The Cut-Norm and Combinatorial Optimization

Alan Frieze and Ravi Kannan

Outline of the Talk

- The Cut-Norm and a Matrix Decomposition.
- Max-Cut given the Matrix Decomposition.
- Quadratic Assignment given the Matrix Decomposition.
- Constructing Matrix Decomposition via the Grothendieck Identity - Alon and Naor
- Multi-Dimensional Matrices

The cut-norm of the $R \times C$ matrix \mathbf{A} is defined to be

$$
\|\mathbf{A}\|_{\square}=\max _{\substack{S \subseteq R \\ T \subseteq C}}|\mathbf{A}(S, T)| .
$$

The cut-norm of the $R \times C$ matrix \mathbf{A} is defined to be

$$
\|\mathbf{A}\| \square=\max _{\substack{S \subseteq R \\ T \subseteq C}}|\mathbf{A}(S, T)| .
$$

Relation to regularity:
\mathbf{D} is an $R \times C$ matrix with $\mathbf{D}(i, j)=d$. W is an $R \times C$ matrix with $\|W\|_{\square} \leq \epsilon|R||C|$.
$\mathbf{A}=\mathbf{D}+\mathbf{W}$.

$$
|\mathbf{A}(S, T)-d| S||T|| \leq \epsilon|R||C| .
$$

Cut Matrices

Given $S \subseteq R, T \subseteq C$ and real value d :
$R \times C$ Cut Matrix $\mathbf{C}=\operatorname{CUT}(S, T, d):$

$$
\mathbf{C}(i, j)= \begin{cases}d & \text { if }(i, j) \in S \times T, \\ 0 & \text { otherwise } .\end{cases}
$$

$$
\left[\begin{array}{llllll}
d & d & d & d & 0 & 0 \\
d & d & d & d & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Matrix Decomposition

$$
\begin{aligned}
& \quad \mathbf{A}=\mathbf{D}^{(1)}+\mathbf{D}^{(2)}+\cdots+\mathbf{D}^{(s)}+\mathbf{W} . \\
& \mathbf{D}^{(t)}=\operatorname{CUT}\left(R_{t}, C_{t}, d_{t}\right) .
\end{aligned}
$$

Matrix Decomposition

$$
\begin{aligned}
& \quad \mathbf{A}=\mathbf{D}^{(1)}+\mathbf{D}^{(2)}+\cdots+\mathbf{D}^{(s)}+\mathbf{W} . \\
& \mathbf{D}^{(t)}=\operatorname{CUT}\left(R_{t}, C_{t}, d_{t}\right) .
\end{aligned}
$$

We want $s, \max _{t}\left\{\left|d_{t}\right|\right\}$ and $\|\mathbf{W}\|_{\square}$ to be small.

Matrix Decomposition

$$
\begin{aligned}
& \quad \mathbf{A}=\mathbf{D}^{(1)}+\mathbf{D}^{(2)}+\cdots+\mathbf{D}^{(s)}+\mathbf{W} . \\
& \mathbf{D}^{(t)}=\operatorname{CUT}\left(R_{t}, C_{t}, d_{t}\right) .
\end{aligned}
$$

We want $s, \max _{t}\left\{\left|d_{t}\right|\right\}$ and $\|\mathbf{W}\|_{\square}$ to be small.

$$
\begin{array}{rlr}
\|\mathbf{W}\|_{\square} & \leq \epsilon m n & m=|R|, n=|C| \\
s & =O\left(1 / \epsilon^{2}\right) \\
\max _{t}\left\{\left|d_{t}\right|\right\} & =O(1)
\end{array}
$$

is achievable.

Let

$$
\|\mathbf{A}\|_{F}=\left(\sum_{i, j} A(i, j)^{2}\right)^{1 / 2}
$$

be the Frobenius Norm of \mathbf{A}.

Assume inductively that we have found cut matrices

$$
\mathbf{D}^{(j)}=\operatorname{CUT}\left(R_{j}, C_{j}, d_{j}\right),
$$

such that $\mathbf{W}^{(t)}=\mathbf{A}-\left(\mathbf{D}^{(1)}+\mathbf{D}^{(2)}+\cdots+\mathbf{D}^{(t)}\right)$ satisfies

$$
\left\|\mathbf{W}^{(t)}\right\|_{F}^{2} \leq\left(1-\epsilon^{2} t\right)\|A\|_{F}^{2} .
$$

Assume inductively that we have found cut matrices

$$
\mathbf{D}^{(j)}=\operatorname{CUT}\left(R_{j}, C_{j}, d_{j}\right)
$$

such that $\mathbf{W}^{(t)}=\mathbf{A}-\left(\mathbf{D}^{(1)}+\mathbf{D}^{(2)}+\cdots+\mathbf{D}^{(t)}\right)$ satisfies

$$
\left\|\mathbf{W}^{(t)}\right\|_{F}^{2} \leq\left(1-\epsilon^{2} t\right)\|A\|_{F}^{2}
$$

