Line of Sight Networks

Alan Frieze, Jon Kleinberg,
R. Ravi and Warren Debany

Modelling Wireless Networks

Sensors modelled as discs of a fixed size placed randomly in $[0,1]^{2}$. Two discs can "communicate" if they overlap.

Suppose that there are obstacles.

Processors A, B cannot communicate. Need another model.

LINE OF SIGHT MODEL

Sensors are at centres of crosses and can communicate with sensors lying on their arms.
A, B can communicate, but A, C cannot.
$T=\{0,1, \ldots, n-1\}^{2}$ is a toroidal grid.

Distance:
$d\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=\min \left(\left|x-x^{\prime}\right|, n-\left|x-x^{\prime}\right|\right)+\min \left(\left|y-y^{\prime}\right|, n-\left|y-y^{\prime}\right|\right)$.

Two points are mutually visible if they are in the same row or column and within distance ω of each other.
$T=\{0,1, \ldots, n-1\}^{2}$ is a toroidal grid.

Distance:
$d\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=\min \left(\left|x-x^{\prime}\right|, n-\left|x-x^{\prime}\right|\right)+\min \left(\left|y-y^{\prime}\right|, n-\left|y-y^{\prime}\right|\right)$.

Two points are mutually visible if they are in the same row or column and within distance ω of each other.

We study the random graph G that results if, for some placement probability $p>0$, we locate a node at each point of T independently with probability p, and then connect those pairs of nodes that are mutually visible.
$T=\{0,1, \ldots, n-1\}^{2}$ is a toroidal grid.

Distance:
$d\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=\min \left(\left|x-x^{\prime}\right|, n-\left|x-x^{\prime}\right|\right)+\min \left(\left|y-y^{\prime}\right|, n-\left|y-y^{\prime}\right|\right)$.

Two points are mutually visible if they are in the same row or column and within distance ω of each other.

We study the random graph G that results if, for some placement probability $p>0$, we locate a node at each point of T independently with probability p, and then connect those pairs of nodes that are mutually visible.

If $\omega=1$ then G is a site percolation model.
$T=\{0,1, \ldots, n-1\}^{2}$ is a toroidal grid.

Distance:
$d\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=\min \left(\left|x-x^{\prime}\right|, n-\left|x-x^{\prime}\right|\right)+\min \left(\left|y-y^{\prime}\right|, n-\left|y-y^{\prime}\right|\right)$.

Two points are mutually visible if they are in the same row or column and within distance ω of each other.

We study the random graph G that results if, for some placement probability $p>0$, we locate a node at each point of T independently with probability p, and then connect those pairs of nodes that are mutually visible.

If $\omega=1$ then G is a site percolation model.
If $\omega=n$ then G is the line graph of a random bipartite graph with edge probability p.

Connectivity

Theorem

Suppose that $\omega / \ln n \rightarrow \infty$ where $\omega=n^{\delta}, \delta \leq 6 /(8 k+7)$.

Let $k \geq 1$ be a fixed positive integer and let $p=\frac{\left(1-\frac{1}{2} \delta\right) \ln n+\frac{k}{2} \ln \ln n+c_{n}}{2 \omega}$. Then

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}(G \text { is } k \text {-connected })= \begin{cases}0 & c_{n} \rightarrow-\infty \\ e^{-\lambda_{k}} & c_{n} \rightarrow c \\ 1 & c_{n} \rightarrow \infty\end{cases}
$$

where

$$
\lambda_{k}=\frac{2^{k-2}\left(1-\frac{1}{2} \delta\right)^{k} e^{-2 c}}{(k-1)!}
$$

Note that if $\omega=o(\ln n)$ and $p=x / \omega$ then the expected number of isolated vertices is

$$
n^{2} p\left(1-\frac{x}{\omega}\right)^{4 \omega}=n^{2} p \exp \left\{-4 x\left(1+\frac{x}{2 \omega}+\frac{x^{2}}{3 \omega^{2}}+\cdots\right)\right\}
$$

So unless $n^{2} p \rightarrow 0$ or x / ω is very close to one, this expectation tends to infinity. In which case a second moment calculation will show isolated vertices exist whp.
To summarize: We need to consider $\omega=\Omega(\ln n)$ to get any sensible results.

Giant Component

G will whp contain $\sim n^{2} p$ vertices. A giant component is therefore one with $\Omega\left(n^{2} p\right)$ vertices.

