Happy Birthday

 Bela

Random Graphs 1985

The cover time of random walks on random graphs

Colin Cooper Alan Frieze

The cover time of random walks on random graphs

$$
\begin{gathered}
\text { Colin Cooper } \\
\text { Alan Frieze } \\
\text { and } \\
\text { Eyal Lubetzky }
\end{gathered}
$$

$G=(V, E)$ is a connected graph. $(|V|=n,|E|=m)$. For $u \in V$ let C_{u} be the expected time taken for a simple random walk \mathcal{W}_{u} on G starting at u, to visit every vertex of G.
$G=(V, E)$ is a connected graph. $(|V|=n,|E|=m)$. For $u \in V$ let C_{u} be the expected time taken for a simple random walk \mathcal{W}_{u} on G starting at u, to visit every vertex of G.

The cover time C_{G} of G is defined as $C_{G}=\max _{u \in V} C_{u}$.
$G=(V, E)$ is a connected graph. $(|V|=n,|E|=m)$. For $u \in V$ let C_{u} be the expected time taken for a simple random walk \mathcal{W}_{u} on G starting at u, to visit every vertex of G.

The cover time C_{G} of G is defined as $C_{G}=\max _{u \in V} C_{u}$.
$C_{G} \leq 4 m(n-1)$: Alelliunas,Karp,Lipton,Lovász,Rackoff (1979)
$G=(V, E)$ is a connected graph. $(|V|=n,|E|=m)$. For $u \in V$ let C_{u} be the expected time taken for a simple random walk \mathcal{W}_{u} on G starting at u, to visit every vertex of G.

The cover time C_{G} of G is defined as $C_{G}=\max _{u \in V} C_{u}$.
$C_{G} \leq 4 m(n-1)$: Alelliunas,Karp,Lipton,Lovász,Rackoff (1979)
$(1-o(1)) n \ln n \leq C_{G} \leq(1+o(1)) \frac{4}{27} n^{3}$: Feige (1995)

In this talk we mention

In this talk we mention

- The cover time of random regular graphs.

In this talk we mention

- The cover time of random regular graphs.
- The cover time of $G_{n, p}$.

In this talk we mention

- The cover time of random regular graphs.
- The cover time of $G_{n, p}$.
- The cover time of the giant component of $G_{n, p}$

In this talk we mention

- The cover time of random regular graphs.
- The cover time of $G_{n, p}$.
- The cover time of the giant component of $G_{n, p}$
- The cover time of the preferential attachment graph.

In this talk we mention

- The cover time of random regular graphs.
- The cover time of $G_{n, p}$.
- The cover time of the giant component of $G_{n, p}$
- The cover time of the preferential attachment graph.
- The cover time of $D_{n, p}$ (the random digraph).

In this talk we mention

- The cover time of random regular graphs.
- The cover time of $G_{n, p}$.
- The cover time of the giant component of $G_{n, p}$
- The cover time of the preferential attachment graph.
- The cover time of $D_{n, p}$ (the random digraph).
- The cover time of random geometric graphs.

In this talk we mention

- The cover time of random regular graphs.
- The cover time of $G_{n, p}$.
- The cover time of the giant component of $G_{n, p}$
- The cover time of the preferential attachment graph.
- The cover time of $D_{n, p}$ (the random digraph).
- The cover time of random geometric graphs.
- The cover time of random graphs with a fixed degree sequence.

Cover time of $G=G_{n, p}$. Jonasson (1998) proved:

- If $\frac{n p}{\ln n} \rightarrow \infty$ then $C_{G}=(1+o(1)) n \ln n$ whp.
- If $\frac{n p}{\ln n} \rightarrow c, c$ constant, then whp $C_{G} \geq A_{c} n \ln n$ for some constant A_{C}.

Cover time of $G=G_{n, p}$. Jonasson (1998) proved:

- If $\frac{n p}{1 n n} \rightarrow \infty$ then $C_{G}=(1+o(1)) n \ln n$ whp.
- If $\frac{n p}{1 n n} \rightarrow c, c$ constant, then whp $C_{G} \geq A_{c} n \ln n$ for some constant A_{c}.