Suppose there exist $S \subseteq R, T \subseteq C$ such that

$$
\left|\mathbf{W}^{(t)}(S, T)\right| \geq \epsilon \sqrt{m n}\|A\|_{F}
$$

Let

$$
R_{t+1}=S, C_{t+1}=T, d_{t+1}=\frac{\mathbf{W}^{(t)}(S, T)}{|S||T|}
$$

$$
\begin{gathered}
\left\|\mathbf{W}^{(t+1)}\right\|_{F}^{2}-\left\|\mathbf{W}^{(t)}\right\|_{F}^{2}=\left\|\mathbf{W}^{(t)}-\mathbf{D}^{(t+1)}\right\|_{F}^{2}-\left\|\mathbf{W}^{(t)}\right\|_{F}^{2}= \\
\sum_{\substack{i \in R_{t+1} \\
j \in C_{t+1}}}\left(\left(\mathbf{W}^{(t)}(i, j)-d_{t+1}\right)^{2}-\mathbf{W}^{(t)}(i, j)^{2}\right)= \\
-\left|R_{t+1} \| C_{t+1}\right| d_{t+1}^{2}= \\
\quad-\frac{\mathbf{W}^{(t)}\left(R_{t+1}, C_{t+1}\right)^{2}}{\left|R_{t+1}\right|\left|C_{t+1}\right|} \leq-\epsilon^{2}\|\mathbf{A}\|_{F}^{2} .
\end{gathered}
$$

$$
\begin{gathered}
\left\|\mathbf{W}^{(t+1)}\right\|_{F}^{2}-\left\|\mathbf{W}^{(t)}\right\|_{F}^{2}=\left\|\mathbf{W}^{(t)}-\mathbf{D}^{(t+1)}\right\|_{F}^{2}-\left\|\mathbf{W}^{(t)}\right\|_{F}^{2}= \\
\sum_{\substack{i \in R_{t+1} \\
j \in C_{t+1}}}\left(\left(\mathbf{W}^{(t)}(i, j)-d_{t+1}\right)^{2}-\mathbf{W}^{(t)}(i, j)^{2}\right)= \\
-\left|R_{t+1} \| C_{t+1}\right| d_{t+1}^{2}= \\
\quad-\frac{\mathbf{W}^{(t)}\left(R_{t+1}, C_{t+1}\right)^{2}}{\left|R_{t+1}\right|\left|C_{t+1}\right|} \leq-\epsilon^{2}\|\mathbf{A}\|_{F}^{2}
\end{gathered}
$$

Conclusion: $\exists \mathbf{D}^{(1)}, \ldots, \mathbf{D}^{(s)}, s \leq \epsilon^{-2}$ such that

$$
\left\|\mathbf{W}^{(s)}\right\|_{\square} \leq \epsilon \sqrt{m n}\|\mathbf{A}\|_{F}
$$

Refinements

Suppose that we can only compute R_{t+1}, C_{t+1} such that $\left|\mathbf{W}^{(t)}\left(R_{t+1}, C_{t+1}\right)\right| \geq \rho| | \mathbf{W}^{(t)}| | \square$ where $\rho \leq 1$.

Refinements

Suppose that we can only compute R_{t+1}, C_{t+1} such that $\left|\mathbf{W}^{(t)}\left(R_{t+1}, C_{t+1}\right)\right| \geq \rho| | \mathbf{W}^{(t)}| | \square$ where $\rho \leq 1$.

Conclusion: We can compute $\mathbf{D}^{(1)}, \ldots, \mathbf{D}^{(s)}, s \leq \rho^{-2} \epsilon^{-2}$ such that

$$
\left\|\mathbf{W}^{(s)}\right\| \square \leq \epsilon \sqrt{m n}\|\mathbf{A}\|_{F}
$$

Suppose that $\left\|W^{(t)}\right\|_{\square} \geq \epsilon \sqrt{m n}\|\mathbf{A}\|_{F}$ and we have computed R_{t+1}, C_{t+1} such that $\left|\mathbf{W}^{(t)}\left(R, C_{t+1}\right)\right| \geq \rho \epsilon \sqrt{m n}\|A\|_{F}$.

Suppose that $\left\|W^{(t)}\right\|_{\square} \geq \epsilon \sqrt{m n}\|\mathbf{A}\|_{F}$ and we have computed R_{t+1}, C_{t+1} such that $\left|\mathbf{W}^{(t)}\left(R, C_{t+1}\right)\right| \geq \rho \epsilon \sqrt{m n}\|A\|_{F}$.

If $\left|R_{t+1}\right|<m / 2$ then either (i) $\left|\mathbf{W}^{(t)}\left(R, C_{t+1}\right)\right| \geq \frac{1}{2} \rho \epsilon \sqrt{m n}\|A\|_{F}$ or (ii) $\left|\mathbf{W}^{(t)}\left(R \backslash R_{t+1}, C_{t+1}\right)\right| \geq \frac{1}{2} \rho \epsilon \sqrt{m n}\|A\|_{F}$

Suppose that $\left\|W^{(t)}\right\|_{\square} \geq \epsilon \sqrt{m n}\|\mathbf{A}\|_{F}$ and we have computed R_{t+1}, C_{t+1} such that $\left|\mathbf{W}^{(t)}\left(R, C_{t+1}\right)\right| \geq \rho \epsilon \sqrt{m n}\|A\|_{F}$.

If $\left|R_{t+1}\right|<m / 2$ then either (i) $\left|\mathbf{W}^{(t)}\left(R, C_{t+1}\right)\right| \geq \frac{1}{2} \rho \epsilon \sqrt{m n}\|A\|_{F}$ or (ii) $\left|\mathbf{W}^{(t)}\left(R \backslash R_{t+1}, C_{t+1}\right)\right| \geq \frac{1}{2} \rho \epsilon \sqrt{m n}\|A\|_{F}$

Conclusion: We can compute $\mathbf{D}^{(1)}, \ldots, \mathbf{D}^{(s)}, s \leq 4 \rho^{-2} \epsilon^{-2}$ such that

$$
\left\|\mathbf{W}^{(s)}\right\|_{\square} \leq \epsilon \sqrt{m n}\|\mathbf{A}\|_{F}
$$

and such that $\left|R_{i}\right| \geq m / 2$ and $\left|C_{i}\right| \geq n / 2$.