Theorem

(a) If $p=\frac{c}{\omega}$ where $c>1$ and $\omega \rightarrow \infty$ then whp G contains a unique component with $(1-o(1))\left(1-x_{c}^{2}\right) n^{2} / \omega$ vertices, where x_{c} is the unique solution in $(0,1)$ of $x e^{-x}=c e^{-c}$.
(b) If $p=\frac{c}{\omega}$ where $c<1 /(4 e)$ and $\omega \rightarrow \infty$ then whp the largest component in G has size $O(\ln n)$.

Since (a) is valid for arbitrary $\omega \rightarrow \infty$, we can get a result about the existence of a giant component assuming only that ω is sufficiently large.

Finding Paths Between Nodes

Theorem

Let $p=C \ln n / \omega$ for a constant $C \geq 3$. There is a decentralized algorithm that whp, given nodes s and t, constructs an s-t path with $O(d(s, t) / \omega+\ln n)$ edges while involving $O(d(s, t) / \omega+\omega \ln n)$ nodes in the computation.

Finding Paths Between Nodes

> Theorem
> Let $p=C \ln n / \omega$ for a constant $C \geq 3$. There is a decentralized algorithm that whp, given nodes s and t, constructs an s-t path with $O(d(s, t) / \omega+\operatorname{In} n)$ edges while involving $O(d(s, t) / \omega+\omega \ln n)$ nodes in the computation.

This bound is nearly optimal, since $\Omega(d(s, t) / \omega)$ is a simple lower bound on the number of edges and the number of nodes involved in any $s-t$ path.

Relay Placement: An Approximation Algorithm

Relay Placement Problem: Given a set of nodes on a grid, we would like to add a small number of additional nodes (Steiner Set) so that the full set becomes connected.

Relay Placement: An Approximation Algorithm

Relay Placement Problem: Given a set of nodes on a grid, we would like to add a small number of additional nodes (Steiner Set) so that the full set becomes connected.

Theorem

There is a polynomial-time algorithm that produces a Steiner set whose total cost is within a factor of 6.2 of optimal.

Relay Placement: An Approximation Algorithm

Relay Placement Problem: Given a set of nodes on a grid, we would like to add a small number of additional nodes (Steiner Set) so that the full set becomes connected.

Theorem

There is a polynomial-time algorithm that produces a Steiner set whose total cost is within a factor of 6.2 of optimal.

In a general graph, there is an $\Omega(\log n)$ hardness of approximation result for this problem and this is matched by a corresponding upper bound, Klein and Ravi.

FINDING PATAS bETWEEN VERTICES $-x \& y$.

Since now $p=K \log n / w$
(i) Each H_{i} is connected; (ii) Each H_{i} has diamder o(logn).
(iii) Each vertex v of G has 4 mighty arms.

No Giant Component

We note that an r-regular, N-vertex graph contains at most $N(e r)^{k-1}$ trees with k vertices.

Thus the expected number of k-vertex trees in G is bounded by

$$
n^{2}(4 e \omega p)^{k-1}=n^{2}(4 e c)^{k-1}=o(1)
$$

if $c<1 /(4 e)$ and $k \geq A \ln n$ and A is sufficiently large.

Partition torus into $\frac{n^{2}}{\omega^{2}} \omega \times \omega$ subsquares.

		ω		

Subsquare S_{i} induces a subgraph H_{i} of G.

Γ_{i} one edge for each point.

Defines a random bipartite graph Γ_{i} with $\omega+\omega$ vertices and edge density $c / \omega, c>1$.
Fact 1: why Γ contains a giant component K

$$
\begin{aligned}
& \text { Fact 1: } \\
& x_{c} e^{-x_{c}}=c e^{-c} .
\end{aligned}
$$

Fact 2: whip k contains $\geqslant(1-0(1)) x_{c} \omega$ vertices on each side of the partition.

Facts imply whip
(i) H_{i} contains a connected component K_{i} with $\geqslant(1-0(1))\left(1-x_{0}^{2}\right) w^{2}$ vertices.
(ii) $K_{\text {: }}$ contains a vertex in $\geqslant(1-0(1)) x_{0} w$ rows and columns.

why $\exists u_{J} v$ connecting the two giants together.
Can argue that these connections bet ween $\omega \times \omega$ squares are indepen dent.

	e			

Consider mixed percolation on now \times 罂 lat bice where

$$
\begin{aligned}
& P_{v}=\operatorname{Pr}(\text { site open })=\operatorname{Pr}\left(H_{v} \text { has giant }\right)=1-010 . \\
& P_{e}=\operatorname{Pr} \text { (edge e open }=\operatorname{Pr}\left(K_{v}, K_{w} \text { conneotod by edge }\right)=1-0(0) .
\end{aligned}
$$

