The Cut-Norm and Combinatorial Optimization

Alan Frieze and Ravi Kannan

Outline of the Talk

- The Cut-Norm and a Matrix Decomposition.
- Max-Cut given the Matrix Decomposition.
- Quadratic Assignment given the Matrix Decomposition.
- Constructing Matrix Decomposition via the Grothendieck Identity – Alon and Naor
- Multi-Dimensional Matrices

The *cut-norm* of the $R \times C$ matrix **A** is defined to be

$$||\mathbf{A}||_{\Box} = \max_{\substack{S \subseteq R \\ T \subseteq C}} |\mathbf{A}(S, T)|.$$

The *cut-norm* of the $R \times C$ matrix **A** is defined to be

$$||\mathbf{A}||_{\Box} = \max_{\substack{S \subseteq R \\ T \subseteq C}} |\mathbf{A}(S, T)|.$$

Relation to regularity: **D** is an $R \times C$ matrix with $\mathbf{D}(i, j) = d$. *W* is an $R \times C$ matrix with $||W||_{\Box} \le \epsilon |R| |C|$. **A** = **D** + **W**.

 $|\mathbf{A}(\mathbf{S}, \mathbf{T}) - \mathbf{d}|\mathbf{S}| |\mathbf{T}|| \le \epsilon |\mathbf{R}| |\mathbf{C}|.$

・ロト・日本・日本・日本・日本・今日・

Cut Matrices

Given $S \subseteq R$, $T \subseteq C$ and real value *d*:

 $R \times C$ Cut Matrix $\mathbf{C} = CUT(S, T, d)$:

$$\mathbf{C}(i,j) = \left\{ egin{array}{ll} d & ext{if } (i,j) \in \mathcal{S} imes \mathcal{T}, \ 0 & ext{otherwise.} \end{array}
ight.$$

Matrix Decomposition

 $A = D^{(1)} + D^{(2)} + \dots + D^{(s)} + W.$

 $\mathbf{D}^{(t)} = CUT(R_t, C_t, d_t).$

Matrix Decomposition

$$\mathbf{A} = \mathbf{D}^{(1)} + \mathbf{D}^{(2)} + \dots + \mathbf{D}^{(s)} + \mathbf{W}.$$

 $\mathbf{D}^{(t)} = CUT(R_t, C_t, d_t).$

We want s, $\max_t \{|d_t|\}$ and $||\mathbf{W}||_{\Box}$ to be small.

Matrix Decomposition

$$\mathbf{A} = \mathbf{D}^{(1)} + \mathbf{D}^{(2)} + \dots + \mathbf{D}^{(s)} + \mathbf{W}.$$
$$\mathbf{D}^{(t)} = CUT(R_t, C_t, d_t).$$

We want s, $\max_t \{|d_t|\}$ and $||\mathbf{W}||_{\Box}$ to be small.

$$||\mathbf{W}||_{\Box} \leq \epsilon mn \qquad m = |R|, n = |C|$$

$$s = O(1/\epsilon^2)$$

$$\max_{t} \{|d_t|\} = O(1)$$

イロト イポト イヨト イヨト

is achievable.

$$||\mathbf{A}||_{\mathcal{F}} = \left(\sum_{i,j} A(i,j)^2\right)^{1/2}$$

be the Frobenius Norm of A.

Assume inductively that we have found cut matrices

$$\begin{split} \mathbf{D}^{(j)} &= CUT(R_j, C_j, d_j), \end{split}$$
 such that $\mathbf{W}^{(t)} = \mathbf{A} - (\mathbf{D}^{(1)} + \mathbf{D}^{(2)} + \dots + \mathbf{D}^{(t)})$ satisfies $||\mathbf{W}^{(t)}||_F^2 \leq (1 - \epsilon^2 t)||\mathbf{A}||_F^2. \end{split}$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Assume inductively that we have found cut matrices

 $\mathbf{D}^{(j)} = CUT(R_j, C_j, d_j),$ such that $\mathbf{W}^{(t)} = \mathbf{A} - (\mathbf{D}^{(1)} + \mathbf{D}^{(2)} + \dots + \mathbf{D}^{(t)})$ satisfies $||\mathbf{W}^{(t)}||_F^2 \le (1 - \epsilon^2 t)||\mathbf{A}||_F^2.$

Suppose there exist $S \subseteq R$, $T \subseteq C$ such that

 $|\mathbf{W}^{(t)}(\mathbf{S}, \mathbf{T})| \geq \epsilon \sqrt{mn} ||\mathbf{A}||_{\mathbf{F}}.$