Suppose that $\left\|W^{(t)}\right\|_{\square} \geq \epsilon \sqrt{m n}\|\mathbf{A}\|_{F}$ and we have computed R_{t+1}, C_{t+1} such that $\left|\mathbf{W}^{(t)}\left(R, C_{t+1}\right)\right| \geq \rho \epsilon \sqrt{m n}\|A\|_{F}$.

If $\left|R_{t+1}\right|<m / 2$ then either (i) $\left|\mathbf{W}^{(t)}\left(R, C_{t+1}\right)\right| \geq \frac{1}{2} \rho \epsilon \sqrt{m n}\|A\|_{F}$ or (ii) $\left|\mathbf{W}^{(t)}\left(R \backslash R_{t+1}, C_{t+1}\right)\right| \geq \frac{1}{2} \rho \epsilon \sqrt{m n}\|A\|_{F}$

Conclusion: We can compute $\mathbf{D}^{(1)}, \ldots, \mathbf{D}^{(s)}, s \leq 4 \rho^{-2} \epsilon^{-2}$ such that

$$
\left\|\mathbf{W}^{(s)}\right\|_{\square} \leq \epsilon \sqrt{m n}\|\mathbf{A}\|_{F}
$$

and such that $\left|R_{i}\right| \geq m / 2$ and $\left|C_{i}\right| \geq n / 2$.

Then

$$
\sum_{t=1}^{s}\left|R_{t}\right|\left|C_{t}\right| d_{t}^{2} \leq\|\mathbf{A}\|_{F}^{2} \Longrightarrow \sum_{t=1}^{s} d_{t}^{2} \leq 4\|\mathbf{A}\|_{\infty}
$$

MAX-CUT
$G=(V, E)$ is a graph with $n \times n$ adjacency \mathbf{A} and

$$
\mathbf{A}=\mathbf{D}^{(1)}+\mathbf{D}^{(2)}+\cdots+\mathbf{D}^{(s)}+\mathbf{W}
$$

$$
\mathbf{D}^{(t)}=\operatorname{CUT}\left(R_{t}, C_{t}, d_{t}\right),\left|d_{t}\right| \leq 2, s=O\left(1 / \epsilon^{2}\right) \text { and }\|\mathbf{W}\|_{\square} \leq \epsilon n^{2}
$$

$G=(V, E)$ is a graph with $n \times n$ adjacency \mathbf{A} and

$$
\mathbf{A}=\mathbf{D}^{(1)}+\mathbf{D}^{(2)}+\cdots+\mathbf{D}^{(s)}+\mathbf{W} .
$$

$$
\mathbf{D}^{(t)}=\operatorname{CUT}\left(R_{t}, C_{t}, d_{t}\right),\left|d_{t}\right| \leq 2, s=O\left(1 / \epsilon^{2}\right) \text { and }\|\mathbf{W}\|_{\square} \leq \epsilon n^{2}
$$

If (S, \bar{S}) is a cut in G then the weight of this cut satisfies

$$
\left|\mathbf{A}(S, \bar{S})-\left(\mathbf{D}^{(1)}+\mathbf{D}^{(2)}+\cdots+\mathbf{D}^{(s)}\right)(S, \bar{S})\right| \leq \epsilon n^{2} .
$$

$G=(V, E)$ is a graph with $n \times n$ adjacency \mathbf{A} and

$$
\mathbf{A}=\mathbf{D}^{(1)}+\mathbf{D}^{(2)}+\cdots+\mathbf{D}^{(s)}+\mathbf{W} .
$$

$\mathbf{D}^{(t)}=\operatorname{CUT}\left(R_{t}, C_{t}, d_{t}\right),\left|d_{t}\right| \leq 2, s=O\left(1 / \epsilon^{2}\right)$ and $\|\mathbf{W}\|_{\square} \leq \epsilon n^{2}$

If (S, \bar{S}) is a cut in G then the weight of this cut satisfies

$$
\left|\mathbf{A}(S, \bar{S})-\left(\mathbf{D}^{(1)}+\mathbf{D}^{(2)}+\cdots+\mathbf{D}^{(s)}\right)(S, \bar{S})\right| \leq \epsilon n^{2} .
$$

$$
\sum_{t=1}^{s} \mathbf{D}^{(t)}(S, \bar{S})=\sum_{t=1}^{s} d_{t} f_{t} g_{t}
$$

where

$$
f_{t}=\left|S \cap R_{t}\right| \text { and } g_{t}=\left|\bar{S} \cap C_{t}\right|
$$

So we look for S to (approximately) minimize $\sum_{t=1}^{s} d_{t} f_{t} g_{t}$.

So we look for S to (approximately) minimize $\sum_{t=1}^{s} d_{t} f_{t} g_{t}$.