Why there is a cluster of size $(1-0(1)) n^{2} / w^{2}$
\Rightarrow whip G contains component of size $\geq(1-0(x)) n^{2} / w^{2} x$ $(1-0(1)) x_{c} n$ ．

Connectivity

Assume that

$$
p=\frac{\left(1-\frac{1}{2} \delta\right) \ln n+\frac{k}{2} \ln \ln n+c}{2 \omega}
$$

Let X_{I} denote the number of vertices of degree $0 \leq I<k$.

$$
\mathbf{E}\left(X_{l}\right) \sim \begin{cases}0 & l \leq k-2 \\ \lambda_{k} & l=k-1\end{cases}
$$

For $t=O(1)$.

$$
\mathbf{E}\left(\left(X_{k-1}\right)_{t}\right) \sim \lambda_{k}^{t}
$$

$$
\left((a)_{t}=a(a-1) \cdots(a-t+1)\right)
$$

Connectivity

Assume that

$$
p=\frac{\left(1-\frac{1}{2} \delta\right) \ln n+\frac{k}{2} \ln \ln n+c}{2 \omega}
$$

Let $X_{\text {}}$ denote the number of vertices of degree $0 \leq I<k$.

$$
\mathbf{E}\left(X_{l}\right) \sim \begin{cases}0 & l \leq k-2 \\ \lambda_{k} & l=k-1\end{cases}
$$

For $t=O(1)$.

$$
\mathbf{E}\left(\left(X_{k-1}\right)_{t}\right) \sim \lambda_{k}^{t}
$$

$\left((a)_{t}=a(a-1) \cdots(a-t+1)\right)$.
So whp there are no vertices of degree $\leq k-2$ and

$$
\operatorname{Pr}(\delta(G)=k-1) \sim 1-e^{-\lambda_{k}}
$$

We condition on $\delta(G) \geq k$.

We condition on $\delta(G) \geq k$.
We write $G=G_{1} \cup G_{2}$ where G_{i} is defined using p_{i} where $p_{1}=p-\frac{1}{2 \omega \ln n}=(1-o(1)) p$ and $1-p=\left(1-p_{1}\right)\left(1-p_{2}\right)$.

We condition on $\delta(G) \geq k$.

We write $G=G_{1} \cup G_{2}$ where G_{i} is defined using p_{i} where $p_{1}=p-\frac{1}{2 \omega \ln n}=(1-o(1)) p$ and $1-p=\left(1-p_{1}\right)\left(1-p_{2}\right)$.
G_{1} defines the red nodes and G_{2} defines the blue nodes.

The following hold whp:

- No red node has an arm α on which we can find 1000 red vertices each having an arm orthogonal to α which is not mighty.

The following hold whp:

- No red node has an arm α on which we can find 1000 red vertices each having an arm orthogonal to α which is not mighty.
- There is no red node of degree $\leq \ln \ln n$ that has a red neighbour w which has a non-mighty arm orthogonal to $v w$

The following hold whp:

- No red node has an arm α on which we can find 1000 red vertices each having an arm orthogonal to α which is not mighty.
- There is no red node of degree $\leq \ln \ln n$ that has a red neighbour w which has a non-mighty arm orthogonal to $v w$
- There is no red vertex with at most $k-1$ red neighbours and at least one blue neighbour.

The following hold whp:

- No red node has an arm α on which we can find 1000 red vertices each having an arm orthogonal to α which is not mighty.
- There is no red node of degree $\leq \ln \ln n$ that has a red neighbour w which has a non-mighty arm orthogonal to $v w$
- There is no red vertex with at most $k-1$ red neighbours and at least one blue neighbour.
- There is no blue node with fewer than k red neighbours.

Assume that the previous properties hold.

Let L be the set of points in T with coordinates (i, j), where each of i and j is a multiple of ω.

Suppose S is a set of $k-1$ red nodes and let $G_{S}=G_{1}-S$.

For each connected component K of H_{S}, and for each point $x \in L$, let $v_{K x}$ denote the node in K that is closest to x in L_{1} distance. We claim

Lemma

$v_{K x}$ lies within the $\omega \times \omega$ box B_{x} centered at x.

Simplest Case

It follows from the lemma that there are at most n^{2} / ω^{2} components in G_{1}.

It follows from the lemma that there are at most n^{2} / ω^{2} components in G_{1}.

For each component J, K and $\omega \times \omega$ box with centre x there is a point $z(J, K, x)$ which is a neighbour of a point in J and K.

It follows from the lemma that there are at most n^{2} / ω^{2} components in G_{1}.

For each component J, K and $\omega \times \omega$ box with centre x there is a point $z(J, K, x)$ which is a neighbour of a point in J and K.