Let

$$R_{t+1} = S, C_{t+1} = T, d_{t+1} = \frac{\mathbf{W}^{(t)}(S, T)}{|S||T|}.$$

 $||\mathbf{W}^{(t+1)}||_{F}^{2} - ||\mathbf{W}^{(t)}||_{F}^{2} = ||\mathbf{W}^{(t)} - \mathbf{D}^{(t+1)}||_{F}^{2} - ||\mathbf{W}^{(t)}||_{F}^{2} =$

$$\sum_{\substack{i \in R_{t+1} \\ j \in C_{t+1}}} ((\mathbf{W}^{(t)}(i,j) - d_{t+1})^2 - \mathbf{W}^{(t)}(i,j)^2) = -|R_{t+1}||C_{t+1}|d_{t+1}^2 =$$

$$-rac{{f W}^{(t)}(R_{t+1},C_{t+1})^2}{|R_{t+1}|\,|C_{t+1}|}\leq -\epsilon^2||{f A}||_F^2.$$

 $||\mathbf{W}^{(t+1)}||_{F}^{2} - ||\mathbf{W}^{(t)}||_{F}^{2} = ||\mathbf{W}^{(t)} - \mathbf{D}^{(t+1)}||_{F}^{2} - ||\mathbf{W}^{(t)}||_{F}^{2} =$

$$\sum_{\substack{i \in R_{t+1} \\ j \in C_{t+1}}} ((\mathbf{W}^{(t)}(i,j) - d_{t+1})^2 - \mathbf{W}^{(t)}(i,j)^2) = -|R_{t+1}||C_{t+1}|d_{t+1}^2 =$$

$$-rac{{f W}^{(t)}(R_{t+1},C_{t+1})^2}{|R_{t+1}|\,|\mathcal{C}_{t+1}|}\leq -\epsilon^2||{f A}||_F^2.$$

Conclusion: $\exists D^{(1)}, \dots, D^{(s)}, s \le e^{-2}$ such that $||\mathbf{W}^{(s)}||_{\Box} \le e\sqrt{mn}||\mathbf{A}||_{F}$

.

Refinements

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Suppose that we can only compute R_{t+1}, C_{t+1} such that $|\mathbf{W}^{(t)}(R_{t+1}, C_{t+1})| \ge \rho ||\mathbf{W}^{(t)}||_{\Box}$ where $\rho \le 1$.

Refinements

Suppose that we can only compute R_{t+1}, C_{t+1} such that $|\mathbf{W}^{(t)}(R_{t+1}, C_{t+1})| \ge \rho ||\mathbf{W}^{(t)}||_{\Box}$ where $\rho \le 1$.

Conclusion: We can compute $D^{(1)}, \ldots, D^{(s)}, s \le \rho^{-2} \epsilon^{-2}$ such that

 $||\mathbf{W}^{(s)}||_{\Box} \leq \epsilon \sqrt{mn} ||\mathbf{A}||_{F}$

◆□> ◆□> ◆三> ◆三> ・三 ・ ○へ⊙

If $|R_{t+1}| < m/2$ then either (i) $|\mathbf{W}^{(t)}(R, C_{t+1})| \ge \frac{1}{2}\rho\epsilon\sqrt{mn}||A||_F$ or (ii) $|\mathbf{W}^{(t)}(R \setminus R_{t+1}, C_{t+1})| \ge \frac{1}{2}\rho\epsilon\sqrt{mn}||A||_F$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

If $|R_{t+1}| < m/2$ then either (i) $|\mathbf{W}^{(t)}(R, C_{t+1})| \ge \frac{1}{2}\rho\epsilon\sqrt{mn}||A||_F$ or (ii) $|\mathbf{W}^{(t)}(R \setminus R_{t+1}, C_{t+1})| \ge \frac{1}{2}\rho\epsilon\sqrt{mn}||A||_F$

Conclusion: We can compute $\mathbf{D}^{(1)}, \ldots, \mathbf{D}^{(s)}, s \leq 4\rho^{-2}\epsilon^{-2}$ such that

 $||\mathbf{W}^{(s)}||_{\Box} \le \epsilon \sqrt{mn} ||\mathbf{A}||_{F}$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

and such that $|R_i| \ge m/2$ and $|C_i| \ge n/2$.