Let $\nu=\epsilon n$ and

$$
\bar{f}_{t}=\left\lfloor\frac{f_{t}}{\nu}\right\rfloor \nu, \quad \bar{g}_{t}=\left\lfloor\frac{g_{t}}{\nu}\right\rfloor \nu
$$

Then

$$
\sum_{t=1}^{s}\left|f_{t} g_{t} d_{t}-\bar{f}_{t} \bar{g}_{t} d_{t}\right| \leq 6 \nu n s \leq 6 \epsilon n^{2}
$$

So we look for S to (approximately) minimize $\sum_{t=1}^{s} d_{t} f_{t} g_{t}$.

Let $\nu=\epsilon n$ and

$$
\bar{f}_{t}=\left\lfloor\frac{f_{t}}{\nu}\right\rfloor \nu, \quad \bar{g}_{t}=\left\lfloor\frac{g_{t}}{\nu}\right\rfloor \nu
$$

Then

$$
\sum_{t=1}^{s}\left|f_{t} g_{t} d_{t}-\bar{f}_{t} \bar{g}_{t} d_{t}\right| \leq 6 \nu n s \leq 6 \epsilon n^{2}
$$

So we can look for S to (approximately) minimize $\sum_{t=1}^{s} d_{t} \bar{f}_{t} \bar{g}_{t}$.

There are $\leq(2 / \epsilon)^{2 s}$ choices for the sequence $\left(\bar{f}_{t}, \bar{g}_{t}\right)$ and so we enumerate all possiblities and see if there is a cut with (approximately) these parameters.

There are $\leq(2 / \epsilon)^{2 s}$ choices for the sequence $\left(\bar{f}_{t}, \bar{g}_{t}\right)$ and so we enumerate all possiblities and see if there is a cut with (approximately) these parameters.
$\mathcal{P}=V_{1}, V_{2}, \ldots, V_{k}$ is the coarsest partition of V (with at most $2^{2 s}$ parts in it) such that each R_{t}, C_{t} is the union of sets in \mathcal{P}.

There are $\leq(2 / \epsilon)^{2 s}$ choices for the sequence $\left(\bar{f}_{t}, \bar{g}_{t}\right)$ and so we enumerate all possiblities and see if there is a cut with (approximately) these parameters.
$\mathcal{P}=V_{1}, V_{2}, \ldots, V_{k}$ is the coarsest partition of V (with at most $2^{2 s}$ parts in it) such that each R_{t}, C_{t} is the union of sets in \mathcal{P}.

We check $\left(\bar{f}_{t}, \bar{g}_{t}\right)$ by solving the LP relaxation of the integer program

$$
\begin{array}{lll}
0 & \leq x_{P} & \leq|P| \\
\bar{f}_{t} \leq \sum_{P \subseteq R_{t}} x_{P} & <\bar{f}_{t}+\nu & \\
\bar{g}_{t} \leq \sum_{P \subseteq C_{t}}\left(|P|-x_{P}\right) & \leq \bar{g}_{t}+\nu &
\end{array}
$$

and doing some adjusting. ($\left.x_{P}=|S \cap P|\right)$.

There are $\leq(2 / \epsilon)^{2 s}$ choices for the sequence $\left(\bar{f}_{t}, \bar{g}_{t}\right)$ and so we enumerate all possiblities and see if there is a cut with (approximately) these parameters.
$\mathcal{P}=V_{1}, V_{2}, \ldots, V_{k}$ is the coarsest partition of V (with at most $2^{2 s}$ parts in it) such that each R_{t}, C_{t} is the union of sets in \mathcal{P}.

The partition \mathcal{P} has the property that for disjoint $S, T \subseteq V$ we have

$$
\left|e(S, T)-\sum_{i \in[k]} \sum_{j \in[k]} d_{i, j}\right| S_{i}| | T_{j}| | \leq 2\|\mathbf{W}\|_{\square} \leq 2 \epsilon n^{2}
$$

where $d_{i, j}=e\left(V_{i}, V_{j}\right) /\left(\left|V_{i}\right|\left|V_{j}\right|\right)$.

There are $\leq(2 / \epsilon)^{2 s}$ choices for the sequence $\left(\bar{f}_{t}, \bar{g}_{t}\right)$ and so we enumerate all possiblities and see if there is a cut with (approximately) these parameters.
$\mathcal{P}=V_{1}, V_{2}, \ldots, V_{k}$ is the coarsest partition of V (with at most $2^{2 s}$ parts in it) such that each R_{t}, C_{t} is the union of sets in \mathcal{P}.

The partition \mathcal{P} has the property that for disjoint $S, T \subseteq V$ we have

$$
\left|e(S, T)-\sum_{i \in[k]} \sum_{j \in[k]} d_{i, j}\right| S_{i}| | T_{j}| | \leq 2\|\mathbf{W}\|_{\square} \leq 2 \epsilon n^{2}
$$

where $d_{i, j}=e\left(V_{i}, V_{j}\right) /\left(\left|V_{i}\right|\left|V_{j}\right|\right)$.

We could replace \mathcal{P} with an ordinary regular partition. The constants as a function of ϵ get worse.

Quadratic Assignment

Minimise $\sum_{i, j, p, q} A_{i, j, p, q} z_{i, p} z_{j, q}$

$$
\text { subject to } \sum_{k} z_{i, k}=\sum_{k} z_{k, j}=1
$$

$$
z_{i, j}=0,1 . \forall i, j
$$

A set of n items V have to be assigned to a set of n locations X, one per location. $z_{i, p}=1$: Place item i in position $p=\pi(i)$
$\mathbf{T}\left(i, i^{\prime}\right) \leq 1$ is the amount of traffic between item i and i^{\prime}.
$\mathbf{D}\left(x, x^{\prime}\right)$ is the distance between location x and x^{\prime}.

