Anti-Ramsey Properties of Random Graphs

Alan Frieze

Carnegie Mellon University

・ロト・御ト・ヨト・ヨト ヨー めんの

General Topic

The edges of graph G are coloured, under some suitable restrictions. The aim is to study the following question.

Does G contain a Rainbow copy of graph H.

A rainbow copy of H is one in which every edge has a distinct colour.

This is Anti-Ramsey in some sense.

Erdős, Simonovits, Sós (1973).

They introduced the following problem: Given a graph H let f(n, H) be the maximum number of colours that you can use on the edges of K_n without creating a rainbow copy of H.

Theorem

Let
$$d + 1 = \min \{ \chi(H - e) : e \in E(H) \}.$$

$$f(n,H) \sim \binom{n}{2}\left(1-\frac{1}{d}\right)$$

Lower Bound.

Suppose $d + 1 = \chi(H_1)$ and

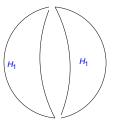
$$m_0 = \operatorname{ext}(n, H_1) \sim \binom{n}{2} \left(1 - \frac{1}{d}\right)$$

be the maximum number of edges in an H_1 -free subgraph of K_n .

Use m_0 edges of a distinct colour to create a copy of an extremal graph for H_1 and then fill in the rest of K_n with a single colour.

Upper Bound

Take 2 copies of H_1 and let $e = (x_1, y_1)$ in one copy and let $e = (x_2, y_2)$ in the other copy. Form *G* by identifying x_1 with x_2 and y_1 with y_2 .



 $\chi(\mathbf{G}) = \chi(\mathbf{H}_1)$ and so $m_1 = \operatorname{ext}(n, \mathbf{G}) \sim \binom{n}{2} \left(1 - \frac{1}{d}\right)$ as well.

Note that $f(n, H) \leq ext(n, G)$.

b-bounded colourings.

An edge colouring is *b*-bounded if no colour is used more than *b* times.

Define

$$AR(G, H, b) = \begin{cases} 1 & \text{Every } b\text{-bounded colouring of } G \text{ contains a} \\ \text{rainbow copy of } H \\ 0 & \text{Otherwise} \end{cases}$$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

3

This function has been studied by a number of authors:

 $G = K_n, H = K_m:$ Let $\alpha(n, b) = \min\{m : AR(K_m, K_n, b) = 1\}.$

 $G = K_n, H = K_m:$ Let $\alpha(n, b) = \min\{m : AR(K_m, K_n, b) = 1\}.$

 $\alpha(\mathbf{3}, \mathbf{b}) = \mathbf{b} + \mathbf{2}$

Colour edge (i, j), i < j of K_{b+1} with colour *j*. This gives a *b*-bounded colouring of K_{b+1} without a rainbow triangle.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

 $G = K_n, H = K_m:$ Let $\alpha(n, b) = \min\{m : AR(K_m, K_n, b) = 1\}.$

 $\alpha(\mathbf{3}, \mathbf{b}) = \mathbf{b} + \mathbf{2}$

Colour edge (i, j), i < j of K_{b+1} with colour *j*. This gives a *b*-bounded colouring of K_{b+1} without a rainbow triangle.

Given an *b*-bounded colouring of K_{b+2} that does not have a rainbow triangle. Let *C* be the largest (in number of vertices), connected subgraph spanned by edges of the same colour. *C* has at most b + 1 vertices. Thus there exists $v \notin C$.

The edges from v to C must all have the same colour, contradicting the definition of C.

In general it is only known that

 $\Omega(bn^2/\ln n) \le \alpha(n,b) \le O(bn^2).$

Lefmann, Rödl, Wysocka (1996).

In general it is only known that

 $\Omega(bn^2/\ln n) \le \alpha(n,b) \le O(bn^2).$

Lefmann, Rödl, Wysocka (1996).

