
The Cut-Norm and
Combinatorial Optimization

Alan Frieze and Ravi Kannan

Outline of the Talk

The Cut-Norm and a Matrix Decomposition.

Max-Cut given the Matrix Decomposition.

Quadratic Assignment given the Matrix Decomposition.

Constructing Matrix Decomposition via the Grothendieck
Identity – Alon and Naor

Multi-Dimensional Matrices

The cut-norm of the R × C matrix A is defined to be

||A||� = max
S⊆R
T⊆C

|A(S, T)|.

The cut-norm of the R × C matrix A is defined to be

||A||� = max
S⊆R
T⊆C

|A(S, T)|.

Relation to regularity:
D is an R × C matrix with D(i , j) = d .
W is an R × C matrix with ||W ||� ≤ ǫ|R| |C|.
A = D + W.

|A(S, T) − d |S| |T | | ≤ ǫ|R| |C|.

Cut Matrices

Given S ⊆ R, T ⊆ C and real value d :

R × C Cut Matrix C = CUT (S, T , d):

C(i , j) =

{

d if (i , j) ∈ S × T ,
0 otherwise.

d d d d 0 0
d d d d 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

Matrix Decomposition

A = D(1) + D(2) + · · · + D(s) + W.

D(t) = CUT (Rt , Ct , dt).

Matrix Decomposition

A = D(1) + D(2) + · · · + D(s) + W.

D(t) = CUT (Rt , Ct , dt).

We want s, maxt{|dt |} and ||W||� to be small.

Matrix Decomposition

A = D(1) + D(2) + · · · + D(s) + W.

D(t) = CUT (Rt , Ct , dt).

We want s, maxt{|dt |} and ||W||� to be small.

||W||� ≤ ǫmn m = |R|, n = |C|
s = O(1/ǫ2)

max
t

{|dt |} = O(1)

is achievable.

Let

||A||F =

∑

i,j

A(i , j)2

1/2

be the Frobenius Norm of A.

Assume inductively that we have found cut matrices

D(j) = CUT (Rj , Cj , dj),

such that W(t) = A − (D(1) + D(2) + · · · + D(t)) satisfies

||W(t)||2F ≤ (1 − ǫ2t)||A||2F .

Assume inductively that we have found cut matrices

D(j) = CUT (Rj , Cj , dj),

such that W(t) = A − (D(1) + D(2) + · · · + D(t)) satisfies

||W(t)||2F ≤ (1 − ǫ2t)||A||2F .

Suppose there exist S ⊆ R, T ⊆ C such that

|W(t)(S, T)| ≥ ǫ
√

mn||A||F .

Let

Rt+1 = S, Ct+1 = T , dt+1 =
W(t)(S, T)

|S||T | .

||W(t+1)||2F − ||W(t)||2F = ||W(t) − D(t+1)||2F − ||W(t)||2F =

∑

i∈Rt+1
j∈Ct+1

((W(t)(i , j) − dt+1)
2 − W(t)(i , j)2) =

− |Rt+1||Ct+1|d2
t+1 =

− W(t)(Rt+1, Ct+1)
2

|Rt+1| |Ct+1|
≤ −ǫ2||A||2F .

||W(t+1)||2F − ||W(t)||2F = ||W(t) − D(t+1)||2F − ||W(t)||2F =

∑

i∈Rt+1
j∈Ct+1

((W(t)(i , j) − dt+1)
2 − W(t)(i , j)2) =

− |Rt+1||Ct+1|d2
t+1 =

− W(t)(Rt+1, Ct+1)
2

|Rt+1| |Ct+1|
≤ −ǫ2||A||2F .

Conclusion : ∃D(1), . . . , D(s), s ≤ ǫ−2 such that

||W(s)||� ≤ ǫ
√

mn||A||F

.

Refinements

Suppose that we can only compute Rt+1, Ct+1 such that
|W(t)(Rt+1, Ct+1)| ≥ ρ||W(t)||� where ρ ≤ 1.

