Anti-Ramsey Properties of Random Graphs

Alan Frieze

Carnegie Mellon University

General Topic

The edges of graph G are coloured, under some suitable restrictions. The aim is to study the following question.

Does G contain a Rainbow copy of graph H.
A rainbow copy of H is one in which every edge has a distinct colour.

This is Anti-Ramsey in some sense.

They introduced the following problem: Given a graph H let $f(n, H)$ be the maximum number of colours that you can use on the edges of K_{n} without creating a rainbow copy of H.

Theorem

Let $d+1=\min \{\chi(H-e): e \in E(H)\}$.

$$
f(n, H) \sim\binom{n}{2}\left(1-\frac{1}{d}\right)
$$

Lower Bound.

Suppose $d+1=\chi\left(H_{1}\right)$ and

$$
m_{0}=\operatorname{ext}\left(n, H_{1}\right) \sim\binom{n}{2}\left(1-\frac{1}{d}\right)
$$

be the maximum number of edges in an H_{1}-free subgraph of K_{n}.

Use m_{0} edges of a distinct colour to create a copy of an extremal graph for H_{1} and then fill in the rest of K_{n} with a single colour.

Upper Bound

Take 2 copies of H_{1} and let $e=\left(x_{1}, y_{1}\right)$ in one copy and let $e=\left(x_{2}, y_{2}\right)$ in the other copy. Form G by identifying x_{1} with x_{2} and y_{1} with y_{2}.

$\chi(G)=\chi\left(H_{1}\right)$ and so $m_{1}=\operatorname{ext}(n, G) \sim\binom{n}{2}\left(1-\frac{1}{d}\right)$ as well.
Note that $f(n, H) \leq \operatorname{ext}(n, G)$.

b-bounded colourings.

An edge colouring is b-bounded if no colour is used more than b times.

Define
$\left\{\begin{array}{l}1 \text { Every } b \text {-bounded colouring of } G \text { contains a }\end{array}\right.$
$A R(G, H, b)= \begin{cases}1 & \text { rainbow copy of } H \\ 0 & \text { Otherwise }\end{cases}$
This function has been studied by a number of authors:
$G=K_{n}, H=K_{m}:$
Let $\alpha(n, b)=\min \left\{m: A R\left(K_{m}, K_{n}, b\right)=1\right\}$.
$G=K_{n}, H=K_{m}:$
Let $\alpha(n, b)=\min \left\{m: A R\left(K_{m}, K_{n}, b\right)=1\right\}$.
$\alpha(3, b)=b+2$
Colour edge (i, j), $i<j$ of K_{b+1} with colour j. This gives a b-bounded colouring of K_{b+1} without a rainbow triangle.
$G=K_{n}, H=K_{m}:$
Let $\alpha(n, b)=\min \left\{m: A R\left(K_{m}, K_{n}, b\right)=1\right\}$.
$\alpha(3, b)=b+2$

Colour edge (i, j), $i<j$ of K_{b+1} with colour j. This gives a b-bounded colouring of K_{b+1} without a rainbow triangle.

Given an b-bounded colouring of K_{b+2} that does not have a rainbow triangle. Let C be the largest (in number of vertices), connected subgraph spanned by edges of the same colour. C has at most $b+1$ vertices. Thus there exists $v \notin C$.

The edges from v to C must all have the same colour, contradicting the definition of C.

In general it is only known that

$$
\Omega\left(b n^{2} / \ln n\right) \leq \alpha(n, b) \leq O\left(b n^{2}\right)
$$

Lefmann, Rödl, Wysocka (1996).

In general it is only known that

$$
\Omega\left(b n^{2} / \ln n\right) \leq \alpha(n, b) \leq O\left(b n^{2}\right)
$$

Lefmann, Rödl, Wysocka (1996).

Simple proof of upper bound: Let $m=10 b n^{2}$ and let
$C_{1}, C_{2}, \ldots, C_{M}$ be the colour classes of an edge colouring of K_{m} where $\left|C_{i}\right|=b_{i} \leq b$ for $i=1,2, \ldots, M$.