If item i is assigned to location $\pi(i)$ for $i \in[n]$ the total cost $c(\pi)$ is defined by

$$
c(\pi)=\sum_{i=1}^{n} \sum_{i^{\prime}=1}^{n} \mathbf{T}\left(i, i^{\prime}\right) \mathbf{D}\left(\pi(i), \pi\left(i^{\prime}\right)\right)
$$

The problem is to minimise $c(\pi)$ over all bijections $\pi: V \rightarrow X$.

Metric QAP.

Metric space X with metric \mathbf{D}.
(1) $\operatorname{diam}(X)=1$ i.e. $\max _{x, y} \mathbf{D}(x, y)=1$.
(2) For all $\epsilon>0$ there exists a partition $X=X_{1} \cup X_{2} \cup \cdots \cup X_{\ell}$, $\ell=\ell(\epsilon)$, such that $\operatorname{diam}\left(X_{j}\right) \leq \epsilon$. We call this an $\epsilon-$ refinement of X.

So there is a $\ell \times \ell$ matrix $\hat{\mathbf{D}}$ such that if $x \in X_{j}$ and $x^{\prime} \in X_{j^{\prime}}$ then

$$
\left|\mathbf{D}\left(x, x^{\prime}\right)-\hat{\mathbf{D}}\left(j, j^{\prime}\right)\right| \leq 2 \epsilon .
$$

This partition must be computable in time polynomial in n and $1 / \epsilon$.

We call this the metric QAP.

We decompose

$$
\mathbf{T}=\mathbf{T}_{1}+\mathbf{T}_{2}+\cdots+\mathbf{T}_{s}+\mathbf{W}
$$

where $\|\mathbf{W}\|_{\square} \leq \epsilon n^{2}$.
For bijection $\pi: V \rightarrow X$ we have

$$
c(\pi)=\sum_{k=1}^{s} \sum_{i, j=1}^{n} \mathbf{T}_{k}(i, j) \mathbf{D}(\pi(i), \pi(j))+\Delta_{1}
$$

We compute an $O\left(\epsilon^{-3}\right)$-refinement of X and let $S_{i}^{(\pi)}=\pi^{-1}\left(X_{i}\right)$.

$$
\begin{aligned}
& \sum_{k=1}^{s} \sum_{i, j=1}^{n} \mathbf{T}_{k}(i, j) \mathbf{D}(\pi(i), \pi(j))= \\
& \sum_{k=1}^{s} \sum_{i, j=1}^{\ell} d_{k}\left|R_{k} \cap S_{i}^{(\pi)}\right|\left|C_{k} \cap S_{j}^{(\pi)}\right| \hat{\mathbf{D}}(i, j)+\Delta_{2}
\end{aligned}
$$

Computing a decomposition.

Computing a decomposition.

Reducible to finding an approximation to the cut-norm.

Computing a decomposition.

Reducible to finding an approximation to the cut-norm.

Our paper gave algorithms with a "small" additive error.

Computing a decomposition.

Reducible to finding an approximation to the cut-norm.

Our paper gave algorithms with a "small" additive error.

Alon and Naor gave an approximation algorithm with multiplicative error!

Let

$$
\|\mathbf{A}\|_{\infty \rightarrow 1}=\max _{x_{i}, y_{j} \in\{ \pm 1\}} \sum_{i, j} \mathbf{A}(i, j) x_{i} y_{j}
$$

Let

$$
\|\mathbf{A}\|_{\infty \rightarrow 1}=\max _{x_{i}, y_{j} \in\{ \pm 1\}} \sum_{i, j} \mathbf{A}(i, j) x_{i} y_{j} .
$$

$$
\sum_{i, j} \mathbf{A}(i, j) x_{i} y_{j}=\sum_{\substack{x_{i}=1 \\ y_{j}=1}} \mathbf{A}_{i, j}-\sum_{\substack{x_{i}=1 \\ y_{j}=-1}} \mathbf{A}_{i, j}-\sum_{\substack{x_{i}=-1 \\ y_{j}=1}}+\sum_{\substack{x_{i}=-1 \\ y_{j}=-1}} \mathbf{A}_{i, j} .
$$

So

$$
\|\mathbf{A}\|_{\infty \rightarrow 1} \leq 4\|\mathbf{A}\|_{\square}
$$

Let

$$
\|\mathbf{A}\|_{\infty \rightarrow 1}=\max _{x_{i}, y_{j} \in\{ \pm 1\}} \sum_{i, j} \mathbf{A}(i, j) x_{i} y_{j} .
$$

$$
\sum_{i, j} \mathbf{A}(i, j) x_{i} y_{j}=\sum_{\substack{x_{i}=1 \\ y_{j}=1}} \mathbf{A}_{i, j}-\sum_{\substack{x_{i}=1 \\ y_{j}=-1}} \mathbf{A}_{i, j}-\sum_{\substack{x_{i}=-1 \\ y_{j}=1}}+\sum_{\substack{x_{i}=-1 \\ y_{j}=-1}} \mathbf{A}_{i, j} .
$$

So

$$
\|\mathbf{A}\|_{\infty \rightarrow 1} \leq 4\|\mathbf{A}\|_{\square}
$$

A similar argument gives

$$
\|\mathbf{A}\|_{\square} \leq\|\mathbf{A}\|_{\infty \rightarrow 1}
$$

Grothendieck's Identity

u, v are unit vectors in a Hilbert space $H . z$ is chosen uniformly from $B=\{x:| | x \|=1\}$.