Cooper and Frieze (2003)
If $d=c \ln n$ where $(c-1) \ln n \rightarrow \infty$ then whp

$$
C_{G} \sim c \ln \left(\frac{c}{c-1}\right) n \ln n .
$$

Note that whp $G_{n, p}$ is connected here.

Cover time of giant component Suppose now that $n p=d>1$.
Whp $G_{n, p}$ contains a unique giant component K_{g}. Let its cover time be denoted C_{g}.

Cover time of giant component Suppose now that $n p=d>1$.
Whp $G_{n, p}$ contains a unique giant component K_{g}. Let its cover time be denoted C_{g}.

Cooper and Frieze (2006)

Cover time of giant component Suppose now that $n p=d>1$.
Whp $G_{n, p}$ contains a unique giant component K_{g}. Let its cover time be denoted C_{g}.

Cooper and Frieze (2006)
If x is the unique solution in $(0,1)$ of $x=1-e^{-d x}$ then whp K_{g} has $x n$ vertices and $d x(2-x) n / 2$ edges.

If $1<d=o(\ln n)$ then whp

$$
\begin{aligned}
C_{g} & \sim \frac{d x(2-x)}{4(d x-\ln d)} n(\ln n)^{2} \\
& \sim \frac{1}{4} n(\ln n)^{2} \quad \text { if } d \rightarrow \infty .
\end{aligned}
$$

Cover time of giant component Suppose now that $n p=d>1$.
Whp $G_{n, p}$ contains a unique giant component K_{g}. Let its cover time be denoted C_{g}.

Cooper and Frieze (2006)

If $d \sim \alpha \ln n$ where $0<\alpha<1$ is constant then whp

$$
C_{g} \sim \gamma n(\ln n)^{2}
$$

where

$$
\gamma=\max \{\alpha \ell(1-\alpha \ell): \ell \text { is a positive integer }\}
$$

Cover time of giant component Suppose now that $n p=d>1$.
Whp $G_{n, p}$ contains a unique giant component K_{g}. Let its cover time be denoted C_{g}.

Cooper and Frieze (2006)
If $d=(1-\delta) \ln n$ where $\delta=o(1)$ and $\delta \ln n \leq \ln \ln n$ then whp

$$
C_{g} \sim(\ln \ln n+\max \{\delta, 0\}) n \ln n .
$$

Note that if $\delta \ln n \rightarrow+\infty$ then whp $G_{n, p}$ is connected.

Cover time of Regular Graphs Cooper and Frieze (2005)

Suppose that $r \geq 3$ and $G=G_{n, r}$ denotes a random r-regular graph with vertex set [n]. Then whp its cover time satisfies

$$
C_{G} \sim \frac{r-1}{r-2} n \ln n
$$

Cover time of Regular Graphs Cooper and Frieze (2005)

Suppose that $r \geq 3$ and $G=G_{n, r}$ denotes a random r-regular graph with vertex set [n]. Then whp its cover time satisfies

$$
C_{G} \sim \frac{r-1}{r-2} n \ln n
$$

More generally, if $C_{G}^{(k)}$ is the time to get within $k=O(1)$ of every vertex then

$$
C_{G}^{(k)} \sim \frac{1}{(r-2)(r-1)^{k-1}} n \ln n
$$

Cover time of preferential attachment graph Cooper and Frieze (2007)

Sequence of random graphs $G(t)$
$G(t)=G(t-1)$ plus vertex t and m random edges
$\left\{t, v_{i}\right\}, i=1,2, \ldots, m$.

The vertices $v_{1}, v_{2}, \ldots, v_{m}$ are chosen with probability proportional to their degree after step $t-1$.

Whp

$$
C_{G} \sim \frac{2 m}{m-1} t \ln t, \quad \text { for } m \geq 2 .
$$

Cover time of random digraphs
Cooper and Frieze (2012)

If $d=c \ln n$ where $c-1$ is at least a positive constant then whp

$$
C_{D} \sim c \ln \left(\frac{c}{c-1}\right) n \ln n .
$$

Note that whp $D_{n, p}$ is strongly connected here.

