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The geometric construction of a random graph
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The geometric construction of a random graph

Let K = [0, 1](
[n]
2 ).

Algorithm Generate(K , p):
Choose X uniformly from K and let

GK ,p = ([n], Ep)

where
Ep = {e : Xe ≤ p}.

Here GK ,p = Gn,p.
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The geometric construction of a random graph

Let K be any convex subset of the non-negative orthant.

Algorithm Generate(K , p):
Choose X uniformly from K and let

GK ,p = ([n], Ep)

where
Ep = {e : Xe ≤ p}.

Here GK ,p is a new model of a random graph.
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Special Classes of Graph

Notice that GK ,p is triangle free if we take p < p0 and K to be

xij + xjk + xki ≥ 3p0 ∀i , j , k

0 ≤ xij ≤ 1 ∀i , j

We can (almost) generate GK ,p in polynomial time.

Alan Frieze Log-Concave Random Graphs



Special Classes of Graph

Notice that GK ,p is triangle free if we take p < p0 and K to be

xij + xjk + xki ≥ 3p0 ∀i , j , k

0 ≤ xij ≤ 1 ∀i , j
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Special Classes of Graph

Notice that GK ,p is triangle free if we take p < p0 and K to be

xij + xjk + xki ≥ 3p0 ∀i , j , k

0 ≤ xij ≤ 1 ∀i , j

We can (almost) generate GK ,p in polynomial time.

We can exclude any fixed graph H in this way.
We can also generate graphs with a fixed degree sequence.
Unfortunately, we have not found a way to make this generation
uniform.
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More generally, let F be any integrable log-concave function on
the positive orthant of R

N .

Algorithm Generate(F , p):
Choose X uniformly from the distribution proportional to F and
let

GF ,p = ([n], Ep)

where
Ep = {e : Xe ≤ p}.
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More generally, let F be any integrable log-concave function on
the positive orthant of R

N .

Algorithm Generate(F , p):
Choose X uniformly from the distribution proportional to F and
let

GF ,p = ([n], Ep)

where
Ep = {e : Xe ≤ p}.

We get a graph process by increasing p from 0 to∞.

Alan Frieze Log-Concave Random Graphs



F is axis-symmetric if it is invariant under permutation of
coordinates.

So,
GF ,p given |Ep| = m is distributed as Gn,m.

So, for this case, it is merely a question of analysing |Ep|.
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Some results:

Theorem

Let F be distribution in the positive orthant with a
down-monotone logconcave density and second moment σ2

along every axis. There exist constants A1 < A2 such that

lim
n→∞

Pr(GF ,p is connected) =

{

0 p < A1σ ln n
n

1 p > A2σ ln n
n

By down-monotone we mean that if x ≥ y then f (x) ≤ f (y).

In the second moment condition σ2 = E(X2
e ).
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Theorem
Let F be distribution in the positive orthant with a
down-monotone logconcave density and second moment σ2

along every axis. There exist constants A3 < A4 such that

lim
n→∞
n even

Pr(GF ,p has a perfect matching) =

{

0 p < A3σ ln n
n

1 p > A4σ ln n
n
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Theorem
Let F be distribution in the positive orthant with a
down-monotone logconcave density and second moment σ2

along every axis. Then there exists an absolute constant A5

such that if

p ≥ A5
ln n
n
·

ln ln ln n
ln ln ln ln n

then GF ,p is Hamiltonian whp.
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The case of a Simplex

We now consider the case of GK ,p where

K = {X :
∑

e

αeXe ≤ L}

We usually assume L = N =
(n

2

)

, which can be achieved by
scaling.

We assume that α is M = M(n)-bounded in the sense that

1
M
≤ αe ≤ M for all e.
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The case of a Simplex

We now consider the case of GK ,p where

K = {X :
∑

e

αeXe ≤ L}

We usually assume L = N =
(n

2

)

, which can be achieved by
scaling.

We assume that α is M = M(n)-bounded in the sense that

1
M
≤ αe ≤ M for all e.

With no constraints on α, we can essentially generate random
subgraphs of an arbitrary graph G.
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Let
αv =

∑

w 6=v

αvw for v ∈ [n].

Theorem

Assume w.l.o.g. that L = N (otherwise replace p by pN/L).
Suppose that α is M = o((ln n)1/4)-bounded.