Refinements

Suppose that we can only compute Rt+1, Ct+1 such that
|W(t)(Rt+1, Ct+1)| ≥ ρ||W(t)||� where ρ ≤ 1.

Conclusion : We can compute D(1), . . . , D(s), s ≤ ρ−2ǫ−2 such
that

||W(s)||� ≤ ǫ
√

mn||A||F
.

Suppose that ||W (t)||� ≥ ǫ
√

mn||A||F and we have computed
Rt+1, Ct+1 such that |W(t)(R, Ct+1)| ≥ ρǫ

√
mn||A||F .

Suppose that ||W (t)||� ≥ ǫ
√

mn||A||F and we have computed
Rt+1, Ct+1 such that |W(t)(R, Ct+1)| ≥ ρǫ

√
mn||A||F .

If |Rt+1| < m/2 then either (i) |W(t)(R, Ct+1)| ≥ 1
2ρǫ

√
mn||A||F

or (ii) |W(t)(R \ Rt+1, Ct+1)| ≥ 1
2ρǫ

√
mn||A||F

Suppose that ||W (t)||� ≥ ǫ
√

mn||A||F and we have computed
Rt+1, Ct+1 such that |W(t)(R, Ct+1)| ≥ ρǫ

√
mn||A||F .

If |Rt+1| < m/2 then either (i) |W(t)(R, Ct+1)| ≥ 1
2ρǫ

√
mn||A||F

or (ii) |W(t)(R \ Rt+1, Ct+1)| ≥ 1
2ρǫ

√
mn||A||F

Conclusion : We can compute D(1), . . . , D(s), s ≤ 4ρ−2ǫ−2 such
that

||W(s)||� ≤ ǫ
√

mn||A||F
and such that |Ri | ≥ m/2 and |Ci | ≥ n/2.

Suppose that ||W (t)||� ≥ ǫ
√

mn||A||F and we have computed
Rt+1, Ct+1 such that |W(t)(R, Ct+1)| ≥ ρǫ

√
mn||A||F .

If |Rt+1| < m/2 then either (i) |W(t)(R, Ct+1)| ≥ 1
2ρǫ

√
mn||A||F

or (ii) |W(t)(R \ Rt+1, Ct+1)| ≥ 1
2ρǫ

√
mn||A||F

Conclusion : We can compute D(1), . . . , D(s), s ≤ 4ρ−2ǫ−2 such
that

||W(s)||� ≤ ǫ
√

mn||A||F
and such that |Ri | ≥ m/2 and |Ci | ≥ n/2.

Then

s
∑

t=1

|Rt | |Ct |d2
t ≤ ||A||2F =⇒

s
∑

t=1

d2
t ≤ 4||A||∞.

MAX-CUT

G = (V , E) is a graph with n × n adjacency A and

A = D(1) + D(2) + · · · + D(s) + W.

D(t) = CUT (Rt , Ct , dt), |dt | ≤ 2, s = O(1/ǫ2) and ||W||� ≤ ǫn2

G = (V , E) is a graph with n × n adjacency A and

A = D(1) + D(2) + · · · + D(s) + W.

D(t) = CUT (Rt , Ct , dt), |dt | ≤ 2, s = O(1/ǫ2) and ||W||� ≤ ǫn2

If (S, S̄) is a cut in G then the weight of this cut satisfies

|A(S, S̄) − (D(1) + D(2) + · · · + D(s))(S, S̄)| ≤ ǫn2.

G = (V , E) is a graph with n × n adjacency A and

A = D(1) + D(2) + · · · + D(s) + W.

D(t) = CUT (Rt , Ct , dt), |dt | ≤ 2, s = O(1/ǫ2) and ||W||� ≤ ǫn2

If (S, S̄) is a cut in G then the weight of this cut satisfies

|A(S, S̄) − (D(1) + D(2) + · · · + D(s))(S, S̄)| ≤ ǫn2.

s
∑

t=1

D(t)(S, S̄) =
s

∑

t=1

dt ftgt

where
ft = |S ∩ Rt | and gt = |S̄ ∩ Ct |

So we look for S to (approximately) minimize
∑s

t=1 dt ftgt .