Random graphs with a fixed degree sequence.
Abdullah, Cooper and Frieze (2012): $\delta \geq 3$
Cooper, Frieze and Lubetzky (20??): $\delta \geq 2$

Suppose that

$$
2 \leq d_{1} \leq d_{2} \leq \cdots \leq d_{n} \leq N^{\zeta_{0}} \text { where } \zeta_{0}=o(1)
$$

where N is the number of vertices of degree at least three.

Let $M=O(N)$ be the number of edges incident with vertices of degree at least three.

Let ν_{2} be the number of vertices of degree two and let

$$
\xi=\frac{M}{\nu_{2}+M}
$$

We use the following model for the random graph G_{d} :

- Build the kernel K : The random graph with degree sequence $\mathbf{d}_{\geq 3}$.
- Sprinkle the ν_{2} vertices of degree two randomly onto the edges of K.

We use the following model for the random graph G_{d} :

- Build the kernel K : The random graph with degree sequence $\mathbf{d}_{\geq 3}$.
- Sprinkle the ν_{2} vertices of degree two randomly onto the edges of K.

Theorem

If $G=G_{\mathbf{d}}$ and d is the minimum degree in K then w.h.p.
$C_{G} \sim \begin{cases}\frac{2(d-1)}{d(d-2)} M \ln M & \text { if } \nu_{2}=M^{o(1)} . \\ \psi_{\alpha, d} M \ln M & \nu_{2}=M^{\alpha} \text { where } 0<\alpha<1 \text { is constant. } \\ \frac{\left(M+\nu_{2}\right) \ln ^{2} M}{-8 \ln (1-\xi)} & \text { if } \nu_{2}=\Omega\left(M^{1-o(1)}\right)\end{cases}$

Here $\psi_{\alpha, d}$ is some explicitly given function.

If $p=\frac{1+\epsilon}{n}$ where $\epsilon=O(1)$ and $\epsilon^{3} n \rightarrow \infty$ then w.h.p. $G_{n, p}$ has a unique giant component C_{1} with a 2-core C_{2}. Our theorem applies to C_{2}.

We can model C_{2} as $G_{\mathbf{d}}$ where K has $M \sim 2 \epsilon^{3} n$ and $\nu_{2} \sim 2 \epsilon^{2} n$, Ding, Kim, Lubetzky and Peres (2011). So, w.h.p., if $G=C_{2}$,

$$
C_{G} \sim \frac{\epsilon}{4} n \log ^{2}\left(\epsilon^{3} n\right)
$$

If $p=\frac{1+\epsilon}{n}$ where $\epsilon=O(1)$ and $\epsilon^{3} n \rightarrow \infty$ then w.h.p. $G_{n, p}$ has a unique giant component C_{1} with a 2-core C_{2}. Our theorem applies to C_{2}.

We can model C_{2} as $G_{\mathbf{d}}$ where K has $M \sim 2 \epsilon^{3} n$ and $\nu_{2} \sim 2 \epsilon^{2} n$, Ding, Kim, Lubetzky and Peres (2011). So, w.h.p., if $G=C_{2}$,

$$
C_{G} \sim \frac{\epsilon}{4} n \log ^{2}\left(\epsilon^{3} n\right)
$$

We were hoping to analyse the cover time of C_{1} in this range. Based on our earlier results on the giant, we conjecture that if $G=C_{1}$ then w.h.p.

$$
C_{G} \sim n \log ^{2}\left(\epsilon^{3} n\right)
$$

First Visit Time Lemma.
Suppose that the connected graph $G=(V, E)$ has n vertices and m edges.
(For digraphs we need strong connectivity).

First Visit Time Lemma.
Suppose that the connected graph $G=(V, E)$ has n vertices and m edges.

Let $\pi_{x}=\frac{\operatorname{deg}(x)}{2 m}$ denote the steady state for a random walk \mathcal{W}_{u}, starting at u, on G. (No such expression for digraphs).

First Visit Time Lemma.
Suppose that the connected graph $G=(V, E)$ has n vertices and m edges.