$$
\frac{\pi}{2} \mathrm{E}[\operatorname{sign}(u \cdot z) \operatorname{sign}(v \cdot z)]=\arcsin (u \cdot v) .
$$

Let $\left(u_{i}^{*}, v_{j}^{*}\right)$ define

$$
L_{\mathbf{A}}=\max _{u_{i}, v_{j}} \sum_{i, j} \mathbf{A}(i, j) u_{i} \cdot v_{j} \quad\left(\geq\|\mathbf{A}\|_{\infty \rightarrow 1}\right)
$$

where $\left(u_{i}, v_{j}\right)$ lie in R^{m+n} and $\left\|u_{i}\right\|=\left\|v_{j}\right\|=1$.

Let $\left(u_{i}^{*}, v_{j}^{*}\right)$ define

$$
L_{\mathbf{A}}=\max _{u_{i}, v_{j}} \sum_{i, j} \mathbf{A}(i, j) u_{i} \cdot v_{j} \quad\left(\geq\|\mathbf{A}\|_{\infty \rightarrow 1}\right)
$$

where $\left(u_{i}, v_{j}\right)$ lie in R^{m+n} and $\left\|u_{i}\right\|=\left\|v_{j}\right\|=1$.
$\left(u_{i}^{*}, v_{j}^{*}\right)$ are computable via Semi-Definite Programming.

Let $c=\sinh ^{-1}(1)=\ln (1+\sqrt{2})$.

$$
\begin{aligned}
\sin \left(c u_{i}^{*} \cdot v_{j}^{*}\right) & =\sum_{k=0}^{\infty}(-1)^{k} \frac{c^{2 k+1}}{(2 k+1)!}\left(u_{i}^{*} \cdot v_{j}^{*}\right)^{2 k+1} \\
& =\sum_{k=0}^{\infty}(-1)^{k} \frac{c^{2 k+1}}{(2 k+1)!}\left(u_{i}^{*}\right)^{\otimes(2 k+1)} \cdot\left(v_{j}^{*}\right)^{\otimes(2 k+1)} \\
& =S\left(u_{i}^{*}\right) \cdot T\left(v_{j}^{*}\right) .
\end{aligned}
$$

Here

$$
\begin{aligned}
& S\left(u_{i}^{*}\right)=\sum_{k=0}^{\infty}(-1)^{k} \sqrt{\frac{c^{2 k+1}}{(2 k+1)!}}\left(u_{i}^{*}\right)^{\otimes(2 k+1)} \\
& T\left(v_{j}^{*}\right)=\sum_{k=0}^{\infty} \sqrt{\frac{c^{2 k+1}}{(2 k+1)!}}\left(v_{j}^{*}\right)^{\otimes(2 k+1)}
\end{aligned}
$$

and

$$
\left(u_{1}, u_{2}, u_{3}, u_{4}\right)^{\otimes(3)}=\left(u_{1}^{3}, u_{1}^{2} u_{2}, u_{1}^{2} u_{3}, u_{1}^{2} u_{4}, u_{1} u_{2} u_{3}, \ldots\right)
$$

Here

$$
\begin{aligned}
& S\left(u_{i}^{*}\right)=\sum_{k=0}^{\infty}(-1)^{k} \sqrt{\frac{c^{2 k+1}}{(2 k+1)!}}\left(u_{i}^{*}\right)^{\otimes(2 k+1)} \\
& T\left(v_{j}^{*}\right)=\sum_{k=0}^{\infty} \sqrt{\frac{c^{2 k+1}}{(2 k+1)!}}\left(v_{j}^{*}\right)^{\otimes(2 k+1)}
\end{aligned}
$$

and

$$
\left(u_{1}, u_{2}, u_{3}, u_{4}\right)^{\otimes(3)}=\left(u_{1}^{3}, u_{1}^{2} u_{2}, u_{1}^{2} u_{3}, u_{1}^{2} u_{4}, u_{1} u_{2} u_{3}, \ldots\right)
$$

Note that c has been chosen so that $\left\|S\left(u_{i}^{*}\right)\right\|=\left\|T\left(v_{j}^{*}\right)\right\|=1$.

$$
\begin{aligned}
L_{A} & =\sum_{i, j} \mathbf{A}_{i, j} u_{i}^{*} \cdot v_{j}^{*} \\
& =c^{-1} \sum_{i, j} \mathbf{A}_{i, j} \arcsin \left(S\left(u_{i}^{*}\right) \cdot T\left(v_{j}^{*}\right)\right) \\
& =c^{-1} \frac{\pi}{2} \sum_{i, j} \mathbf{A}_{i, j} \mathrm{E}\left[\operatorname{sign}\left(S\left(u_{i}^{*}\right) \cdot z\right) \operatorname{sign}\left(T\left(v_{j}^{*}\right) \cdot z\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
L_{A} & =\sum_{i, j} \mathbf{A}_{i, j} u_{i}^{*} \cdot v_{j}^{*} \\
& =c^{-1} \sum_{i, j} \mathbf{A}_{i, j} \arcsin \left(S\left(u_{i}^{*}\right) \cdot T\left(v_{j}^{*}\right)\right) \\
& =c^{-1} \frac{\pi}{2} \sum_{i, j} \mathbf{A}_{i, j} \mathbf{E}\left[\operatorname{sign}\left(S\left(u_{i}^{*}\right) \cdot z\right) \operatorname{sign}\left(T\left(v_{j}^{*}\right) \cdot z\right)\right]
\end{aligned}
$$

We embed the $S\left(u_{i}^{*}\right), T\left(v_{j}^{*}\right)$ in R^{m+n} and choose z randomly and put $x_{i}=\operatorname{sign}\left(T\left(u_{i}^{*} \cdot z\right), y_{j}=\operatorname{sign}\left(T\left(v_{j}^{*}\right) \cdot z\right)\right)$.