Simple proof of upper bound: Let $m = 10bn^2$ and let C_1, C_2, \ldots, C_M be the colour classes of an edge colouring of K_m where $|C_i| = b_i \le b$ for $i = 1, 2, \ldots, M$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

In general it is only known that

 $\Omega(bn^2/\ln n) \le \alpha(n,b) \le O(bn^2).$

Lefmann, Rödl, Wysocka (1996).

Simple proof of upper bound: Let $m = 10bn^2$ and let C_1, C_2, \ldots, C_M be the colour classes of an edge colouring of K_m where $|C_i| = b_i \le b$ for $i = 1, 2, \ldots, M$.

Let p = 2n/m and choose a random subset of S by putting each vertex of K_m into S with probability p. Let A_i be the event that S contains two edges of colour *i*.

イロン イボン イヨン 一道

$$\begin{aligned} \Pr\left(\bigcap_{i=1}^{M} \overline{\mathcal{A}_{i}}\right) &\geq \prod_{i=1}^{M} (1 - b_{i}^{2} p^{3}/2) \\ &\geq \exp\left\{-\sum_{i=1}^{M} (b_{i}^{2} p^{3}/2 + b_{i}^{4} p^{6})\right\} \\ &= (1 - o(1)) \exp\left\{-\sum_{i=1}^{M} b_{i}^{2} p^{3}/2\right\} \\ &\geq (1 - o(1)) e^{-2bn^{3}/m}. \end{aligned}$$
Here we have used $\sum_{i=1}^{M} b_{i}^{2} \leq b \sum_{i=1}^{M} b_{i} \leq m^{2} b/2. \end{aligned}$

$$\Pr\left(\bigcap_{i=1}^{M} \overline{\mathcal{A}_{i}} \wedge |S| \geq n\right) \geq (1 - o(1))e^{-2bn^{3}/m} - e^{-n/4} > 0.$$

Complexity Issues Fenner, Frieze (1984)

Given an edge colouring it is generally NP-hard to determine the existence of a rainbow copy of anything. Complexity Issues Fenner, Frieze (1984)

Given an edge colouring it is generally NP-hard to determine the existence of a rainbow copy of anything.

One significant exception is that of checking for a rainbow spanning tree – Matroid Intersection Problem

・ 同 ト ・ ヨ ト ・ ヨ ト …

Complexity Issues Fenner, Frieze (1984)

Given an edge colouring it is generally NP-hard to determine the existence of a rainbow copy of anything.

One significant exception is that of checking for a rainbow spanning tree – Matroid Intersection Problem

NP-hard to determine whether or not there is a rainbow rooted arborescence in an edge coloured digraph – bad news for the Greedoid Intersection Problem.

Hamilton Cycles

< ロ> < 団> < 豆> < 豆> < 豆><< つへぐ

Hamilton Cycles

Complete Graph: Albert, Frieze, Reed (1995) (Correction by Rue)

Every n/64-bounded edge colouring of K_n contains a rainbow Hamilton cycle.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Proof: Choose a random Hamilton cycle and apply the (lop-sided local lemma).

Theorem

Cooper, Frieze (1995) If $m = n(\log n + (2k - 1) \log \log n + c_n)/2$ and $\lambda = e^{-c}$, then

$$\lim_{n \to \infty} \Pr(G_{n,m} \in \mathcal{AR}_k) = \begin{cases} 0 & c_n \to -\infty \\ \sum_{i=0}^{k-1} \frac{e^{-\lambda}\lambda^i}{i!} & c_n \to c \\ 1 & c_n \to \infty \end{cases}$$
$$= \lim_{n \to \infty} \Pr(G_{n,m} \in \mathcal{B}_k),$$

 $\mathcal{AR}_k = \{ G : any \ k \text{-bounded colouring of } G \}$

contains a rainbow Hamilton cycle

 $\mathcal{B}_k = \{G : G \text{ has at most } k - 1 \text{ vertices of degree less than } 2k\}.$ **Proof:** Throw away edges where a colour is used more than once and show that the remaining graph is Hamiltonian. Random Graphs: Bohman, Frieze, Pikurhko, Smyth (2006)

We try to estimate

$$\lim_{n\to\infty} \Pr(AR(G_{n,p},H,b)=1)$$

for various **b**, **H**.