Let $\pi_{x}=\frac{\operatorname{deg}(x)}{2 m}$ denote the steady state for a random walk \mathcal{W}_{u}, starting at u, on G.

Let the mixing time T be defined so that

$$
\max _{u, x \in V}\left|P_{u}^{(t)}(x)-\pi_{x}\right| \leq n^{-3}
$$

First Visit Time Lemma.
Suppose that the connected graph $G=(V, E)$ has n vertices and m edges.

Let $\pi_{x}=\frac{\operatorname{deg}(x)}{2 m}$ denote the steady state for a random walk \mathcal{W}_{u}, starting at u, on G.

Let the mixing time T be defined so that

$$
\max _{u, x \in V}\left|P_{u}^{(t)}(x)-\pi_{x}\right| \leq n^{-3}
$$

Fix $u, v \in V$. For $s \geq T$ let

$$
\mathcal{A}_{s}(v)=\left\{\mathcal{W}_{u} \text { does not visit } v \text { in }[T, s]\right\}
$$

We try to get a good estimate of $\operatorname{Pr}\left(\mathcal{A}_{s}(v)\right)$.

We have

$\operatorname{Pr}\left(\mathcal{A}_{s}(v)\right)$

$$
=e^{-(1+o(1)) \pi_{\nu} s / R_{V}} .
$$

We have

$$
\begin{aligned}
& \operatorname{Pr}\left(\mathcal{A}_{s}(v)\right) \\
& \quad=e^{-(1+o(1)) \pi_{v} s / R_{v}}
\end{aligned}
$$

where R_{V} is the expected number of visits by \mathcal{W}_{v} to v in $[0, T]$.

We have

$\operatorname{Pr}\left(\mathcal{A}_{s}(v)\right)$

$$
=e^{-(1+o(1)) \pi_{v} s / R_{v}}
$$

Caveat:
We need $T \pi_{v}=o(1)$.

Random Regular Graphs

If v is not near any short cycles then

$$
R_{v} \sim \frac{r-1}{r-2}
$$

whp there are very few vertices near short cycles and for these vertices $R_{v} \leq \frac{r-1}{r-2}$.

The upper bound on cover time

The upper bound on cover time

Let $T_{G}(u)$ be the time taken to visit every vertex of G by the random walk \mathcal{W}_{u}.

The upper bound on cover time

Let $T_{G}(u)$ be the time taken to visit every vertex of G by the random walk \mathcal{W}_{u}.

Let U_{s} be the number of vertices of G which have not been visited by W_{u} at step s.

The upper bound on cover time

Let $T_{G}(u)$ be the time taken to visit every vertex of G by the random walk \mathcal{W}_{u}.

Let U_{s} be the number of vertices of G which have not been visited by W_{u} at step s.

$$
\begin{aligned}
C_{u}=\mathrm{E} T_{G}(u)= & \sum_{s>0} \operatorname{Pr}\left(T_{G}(u) \geq s\right)=\sum_{s>0} \operatorname{Pr}\left(U_{s}>0\right) \\
& \leq \sum_{s>0} \min \left\{1, E U_{s}\right\} \leq t+\sum_{v \in V} \sum_{s>t} \operatorname{Pr}\left(\mathcal{A}_{s}(v)\right)
\end{aligned}
$$

$$
\begin{aligned}
C_{u} & \leq t+\sum_{v \in V} \sum_{s>t} \operatorname{Pr}\left(\mathcal{A}_{s}(v)\right) \\
& \leq t+n \sum_{s>t} \exp \left\{-(1-o(1)) \frac{s(r-2)}{n(r-1)}\right\} \\
& \leq t+\frac{2 n^{2}(r-1)}{r-2} \exp \left\{-(1-o(1)) \frac{t(r-2)}{n(r-1)}\right\}
\end{aligned}
$$

$$
\begin{aligned}
C_{u} & \leq t+\sum_{v \in V} \sum_{s>t} \operatorname{Pr}\left(\mathcal{A}_{s}(v)\right) \\
& \leq t+n \sum_{s>t} \exp \left\{-(1-o(1)) \frac{s(r-2)}{n(r-1)}\right\} \\
& \leq t+\frac{2 n^{2}(r-1)}{r-2} \exp \left\{-\left(1-o(1) \frac{t(r-2)}{n(r-1)}\right\}\right.
\end{aligned}
$$

Taking

$$
t=(1+o(1)) \frac{r-1}{r-2} n \ln n
$$

we get

$$
C_{u} \leq(1+o(1)) t
$$

The lower bound on cover time

The lower bound on cover time

Choose a maximal set S of vertices which are (i) far from short cycles and (ii) far from each other. Here we can find S with $S=n^{1-o(1)}$.