In general it is only known that

$$
\Omega\left(b n^{2} / \ln n\right) \leq \alpha(n, b) \leq O\left(b n^{2}\right)
$$

Lefmann, Rödl, Wysocka (1996).

Simple proof of upper bound: Let $m=10 b n^{2}$ and let $C_{1}, C_{2}, \ldots, C_{M}$ be the colour classes of an edge colouring of K_{m} where $\left|C_{i}\right|=b_{i} \leq b$ for $i=1,2, \ldots, M$.

Let $p=2 n / m$ and choose a random subset of S by putting each vertex of K_{m} into S with probability p. Let \mathcal{A}_{i} be the event that S contains two edges of colour i.

$$
\begin{aligned}
\operatorname{Pr}\left(\bigcap_{i=1}^{M} \overline{\mathcal{A}_{i}}\right) & \geq \prod_{i=1}^{M}\left(1-b_{i}^{2} p^{3} / 2\right) \\
& \geq \exp \left\{-\sum_{i=1}^{M}\left(b_{i}^{2} p^{3} / 2+b_{i}^{4} p^{6}\right)\right\} \\
& =(1-o(1)) \exp \left\{-\sum_{i=1}^{M} b_{i}^{2} p^{3} / 2\right\} \\
& \geq(1-o(1)) e^{-2 b n^{3} / m}
\end{aligned}
$$

Here we have used $\sum_{i=1}^{M} b_{i}^{2} \leq b \sum_{i=1}^{M} b_{i} \leq m^{2} b / 2$.

So,

$$
\operatorname{Pr}\left(\bigcap_{i=1}^{M} \overline{\mathcal{A}_{i}} \wedge|S| \geq n\right) \geq(1-o(1)) e^{-2 b n^{3} / m}-e^{-n / 4}>0
$$

Complexity Issues Fenner, Frieze (1984)

Given an edge colouring it is generally NP-hard to determine the existence of a rainbow copy of anything.

Complexity Issues Fenner, Frieze (1984)
Given an edge colouring it is generally NP-hard to determine the existence of a rainbow copy of anything.

One significant exception is that of checking for a rainbow spanning tree - Matroid Intersection Problem

Complexity Issues Fenner, Frieze (1984)

Given an edge colouring it is generally NP-hard to determine the existence of a rainbow copy of anything.

One significant exception is that of checking for a rainbow spanning tree - Matroid Intersection Problem

NP-hard to determine whether or not there is a rainbow rooted arborescence in an edge coloured digraph - bad news for the Greedoid Intersection Problem.

Hamilton Cycles

Hamilton Cycles

Complete Graph: Albert, Frieze, Reed (1995) (Correction by Rue)

Every $n / 64$-bounded edge colouring of K_{n} contains a rainbow Hamilton cycle.

Proof: Choose a random Hamilton cycle and apply the (lop-sided local lemma).

Theorem

Cooper, Frieze (1995)
If $m=n\left(\log n+(2 k-1) \log \log n+c_{n}\right) / 2$ and $\lambda=e^{-c}$, then

$$
\begin{align*}
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(G_{n, m} \in \mathcal{A} \mathcal{R}_{k}\right) & = \begin{cases}0 & c_{n} \rightarrow-\infty \\
\sum_{i=0}^{k-1} \frac{e^{-\lambda} \lambda^{i}}{i!} & c_{n} \rightarrow c \\
1 & c_{n} \rightarrow \infty\end{cases} \tag{1}\\
& =\lim _{n \rightarrow \infty} \operatorname{Pr}\left(G_{n, m} \in \mathcal{B}_{k}\right)
\end{align*}
$$

$\mathcal{A R}_{k}=\{G$: any k-bounded colouring of G contains a rainbow Hamilton cycle $\mathcal{B}_{k}=\{G: G$ has at most $k-1$ vertices of degree less than $2 k\}$. Proof: Throw away edges where a colour is used more than once and show that the remaining graph is Hamiltonian.

Random Graphs: Bohman,Frieze,Pikurhko,Smyth (2006)

We try to estimate

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(A R\left(G_{n, p}, H, b\right)=1\right)
$$

for various b, H.