If $|R_{t+1}| < m/2$ then either (i) $|\mathbf{W}^{(t)}(R, C_{t+1})| \ge \frac{1}{2}\rho\epsilon\sqrt{mn}||A||_F$ or (ii) $|\mathbf{W}^{(t)}(R \setminus R_{t+1}, C_{t+1})| \ge \frac{1}{2}\rho\epsilon\sqrt{mn}||A||_F$

Conclusion: We can compute $\mathbf{D}^{(1)}, \ldots, \mathbf{D}^{(s)}, s \leq 4\rho^{-2}\epsilon^{-2}$ such that

 $||\mathbf{W}^{(s)}||_{\Box} \le \epsilon \sqrt{mn} ||\mathbf{A}||_{F}$

and such that $|R_i| \ge m/2$ and $|C_i| \ge n/2$.

Then

$$\sum_{t=1}^{s} |R_t| |C_t| d_t^2 \leq ||\mathbf{A}||_F^2 \Longrightarrow \sum_{t=1}^{s} d_t^2 \leq 4 ||\mathbf{A}||_{\infty}.$$

MAX-CUT

G = (V, E) is a graph with $n \times n$ adjacency A and A = D⁽¹⁾ + D⁽²⁾ + ··· + D^(s) + W.

 $\mathbf{D}^{(t)} = CUT(R_t, C_t, d_t), \ |d_t| \le 2, \ s = O(1/\epsilon^2) \ and \ ||\mathbf{W}||_{\Box} \le \epsilon n^2$

G = (V, E) is a graph with $n \times n$ adjacency A and A = D⁽¹⁾ + D⁽²⁾ + ··· + D^(s) + W.

 $\mathbf{D}^{(t)} = CUT(R_t, C_t, d_t), \ |d_t| \le 2, \ s = O(1/\epsilon^2) \ and \ ||\mathbf{W}||_{\Box} \le \epsilon n^2$

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 ■ ● ○ ○ ○

If (S, \overline{S}) is a cut in *G* then the weight of this cut satisfies $|\mathbf{A}(S, \overline{S}) - (\mathbf{D}^{(1)} + \mathbf{D}^{(2)} + \dots + \mathbf{D}^{(s)})(S, \overline{S})| \le \epsilon n^2.$ G = (V, E) is a graph with $n \times n$ adjacency A and $A = D^{(1)} + D^{(2)} + \dots + D^{(s)} + W.$

 $\mathbf{D}^{(t)} = CUT(R_t, C_t, d_t), \ |d_t| \le 2, \ s = O(1/\epsilon^2) \ and \ ||\mathbf{W}||_{\Box} \le \epsilon n^2$

If (S, \overline{S}) is a cut in *G* then the weight of this cut satisfies $|\mathbf{A}(S, \overline{S}) - (\mathbf{D}^{(1)} + \mathbf{D}^{(2)} + \dots + \mathbf{D}^{(s)})(S, \overline{S})| \le \epsilon n^2.$

$$\sum_{t=1}^{s} \mathbf{D}^{(t)}(S, \bar{S}) = \sum_{t=1}^{s} d_t f_t g_t$$

where

 $f_t = |S \cap R_t|$ and $g_t = |\bar{S} \cap C_t|$

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 ■ の Q ()

So we look for S to (approximately) minimize $\sum_{t=1}^{s} d_t f_t g_t$.

So we look for S to (approximately) minimize $\sum_{t=1}^{s} d_t f_t g_t$.

Let $\nu = \epsilon n$ and

$$ar{f}_t = \left\lfloor rac{f_t}{
u}
ight
vert
u, \qquad ar{g}_t = \left\lfloor rac{g_t}{
u}
ight
vert
u$$

Then

$$\sum_{t=1}^{s} |f_t g_t d_t - \overline{f}_t \overline{g}_t d_t| \leq 6\nu ns \leq 6\epsilon n^2.$$

So we look for S to (approximately) minimize $\sum_{t=1}^{s} d_t f_t g_t$.

Let $\nu = \epsilon n$ and

$$ar{f}_t = \left\lfloor rac{f_t}{
u}
ight
vert
u, \qquad ar{g}_t = \left\lfloor rac{g_t}{
u}
ight
vert
u$$

Then $\sum_{t=1}^{s} |f_t g_t d_t - \overline{f}_t \overline{g}_t d_t| \leq 6\nu ns \leq 6\epsilon n^2.$

So we can look for S to (approximately) minimize $\sum_{t=1}^{s} d_t \bar{f}_t \bar{g}_t$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

 $\mathcal{P} = V_1, V_2, \dots, V_k$ is the coarsest partition of V (with at most 2^{2s} parts in it) such that each R_t, C_t is the union of sets in \mathcal{P} .