By choosing many z we get a good estimate of $\|\mathbf{A}\|_{\infty \rightarrow 1}$.

One can recover a good solution $\left(x_{i}, y_{j}\right)$ by first deciding whether $x_{1}=1$ or $x_{1}=-1$ etcetera.

$$
\begin{aligned}
L_{A} & =\sum_{i, j} \mathbf{A}_{i, j} u_{i}^{*} \cdot v_{j}^{*} \\
& =c^{-1} \sum_{i, j} \mathbf{A}_{i, j} \arcsin \left(S\left(u_{i}^{*}\right) \cdot T\left(v_{j}^{*}\right)\right) \\
& =c^{-1} \frac{\pi}{2} \sum_{i, j} \mathbf{A}_{i, j} \mathrm{E}\left[\operatorname{sign}\left(S\left(u_{i}^{*}\right) \cdot z\right) \operatorname{sign}\left(T\left(v_{j}^{*}\right) \cdot z\right)\right]
\end{aligned}
$$

One can extend the idea to approximate the cut-norm, with the same guarantee.

In Frieze, Kannan we gave a randomised algorithm for computing a weak partition using only $2 \tilde{0}\left(\epsilon^{-2}\right)$ time.

In Frieze, Kannan we gave a randomised algorithm for computing a weak partition using only $2 \tilde{(}\left(\epsilon^{-2}\right)$ time.

Subsequently, Alon,Fernandez de la Vega,Kannan, Karpinski, Yuster show how to compute such a partition using only $\tilde{O}\left(\epsilon^{-4}\right)$ probes.
(A similar but weaker result was obtained by Anderson, Engebretson).

See also Borgs, Chayes, Lovász, Sós, Vesztergombi.

In Frieze, Kannan we gave a randomised algorithm for computing a weak partition using only $2 \tilde{(}\left(\epsilon^{-2}\right)$ time.

Subsequently, Alon,Fernandez de la Vega,Kannan, Karpinski, Yuster show how to compute such a partition using only $\tilde{O}\left(\epsilon^{-4}\right)$ probes.
(A similar but weaker result was obtained by Anderson, Engebretson).

See also Borgs, Chayes, Lovász, Sós, Vesztergombi.
Above also applies to Multi-Dimensional Arrays.

A multi-dimensional version

Max- r-CSP is the following problem: We are given m Boolean functions f_{i} defined on $Y_{i}=\left(y_{1}, y_{2}, \ldots, y_{r}\right)$ where $\left\{y_{1}, y_{2}, \ldots, y_{r}\right\} \subseteq\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and the aim to choose a setting for the variables $x_{1}, x_{2}, \ldots, x_{n}$ that makes as many of the functions f_{i} as possible, true.

A multi-dimensional version

Max- r-CSP is the following problem: We are given m Boolean functions f_{i} defined on $Y_{i}=\left(y_{1}, y_{2}, \ldots, y_{r}\right)$ where $\left\{y_{1}, y_{2}, \ldots, y_{r}\right\} \subseteq\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and the aim to choose a setting for the variables $x_{1}, x_{2}, \ldots, x_{n}$ that makes as many of the functions f_{i} as possible, true.

For each $z \in\{0,1\}^{r}$ and $\left(i_{1}, i_{2}, \ldots, i_{r}\right) \in[n]^{r}$ we define $\mathbf{A}^{(z)}\left(i_{1}, i_{2}, \ldots, i_{r}\right)=\mid\left\{j: Y_{j}=x_{i_{1}}, \ldots, x_{i_{r}}\right.$ and $\left.f_{j}\left(z_{1}, \ldots, z_{r}\right)=T\right\} \mid$.

A multi-dimensional version

Max- r-CSP is the following problem: We are given m Boolean functions f_{i} defined on $Y_{i}=\left(y_{1}, y_{2}, \ldots, y_{r}\right)$ where $\left\{y_{1}, y_{2}, \ldots, y_{r}\right\} \subseteq\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and the aim to choose a setting for the variables $x_{1}, x_{2}, \ldots, x_{n}$ that makes as many of the functions f_{i} as possible, true.

For each $z \in\{0,1\}^{r}$ and $\left(i_{1}, i_{2}, \ldots, i_{r}\right) \in[n]^{r}$ we define $\mathbf{A}^{(z)}\left(i_{1}, i_{2}, \ldots, i_{r}\right)=\mid\left\{j: Y_{j}=x_{i_{1}}, \ldots, x_{i_{r}}\right.$ and $\left.f_{j}\left(z_{1}, \ldots, z_{r}\right)=T\right\} \mid$.