So we look for S to (approximately) minimize
∑s

t=1 dt ftgt .

Let ν = ǫn and

f̄t =

⌊

ft
ν

⌋

ν, ḡt =
⌊gt

ν

⌋

ν

Then
s

∑

t=1

|ftgtdt − f̄t ḡtdt | ≤ 6νns ≤ 6ǫn2.

So we look for S to (approximately) minimize
∑s

t=1 dt ftgt .

Let ν = ǫn and

f̄t =

⌊

ft
ν

⌋

ν, ḡt =
⌊gt

ν

⌋

ν

Then
s

∑

t=1

|ftgtdt − f̄t ḡtdt | ≤ 6νns ≤ 6ǫn2.

So we can look for S to (approximately) minimize
∑s

t=1 dt f̄t ḡt .

There are ≤ (2/ǫ)2s choices for the sequence (f̄t , ḡt) and so we
enumerate all possiblities and see if there is a cut with
(approximately) these parameters.

There are ≤ (2/ǫ)2s choices for the sequence (f̄t , ḡt) and so we
enumerate all possiblities and see if there is a cut with
(approximately) these parameters.

P = V1, V2, . . . , Vk is the coarsest partition of V (with at most
22s parts in it) such that each Rt , Ct is the union of sets in P.

There are ≤ (2/ǫ)2s choices for the sequence (f̄t , ḡt) and so we
enumerate all possiblities and see if there is a cut with
(approximately) these parameters.

P = V1, V2, . . . , Vk is the coarsest partition of V (with at most
22s parts in it) such that each Rt , Ct is the union of sets in P.

We check (f̄t , ḡt) by solving the LP relaxation of the integer
program

0 ≤ xP ≤ |P| ∀ P ∈ P
f̄t ≤

∑

P⊆Rt

xP < f̄t + ν 1 ≤ t ≤ s

ḡt ≤
∑

P⊆Ct

(|P| − xP) ≤ ḡt + ν

and doing some adjusting. (xP = |S ∩ P|).

There are ≤ (2/ǫ)2s choices for the sequence (f̄t , ḡt) and so we
enumerate all possiblities and see if there is a cut with
(approximately) these parameters.

P = V1, V2, . . . , Vk is the coarsest partition of V (with at most
22s parts in it) such that each Rt , Ct is the union of sets in P.

The partition P has the property that for disjoint S, T ⊆ V we
have

∣

∣

∣

∣

∣

∣

e(S, T) −
∑

i∈[k]

∑

j∈[k]

di,j |Si ||Tj |

∣

∣

∣

∣

∣

∣

≤ 2||W||� ≤ 2ǫn2

where di,j = e(Vi , Vj)/(|Vi | |Vj |).

There are ≤ (2/ǫ)2s choices for the sequence (f̄t , ḡt) and so we
enumerate all possiblities and see if there is a cut with
(approximately) these parameters.

P = V1, V2, . . . , Vk is the coarsest partition of V (with at most
22s parts in it) such that each Rt , Ct is the union of sets in P.

The partition P has the property that for disjoint S, T ⊆ V we
have

∣

∣

∣

∣

∣

∣

e(S, T) −
∑

i∈[k]

∑

j∈[k]

di,j |Si ||Tj |

∣

∣

∣

∣

∣

∣

≤ 2||W||� ≤ 2ǫn2

where di,j = e(Vi , Vj)/(|Vi | |Vj |).

We could replace P with an ordinary regular partition. The
constants as a function of ǫ get worse.

Quadratic Assignment

Minimise
∑

i,j,p,q

Ai,j,p,qzi,pzj,q

subject to
∑

k

zi,k =
∑

k

zk ,j = 1

zi,j = 0, 1.∀i , j .

A set of n items V have to be assigned to a set of n locations
X , one per location. zi,p = 1: Place item i in position p = π(i)

T(i , i ′) ≤ 1 is the amount of traffic between item i and i ′.
D(x , x ′) is the distance between location x and x ′.