Let p0 be the solution to

∑

v∈[n]

(

1−
αv p
N

)N
= 1.

Then for any fixed ǫ > 0,

lim
n→∞

Pr(GK ,p is connected) =

{

0 p ≤ (1− ǫ)p

1 p ≥ (1 + ǫ)p
.
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Diameter

Theorem

Let k ≥ 2 be a fixed integer. Suppose that α is M-bounded and
for simplicity assume only that M = no(1). Suppose that θ is
fixed and satisfies 1

k < θ < 1
k−1 . Suppose that p = 1

n1−θ
. Then

whp diam(Sn,p,α) = k.

Alan Frieze Log-Concave Random Graphs



Edge Weighted Problems

One can also use Xe as an edge weight and ask for the
expected weight of various quantites.

One can do probabilistic analysis with edge weights generated
in this model.
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Asymmetric Traveling Salesman Problem (ATSP).

We can use a variant of an algorithm of Karp and Steele to find
a tour within 1 + o(1) of optimum. Suppose that the edge
weights of the complete digraph on n vertices are given by the
Xe.
Suppose that M ≤ nδ.

We need an extra assumption: f has column symmetry: for any
permutation π

f (xπ(1), xπ(2), . . . , xπ(n)) = f (x1, x2, . . . , xn).

where xi = (x1,i , x2,i , . . . , xn,i).
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Weight of Minimum Spanning Tree

Suppose we are in the simplex case and αvw = dv dw , where
1 ≤ dv ≤ (ln n)1/10. Suppose that the edge weights of the
complete graph on n vertices are given by the Xe.

Let Z denote the length of the minimum spanning tree. Then,

E(Z ) ∼
∞
∑

k=1

(k − 1)!

Dk

∑

S⊆V
|S|=k

∏

v∈S dv

d2
S

.

Here dS =
∑

v∈S dv and D = dV .

If dv = 1, ∀v then E(Z ) ∼
∑∞

k=1
(k−1)!

nk

(n
k

) 1
k2 ∼ ζ(3).
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Proofs of theorems are based on modifying Gn,p type proofs:
General Case:

Lemma

e−c1p|S|/σ ≤ Pr(S ∩ Ep = ∅) ≤ e−c2p|S|/σ

Lower bound requires p/σ < 1/4.

(c3p
σ

)|S|

≤ Pr(S ⊆ Ep) ≤
(c4p

σ

)|S|

.
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Simplex Case

Lemma

(a) If S ⊆ En and Ep = E(GΣL,p),

Pr(S ∩ Ep = ∅) =

(

1−
α(S)p

L

)N

.

(b) If S, T ⊆ En and S ∩ T = ∅ and |T | = o(n) and
α(S)|T |p, α(T )Np, MNp = o(L) then

Pr(S ∩ Ep = ∅, T ⊆ Ep) =

(1 + o(1))

(

∏

e∈T

αe

)

(

Np
L

)|T |(

1−
α(S)p

L

)N

.
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p ≥ A1σ ln n
n :

Pr(G is not connected) ≤

⌊n/2⌋
∑

k=1

(

n
k

)

e−c2pk(n−k)/σ

≤

⌊n/2⌋
∑

k=1

(ne
k

e− 1
2 A1c2 ln n

)k

= o(1).
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p ≤ C1σ ln n
n

Pr(v is isolated) ≥ e−c1p(n−1)/σ ≥ n−C1c1 .

So if Z is the number of isolated vertices:

E(Z ) ≥ n1−C1c1 .

Pr(v , w isolated) = Pr(v isolated and w has no edges to V \ {v})

≤ Pr(v is isolated)Pr(w has no edges to V \ {v}),

≤ (1 + o(1))Pr(v is isolated)(Pr(w is isolated) + Pr(xvw ≤ p))

≤ (1 + o(1))Pr(v is isolated)(Pr(w is isolated) + c3p/σ)

≤ (1 + o(1))Pr(v is isolated)(Pr(w is isolated) + O(ln n/n))

= (1 + o(1))Pr(v is isolated)Pr(w is isolated).