 $\mathcal{P} = V_1, V_2, \dots, V_k$ is the coarsest partition of V (with at most 2^{2s} parts in it) such that each R_t, C_t is the union of sets in \mathcal{P} .

We check (\bar{f}_t, \bar{g}_t) by solving the LP relaxation of the integer program

$$\begin{array}{rclcrcl} 0 & \leq & x_P & \leq & |P| & \forall \ P \in \mathcal{P} \\ \overline{f}_t & \leq & \sum_{P \subseteq R_t} x_P & < & \overline{f}_t + \nu & & 1 \leq t \leq s \\ \overline{g}_t & \leq & \sum_{P \subseteq C_t} (|P| - x_P) & \leq & \overline{g}_t + \nu \end{array}$$

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

and doing some adjusting. $(x_P = |S \cap P|)$.

 $\mathcal{P} = V_1, V_2, \dots, V_k$ is the coarsest partition of V (with at most 2^{2s} parts in it) such that each R_t, C_t is the union of sets in \mathcal{P} .

The partition \mathcal{P} has the property that for disjoint $S, T \subseteq V$ we have

$$\left| e(S,T) - \sum_{i \in [k]} \sum_{j \in [k]} d_{i,j} |S_i| |T_j| \right| \le 2||\mathbf{W}||_{\Box} \le 2\epsilon n^2$$

where $d_{i,j} = e(V_i, V_j)/(|V_i| |V_j|)$.

 $\mathcal{P} = V_1, V_2, \dots, V_k$ is the coarsest partition of V (with at most 2^{2s} parts in it) such that each R_t, C_t is the union of sets in \mathcal{P} .

The partition \mathcal{P} has the property that for disjoint $S, T \subseteq V$ we have

$$\left| \boldsymbol{e}(\boldsymbol{S}, \boldsymbol{T}) - \sum_{i \in [k]} \sum_{j \in [k]} \boldsymbol{d}_{i,j} |\boldsymbol{S}_i| |\boldsymbol{T}_j| \right| \leq 2 ||\boldsymbol{\mathsf{W}}||_{\Box} \leq 2\epsilon n^2$$

where $d_{i,j} = e(V_i, V_j)/(|V_i| |V_j|)$.

We could replace \mathcal{P} with an ordinary regular partition. The constants as a function of ϵ get worse.

Quadratic Assignment

$$\begin{array}{l} \textit{Minimise} \sum\limits_{i,j,p,q} A_{i,j,p,q} z_{i,p} z_{j,q} \\ \textit{subject to } \sum\limits_{k} z_{i,k} = \sum\limits_{k} z_{k,j} = 1 \\ z_{i,j} = 0, 1. \forall i,j. \end{array}$$

・ロト ・回ト ・ヨト ・ヨト

∃ 990

A set of *n* items *V* have to be assigned to a set of *n* locations *X*, one per location. $z_{i,p} = 1$: Place item *i* in position $p = \pi(i)$

 $T(i, i') \le 1$ is the amount of *traffic* between item *i* and *i'*. D(x, x') is the *distance* between location *x* and *x'*.

If item *i* is assigned to location $\pi(i)$ for $i \in [n]$ the total cost $c(\pi)$ is defined by

$$c(\pi) = \sum_{i=1}^{n} \sum_{i'=1}^{n} \mathbf{T}(i,i') \mathbf{D}(\pi(i),\pi(i')).$$

The problem is to minimise $c(\pi)$ over all bijections $\pi: V \to X$.

▲御▶ ▲理▶ ▲理▶ 二連

Metric QAP.

Metric space X with metric **D**.

- (1) diam(X)=1 i.e. $\max_{x,y} \mathbf{D}(x,y) = 1$.
- For all ε > 0 there exists a partition X = X₁ ∪ X₂ ∪ · · · ∪ X_ℓ, ℓ = ℓ(ε), such that diam(X_j) ≤ ε. We call this an ε − *refinement* of X.

So there is a $\ell \times \ell$ matrix $\hat{\mathbf{D}}$ such that if $x \in X_j$ and $x' \in X_{j'}$ then

$$|\mathbf{D}(x,x') - \hat{\mathbf{D}}(j,j')| \leq 2\epsilon.$$

This partition must be computable in time polynomial in *n* and $1/\epsilon$.