If item i is assigned to location π(i) for i ∈ [n] the total cost c(π)
is defined by

c(π) =
n

∑

i=1

n
∑

i′=1

T(i , i ′)D(π(i), π(i ′)).

The problem is to minimise c(π) over all bijections π : V → X .

Metric QAP.

Metric space X with metric D.

1 diam(X)=1 i.e. maxx ,y D(x , y) = 1.
2 For all ǫ > 0 there exists a partition X = X1 ∪ X2 ∪ · · · ∪ Xℓ,

ℓ = ℓ(ǫ), such that diam(Xj) ≤ ǫ.
We call this an ǫ − refinement of X .

So there is a ℓ × ℓ matrix D̂ such that if x ∈ Xj and x ′ ∈ Xj′

then
|D(x , x ′) − D̂(j , j ′)| ≤ 2ǫ.

This partition must be computable in time polynomial in n
and 1/ǫ.

We call this the metric QAP.

We decompose

T = T1 + T2 + · · · + Ts + W

where ||W||� ≤ ǫn2.
For bijection π : V → X we have

c(π) =
s

∑

k=1

n
∑

i,j=1

Tk (i , j)D(π(i), π(j)) + ∆1

We compute an O(ǫ−3)-refinement of X and let S(π)
i = π−1(Xi).

s
∑

k=1

n
∑

i,j=1

Tk (i , j)D(π(i), π(j)) =

s
∑

k=1

ℓ
∑

i,j=1

dk |Rk ∩ S(π)
i | |Ck ∩ S(π)

j |D̂(i , j) + ∆2.

Computing a decomposition.

Computing a decomposition.

Reducible to finding an approximation to the cut-norm.

Computing a decomposition.

Reducible to finding an approximation to the cut-norm.

Our paper gave algorithms with a “small” additive error.

Computing a decomposition.

Reducible to finding an approximation to the cut-norm.

Our paper gave algorithms with a “small” additive error.

Alon and Naor gave an approximation algorithm with
multiplicative error!

Let
||A||∞→1 = max

xi ,yj∈{±1}

∑

i,j

A(i , j)xiyj .

Let
||A||∞→1 = max

xi ,yj∈{±1}

∑

i,j

A(i , j)xiyj .

∑

i,j

A(i , j)xiyj =
∑

xi=1
yj=1

A i,j −
∑

xi=1
yj=−1

A i,j −
∑

xi=−1
yj=1

+
∑

xi=−1
yj=−1

A i,j .

So
||A||∞→1 ≤ 4||A||�.

Let
||A||∞→1 = max

xi ,yj∈{±1}

∑

i,j

A(i , j)xiyj .

∑

i,j

A(i , j)xiyj =
∑

xi=1
yj=1

A i,j −
∑

xi=1
yj=−1

A i,j −
∑

xi=−1
yj=1

+
∑

xi=−1
yj=−1

A i,j .

So
||A||∞→1 ≤ 4||A||�.

A similar argument gives

||A||� ≤ ||A||∞→1.

Grothendieck’s Identity

u, v are unit vectors in a Hilbert space H. z is chosen uniformly
from B = {x : ||x || = 1}.

π

2
E[sign(u · z) sign(v · z)] = arcsin(u.v).

Let (u∗
i , v∗

j) define

LA = max
ui ,vj

∑

i,j

A(i , j)ui · vj (≥ ||A||∞→1)

where (ui , vj) lie in Rm+n and ||ui || = ||vj || = 1.

Let (u∗
i , v∗

j) define

LA = max
ui ,vj

∑

i,j

A(i , j)ui · vj (≥ ||A||∞→1)

where (ui , vj) lie in Rm+n and ||ui || = ||vj || = 1.

(u∗
i , v∗

j) are computable via Semi-Definite Programming.

Let c = sinh−1(1) = ln(1 +
√

2).

sin(cu∗
i · v∗

j) =

∞
∑

k=0

(−1)k c2k+1

(2k + 1)!
(u∗

i · v∗
j)2k+1

=
∞

∑

k=0

(−1)k c2k+1

(2k + 1)!
(u∗

i)⊗(2k+1) · (v∗
j)⊗(2k+1)

= S(u∗
i) · T (v∗

j).

