex in L1 is an odd component
in V \W ′ and in the case |L1| = |L2| then Ci \ (L1∪L2) is also an odd component in V \W ′.
Therefore,

q(V/W ′) = q(V/W )− 1 + |L1|+ I(|L1| = |L2|)
≥ q(V/W ) + |L2|+ |L1| − |L2|+ I(|L1| = |L2|)− 1

> |W |+ |L2| = |W ′|,

contradicting the maximality of W .

We partition V \W into three sets, W1,W2 and W3, as follows. With the underlying graph
being the one spanned by V \W , W1 consists of the isolated vertices in V \W , W2 consists
of the vertices spanned by components that contain a cycle and have size s ≤ 1

10
log n and

W3 consists of the vertices that are spanned by a component of size at least 1
10

log n. Finally
let W4 = W2 ∪W3. To lower bound W1 we use the following claim.

37



Claim 3: W.h.p. W4 spans at most 11w
logn

components in V \W .

Proof of Claim 3: First observe that the number of components spanned by W2 is smaller
than the number of cycles of size at most 1

10
log n in G, which we denote by r.

Pr(r ≥ n0.3) ≤ n−0.3

0.1 logn∑
q=1

(
n

q

)
4qq!

φ(2q)φ(2m− 2q)

φ(2m)

≤O n−0.3

0.1 logn∑
q=1

(
en

q

)q
4q
(

2q

e

)q ( e

2m

)q
≤O n−0.3

0.1 logn∑
q=1

(
8e

3

)q
≤O n−0.3(log n)80.1 logn = o(1).

Hence w.h.p. W2 spans at most n0.3 components. Moreover every component spanned by W3

has size at least 1
10

log n. Therefore W4 spans at most n0.3 + 10w
logn

= (1+o(1))10w
logn

components

in V \W .

Since W4 spans at most u = 11w
logn

components in V \W and no component is a tree it follows

that the rest of the components consist of at least q(V \W ) − u > w − u isolated vertices
that lie in W1.

For convenience, we move |W1| − (w − u) vertices from W1 to W4. Therefore |W1| = w − u.
Let k1 be the number of vertices of degree 4 in W1 and d = d(W ) − d(W1). Then 0 ≤ d ≤
4w− (3(w− u) + k1) = w + 3u− k1. For fixed 10−5n ≤ w ≤ 0.5n the probability that there
exist such sets W,W1,W4 is bounded by

p2 ≤
w−u∑
k1=0

w+3u−k1∑
d=0

(
n

2w

)(
2w

w

)(
w

u

)(
4w

d

)
Pr(d(W )− d(W1) = d) (52)

× (3(w − u) + k1)!× (2m− (6(w − u) + 2k1))!

2m−(3(w−u)+k1(m− (3(w − u) + k1))!
× 2mm!

(2m)!
. (53)

Explanation: We first choose the sets W,W1 and W4 of size w,w − u and n − 2w + u

respectively. This can be done in
(
n
w

)(
n−w
w−u

)
=
(
n

2w

)(
2w
w

)(
w
u

)(
n−2w+u

u

)−1
ways, but we ignore

the final factor. From the at most 4w copies of vertices in W we choose a set W ′′ ⊂ W be
of size d. We let W ′ = W/W ′′. These are the 3(w − u) + k1 copies of vertices that will be
matched with those in W1, explaining the (3(w − u) + k1)! factor). We must finally explain
the meaning of p3 = Pr(d(W ) − d(W1) = d) in this context. Looking at the first three
binomial coefficients, their product is the number of ways of first choosing a set X of size
2w, then choosing a set W ⊆ X of size w and then choosing a subset W1 of size w− u from
X \W . Having chosen W,W1 we will randomly choose a subset H of h vertices in [n] to be
of degree 4, the remaining vertices being of degree 3. The parameter h will be a variable in
the calculation and the probability p3 is computed with respect to this random choice of H.
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In the calculations that follow we let a = w/n ≥ 10−5. We also let k4 be the number of
vertices of degree 4 that lie in W4. We first bound the binomial coefficients, found in the
first line. (

n

2w

)(
2w

w

)(
w

u

)(
4w

d

)
=

(
n

2an

)(
2an

an

)(
an

u

)(
4an

d

)
≤ 2o(n)

(
1

2a

)2an(
1

1− 2a

)(1−2a)n

22an

(
4ean

d

)d
= 2o(n)

(
1

a

)2an(
1

1− 2a

)(1−2a)n(
4ean

d

)d
. (54)

For the second line we used the fact that u ≤ u0 which implies that
(
an
u

)
= 2o(n). Observe

that

2m = 6(w − u) + 2k1 + d+ 3(n− 2w + u) + k4 = 3n+ d+ 2k1 + k4 − 3u. (55)

Let m0 = d+ 2k1 + k4 − 3u. For the terms in line (53) we have

(2m)!