Simplest non-trivial case

Theorem

Let $p=\frac{c_{n}}{n^{2 / 3}}$. Then

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(A R\left(G_{n, p}, K_{3}, 2\right)\right) & = \begin{cases}0 & c_{n} \rightarrow 0 \\
1-e^{-c^{6} / 24} & c_{n} \rightarrow c \\
1 & c_{n} \rightarrow \infty\end{cases} \\
& =\lim _{n \rightarrow \infty} \operatorname{Pr}\left(G_{n, p} \text { contains no } K_{4}\right) .
\end{aligned}
$$

Assume that $c_{n}=c$ and condition on there being no copy of K_{4}.

Assume that $c_{n}=c$ and condition on there being no copy of K_{4}.

Let Γ_{H} be the graph with a vertex for every copy of $H=K_{3}$ and an edge joining vertices H_{1}, H_{2} if the triangles H_{1}, H_{2} share an edge.

Assume that $c_{n}=c$ and condition on there being no copy of K_{4}.
Let Γ_{H} be the graph with a vertex for every copy of $H=K_{3}$ and an edge joining vertices H_{1}, H_{2} if the triangles H_{1}, H_{2} share an edge.

We argue that except for a very few cycles, which can easily be handled, Γ_{H} is a forest.

The next simplest example is

Theorem

Let $p=\frac{c}{n^{1 / 2}}$. Then,

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(A R\left(G_{n, p}, K_{3}, 2\right)\right)= \begin{cases}1-e^{-c^{10} / 120} & c<1 / \sqrt{2} \\ 1 & c>\sqrt{2}\end{cases}
$$

$\operatorname{Pr}\left(A R\left(G_{n, p}, K_{3}, 3\right)\right)$

The case $c<1 / \sqrt{2}$ is similar (but more complex) to the previous case.

The case $c<1 / \sqrt{2}$ is similar (but more complex) to the previous case.

Suppose that $c>\sqrt{2}$. Whp $G_{n, p}$ has $(1+o(1)) c n^{3 / 2} / 2$ edges, $(1+o(1)) c^{3} n^{3 / 2} / 6$ triangles and $o\left(n^{3 / 2}\right)$ copies of K_{4}.

Suppose that we have a 3-bounded colouring and A_{i} is the set of colours that are used i times and $a_{i}=\left|A_{i}\right|$ for $i=1,2,3$.
Thus,

$$
a_{1}+2 a_{2}+3 a_{3}=(1+o(1)) c n^{3 / 2} / 2
$$

Suppose that there are no rainbow triangles. Then each triangle T contains a pair of edges of the same colour $c(T)$.

For colour x let $t(x)$ be the number of triangles T such that $c(T)=x$.

So $t(x)=0$ for $x \in A_{1}, t(x) \leq 1$ for $x \in A_{2}$ and $t(x) \leq 2$ for $x \in A_{3}$, unless x is used to colour an edge of a copy of K_{4}.

These latter colourings are relatively rare and so we have

$$
a_{2}+2 a_{3} \geq(1+o(1)) c^{3} n^{3 / 2} / 6
$$

and since

$$
a_{1}+2 a_{2}+3 a_{3}=(1+o(1)) c n^{3 / 2} / 2
$$

we have

$$
\frac{c^{3}}{4} \leq \frac{c}{2} \text { or } c \leq \sqrt{2}
$$

Now lets consider general H.

We let

$$
m_{H}=\frac{e_{H}-1}{v_{H}-2}
$$

and

$$
m_{H}^{*}=\max _{\substack{H^{\prime} \subseteq H \\ v_{H^{\prime}} \geq 3}} m_{H^{\prime}}
$$

Theorem

Suppose that H is connected and not a tree and that b is sufficiently large. Then there exist $c_{1}=c_{1}(b, H)$ and $c_{2}=c_{2}(b, H)$ such that if $p=c n^{-1 / m_{H}^{*}}$ then

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(A R\left(G_{n, p}, H, b\right)\right)= \begin{cases}0 & c \leq c_{1} \\ 1 & c \geq c_{2}\end{cases}
$$

Assuming that $m_{H}=m_{H}^{*}$, when $p=c n^{-1 / m_{H}^{*}}$ the expected number of copies of H sitting on a fixed edge of $G_{n, p}$ is $O\left(c^{e_{H}-1}\right)$.