Here

S(u∗
i) =

∞
∑

k=0

(−1)k

√

c2k+1

(2k + 1)!
(u∗

i)⊗(2k+1)

T (v∗
j) =

∞
∑

k=0

√

c2k+1

(2k + 1)!
(v∗

j)⊗(2k+1)

and

(u1, u2, u3, u4)
⊗(3) = (u3

1 , u2
1u2, u2

1u3, u2
1u4, u1u2u3, . . .).

Here

S(u∗
i) =

∞
∑

k=0

(−1)k

√

c2k+1

(2k + 1)!
(u∗

i)⊗(2k+1)

T (v∗
j) =

∞
∑

k=0

√

c2k+1

(2k + 1)!
(v∗

j)⊗(2k+1)

and

(u1, u2, u3, u4)
⊗(3) = (u3

1 , u2
1u2, u2

1u3, u2
1u4, u1u2u3, . . .).

Note that c has been chosen so that ||S(u∗
i)|| = ||T (v∗

j)|| = 1.

LA =
∑

i,j

A i,ju
∗
i · v∗

j

= c−1
∑

i,j

A i,j arcsin(S(u∗
i) · T (v∗

j))

= c−1 π

2

∑

i,j

A i,jE[sign(S(u∗
i) · z) sign(T (v∗

j) · z)]

LA =
∑

i,j

A i,ju
∗
i · v∗

j

= c−1
∑

i,j

A i,j arcsin(S(u∗
i) · T (v∗

j))

= c−1 π

2

∑

i,j

A i,jE[sign(S(u∗
i) · z) sign(T (v∗

j) · z)]

We embed the S(u∗
i), T (v∗

j) in Rm+n and choose z randomly
and put xi = sign(T (u∗

i · z), yj = sign(T (v∗
j) · z)).

By choosing many z we get a good estimate of ||A||∞→1.

One can recover a good solution (xi , yj) by first deciding
whether x1 = 1 or x1 = −1 etcetera.

LA =
∑

i,j

A i,ju
∗
i · v∗

j

= c−1
∑

i,j

A i,j arcsin(S(u∗
i) · T (v∗

j))

= c−1 π

2

∑

i,j

A i,jE[sign(S(u∗
i) · z) sign(T (v∗

j) · z)]

One can extend the idea to approximate the cut-norm, with the
same guarantee.

In Frieze, Kannan we gave a randomised algorithm for
computing a weak partition using only 2Õ(ǫ−2) time.

In Frieze, Kannan we gave a randomised algorithm for
computing a weak partition using only 2Õ(ǫ−2) time.

Subsequently, Alon,Fernandez de la Vega,Kannan, Karpinski,
Yuster show how to compute such a partition using only Õ(ǫ−4)
probes.

(A similar but weaker result was obtained by Anderson,
Engebretson).

See also Borgs, Chayes, Lovász, Sós, Vesztergombi.

In Frieze, Kannan we gave a randomised algorithm for
computing a weak partition using only 2Õ(ǫ−2) time.

Subsequently, Alon,Fernandez de la Vega,Kannan, Karpinski,
Yuster show how to compute such a partition using only Õ(ǫ−4)
probes.

(A similar but weaker result was obtained by Anderson,
Engebretson).

See also Borgs, Chayes, Lovász, Sós, Vesztergombi.

Above also applies to Multi-Dimensional Arrays.

A multi-dimensional version

Max-r -CSP is the following problem: We are given m Boolean
functions fi defined on Yi = (y1, y2, . . . , yr) where
{y1, y2, . . . , yr} ⊆ {x1, x2, . . . , xn} and the aim to choose a
setting for the variables x1, x2, . . . , xn that makes as many of the
functions fi as possible, true.