We call this the metric QAP.

We decompose

$$\mathbf{T} = \mathbf{T}_1 + \mathbf{T}_2 + \dots + \mathbf{T}_s + \mathbf{W}$$

where $||\mathbf{W}||_{\Box} \le \epsilon n^2$. For bijection $\pi : \mathbf{V} \to \mathbf{X}$ we have

$$\boldsymbol{c}(\pi) = \sum_{k=1}^{s} \sum_{i,j=1}^{n} \mathbf{T}_{k}(i,j) \mathbf{D}(\pi(i),\pi(j)) + \Delta_{1}$$

We compute an $O(\epsilon^{-3})$ -refinement of X and let $S_i^{(\pi)} = \pi^{-1}(X_i)$.

$$\sum_{k=1}^{s} \sum_{i,j=1}^{n} \mathbf{T}_{k}(i,j) \mathbf{D}(\pi(i),\pi(j)) = \sum_{k=1}^{s} \sum_{i,j=1}^{\ell} d_{k} |R_{k} \cap S_{i}^{(\pi)}| |C_{k} \cap S_{j}^{(\pi)}| \hat{\mathbf{D}}(i,j) + \Delta_{2}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Reducible to finding an approximation to the cut-norm.

→ Ξ → → Ξ →

Reducible to finding an approximation to the cut-norm.

Our paper gave algorithms with a "small" additive error.

伺き くほき くほう

Reducible to finding an approximation to the cut-norm.

Our paper gave algorithms with a "small" additive error.

Alon and Naor gave an approximation algorithm with multiplicative error!

$$||\mathbf{A}||_{\infty \to 1} = \max_{x_i, y_j \in \{\pm 1\}} \sum_{i,j} \mathbf{A}(i, j) x_i y_j$$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → の < ⊙

$$||\mathbf{A}||_{\infty \to 1} = \max_{x_i, y_j \in \{\pm 1\}} \sum_{i,j} \mathbf{A}(i,j) x_i y_j.$$

$$\sum_{i,j} \mathbf{A}(i,j) \mathbf{x}_i \mathbf{y}_j = \sum_{\substack{\mathbf{x}_i = 1 \\ \mathbf{y}_j = 1}} \mathbf{A}_{i,j} - \sum_{\substack{\mathbf{x}_i = 1 \\ \mathbf{y}_j = -1}} \mathbf{A}_{i,j} - \sum_{\substack{\mathbf{x}_i = -1 \\ \mathbf{y}_j = 1}} + \sum_{\substack{\mathbf{x}_i = -1 \\ \mathbf{y}_j = -1}} \mathbf{A}_{i,j}.$$

So

 $||\mathbf{A}||_{\infty \to 1} \leq 4||\mathbf{A}||_{\Box}.$

$$||\mathbf{A}||_{\infty \to 1} = \max_{x_i, y_j \in \{\pm 1\}} \sum_{i,j} \mathbf{A}(i, j) x_i y_j.$$

$$\sum_{i,j} \mathbf{A}(i,j) \mathbf{x}_i \mathbf{y}_j = \sum_{\substack{\mathbf{x}_i = 1 \\ \mathbf{y}_j = 1}} \mathbf{A}_{i,j} - \sum_{\substack{\mathbf{x}_i = 1 \\ \mathbf{y}_j = -1}} \mathbf{A}_{i,j} - \sum_{\substack{\mathbf{x}_i = -1 \\ \mathbf{y}_j = 1}} + \sum_{\substack{\mathbf{x}_i = -1 \\ \mathbf{y}_j = -1}} \mathbf{A}_{i,j}.$$

So

 $||\mathbf{A}||_{\infty \to 1} \leq 4||\mathbf{A}||_{\Box}.$

A similar argument gives

 $||\boldsymbol{A}||_{\square} \leq ||\boldsymbol{A}||_{\infty \to 1}.$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Grothendieck's Identity

u, *v* are unit vectors in a Hilbert space *H*. *z* is chosen uniformly from $B = \{x : ||x|| = 1\}$.

 $\frac{\pi}{2}\mathbf{E}[sign(u \cdot z) sign(v \cdot z)] = \arcsin(u.v).$

Let (u_i^*, v_i^*) define

$$L_{\mathbf{A}} = \max_{u_i, v_j} \sum_{i, j} \mathbf{A}(i, j) u_i \cdot v_j \qquad (\geq ||\mathbf{A}||_{\infty \to 1})$$

where (u_i, v_j) lie in R^{m+n} and $||u_i|| = ||v_j|| = 1$.

