On rainbow trees and cycles

Alan Frieze Michael Krivelevich

We consider edge colorings.

We consider edge colorings.

A coloring is b-bounded if no color is used more than b times.

We consider edge colorings.

A coloring is b-bounded if no color is used more than b times.

A set of edges S is rainbow colored if no two edges in S have the same color.

We consider edge colorings.

A coloring is b-bounded if no color is used more than b times.

A set of edges S is rainbow colored if no two edges in S have the same color.

If $b \leq(n-1) / 4 e$ then every b-bounded coloring of $K_{n, n}$ contains a rainbow perfect matching - Erdős and Spencer.

We consider edge colorings.

A coloring is b-bounded if no color is used more than b times.

A set of edges S is rainbow colored if no two edges in S have the same color.

If $b \leq(n-1) / 4 e$ then every b-bounded coloring of $K_{n, n}$ contains a rainbow perfect matching - Erdős and Spencer.

If $b \leq n / 64$ then every b-bounded coloring of K_{n} contains a rainbow Hamilton cycle - Albert, Frieze and Reed.

We consider edge colorings.

A coloring is b-bounded if no color is used more than b times.

A set of edges S is rainbow colored if no two edges in S have the same color.

If $b \leq(n-1) / 4 e$ then every b-bounded coloring of $K_{n, n}$ contains a rainbow perfect matching - Erdős and Spencer.

If $b \leq n / 64$ then every b-bounded coloring of K_{n} contains a rainbow Hamilton cycle - Albert, Frieze and Reed.
Extends to complete digraph with $b \leq n / 128$.

We consider edge colorings.

A coloring is b-bounded if no color is used more than b times.

A set of edges S is rainbow colored if no two edges in S have the same color.

If $b \leq(n-1) / 4 e$ then every b-bounded coloring of $K_{n, n}$ contains a rainbow perfect matching - Erdős and Spencer.

If $b \leq n / 64$ then every b-bounded coloring of K_{n} contains a rainbow Hamilton cycle - Albert, Frieze and Reed.
Extends to complete digraph with $b \leq n / 128$.

Both theorems use the (lop-sided) local lemma.

Rainbow Cycles

Theorem
There exists an absolute constant $c>0$ such that if an edge colouring of K_{n} is cn-bounded then there exist rainbow cycles of all sizes $3 \leq k \leq n$.

Rainbow Cycles

Theorem

There exists an absolute constant $c>0$ such that if an edge colouring of K_{n} is cn-bounded then there exist rainbow cycles of all sizes $3 \leq k \leq n$.

We see immediatlely from AFR that if $b \leq n / 128$ then every b-bounded coloring of K_{n} contains rainbow cycles of lengths $n / 2 \leq k \leq n$. Indeed every set of $n / 2 \leq k \leq n$ vertices contains a spanning rainbow cycle.

Rainbow Cycles

Theorem

There exists an absolute constant $c>0$ such that if an edge colouring of K_{n} is cn-bounded then there exist rainbow cycles of all sizes $3 \leq k \leq n$.

We see immediatlely from AFR that if $b \leq n / 128$ then every b-bounded coloring of K_{n} contains rainbow cycles of lengths $n / 2 \leq k \leq n$. Indeed every set of $n / 2 \leq k \leq n$ vertices contains a spanning rainbow cycle.

For smaller k we use the following: If $c>0$ and an edge colouring of K_{n} is $c n$-bounded, then there exists a set $S \subseteq[n]$ such that $|S|=N=n / 2$ and the induced colouring of the edges of S is $c^{\prime} N$-bounded where $c^{\prime}=c\left(1+1 /(\ln n)^{2}\right)$.

Rainbow Cycles

For smaller k we use the following: If $c>0$ and an edge colouring of K_{n} is $c n$-bounded, then there exists a set $S \subseteq[n]$ such that $|S|=N=n / 2$ and the induced colouring of the edges of S is $c^{\prime} N$-bounded where $c^{\prime}=c\left(1+1 /(\ln n)^{2}\right)$.