Assuming that $m_{H}=m_{H}^{*}$, when $p=c n^{-1 / m_{H}^{*}}$ the expected number of copies of H sitting on a fixed edge of $G_{n, p}$ is
$O\left(C^{e_{H}-1}\right)$.

Small c

Thinking in terms of branching processes and the size of the components of Γ_{H}, if c is small then these components will be small (polylog(n)).

It will be possible to order the vertices of a component v_{1}, v_{2}, \ldots so that each v_{i} has at most C_{H} neighbours in $v_{1}, v_{2}, \ldots, v_{i-1}$.

So if $b \geq C_{H}$ then we can avoid rainbow copies of H.

Large c
Assume that $m_{H}=m_{H}^{*}>m_{H^{\prime}}$ for all $H^{\prime} \subset H$.

Large c
Assume that $m_{H}=m_{H}^{*}>m_{H^{\prime}}$ for all $H^{\prime} \subset H$.
X_{H} denotes number of copies of H.

$$
\mathbf{E}\left(X_{H}\right) \sim K_{H} C^{e_{H}} n^{2-1 / m_{H}} \rightarrow \infty
$$

and whp $X_{H} \sim \mathbf{E}\left(X_{H}\right)$.

Large c
Assume that $m_{H}=m_{H}^{*}>m_{H^{\prime}}$ for all $H^{\prime} \subset H$.
X_{H} denotes number of copies of H.

$$
\mathrm{E}\left(X_{H}\right) \sim K_{H} C^{e_{H}} n^{2-1 / m_{H}} \rightarrow \infty
$$

and whp $X_{H} \sim \mathbf{E}\left(X_{H}\right)$.

Copy H_{1} of H is isolated if it does not share more than one edge with any other copy of H.
Whp almost all copies of H are isolated.

Large c
Assume that $m_{H}=m_{H}^{*}>m_{H^{\prime}}$ for all $H^{\prime} \subset H$.
X_{H} denotes number of copies of H.

$$
\mathbf{E}\left(X_{H}\right) \sim K_{H} C^{e_{H}} n^{2-1 / m_{H}} \rightarrow \infty
$$

and whp $X_{H} \sim \mathbf{E}\left(X_{H}\right)$.
Copy H_{1} of H is isolated if it does not share more than one edge with any other copy of H.
Whp almost all copies of H are isolated.

In a b-bounded colouring, the number of isolated copies of H that are not rainbow is at most

$$
\left|E\left(G_{n, p}\right)\right| b \leq 2 b c n^{2-1 / m_{H}} \ll X_{H}
$$

Trees

Whp $G_{n, p}, p \gg n^{-k /(k-1)}$ contains a copy of every tree with k vertices or less.

Threshold question reduces to evaluating, for a fixed tree T and integer b, the value of
$s(b, T)=\min \left\{k: \exists\right.$ tree T_{1} with k vertices such that

$$
\left.A R\left(T_{1}, T, b\right)=1\right\}
$$

Trees

Whp $G_{n, p}, p \gg n^{-k /(k-1)}$ contains a copy of every tree with k vertices or less.

Threshold question reduces to evaluating, for a fixed tree T and integer b, the value of
$s(b, T)=\min \left\{k: \exists\right.$ tree T_{1} with k vertices such that

$$
\left.A R\left(T_{1}, T, b\right)=1\right\}
$$

For example if $T=P_{l}$ a path of length $/$ then

$$
s\left(b, P_{l}\right)=\left\{\begin{array}{ll}
1+(b+1) \sum_{i=0}^{k-1} b^{i} & I=2 k \\
2+2 \sum_{i=1}^{k} b^{i} & I=2 k+1
\end{array} .\right.
$$

$s\left(3, P_{5}\right)=26$

Break edges into 9 bundles, 8 of size 3 and one of size 1 .
Hall's Theorem shows that for any 3-bounded colouring, there is a set of distinct (colour) representatives for the bundles.

Using this one gets a rainbow P_{5}.