Let (u_i^*, v_i^*) define

$$L_{\mathbf{A}} = \max_{u_i, v_j} \sum_{i, j} \mathbf{A}(i, j) u_i \cdot v_j \qquad (\geq ||\mathbf{A}||_{\infty \to 1})$$

where (u_i, v_j) lie in R^{m+n} and $||u_i|| = ||v_j|| = 1$.

 (u_i^*, v_i^*) are computable via Semi-Definite Programming.

Let $c = \sinh^{-1}(1) = \ln(1 + \sqrt{2})$.

$$\begin{aligned} \sin(cu_i^* \cdot v_j^*) &= \sum_{k=0}^{\infty} (-1)^k \frac{c^{2k+1}}{(2k+1)!} (u_i^* \cdot v_j^*)^{2k+1} \\ &= \sum_{k=0}^{\infty} (-1)^k \frac{c^{2k+1}}{(2k+1)!} (u_i^*)^{\otimes (2k+1)} \cdot (v_j^*)^{\otimes (2k+1)} \\ &= S(u_i^*) \cdot T(v_j^*). \end{aligned}$$

Here

$$S(u_i^*) = \sum_{k=0}^{\infty} (-1)^k \sqrt{\frac{c^{2k+1}}{(2k+1)!}} (u_i^*)^{\otimes (2k+1)}$$
$$T(v_j^*) = \sum_{k=0}^{\infty} \sqrt{\frac{c^{2k+1}}{(2k+1)!}} (v_j^*)^{\otimes (2k+1)}$$

and

$$(u_1, u_2, u_3, u_4)^{\otimes(3)} = (u_1^3, u_1^2 u_2, u_1^2 u_3, u_1^2 u_4, u_1 u_2 u_3, \ldots).$$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → の < ⊙

Here

$$S(u_i^*) = \sum_{k=0}^{\infty} (-1)^k \sqrt{\frac{c^{2k+1}}{(2k+1)!}} (u_i^*)^{\otimes (2k+1)}$$
$$T(v_j^*) = \sum_{k=0}^{\infty} \sqrt{\frac{c^{2k+1}}{(2k+1)!}} (v_j^*)^{\otimes (2k+1)}$$

and

$$(u_1, u_2, u_3, u_4)^{\otimes(3)} = (u_1^3, u_1^2 u_2, u_1^2 u_3, u_1^2 u_4, u_1 u_2 u_3, \ldots).$$

Note that *c* has been chosen so that $||S(u_i^*)|| = ||T(v_i^*)|| = 1$.

$$L_{A} = \sum_{i,j} \mathbf{A}_{i,j} u_{i}^{*} \cdot v_{j}^{*}$$

= $c^{-1} \sum_{i,j} \mathbf{A}_{i,j} \operatorname{arcsin}(S(u_{i}^{*}) \cdot T(v_{j}^{*}))$
= $c^{-1} \frac{\pi}{2} \sum_{i,j} \mathbf{A}_{i,j} \mathbf{E}[\operatorname{sign}(S(u_{i}^{*}) \cdot z) \operatorname{sign}(T(v_{j}^{*}) \cdot z)]$

・ロト・日本・日本・日本・日本・日本

$$L_{A} = \sum_{i,j} \mathbf{A}_{i,j} u_{i}^{*} \cdot v_{j}^{*}$$

= $c^{-1} \sum_{i,j} \mathbf{A}_{i,j} \operatorname{arcsin}(S(u_{i}^{*}) \cdot T(v_{j}^{*}))$
= $c^{-1} \frac{\pi}{2} \sum_{i,j} \mathbf{A}_{i,j} \mathbf{E}[\operatorname{sign}(S(u_{i}^{*}) \cdot z) \operatorname{sign}(T(v_{j}^{*}) \cdot z)]$

We embed the $S(u_i^*)$, $T(v_j^*)$ in \mathbb{R}^{m+n} and choose z randomly and put $x_i = sign(T(u_i^* \cdot z), y_j = sign(T(v_i^*) \cdot z))$.

By choosing many *z* we get a good estimate of $||\mathbf{A}||_{\infty \to 1}$.

One can recover a good solution (x_i, y_j) by first deciding whether $x_1 = 1$ or $x_1 = -1$ etcetera.