To prove this, we take a random $n / 2$ set S.

To complete the theorem, we take c sufficiently small and we apply this $\sim \log _{2} n$ times until we have shown the existence of rainbow cycles of length $N \leq k \leq n$ where $c N \leq 1$ and a set of N vertices for which the edge coloring is $c N$ bounded.

Rainbow Trees

Theorem

Given a real constant $\epsilon>0$ and a positive integer Δ, there exists a constant $c=c(\epsilon, \Delta)$ such that if $n \geq(1-\epsilon) \Delta$ and an edge colouring of K_{n} is cn-bounded, then it contains a rainbow copy of every tree T with at most $(1-\epsilon) n$ vertices and maximum degree Δ.

Rainbow Trees

Theorem

Given a real constant $\epsilon>0$ and a positive integer Δ, there exists a constant $c=c(\epsilon, \Delta)$ such that if $n \geq(1-\epsilon) \Delta$ and an edge colouring of K_{n} is cn-bounded, then it contains a rainbow copy of every tree T with at most $(1-\epsilon) n$ vertices and maximum degree Δ.

Conjecture: There is a constant $c=c(\Delta)$ such that every cn-bounded edge colouring of K_{n} contains a rainbow copy of every spanning tree of K_{n} which has maximum degree at most Δ.

Our main tool is a theorem of Alon, Krivelevich and Sudakov:
Suppose that $\Delta \geq 2$ and $0<\epsilon<1 / 2$. Let H be a graph on N vertices with minimum degree δ_{H} and maximum degree Δ_{H}.

Suppose that

Our main tool is a theorem of Alon, Krivelevich and Sudakov:
Suppose that $\Delta \geq 2$ and $0<\epsilon<1 / 2$. Let H be a graph on N vertices with minimum degree δ_{H} and maximum degree Δ_{H}.

Suppose that

- N is sufficiently large.

Our main tool is a theorem of Alon, Krivelevich and Sudakov:
Suppose that $\Delta \geq 2$ and $0<\epsilon<1 / 2$. Let H be a graph on N vertices with minimum degree δ_{H} and maximum degree Δ_{H}.

Suppose that

- N is sufficiently large.
- Δ_{H} is not too large w.r.t. δ_{H}.

Our main tool is a theorem of Alon, Krivelevich and Sudakov:
Suppose that $\Delta \geq 2$ and $0<\epsilon<1 / 2$. Let H be a graph on N vertices with minimum degree δ_{H} and maximum degree Δ_{H}.

Suppose that

- N is sufficiently large.
- Δ_{H} is not too large w.r.t. δ_{H}.
- H has sufficiently good expansion.

Our main tool is a theorem of Alon, Krivelevich and Sudakov:

Suppose that $\Delta \geq 2$ and $0<\epsilon<1 / 2$. Let H be a graph on N vertices with minimum degree δ_{H} and maximum degree Δ_{H}.

Suppose that

- N is sufficiently large.
- Δ_{H} is not too large w.r.t. δ_{H}.
- H has sufficiently good expansion.

Then H contains a copy of every tree with $\leq(1-\epsilon) N$ vertices and maximum degree $\leq \Delta$.

Strategy: Given cn-bounded coloring,

Strategy: Given cn-bounded coloring,

- Construct $G_{1}=G_{n, p}$ where $p=d / n$.

Strategy: Given cn-bounded coloring,

- Construct $G_{1}=G_{n, p}$ where $p=d / n$.
- Remove all edges from G_{1} that contain repeated colors.

Strategy: Given cn-bounded coloring,

- Construct $G_{1}=G_{n, p}$ where $p=d / n$.
- Remove all edges from G_{1} that contain repeated colors.
- Remove vertices of degree outside $[d / 2,2 d]$ to create G_{2}.

Strategy: Given cn-bounded coloring,

- Construct $G_{1}=G_{n, p}$ where $p=d / n$.
- Remove all edges from G_{1} that contain repeated colors.
- Remove vertices of degree outside $[d / 2,2 d]$ to create G_{2}.
- Remove some more vertices so that minimum degree is now $\geq d / 4$.