The lower bound on cover time

Choose a maximal set S of vertices which are (i) far from short cycles and (ii) far from each other. Here we can find S with $S=n^{1-o(1)}$.

Then let $S(t)$ denote the vertices in S which are not visited by \mathcal{W}_{u} by time t.

The lower bound on cover time

Choose a maximal set S of vertices which are (i) far from short cycles and (ii) far from each other. Here we can find S with $S=n^{1-o(1)}$.

Then let $S(t)$ denote the vertices in S which are not visited by \mathcal{W}_{u} by time t.

Thus

$$
\begin{aligned}
\mathbf{E}(|S(t)|) & \geq-T+|S| \exp \left\{-(1-o(1)) \frac{t(r-2)}{n(r-1)}\right\} \\
& \rightarrow \infty
\end{aligned}
$$

if $t=(1-o(1)) \frac{r-1}{r-2} n \ln n$.

To finish we argue that for $x, y \in S$,

$$
\operatorname{Pr}\left(\mathcal{A}_{t}(x) \wedge \mathcal{A}_{t}(y)\right) \sim \operatorname{Pr}\left(\mathcal{A}_{t}(x)\right) \operatorname{Pr}\left(\mathcal{A}_{t}(y)\right)
$$

and so

$$
E\left(|S(t)|^{2}\right) \sim \mathbf{E}(|S(t)|)^{2}
$$

and then the Chebyshev inequality implies that $S(t) \neq \emptyset$ whp.

The analysis is valid for regular graphs for which
(1) the mixing time T is small and
(2) there are few short cycles (or more precisely, for which R_{V} can be computed easily).

The cover time of $G_{n, p}$
Recall that

$$
C_{u} \leq t+\sum_{v \in V} \sum_{s>t} \operatorname{Pr}\left(\mathcal{A}_{s}(v)\right)
$$

The cover time of $G_{n, p}$
Recall that

$$
C_{u} \leq t+\sum_{v \in V} \sum_{s>t} \operatorname{Pr}\left(\mathcal{A}_{s}(v)\right)
$$

$$
R_{v}=1+o(1) \quad \text { for all } v \in V
$$

and so

$$
\operatorname{Pr}\left(\mathcal{A}_{s}(v)\right) \sim e^{-(1+o(1)) s \operatorname{deg}(v) / 2 m}
$$

for $v \in V$.

The cover time of $G_{n, p}$
Recall that

$$
C_{u} \leq t+\sum_{v \in V} \sum_{s>t} \operatorname{Pr}\left(\mathcal{A}_{s}(v)\right)
$$

So,

$$
\sum_{s>t} \operatorname{Pr}\left(\mathcal{A}_{s}(v)\right) \sim \pi_{v}^{-1} e^{-(1+o(1)) t \operatorname{deg}(v) / 2 m}
$$

The cover time of $G_{n, p}$
Recall that

$$
C_{u} \leq t+\sum_{v \in V} \sum_{s>t} \operatorname{Pr}\left(\mathcal{A}_{s}(v)\right)
$$

So,

$$
\sum_{s>t} \operatorname{Pr}\left(\mathcal{A}_{s}(v)\right) \sim \pi_{v}^{-1} e^{-(1+o(1)) t \operatorname{deg}(v) / 2 m}
$$

Suppose that $k=\alpha \ln n$. There are approximately

$$
n\binom{n-1}{k} p^{k}(1-p)^{n-1-k} \sim n^{1-c+\alpha \ln (c e / \alpha)}
$$

vertices of degree k.