Simplest non-trivial case

Theorem

Let
$$p = \frac{c_n}{n^{2/3}}$$
. Then

$$\lim_{n \to \infty} \Pr(AR(G_{n,p}, K_3, 2)) = \begin{cases} 0 & c_n \to 0\\ 1 - e^{-c^6/24} & c_n \to c\\ 1 & c_n \to \infty \end{cases}$$

$$= \lim_{n \to \infty} \Pr(G_{n,p} \text{ contains no } K_4).$$

Assume that $c_n = c$ and condition on there being no copy of K_4 .

(日) (四) (三) (三) (三) (三) (○)

Assume that $c_n = c$ and condition on there being no copy of K_4 .

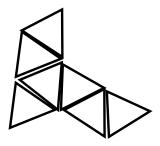
Let Γ_H be the graph with a vertex for every copy of $H = K_3$ and an edge joining vertices H_1, H_2 if the triangles H_1, H_2 share an edge.

イロト イポト イヨト イヨト 一座

Assume that $c_n = c$ and condition on there being no copy of K_4 .

Let Γ_H be the graph with a vertex for every copy of $H = K_3$ and an edge joining vertices H_1, H_2 if the triangles H_1, H_2 share an edge.

We argue that except for a very few cycles, which can easily be handled, Γ_H is a forest.



The next simplest example is

Theorem

Let
$$p = \frac{c}{n^{1/2}}$$
. Then,

$$\lim_{n \to \infty} \Pr(AR(G_{n,p}, K_3, 2)) = \begin{cases} 1 - e^{-c^{10}/120} & c < 1/\sqrt{2} \\ 1 & c > \sqrt{2} \end{cases}$$

▲口 > ▲圖 > ▲ 三 > ▲ 三 > -

-20

The case $c < 1/\sqrt{2}$ is similar (but more complex) to the previous case.

The case $c < 1/\sqrt{2}$ is similar (but more complex) to the previous case.

Suppose that $c > \sqrt{2}$. Whp $G_{n,p}$ has $(1 + o(1))cn^{3/2}/2$ edges, $(1 + o(1))c^3n^{3/2}/6$ triangles and $o(n^{3/2})$ copies of K_4 .

Suppose that we have a 3-bounded colouring and A_i is the set of colours that are used *i* times and $a_i = |A_i|$ for i = 1, 2, 3. Thus,

$$a_1 + 2a_2 + 3a_3 = (1 + o(1))cn^{3/2}/2.$$

Suppose that there are no rainbow triangles. Then each triangle T contains a pair of edges of the same colour c(T).

For colour x let t(x) be the number of triangles T such that c(T) = x.

So t(x) = 0 for $x \in A_1$, $t(x) \le 1$ for $x \in A_2$ and $t(x) \le 2$ for $x \in A_3$, unless x is used to colour an edge of a copy of K_4 .

These latter colourings are relatively rare and so we have

 $a_2 + 2a_3 \ge (1 + o(1))c^3n^{3/2}/6.$

and since

$$a_1 + 2a_2 + 3a_3 = (1 + o(1))cn^{3/2}/2$$

we have

$$\frac{c^3}{4} \le \frac{c}{2} \text{ or } c \le \sqrt{2}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Now lets consider general *H*.

