Independence and chromatic number

 (and random k-SAT): Sparse CaseDimitris Achlioptas

Microsoft

Random graphs

$$
G(n, p)
$$

Each edge appears, independently, with probability p.

$$
G(n, m)
$$

We add m edges one-by-one.
W.h.p.: with probability that tends to 1 as $n \rightarrow \infty$.

Hamiltonian cycle

- Let τ_{2} be the moment all vertices have degree ≥ 2

Hamiltonian cycle

- Let τ_{2} be the moment all vertices have degree ≥ 2
- W.h.p. $G\left(n, m=\tau_{2}\right)$ has a Hamiltonian cycle

Hamiltonian cycle

- Let τ_{2} be the moment all vertices have degree ≥ 2
- W.h.p. $G\left(n, m=\tau_{2}\right)$ has a Hamiltonian cycle
- W.h.p. it can be found in time $O\left(n^{3} \log n\right)$
[Ajtai, Komlós, Szemerédi 85] [Bollobás, Fenner, Frieze 87]

Hamiltonian cycle

- Let τ_{2} be the moment all vertices have degree ≥ 2
- W.h.p. $G\left(n, m=\tau_{2}\right)$ has a Hamiltonian cycle
- W.h.p. it can be found in time $O\left(n^{3} \log n\right)$
[Ajtai, Komlós, Szemerédi 85] [Bollobás, Fenner, Frieze 87]
- In $G(n, 1 / 2)$ Hamiltonicity can be decided in $O(\mathrm{n})$ expected time.
[Gurevich, Shelah 84]

Cliques in random graphs

- The largest clique in $G(n, 1 / 2)$ has size

$$
2 \log _{2} n-2 \log _{2} \log _{2} n \pm 1
$$

[Bollobás, Erdős 75] [Matula 76]

Cliques in random graphs

- The largest clique in $G(n, 1 / 2)$ has size

$$
2 \log _{2} n-2 \log _{2} \log _{2} n \pm 1
$$

[Bollobás, Erdős 75] [Matula 76]

- No maximal clique of size $<\log _{2} n$

Cliques in random graphs

- The largest clique in $G(n, 1 / 2)$ has size

$$
2 \log _{2} n-2 \log _{2} \log _{2} n \pm 1
$$

[Bollobás, Erdős 75] [Matula 76]

- No maximal clique of size $<\log _{2} n$
- Can we find a clique of size $(1+\epsilon) \log _{2} n$?
[Karp 76]

Cliques in random graphs

- The largest clique in $G(n, 1 / 2)$ has size

$$
2 \log _{2} n-2 \log _{2} \log _{2} n \pm 1
$$

[Bollobás, Erdős 75] [Matula 76]

- No maximal clique of size $<\log _{2} n$
- Can we find a clique of size $(1+\epsilon) \log _{2} n$? What if we "hide" a clique of size $n^{1=2 i^{2}} ?$

Two problems for which we know much less.

- Chromatic number of sparse random graphs
- Random k-SAT

Two problems for which we know much less.

- Chromatic number of sparse random graphs
- Random k-SAT
- Canonical for random constraint satisfaction:
- Binary constraints over k-ary domain
- k-ary constraints over binary domain
- Studied in: AI, Math, Optimization, Physics,...

A factor-graph representation of k-coloring

- Each vertex is a variable with domain $\{1,2, \ldots, k\}$.
- Each edge is a constraint on two variables.
- All constraints are "not-equal".
- Random graph = each constraint picks two variables at random.

Vertices

\square
Edges

SAT via factor-graphs

$\left(\bar{x}_{12} \vee x_{5} \vee \bar{x}_{9}\right) \wedge\left(x_{34} \vee \bar{x}_{21} \vee x_{5}\right) \wedge \cdots \cdots \wedge\left(x_{21} \vee x_{9} \vee \bar{x}_{13}\right)$

SAT via factor-graphs

$\left(\bar{x}_{12} \vee x_{5} \vee \bar{x}_{9}\right) \wedge\left(x_{34} \vee \bar{x}_{21} \vee x_{5}\right) \wedge \cdots \cdots \wedge\left(x_{21} \vee x_{9} \vee \bar{x}_{13}\right)$

- Edge between x and c iff x occurs in clause c.
- Edges are labeled +/- to indicate whether the literal is negated.
- Constraints are "at least one literal must be satisfied".
- Random k-SAT = constraints
 pick k literals at random.