The cover time of $G_{n, p}$
Recall that

$$
C_{u} \leq t+\sum_{v \in V} \sum_{s>t} \operatorname{Pr}\left(\mathcal{A}_{s}(v)\right)
$$

So, if $t=\tau n \ln n$,

$$
C_{u} \leq t+\sum_{\alpha} n^{2-c+\alpha \ln (c e / \alpha)-\alpha \tau / c+o(1)}
$$

The cover time of $G_{n, p}$
Recall that

$$
C_{u} \leq t+\sum_{v \in V} \sum_{s>t} \operatorname{Pr}\left(\mathcal{A}_{s}(v)\right)
$$

So, if $t=\tau n \ln n$,

$$
C_{u} \leq t+\sum_{\alpha} n^{2-c+\alpha \ln (c e / \alpha)-\alpha \tau / c+o(1)}
$$

Now

$$
\max _{\alpha} 2-c+\alpha \ln (c e / \alpha)-\alpha \tau / c=2-c+c e^{-\tau / c}
$$

The cover time of $G_{n, p}$
Recall that

$$
C_{u} \leq t+\sum_{v \in V} \sum_{s>t} \operatorname{Pr}\left(\mathcal{A}_{s}(v)\right)
$$

So,

$$
C_{u} \leq \tau n \ln n+O\left(n^{2-c+c e^{-\tau / c}+o(1)}\right)
$$

and

$$
C_{u} \leq(1+o(1)) c \ln \left(\frac{c}{c-1}\right) n \ln n
$$

after putting

$$
\tau=(1+o(1)) c \ln \left(\frac{c}{c-1}\right)
$$

Note that with this value of τ we have

$$
2-c+c e^{-\tau / c} \sim 1
$$

The cover time of $G_{n, p}$

The lower bound is done via Chebyshev, as before.

The Matthews bound works equally well here.

The cover time of the giant component of a sparse random graph
$p=\alpha \ln n / n$ with $0<\alpha<1$

$$
R_{T}(1) \sim \ell \text { and } \mathbf{E}(\# v) \sim n^{1-\alpha \ell+o(1)}
$$

For the cover time choose t such that for all ℓ

$$
n^{1-\alpha \ell+o(1)} \exp \left\{-t \cdot \frac{1}{2 \alpha n \ln n} \cdot \frac{1}{\ell}\right\}=o(t)
$$

Cover time of preferential attachment graph
Sequence of random graphs $G(t)$ $G(t)=G(t-1)$ plus vertex t and m random edges $\left\{t, v_{i}\right\}, i=1,2, \ldots, m$.

The vertices $v_{1}, v_{2}, \ldots, v_{m}$ are chosen with probability proportional to their degree after step $t-1$.

Whp

$$
C_{G} \sim \frac{2 m}{m-1} t \ln t, \quad \text { for } m \geq 2 .
$$

Hardest vertices to cover:

$R_{v} \sim \frac{m}{m-1}$ and $\pi_{v}=\frac{m}{2 m t}$

This gives that whp

$$
C_{G} \sim \frac{2 m}{m-1} t \ln t
$$

for $m \geq 2$.

Cover time of $D_{n, p}$
The random digraph $D_{n, p}$ has vertex set $[n]$ and each (i, j) is independently included as a directed edge with probability p.

Cover time of $D_{n, p}$
The random digraph $D_{n, p}$ has vertex set $[n]$ and each (i, j) is independently included as a directed edge with probability p.

We assume that $p=\frac{c \ln n}{n}$ where $c-1$ is at least a constant.

Cover time of $D_{n, p}$
The random digraph $D_{n, p}$ has vertex set $[n]$ and each (i, j) is independently included as a directed edge with probability p.

We assume that $p=\frac{c \ln n}{n}$ where $c-1$ is at least a constant.
We can use our lemma on $\operatorname{Pr}\left(\mathcal{A}_{s}(v)\right)$. It is easy to show that $R_{v}=1+o(1)$ for all vertices. The main difficulty is in establishing the steady state π of a random walk on $D_{n, p}$.