Strategy: Given cn-bounded coloring,

- Construct $G_{1}=G_{n, p}$ where $p=d / n$.
- Remove all edges from G_{1} that contain repeated colors.
- Remove vertices of degree outside $[d / 2,2 d]$ to create G_{2}.
- Remove some more vertices so that minimum degree is now $\geq d / 4$.
- Show that whp G_{3} satisfies the AKS conditions.

Strategy: Given cn-bounded coloring,

- Construct $G_{1}=G_{n, p}$ where $p=d / n$.
- Remove all edges from G_{1} that contain repeated colors.
- Remove vertices of degree outside $[d / 2,2 d]$ to create G_{2}.
- Remove some more vertices so that minimum degree is now $\geq d / 4$.
- Show that whp G_{3} satisfies the AKS conditions.

Existence of rainbow trees has now been demonstrated.

Using the (lop-sided) local lemma one can also prove:
Let T be an arbitrary rooted tree with ν vertices.

Let $T_{1}, T_{2}, \ldots, T_{\nu}$ be copies of T with roots x_{1}, \ldots, x_{ν}.
Run a path through x_{1}, \ldots, x_{ν} to create the tree $T(\nu)$.

There exists an absolute constant $c>0$ such that if an edge colouring of K_{n} is $c n$-bounded then there exists a rainbow copy of every possible $T(\nu)$.

Open Questions

Open Questions

- Tighten the constants.

Open Questions

- Tighten the constants.
- Show that there exists $c=c(\Delta)$ so that every $c n$-bounded colouring of K_{n} contains a rainbow copy of every tree with n vertices and with maximum degree $\leq \Delta$.

Open Questions

- Tighten the constants.
- Show that there exists $c=c(\Delta)$ so that every $c n$-bounded colouring of K_{n} contains a rainbow copy of every tree with n vertices and with maximum degree $\leq \Delta$.
- Show that there exists a constant $c>0$ such in every cn-bounded colouring of K_{n} there are an exponential number of rainbow Hamilton cycles.

Open Questions

- Tighten the constants.
- Show that there exists $c=c(\Delta)$ so that every $c n$-bounded colouring of K_{n} contains a rainbow copy of every tree with n vertices and with maximum degree $\leq \Delta$.
- Show that there exists a constant $c>0$ such in every cn-bounded colouring of K_{n} there are an exponential number of rainbow Hamilton cycles.
- Construct a polynomial time algorithm to find a rainbow Hamilton cycle in a cn-bounded coloring of K_{n}.

Open Questions

- Tighten the constants.
- Show that there exists $c=c(\Delta)$ so that every $c n$-bounded colouring of K_{n} contains a rainbow copy of every tree with n vertices and with maximum degree $\leq \Delta$.
- Show that there exists a constant $c>0$ such in every cn-bounded colouring of K_{n} there are an exponential number of rainbow Hamilton cycles.
- Construct a polynomial time algorithm to find a rainbow Hamilton cycle in a cn-bounded coloring of K_{n}.
- Construct a polynomial time algorithm to find a random rainbow Hamilton cycle in a cn-bounded coloring of K_{n}.

Open Questions

- Tighten the constants.
- Show that there exists $c=c(\Delta)$ so that every $c n$-bounded colouring of K_{n} contains a rainbow copy of every tree with n vertices and with maximum degree $\leq \Delta$.
- Show that there exists a constant $c>0$ such in every cn-bounded colouring of K_{n} there are an exponential number of rainbow Hamilton cycles.
- Construct a polynomial time algorithm to find a rainbow Hamilton cycle in a $c n$-bounded coloring of K_{n}.
- Construct a polynomial time algorithm to find a random rainbow Hamilton cycle in a $c n$-bounded coloring of K_{n}.
- For what values of c, p does a cnp bounded coloring of $G_{n, p}$ contain a rainbow Hamilton cycle whp?

THANK YOU