Chebyshev inequality implies that Z 6= 0 whp.
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TSP Analysis

The matrix X (i , j) can be viewed as weights of edges of
complete digraph: Digraph View or as the weights of edges of a
complete bipartite graph: Bipartite View.
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Algorithm

Step 1 Solve the assignment problem with cost matrix X
i.e. find a minimum cost perfect matching in the
bipartite view. The edges (i , j) of the optimal
assignment form a set of vertex disjoint cycles
C1, C2, . . . , Ck in the digraph view.

Step 2 Assume that |C1| ≥ |C2| ≥ · · · ≥ |Ck |.
For i = k down to 2: C1 ← C1 ⊕ Ci . (Patch Ci into
C1).

Here C1 ⊕ Ci is obtained by removing an edge
(a, b) from C1 and an edge (c, d) from Ci and
adding edges (a, d), (c, b) to make one cycle.
These two edges are chosen to minimise the cost
Xad + Xcb.
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Each patch reduces the number of cycles by one and so the
procedure ends with a tour.
Column symmetry implies that the set of cycles found in Step 1
is a random cycle cover and then whp it has O(ln n) cycles.
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Each patch reduces the number of cycles by one and so the
procedure ends with a tour.
Column symmetry implies that the set of cycles found in Step 1
is a random cycle cover and then whp it has O(ln n) cycles.

. . .
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Each patch reduces the number of cycles by one and so the
procedure ends with a tour.
Column symmetry implies that the set of cycles found in Step 1
is a random cycle cover and then whp it has O(ln n) cycles.

. . .

. . .
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Expected weight of MST in simplex case
T is minimum spanning tree. K denotes simplex.

ℓ(T ) =
∑

e∈T

Xe

=
∑

e∈T

∫ N

p=0
1Xe≥pdp

=

∫ N

p=0

∑

e∈T

|{e : Xe ≥ p}|dp

=

∫ N

p=0
(κ(GK ,p)− 1)dp

where κ denotes the number of components.

E(T ) =

∫ N

p=0
(E(κ(GK ,p))− 1)dp.
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τk ,p denotes the number of components of GK ,p that are
isolated trees with k vertices For X ⊆ V we let
Ak = {a ∈ [1, k ]k :

∑k
j=1 aj = 2k − 2}. Then, where q = e−Dp

E[τk ,p] ∼ (k − 2)!pk−1
∑

a∈Ak

∑

f :[k ]→V

k
∏

j=1

d
aj

f (j)q
df (j)

(aj − 1)!

∼ (k − 2)!pk−1
∑

a∈Ak

k
∏

i=1

n
∑

v=1

dai
v qdv

(ai − 1)!

∼ (k − 2)!pk−1[x2k−2]

(

n
∑

v=1

∞
∑

r=1

qdv d r
v

(r − 1)!
x r

)k

= (k − 2)!pk−1[xk ]

(

n
∑

v=1

qdv dvedv x

)k

= (k − 2)!pk−1
∑

S⊆V ,|S|=k

qdS
dk−2

S

(k − 2)!

∏

v∈S

dv
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So,

∑

k≥1

∫

p≥0
E[τk ,p]dp ∼

∑

k≥1

∑

S⊆V
|S|=k

dk−2
S

∏

v∈S

dv

∫

p≥0
pk−1e−dSDpdp

=
∑

k≥1

∑

S⊆V
|S|=k

∏

v∈S dv

d2
SDk

∫

x≥0
xk−1e−xdx

∼
∞
∑

k=1

(k − 1)!

Dk

∑

S⊆V
|S|=k

∏

v∈S dv

d2
S
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Open Questions
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Open Questions

1 Does every monotone property have a threshold in GF ,p (in
simplex case)?
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Open Questions

1 Does every monotone property have a threshold in GF ,p (in
simplex case)?

2 When does GF ,p have a giant component?
3 Do we need to restrict ourselves to down-monotone

functions?
4 Is there a polytope K that provides uniform generation of

H-free sub-graphs of a fixed graph G. (H = P2 gives
matchings).
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Open Questions

1 Does every monotone property have a threshold in GF ,p (in
simplex case)?

2 When does GF ,p have a giant component?
3 Do we need to restrict ourselves to down-monotone

functions?
4 Is there a polytope K that provides uniform generation of

H-free sub-graphs of a fixed graph G. (H = P2 gives
matchings).

5 Do the above models of a random graph have a use in
Ramsey theory?
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