Theorem
Whp

$$
\pi_{y} \sim \operatorname{deg}^{-}(y) \quad \text { for all } y \in V
$$

where deg $^{-}$refers to in-degree.

Theorem
Whp

$$
\pi_{y} \sim \operatorname{deg}^{-}(y) \quad \text { for all } y \in V
$$

where deg ${ }^{-}$refers to in-degree.

Given the above we can proceed as before to show that whp

$$
C_{D} \sim c \ln \left(\frac{c}{c-1}\right) n \ln n
$$

Cover time of random geometric graphs.
Random geometric graph $G=G(d, r, n)$ in d dimensions:
Sample n points V independently and uniformly at random from $[0,1]^{d}$. For each point x draw a ball $D(x, r)$ of radius r about x. $V(G)=V$ and $E(G)=\{\{v, w\}: w \neq v, w \in D(v, r)\}$

Cover time of random geometric graphs.
Random geometric graph $G=G(d, r, n)$ in d dimensions:
Sample n points V independently and uniformly at random from $[0,1]^{d}$. For each point x draw a ball $D(x, r)$ of radius r about x. $V(G)=V$ and $E(G)=\{\{v, w\}: w \neq v, w \in D(v, r)\}$

For simplicity we replace $[0,1]^{d}$ by a torus.

Avin and Ercal $d=2$

Theorem

$$
C_{G}=\Theta(n \log n) \mathbf{w h p} .
$$

Avin and Ercal $d=2$

Theorem

$$
C_{G}=\Theta(n \log n) \mathbf{w h p} .
$$

Cooper and Frieze $d \geq 3$:

Theorem

Let $c>1$ be constant, and let $r=\left(\frac{c \log n}{r_{d} n}\right)^{1 / d}$. Then whp

$$
C_{G} \sim c \log \left(\frac{c}{c-1}\right) n \log n .
$$

Υ_{d} is the volume of the unit ball in d dimensions.

Given the grid Γ it is easy to use a Canonical Paths argument to show that

$$
T=\tilde{O}\left(n^{2 / d}\right)
$$

Given the grid Γ it is easy to use a Canonical Paths argument to show that

$$
T=\tilde{O}\left(n^{2 / d}\right)
$$

This estimate is not very good for $d=2$.

Given the grid Γ it is easy to use a Canonical Paths argument to show that

$$
T=\tilde{O}\left(n^{2 / d}\right)
$$

This estimate is not very good for $d=2$.

When $d \geq 3$ one can show that $R_{v}=1+o(1)$ and then our method works.

Given the grid Γ it is easy to use a Canonical Paths argument to show that

$$
T=\tilde{O}\left(n^{2 / d}\right)
$$

This estimate is not very good for $d=2$.

When $d \geq 3$ one can show that $R_{v}=1+o(1)$ and then our method works.

All sorts of problems with $d=2$. Mixing time is relatively large and more important, it has been hard to estimate R_{V}

Random graphs with a fixed degree sequence.

Random graphs with a fixed degree sequence.

Problem associated with direct use of our lemma: Recall, ν_{2} is the number of vertices of degree two and N, M are the number of vertices of degree three or more and M is the number of edges in the kernel.

Random graphs with a fixed degree sequence.
Problem associated with direct use of our lemma: Recall, ν_{2} is the number of vertices of degree two and N, M are the number of vertices of degree three or more and M is the number of edges in the kernel.

Assume that $\nu_{2} \gg N$ so that $\xi=\frac{M}{\nu_{2}+M} \sim \frac{M}{\nu_{2}}$. Then

$$
T=\Omega\left(\frac{\ln M}{\xi^{2}}\right)
$$

It takes time ξ^{-2} to cross the path replacing a typical kernel edge.
If v has degree two then

$$
T \pi_{v}=\Omega\left(\frac{\ln M}{\xi^{2} \nu_{2}}\right)=\Omega\left(\frac{\nu_{2} \ln M}{M^{2}}\right) \neq o(1) \text { for large } \nu_{2} .
$$

Solution?