Problem becomes to maximize, over $x_{1}, x_{2}, \ldots, x_{n}$,

$$
\sum_{\substack{z \\ i_{1}, i_{2}, \ldots, i_{r}}} \mathbf{A}^{(z)}\left(i_{1}, i_{2}, \ldots, i_{r}\right)(-1)^{r-|z|} \prod_{t=1}^{r}\left(x_{i_{t}}+z_{t}-1\right)
$$

For this it is useful to have a decomposition for r-dimensional matrices: An r-dimensional matrix \mathbf{A} on $X_{1} \times X_{2} \ldots X_{r}$ is a map

$$
\mathbf{A}: X_{1} \times X_{2} \cdots \times X_{r} \rightarrow \mathbf{R}
$$

If $S_{i} \subseteq X_{i}$ for $i=1,2, \ldots r$, and d is a real number the matrix \mathbf{M} satisfying

$$
\mathbf{M}(e)= \begin{cases}d & \text { for } e \in S_{1} \times S_{2} \cdots \times S_{r} \\ 0 & \text { otherwise }\end{cases}
$$

is called a cut matrix and is denoted

$$
\mathbf{M}=C U T\left(S_{1}, S_{2}, \ldots S_{r} ; d\right)
$$

\mathbf{B} is the (2-dimensional) matrix with rows indexed by $Y_{1}=X_{1} \times \cdots \times X_{\hat{r}}, \hat{r}=\lfloor r / 2\rfloor$ and columns indexed by $Y_{2}=X_{\hat{r}+1} \times \cdots \times X_{r}$.
For

$$
\begin{aligned}
i & =\left(x_{1}, \ldots, x_{\hat{r}}\right) \in Y_{1} \\
j & =\left(x_{\hat{r}+1}, \ldots, x_{r}\right) \in Y_{2}
\end{aligned}
$$

let

$$
\mathbf{B}(i, j)=\mathbf{A}\left(x_{1}, x_{2}, \ldots, x_{r}\right)
$$

Applying a decompositon algorithm we obtain

$$
\mathbf{B}=\mathbf{D}^{(1)}+\mathbf{D}^{(2)}+\cdots+\mathbf{D}^{\left(s_{0}\right)}+\mathbf{W}
$$

where for $1 \leq t \leq s_{0}$,

$$
\mathbf{D}^{(t)}=\operatorname{CUT}\left(R_{t}, C_{t}, d_{t}\right)
$$

and $\left|\mid W \|_{\square}\right.$ is "small".

Each R_{t} defines an \hat{r}-dimensional 0-1 matrix $\mathbf{R}^{(t)}$ where $\mathbf{R}^{(t)}\left(x_{1}, \ldots, x_{\hat{r}}\right)=1$ iff $\left(x_{1}, \ldots, x_{\hat{r}}\right) \in R_{t} . \mathbf{C}^{(t)}$ is defined similarly. Assume inductively that we can further decompose

$$
\begin{aligned}
& \mathbf{R}^{(t)}=\mathbf{D}^{(t, 1)}+\cdots+\mathbf{D}^{\left(t, s_{1}\right)}+\mathbf{W}^{(t)} \\
& \mathbf{C}^{(t)}=\hat{\mathbf{D}} t, 1+\cdots+\hat{\mathbf{D}} t, \hat{s}_{1}+\hat{\mathbf{W}}^{(t)}
\end{aligned}
$$

Here

$$
\begin{aligned}
\mathbf{D}^{(t, u)} & =\operatorname{CUT}\left(R_{t, u, 1}, \ldots, R_{t, u, \hat{r}}, d_{t, u}\right) \\
\hat{\mathbf{D}} t, \hat{u} & =\operatorname{CUT}\left(R_{t, \hat{u}, \hat{r}+1}, \ldots, R_{t, \hat{u}, r}, \hat{d}_{t, \hat{u}}\right)
\end{aligned}
$$

Each R_{t} defines an \hat{r}-dimensional 0-1 matrix $\mathbf{R}^{(t)}$ where $\mathbf{R}^{(t)}\left(x_{1}, \ldots, x_{\hat{r}}\right)=1 \mathrm{iff}\left(x_{1}, \ldots, x_{\hat{r}}\right) \in R_{t} . \mathbf{C}^{(t)}$ is defined similarly. Assume inductively that we can further decompose

$$
\begin{aligned}
& \mathbf{R}^{(t)}=\mathbf{D}^{(t, 1)}+\cdots+\mathbf{D}^{\left(t, s_{1}\right)}+\mathbf{W}^{(t)} \\
& \mathbf{C}^{(t)}=\hat{\mathbf{D}} t, 1+\cdots+\hat{\mathbf{D}} t, \hat{s}_{1}+\hat{\mathbf{W}}^{(t)}
\end{aligned}
$$

Here

$$
\begin{aligned}
\mathbf{D}^{(t, u)} & =\operatorname{CUT}\left(R_{t, u, 1}, \ldots, R_{t, u, \hat{r}}, d_{t, u}\right) \\
\hat{\mathbf{D}} t, \hat{u} & =\operatorname{CUT}\left(R_{t, \hat{u}, \hat{r}+1}, \ldots, R_{t, \hat{u}, r}, \hat{d}_{t, \hat{u}}\right)
\end{aligned}
$$

It follows that we can write

$$
\mathbf{A}=\sum_{t, u, \hat{u}} \operatorname{CUT}\left(R_{t, u, 1}, \ldots, R_{t, u, \hat{r}}, \hat{R}_{t, \hat{u}, \hat{r}+1}, \ldots, \hat{R}_{t, \hat{u}, r}, d_{t, u, \hat{u}}\right)+\mathbf{W}_{1},
$$

where $\left\|\mathbf{W}_{1}\right\|_{\square}$ is "small".

THANK YOU