■ > < E > < E > - E

$$L_{A} = \sum_{i,j} \mathbf{A}_{i,j} u_{i}^{*} \cdot v_{j}^{*}$$

= $c^{-1} \sum_{i,j} \mathbf{A}_{i,j} \operatorname{arcsin}(S(u_{i}^{*}) \cdot T(v_{j}^{*}))$
= $c^{-1} \frac{\pi}{2} \sum_{i,j} \mathbf{A}_{i,j} \mathbf{E}[\operatorname{sign}(S(u_{i}^{*}) \cdot z) \operatorname{sign}(T(v_{j}^{*}) \cdot z)]$

One can extend the idea to approximate the cut-norm, with the same guarantee.

In Frieze, Kannan we gave a randomised algorithm for computing a weak partition using only $2^{\tilde{O}(\epsilon^{-2})}$ time.

・ロト・(四)・(三)・(三)・(口)・(口)

In Frieze, Kannan we gave a randomised algorithm for computing a weak partition using only $2^{\tilde{O}(\epsilon^{-2})}$ time.

Subsequently, Alon, Fernandez de la Vega, Kannan, Karpinski, Yuster show how to compute such a partition using only $\tilde{O}(\epsilon^{-4})$ probes.

(A similar but weaker result was obtained by Anderson, Engebretson).

See also Borgs, Chayes, Lovász, Sós, Vesztergombi.

In Frieze, Kannan we gave a randomised algorithm for computing a weak partition using only $2^{\tilde{O}(\epsilon^{-2})}$ time.

Subsequently, Alon, Fernandez de la Vega, Kannan, Karpinski, Yuster show how to compute such a partition using only $\tilde{O}(\epsilon^{-4})$ probes.

・ 同 ト ・ ヨ ト ・ ヨ ト …

(A similar but weaker result was obtained by Anderson, Engebretson).

See also Borgs, Chayes, Lovász, Sós, Vesztergombi.

Above also applies to Multi-Dimensional Arrays.

A multi-dimensional version

Max-*r*-CSP is the following problem: We are given *m* Boolean functions f_i defined on $Y_i = (y_1, y_2, ..., y_r)$ where $\{y_1, y_2, ..., y_r\} \subseteq \{x_1, x_2, ..., x_n\}$ and the aim to choose a setting for the variables $x_1, x_2, ..., x_n$ that makes as many of the functions f_i as possible, true.

イロト イ押ト イヨト イヨト 二三

A multi-dimensional version

Max-*r*-CSP is the following problem: We are given *m* Boolean functions f_i defined on $Y_i = (y_1, y_2, ..., y_r)$ where $\{y_1, y_2, ..., y_r\} \subseteq \{x_1, x_2, ..., x_n\}$ and the aim to choose a setting for the variables $x_1, x_2, ..., x_n$ that makes as many of the functions f_i as possible, true.

For each $z \in \{0, 1\}^r$ and $(i_1, i_2, ..., i_r) \in [n]^r$ we define $\mathbf{A}^{(z)}(i_1, i_2, ..., i_r) = |\{j: Y_j = x_{i_1}, ..., x_{i_r} \text{ and } f_j(z_1, ..., z_r) = T\}|.$

A multi-dimensional version

Max-*r*-CSP is the following problem: We are given *m* Boolean functions f_i defined on $Y_i = (y_1, y_2, ..., y_r)$ where $\{y_1, y_2, ..., y_r\} \subseteq \{x_1, x_2, ..., x_n\}$ and the aim to choose a setting for the variables $x_1, x_2, ..., x_n$ that makes as many of the functions f_i as possible, true.

For each $z \in \{0, 1\}^r$ and $(i_1, i_2, ..., i_r) \in [n]^r$ we define $\mathbf{A}^{(z)}(i_1, i_2, ..., i_r) = |\{j : Y_j = x_{i_1}, ..., x_{i_r} \text{ and } f_j(z_1, ..., z_r) = T\}|.$

Problem becomes to maximize, over x_1, x_2, \ldots, x_n ,

$$\sum_{\substack{i_1,i_2,...,i_r}} \mathbf{A}^{(z)}(i_1,i_2,\ldots,i_r)(-1)^{r-|z|} \prod_{t=1}^r (x_{i_t}+z_t-1).$$

For this it is useful to have a decomposition for *r*-dimensional matrices: An *r*-dimensional matrix **A** on $X_1 \times X_2 \dots X_r$ is a map