2mm!
=

(3n)!

21.5n(1.5n)!

∏m0

i=1(3n+ i)

2m0/2
∏m0/2

i=1 (1.5n+ i)
≥O

(
3n

e

)1.5n m0/2∏
i=1

(3n+ (2i− 1)).

≥
(

3n

e

)1.5n

e−o(n)(3n)−3u/2

d/2+k1+k4/2∏
i=1

(3n+ (2i− 1))

Equation (55) implies that

2m− (6(w − u) + 2k1) = 3(1− 2a)n+ 3u+ k4 + d.

Thus,

(2m− (6(w − u) + 2k1))!

2m−(3(w−u)+2k1)(m− (3(w − u) + k1))!
=

(3(1− 2a)n)!

21.5(1−2a)n(1.5(1− 2a)n)!
·

∏d
i=1 3(1− 2a)n+ i

2d/2
∏ d

2
j=1 1.5(1− 2a)n+ j

×
∏k4

i=1 3(1− 2a)n+ d+ i

2k4/2
∏k4/2

j=1 1.5(1− 2a)n+ d/2 + j
·

∏3u
i=1 3(1− 2a)n+ d+ k4 + i

23u/2
∏ 3u

2
j=1 1.5(1− 2a)n+ d/2 + k4/2 + j

≤O
(

3(1− 2a)n

e

)1.5(1−2a)n d/2∏
i=1

(3(1− 2a)n+ (2i− 1))

k4/2∏
j=1

(3(1− 2a)n+ d+ (2j − 1)) · (2m)3u/2

≤O
(

3(1− 2a)n

e

)1.5(1−2a)n

(3(1− 2a)n+ an/2 + o(n))d/2(2m)3u/2

k4/2∏
j=1

(3(1− 2a)n+ d+ (2j − 1))

For the last inequality we used the Arithmetic Mean-Geometric Mean inequality and the
fact that d/2 ≤ an/2 + o(n), which follows from d ≤ w + 3u− k1.
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For the first term of (53) we have

(3(w − u) + k1)! ≤ 3w!

(3(w − u))3u

k1∏
i=1

(3(w − u) + i) ≤
(

3an

e

)3an
2o(n)

n3u

k1∏
i=1

(3(w − u) + i).

Thus the expression in (53) is bounded by

2o(n)

(
3an

e

)3an
1

n3u

k1∏
i=1

(3(w − u) + i)

×
(

3(1− 2a)n

e

)1.5(1−2a)n

(3(1− 2a)n+ an/2)d/2(2m)3u/2

k4/2∏
j=1

(3(1− 2a)n+ d+ 2j − 1)

×
((

3n

e

)1.5n

(3n)−3u/2

d/2+k1+k4/2∏
i=1

(3n+ (2i− 1))

)−1

= 2o(n)a3an((1− 2a)n)1.5(1−2a)n

(
6m

n

)3u/2 d/2∏
i=1

3(1− 2a)n+ an/2

3n+ (2i− 1)

×
k1∏
i=1

3(w − u) + i

3n+ d+ (2i− 1)

k4/2∏
i=1

3(1− 2a)n+ d+ 2i− 1

3n+ d+ 2k1 + 2i− 1

≤O 2o(n)a3an((1− 2a)n)1.5(1−2a)n

d/2∏
i=1

3(1− 2a)n+ an/2

3n

k1∏
i=1

3(w − u) + i

3n+ d+ (2i− 1)

k4/2∏
i=1

1

≤O 2o(n)a3an((1− 2a)n)1.5(1−2a)n((1− 2a) + a/6)d/22−k1 (56)

Finally we consider the term Pr(d(W )− d(W1) = d) and assume that h vertices of degree 4
were chosen to be included in W ∪W1, so that d = h + 3u − 2k1. Then, because there are(
h
k1

)(
2w−u−h

(w−u)−k1

)
out of

(
2w
w−u

)
ways to so distribute the k1 vertices of degree 4,

p3 = Pr(d(W )− d(W1) = d) =

(
h

k1

)(
2w − u− h

(w − u)− k1

)/(
2w − u
w − u

)
≤
(
h

k1

)(
2w − u− h
w − u

)/(
2w − u
w − u

)
=

(
h

k1

) h−1∏
i=0

w − i
2w − u− i

≤ 2hH(k1/h)−h+o(n) = 2k12−k1+h·H(k1/h)−h+o(n).