We let

$$m_H = \frac{e_H - 1}{v_H - 2}$$

and

$$m_{H}^{*} = \max_{\substack{H' \subseteq H \ v_{H'} \geq 3}} m_{H'}$$

Theorem

Suppose that H is connected and not a tree and that b is sufficiently large. Then there exist $c_1 = c_1(b, H)$ and $c_2 = c_2(b, H)$ such that if $p = cn^{-1/m_H^*}$ then

$$\lim_{n\to\infty} \Pr(AR(G_{n,p},H,b)) = \begin{cases} 0 & c \le c_1 \\ 1 & c \ge c_2 \end{cases}$$

Assuming that $m_H = m_H^*$, when $p = cn^{-1/m_H^*}$ the expected number of copies of *H* sitting on a fixed edge of $G_{n,p}$ is $O(c^{e_H-1})$.

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 - のへで

Assuming that $m_H = m_H^*$, when $p = cn^{-1/m_H^*}$ the expected number of copies of *H* sitting on a fixed edge of $G_{n,p}$ is $O(c^{e_H-1})$.

Small c

Thinking in terms of branching processes and the size of the components of Γ_H , if *c* is small then these components will be small (polylog(*n*)).

It will be possible to order the vertices of a component $v_1, v_2, ...$ so that each v_i has at most C_H neighbours in $v_1, v_2, ..., v_{i-1}$.

イロト イポト イヨト イヨト 一座

So if $b \ge C_H$ then we can avoid rainbow copies of *H*.

 X_H denotes number of copies of H.

$${\sf E}(X_H)\sim {\it K}_H c^{e_H} n^{2-1/m_H}
ightarrow\infty$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

and whp $X_H \sim \mathbf{E}(X_H)$.

 X_H denotes number of copies of H.

$${\sf E}(X_H)\sim {\sf K}_Hc^{e_H}n^{2-1/m_H}
ightarrow\infty$$

and whp $X_H \sim \mathbf{E}(X_H)$.

Copy H_1 of H is isolated if it does not share more than one edge with any other copy of H. Whp almost all copies of H are isolated.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

 X_H denotes number of copies of H.

$${\sf E}(X_H)\sim {\sf K}_Hc^{e_H}n^{2-1/m_H}
ightarrow\infty$$

and whp $X_H \sim \mathbf{E}(X_H)$.

Copy H_1 of H is isolated if it does not share more than one edge with any other copy of H. Whp almost all copies of H are isolated.

In a *b*-bounded colouring, the number of isolated copies of H that are not rainbow is at most

$$|E(G_{n,p})|b \leq 2bcn^{2-1/m_H} \ll X_H.$$

Trees

Whp $G_{n,p}$, $p \gg n^{-k/(k-1)}$ contains a copy of every tree with k vertices or less.

Threshold question reduces to evaluating, for a fixed tree T and integer b, the value of

 $s(b, T) = \min\{k : \exists \text{ tree } T_1 \text{ with } k \text{ vertices such that} AR(T_1, T, b) = 1\}.$

▲■▶ ▲目▶ ▲目▶ 三目 - のへの

Trees

Whp $G_{n,p}$, $p \gg n^{-k/(k-1)}$ contains a copy of every tree with k vertices or less.

Threshold question reduces to evaluating, for a fixed tree T and integer b, the value of

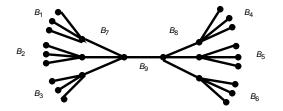
 $s(b, T) = \min\{k : \exists \text{ tree } T_1 \text{ with } k \text{ vertices such that} AR(T_1, T, b) = 1\}.$

For example if $T = P_I$ a path of length *I* then

$$s(b, P_l) = \begin{cases} 1 + (b+1) \sum_{i=0}^{k-1} b^i & l = 2k \\ 2 + 2 \sum_{i=1}^{k} b^i & l = 2k+1 \end{cases}.$$

|▲■▶ ▲ 臣▶ ▲ 臣▶ | 臣||||のへ⊙

$s(3, P_5) = 26$



Break edges into 9 bundles, 8 of size 3 and one of size 1.

Hall's Theorem shows that for any 3-bounded colouring, there is a set of distinct (colour) representatives for the bundles.

Using this one gets a rainbow P_5 .