 $\mathbf{A}: X_1 \times X_2 \cdots \times X_r \to \mathbf{R}.$

If $S_i \subseteq X_i$ for i = 1, 2, ..., r, and *d* is a real number the matrix **M** satisfying

$$\mathbf{M}(\mathbf{e}) = \begin{cases} d & \text{for } \mathbf{e} \in S_1 \times S_2 \cdots \times S_r \\ 0 & \text{otherwise} \end{cases}$$

is called a cut matrix and is denoted

 $\mathbf{M} = CUT(S_1, S_2, \dots, S_r; d).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

B is the (2-dimensional) matrix with rows indexed by $Y_1 = X_1 \times \cdots \times X_{\hat{r}}, \ \hat{r} = \lfloor r/2 \rfloor$ and columns indexed by $Y_2 = X_{\hat{r}+1} \times \cdots \times X_r$. For

$$i = (x_1, ..., x_{\hat{r}}) \in Y_1$$

 $j = (x_{\hat{r}+1}, ..., x_r) \in Y_2$

let

$$\mathbf{B}(i,j)=\mathbf{A}(x_1,x_2,\ldots,x_r).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Applying a decompositon algorithm we obtain

```
\mathbf{B} = \mathbf{D}^{(1)} + \mathbf{D}^{(2)} + \dots + \mathbf{D}^{(s_0)} + \mathbf{W}
```

where for $1 \leq t \leq s_0$,

 $\mathbf{D}^{(t)} = CUT(R_t, C_t, d_t),$

and $||\mathbf{W}||_{\Box}$ is "small".

Each R_t defines an \hat{r} -dimensional 0-1 matrix $\mathbf{R}^{(t)}$ where $\mathbf{R}^{(t)}(x_1, \ldots, x_{\hat{r}}) = 1$ iff $(x_1, \ldots, x_{\hat{r}}) \in R_t$. $\mathbf{C}^{(t)}$ is defined similarly. Assume inductively that we can further decompose

$$\begin{aligned} \mathbf{R}^{(t)} &= \mathbf{D}^{(t,1)} + \dots + \mathbf{D}^{(t,s_1)} + \mathbf{W}^{(t)} \\ \mathbf{C}^{(t)} &= \hat{\mathbf{D}}t, 1 + \dots + \hat{\mathbf{D}}t, \hat{\mathbf{s}}_1 + \hat{\mathbf{W}}^{(t)} \end{aligned}$$

Here

$$\begin{aligned} \mathbf{D}^{(t,u)} &= CUT(R_{t,u,1},\ldots,R_{t,u,\hat{r}},d_{t,u}) \\ \hat{\mathbf{D}}t, \hat{u} &= CUT(R_{t,\hat{u},\hat{r}+1},\ldots,R_{t,\hat{u},r},\hat{d}_{t,\hat{u}}) \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Each R_t defines an \hat{r} -dimensional 0-1 matrix $\mathbf{R}^{(t)}$ where $\mathbf{R}^{(t)}(x_1, \ldots, x_{\hat{r}}) = 1$ iff $(x_1, \ldots, x_{\hat{r}}) \in R_t$. $\mathbf{C}^{(t)}$ is defined similarly. Assume inductively that we can further decompose

$$\begin{aligned} \mathbf{R}^{(t)} &= \mathbf{D}^{(t,1)} + \dots + \mathbf{D}^{(t,s_1)} + \mathbf{W}^{(t)} \\ \mathbf{C}^{(t)} &= \hat{\mathbf{D}}t, 1 + \dots + \hat{\mathbf{D}}t, \hat{s}_1 + \hat{\mathbf{W}}^{(t)} \end{aligned}$$

Here

$$\mathbf{D}^{(t,u)} = CUT(R_{t,u,1},\ldots,R_{t,u,\hat{r}},d_{t,u})$$

$$\mathbf{\hat{D}}t, \hat{u} = CUT(R_{t,\hat{u},\hat{r}+1},\ldots,R_{t,\hat{u},r},\hat{d}_{t,\hat{u}})$$

It follows that we can write

$$\mathbf{A} = \sum_{t,u,\hat{u}} CUT(R_{t,u,1},\ldots,R_{t,u,\hat{r}},\hat{R}_{t,\hat{u},\hat{r}+1},\ldots,\hat{R}_{t,\hat{u},r},\mathbf{d}_{t,u,\hat{u}}) + \mathbf{W}_{1},$$

・ 同 ト ・ ヨ ト ・ ヨ ト

where $||\mathbf{W}_1||_{\Box}$ is "small".

THANK YOU