Here H(x) = −x log2(x) − (1 − x) log2(1 − x) is the entropy function. For fixed d we have
h = d+ 2k1 + o(n). Thus,

p3 ≤ 2o(n)+k1+df(k1/d), where f(x) = −x+ (1 + 2x)H

(
x

1 + 2x

)
− (1 + 2x).

f(x) has a unique maximum at x∗, the solution to 8x(1+x) = (1+2x)2 and f(x∗) ≤ −0.771.
Hence

p3 ≤ 2−0.771d+k1+o(n). (57)
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Multiplying the bounds in (54), (56), (57) together we have a bound

p2 ≤ 2o(n)−0.771d+k1

(
1

a

)2an(
1

1− 2a

)(1−2a)n(
4ean

d

)d
× a3an(1− 2a)1.5(1−2a)n

(
1− 2a+

a

6

)d/2
2−k1

= 2o(n)

(
21.229ean

d

)d
aan(1− 2a)0.5(1−2a)n

(
1− 11a

6

)d/2
Thus p2 = o(1) when d = o(n). Let d = ban for some 0 < b ≤ 1. Then,

p2 ≤
{

2o(1)

(
21.229e

b

(
1− 11a

6

)0.5)b
a(1− 2a)0.5(1−2a)/a

}an

Let g(a) = 21.229e

(
1 − 11a

6

)0.5

. When g(a) < e then
(
g(a)
b

)b
is maximized when b = g(a)

e

which yields

p2 ≤
{

2o(1) e21.229(1− 11a
6

)0.5a(1− 2a)0.5(1−2a)/a

}an
≤
(

99

100

)an
.

The last inequality is most easily verified numerically.

When g(a) > e then
(
g(a)
b

)b
is maximized at b = 1. Hence

p2 ≤
{

2o(1) 21.229e

(
1− 11a

6

)0.5

a(1− 2a)0.5(1−2a)/a

}an
≤
(

19

20

)an
.

The last inequality is most easily verified numerically. Thus the probability that there exists
a set W satisfying q(V \W ) > |W | of size w = |W | ≤ 10−5n is bounded by

0.5n∑
w=10−5n

(
99

100

)w
= o(1).

This only leaves the case of n odd. The reader will notice that in none of the calculations
above, did we use the fact that n was even. The Tutte-Berge formula for the maximum size
of a matching ν(G) is

ν(G) = min
W⊆V

1

2
(|V |+ |W | − q(V \W )).

We have shown that the above expression is at least |V |/2 for W 6= ∅ and so the case of n
odd is handled by putting W = ∅ and q(W ) = 1.
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7 Conclusion

In this paper we have analyzed a variant of a Karp-Sipser algorithm and we have shown that
w.h.p. it finds a maximum matching in random k = O(1)-regular graphs. A key ingredient
was the study (3, k)-dominant graphs and to show that this notion of dominant is self
preserving with respect to the algorithm. It is natural to try to extend this approach to
prove the correctness of the algorithm applied to Gn,p, as originally intended [12].

From our analysis the following theorem follows from Lemmas 7 and 8. Starting from
a random graph with minimum degree 3 and maximum 7 and after applying Reduce-
Construct until a graph is reached with minimum degree 3 and maximum 4. This has a
perfect matching w.h.p. which can be lifted to a perfect matching of the original graph.

Theorem 31. Let d be a degree sequence with minimum degree 3 and maximum degree 7. Let
G be a random graph with degree sequence d. Then, w.h.p. G has a (near) perfect matching.

A natural question therefore is to find the maximum integer N such that you can substitude
7 by N in the above theorem. In a random graph with 0.25n vertices of degree 21 and 0.75n
vertices of degree 3, more than 0.25n vertices of degree 3 are expected not to have a neighbor
of degree 3. Hence a concentration argument easily implies that N ≤ 20.
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A Diagrams of hyperactions of interest

Type 2.
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We allow the edge {a, b} to be a single edge in this construction. This gives us a Type 3b
hyperaction.
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