Diluted mean-field spin glasses

- Small, discrete domains: spins
- Conflicting, fixed constraints: quenched disorder
- Random bipartite graph: lack of geometry, mean field
- Sparse: diluted
- Hypergraph coloring, random XOR-SAT, error-correcting
 codes...

Random graph coloring:

Background

A trivial lower bound

- For any graph, the chromatic number is at least:

Number of vertices
Size of maximum independent set

A trivial lower bound

- For any graph, the chromatic number is at least:

Number of vertices

Size of maximum independent set

- For random graphs, use upper bound for largest independent set.

$$
{ }_{s}^{\mu_{n} \Pi} \times(1-p)^{\left(\frac{s}{2}\right)} \rightarrow 0
$$

An algorithmic upper bound

- Repeat
-Pick a random uncolored vertex
-Assign it the lowest allowed number (color)

Uses $2 x$ trivial lower bound number of colors

An algorithmic upper bound

- Repeat
-Pick a random uncolored vertex
-Assign it the lowest allowed number (color)

Uses 2 x trivial lower bound number of colors

- No algorithm is known to do better

The lower bound is asymptotically tight

As d grows, $G(n, d / n)$ can be colored using independent sets of essentially maximum size
[Bollobás 89]
[モuczak 91]

The lower bound is asymptotically tight

As d grows, $G(n, d / n)$ can be colored using independent sets of essentially maximum size
[Bollobás 89]
[Łuczak 91]

Average degree	10^{60}	10^{80}	10^{100}	10^{130}	10^{1000}
Lower bound	$37 \cdot 10^{56}$	$28 \cdot 10^{76}$	$22 \cdot 10^{96}$	$17 \cdot 10^{126}$	$21 \cdot 10^{995}$
Upper / Lower	1.97	1.78	1.68	1.53	1.14

Only two possible values

Theorem. For every $d>0$, there exists an integer $k=k(d)$ such that w.h.p. the chromatic number of $G(n, p=d / n)$ is either k or $k+1$
[Łuczak 91]

"The Values"

Theorem. For every $d>0$, thereminetoninteger
 $G(n, p=d / n)$ is either k or $k+1$
where κ is the smallest integer s.t. $d<2 \hbar \log \kappa$.

Examples

- If $d=7$, w.h.p. the chromatic number is 4 or 5 .

Examples

- If $d=7$, w.h.p. the chromatic number is 4 or 5 .
- If $d=10^{60}$, w.h.p. the chromatic number is

3771455490672260758090142394938336005516126417647650681575 or

3771455490672260758090142394938336005516126417647650681576

One value

Theorem. If $(2 \hbar-1) \ln k<d<2 \hbar \ln \hbar$ then w.h.p. the chromatic number of $G(n, d / n)$ is $k+1$.

One value

Theorem. If $(2 k-1) \ln k<d<2 k \ln k$ then w.h.p. the chromatic number of $G(n, d / n)$ is $k+1$.

- If $d=10,{ }^{100}$ then w.h.p. the chromatic number is

Random k-SAT:

Background

Random k-SAT

- Fix a set of n variables $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$
- Among all $2^{\mu}{ }_{k}^{\mu}$ possible k-clauses select m uniformly and independently. Typically $m=r n$.
- Example ($\kappa=3$) :
$\left(\bar{x}_{12} \vee x_{5} \vee \bar{x}_{9}\right) \wedge\left(x_{34} \vee \bar{x}_{21} \vee x_{5}\right) \wedge \cdots \cdots \wedge\left(x_{21} \vee x_{9} \vee \bar{x}_{13}\right)$

Generating hard 3-SAT instances

[Mitchell,
Selman,
Levesque 92]

Generating hard 3-SAT instances

[Mitchell,
Selman,
Levesque 92]

- The critical point appears to be around $r \approx 4.2$

The satisfiability threshold conjecture

For every $k \geq 3$, there is a constant r_{k} such that

$$
\lim _{n!1} \operatorname{Pr}\left[\mathcal{F}_{k}(n, r n) \text { is satisfiable }\right]=\begin{aligned}
1 / 2 & \text { if } r=r_{k}-\epsilon \\
0 & \text { if } r=r_{k}+\epsilon
\end{aligned}
$$