Let

$$
\ell^{*}=\frac{1}{\omega \xi} \text { where } \omega=N^{o(1)}
$$

Replace the path P_{e} by a path of length ℓ_{e} by a path of length ℓ_{e} / ℓ^{*} to get a graph G^{*} and then inflate the covertime of G^{*} by $\left(\ell^{*}\right)^{2}$.

In G^{*} we have $T=\tilde{O}\left(\omega^{2}\right)$ and $\pi_{v}=O\left(N^{-1+o(1)}\right)$ and so $T \pi_{v}=o(1)$.

Solution?

Let

$$
\ell^{*}=\frac{1}{\omega \xi} \text { where } \omega=N^{o(1)}
$$

Replace the path P_{e} by a path of length ℓ_{e} by a path of length ℓ_{e} / ℓ^{*} to get a graph G^{*} and then inflate the covertime of G^{*} by $\left(\ell^{*}\right)^{2}$.

In G^{*} we have $T=\tilde{O}\left(\omega^{2}\right)$ and $\pi_{v}=O\left(N^{-1+o(1)}\right)$ and so $T \pi_{v}=o(1)$.

Problem: We assumed that for all e, ℓ_{e} was a multiple of ℓ^{*}. What if $\ell_{e}=1$?

To make sense, we have to couple a walk on G with a walk \mathcal{W}^{*} on G^{*} where edges in G^{*} have weight ℓ^{*} / ℓ_{e} and the walk chooses edges with probability proportional to weight.

To make sense, we have to couple a walk on G with a walk \mathcal{W}^{*} on G^{*} where edges in G^{*} have weight ℓ^{*} / ℓ_{e} and the walk chooses edges with probability proportional to weight.

But now \mathcal{W}^{*} can get stuck for a long time going backwards and forwards along an edge of weight ℓ^{*} and then T becomes too large.

To make sense, we have to couple a walk on G with a walk \mathcal{W}^{*} on G^{*} where edges in G^{*} have weight ℓ^{*} / ℓ_{e} and the walk chooses edges with probability proportional to weight.

But now \mathcal{W}^{*} can get stuck for a long time going backwards and forwards along an edge of weight ℓ^{*} and then T becomes too large.

Let an edge of the kernel be small if $\ell_{e}<\ell^{*}$. Let V_{σ} denote the set of vertices that are incident with a small edge (plus a few more).

To make sense, we have to couple a walk on G with a walk \mathcal{W}^{*} on G^{*} where edges in G^{*} have weight ℓ^{*} / ℓ_{e} and the walk chooses edges with probability proportional to weight.

But now \mathcal{W}^{*} can get stuck for a long time going backwards and forwards along an edge of weight ℓ^{*} and then T becomes too large.

Let an edge of the kernel be small if $\ell_{e}<\ell^{*}$. Let V_{σ} denote the set of vertices that are incident with a small edge (plus a few more).

We now do a speedy walk that ignores the time taken to cross small edges. This walk behaves nicely. We can then use concentration of measure to show that the real walk spends relatively little time on the small edges.

The probability of following the red edge at v will be the probability that the walk goes down the black edge incident with v and that w is the first vertex reached, not incident with a small (blue) edge.

Open Problems

Open Problems

- Repeat analysis for fixed (expected) degree models where we allow vertices of degree one.

Open Problems

- Repeat analysis for fixed (expected) degree models where we allow vertices of degree one.
- Analyse random geometric graphs in two dimensions. Some progress made here with Beveridge, Cooper, Mueller and X

Open Problems

- Repeat analysis for fixed (expected) degree models where we allow vertices of degree one.
- Analyse random geometric graphs in two dimensions. Some progress made here with Beveridge, Cooper, Mueller and X
- Allow $n p=(1+o(1)) \ln n$ in $D_{n, p}$.

Open Problems

- Repeat analysis for fixed (expected) degree models where we allow vertices of degree one.
- Analyse random geometric graphs in two dimensions. Some progress made here with Beveridge, Cooper, Mueller and X
- Allow $n p=(1+o(1)) \ln n$ in $D_{n, p}$.
- Tighten results on Crawling on web-graphs. Here the graph grows as the walk progresses and one aims to estimate the proportion of vertices which are unvisited.