A multi-dimensional version

Max-r -CSP is the following problem: We are given m Boolean
functions fi defined on Yi = (y1, y2, . . . , yr) where
{y1, y2, . . . , yr} ⊆ {x1, x2, . . . , xn} and the aim to choose a
setting for the variables x1, x2, . . . , xn that makes as many of the
functions fi as possible, true.

For each z ∈ {0, 1}r and (i1, i2, . . . , ir) ∈ [n]r we define

A(z)(i1, i2, . . . , ir) = |
{

j : Yj = xi1 , . . . , xir and fj(z1, . . . , zr) = T
}

|.

A multi-dimensional version

Max-r -CSP is the following problem: We are given m Boolean
functions fi defined on Yi = (y1, y2, . . . , yr) where
{y1, y2, . . . , yr} ⊆ {x1, x2, . . . , xn} and the aim to choose a
setting for the variables x1, x2, . . . , xn that makes as many of the
functions fi as possible, true.

For each z ∈ {0, 1}r and (i1, i2, . . . , ir) ∈ [n]r we define

A(z)(i1, i2, . . . , ir) = |
{

j : Yj = xi1 , . . . , xir and fj(z1, . . . , zr) = T
}

|.

Problem becomes to maximize, over x1, x2, . . . , xn,

∑

z
i1,i2,...,ir

A(z)(i1, i2, . . . , ir)(−1)r−|z|
r

∏

t=1

(xit + zt − 1).

For this it is useful to have a decomposition for r -dimensional
matrices: An r -dimensional matrix A on X1 × X2 . . . Xr is a map

A : X1 × X2 · · · × Xr → R.

If Si ⊆ Xi for i = 1, 2, . . . r , and d is a real number the matrix M
satisfying

M(e) =

{

d for e ∈ S1 × S2 · · · × Sr

0 otherwise

is called a cut matrix and is denoted

M = CUT (S1, S2, . . . Sr ; d).

B is the (2-dimensional) matrix with rows indexed by
Y1 = X1 × · · · × Xr̂ , r̂ = ⌊r/2⌋ and columns indexed by
Y2 = Xr̂+1 × · · · × Xr .
For

i = (x1, . . . , xr̂) ∈ Y1

j = (xr̂+1, . . . , xr) ∈ Y2

let
B(i , j) = A(x1, x2, . . . , xr).

Applying a decompositon algorithm we obtain

B = D(1) + D(2) + · · · + D(s0) + W

where for 1 ≤ t ≤ s0,

D(t) = CUT (Rt , Ct , dt),

and ||W||� is “small”.

Each Rt defines an r̂ -dimensional 0-1 matrix R(t) where
R(t)(x1, . . . , xr̂) = 1 iff (x1, . . . , xr̂) ∈ Rt . C(t) is defined similarly.
Assume inductively that we can further decompose

R(t) = D(t ,1) + · · · + D(t ,s1) + W(t)

C(t) = D̂t , 1 + · · · + D̂t , ŝ1 + Ŵ(t)

Here

D(t ,u) = CUT (Rt ,u,1, . . . , Rt ,u ,̂r , dt ,u)

D̂t , û = CUT (Rt ,û ,̂r+1, . . . , Rt ,û,r , d̂t ,û)

Each Rt defines an r̂ -dimensional 0-1 matrix R(t) where
R(t)(x1, . . . , xr̂) = 1 iff (x1, . . . , xr̂) ∈ Rt . C(t) is defined similarly.
Assume inductively that we can further decompose

R(t) = D(t ,1) + · · · + D(t ,s1) + W(t)

C(t) = D̂t , 1 + · · · + D̂t , ŝ1 + Ŵ(t)

Here

D(t ,u) = CUT (Rt ,u,1, . . . , Rt ,u ,̂r , dt ,u)

D̂t , û = CUT (Rt ,û ,̂r+1, . . . , Rt ,û,r , d̂t ,û)

It follows that we can write

A =
∑

t,u,û

CUT (Rt,u,1, . . . , Rt,u,r̂ , R̂t,û,r̂+1, . . . , R̂t,û,r , dt,u,û) + W1,

where ||W1||� is “small”.

THANK YOU