The probability that there is no blue node at $z(J, K, x)$ is $\left(1-p_{2}\right)^{n^{2} / \omega^{2}}$ and so the probability that J, K do not get merged into one component is at most $n^{2} e^{-n^{2} p_{2} / \omega^{2}} \leq n^{2} e^{-\Omega\left(n^{2} /\left(\omega^{3} \ln n\right)\right)}$ which is small enough to handle all the $\leq n^{k}$ choices for S.

It follows from the lemma that there are at most n^{2} / ω^{2} components in G_{1}.

For each component J, K and $\omega \times \omega$ box with centre x there is a point $z(J, K, x)$ which is a neighbour of a point in J and K.

The probability that there is no blue node at $z(J, K, x)$ is $\left(1-p_{2}\right)^{n^{2} / \omega^{2}}$ and so the probability that J, K do not get merged into one component is at most $n^{2} e^{-n^{2} p_{2} / \omega^{2}} \leq n^{2} e^{-\Omega\left(n^{2} /\left(\omega^{3} \ln n\right)\right)}$ which is small enough to handle all the $\leq n^{k}$ choices for S.

So, if we remove any set of $k-1$ vertices S then there is a component of $G-S$ containing all of the red vertices.

It follows from the lemma that there are at most n^{2} / ω^{2} components in G_{1}.

For each component J, K and $\omega \times \omega$ box with centre x there is a point $z(J, K, x)$ which is a neighbour of a point in J and K.

The probability that there is no blue node at $z(J, K, x)$ is $\left(1-p_{2}\right)^{n^{2} / \omega^{2}}$ and so the probability that J, K do not get merged into one component is at most $n^{2} e^{-n^{2} p_{2} / \omega^{2}} \leq n^{2} e^{-\Omega\left(n^{2} /\left(\omega^{3} \ln n\right)\right)}$ which is small enough to handle all the $\leq n^{k}$ choices for S.

So, if we remove any set of $k-1$ vertices S then there is a component of $G-S$ containing all of the red vertices.

Each blue node has at least k red neighbours and so if we remove any set S of $k-1$ vertices the remaining graph $G-S$ is connected.

Relay Placement

Problem: Given $c_{v} \geq 0$ for $v \in T$ and a set $X \subseteq T$ find Y such that $X \cup Y$ is connected and $c(Y)$ is small.

Define $c_{v}^{X}=\left\{\begin{array}{ll}0 & v \in X \\ c_{v} & v \notin X\end{array}\right.$ and for an edge $e=\{v, w\}$ let
its weight be $w(e)=\max \left\{c_{v}^{X}, c_{w}^{X}\right\}$.
Let Y^{*} be a Steiner set for X of minimum cost, and let \wedge^{*} be a Steiner tree for X of minimum total edge weight.

A Steiner tree Λ^{\prime} whose edge weight is within a constant factor $\gamma \leq 1.55$ of optimal can be computed in polynomial time Robins and Zelikovsky.

RELAY REPLACEMENT

$$
X=\{\bullet\} \quad Y=\{\bullet\}
$$

$$
\begin{aligned}
& : c_{v}= \begin{cases}0: v \in X \\
c_{v}: v \in X\end{cases} \\
& v_{0}, \\
& \omega(e): \max \left\{c_{v}, c_{w}\right\}
\end{aligned}
$$

(i) $Y^{*}=\min . \cos t Y$.
(iv) Y^{\prime} : \{Steiner notes
(ii) $\bigwedge^{*}=$ min. weight
$\left.6 \wedge^{\prime}\right\}$
(iii) $\Lambda^{\prime}=1.55$ approx. to Λ^{*}
(a) Λ^{*} has max. degree 4 .

リ
(b) $\omega\left(\Lambda^{*}\right) \leqslant 4 c\left(Y^{*}\right)$
(c) $c\left(y^{\prime}\right) \leqslant w\left(\Lambda^{\prime}\right) \leqslant 1.55 w\left(\Lambda^{*}\right) \leqslant 6.2 c\left(y^{*}\right)$.

Let Y^{\prime} be the Steiner nodes of Λ^{\prime}.

$$
c\left(Y^{\prime}\right) \leq w\left(\Lambda^{\prime}\right) \leq \gamma w\left(\Lambda^{*}\right) \leq 4 \gamma c\left(Y^{*}\right)
$$

Open Questions

- Find the exact threshold for the existence of a giant component.

Open Questions

- Find the exact threshold for the existence of a giant component.
- Remove the restrictions on ω.

Open Questions

- Find the exact threshold for the existence of a giant component.
- Remove the restrictions on ω.
- Study problems associated with the points of G moving (randomly).

THANK YOU