The satisfiability threshold conjecture

For every $k \geq 3$, there is a constant r_{k} such that

$$
\lim _{n!1} \operatorname{Pr}\left[\mathcal{F}_{k}(n, r n) \text { is satisfiable }\right]=\begin{aligned}
1 / 2 & \text { if } r=r_{k}-\epsilon \\
0 & \text { if } r=r_{k}+\epsilon
\end{aligned}
$$

- For every $k \geq 3$,

$$
\frac{2^{k}}{k}<r_{k}<2^{k} \ln 2
$$

Unit-clause propagation

Repeat

- Pick a random unset variable and set it to 1
- While there are unit-clauses satisfy them
- If a 0-clause is generated fail

Unit-clause propagation

Repeat

- Pick a random unset variable and set it to 1
- While there are unit-clauses satisfy them
- If a 0-clause is generated fail
- UC finds a satisfying truth assignment if

$$
r<\frac{2^{k}}{k}
$$

[Chao, Franco 86]

An asymptotic gap

- The probability of satisfiability it at most

$$
\begin{aligned}
2^{n} 1-{\frac{1}{2^{k}}}^{\mathbb{I}_{m}} & =2^{\mu} 1-{\frac{1}{2^{k}}}^{\Pi_{r, n}} \\
& \rightarrow 0 \quad \text { for } r \geq 2^{k} \ln 2
\end{aligned}
$$

An asymptotic gap

Since mid-80s, no asymptotic progress over

$$
\frac{2^{k}}{\hbar}<r_{k}<2^{k} \ln 2
$$

Getting to within a factor of 2

Theorem: For all $\kappa \geq 3$ and

$$
r<2^{k_{i} 1} \ln 2-1
$$

a random k-CNF formula with $m=r n$
clauses w.h.p. has a complementary pair of satisfying truth assignments.

The trivial upper bound is the truth!

Theorem: For all $\hbar \geq 3$, a random k-CNF formula with $m=r n$ clauses is w.h.p. satisfiable if

$$
r \leq 2^{k} \ln 2-\frac{k}{2}-1
$$

Some explicit bounds for the k-SAT threshold

k	3	4	5	7	20	21
Upper bound	4.51	10.23	21.33	87.88	726,817	$1,453,635$
Our lower bound	2.68	7.91	18.79	84.82	726,809	$1,453,626$
Algorithmic lower bound	3.52	5.54	9.63	33.23	95,263	181,453

The second moment method

For any non-negative r.v. X ,

$$
\operatorname{Pr}[X>0] \geq \frac{E[X]^{2}}{E\left[X^{2}\right]}
$$

Pro of: Let $Y=1$ if $X>0$, and $Y=0$ otherwise.
By Cauchy-Schwartz,
$\mathbf{E}[X]^{2}=\mathbf{E}[X Y]^{2} \leq \mathbf{E}\left[X^{2}\right] \mathbf{E}\left[Y^{2}\right]=\mathbf{E}\left[X^{2}\right] \operatorname{Pr}[X>0]$.

Ideal for sums

$$
\text { If } \begin{aligned}
X=X_{1}+X_{2}+\cdots & \text { then } \\
\mathrm{E}\left[X^{2}\right. & =\mathrm{X}^{2} \mathrm{E}\left[X_{i}\right] \mathrm{E}\left[X_{j}\right] \\
\mathrm{E}\left[X^{2}\right] & ={ }_{\mathrm{i} \cdot \mathrm{ij}}^{\mathrm{x}} \mathrm{E}\left[X_{i} X_{j}\right]
\end{aligned}
$$

Ideal for sums

$$
\text { If } \begin{aligned}
X=X_{1}+X_{2}+\cdots & \text { then } \\
\mathrm{E}\left[X^{2}\right]^{2} & ={ }^{\mathrm{X}} \mathrm{E} \mathrm{E}\left[X_{i}\right] \mathrm{E}\left[X_{j}\right] \\
\mathrm{E}\left[X^{2}\right] & ={ }_{\mathrm{i} \cdot \mathrm{ij}} \mathrm{E}\left[X_{i} X_{j}\right]
\end{aligned}
$$

Example:

The X_{i} correspond to the ${ }_{q}^{i_{q} \phi}$ potential q-cligues in $G(n, 1 / 2)$
Dominant contribution from non-ovelapping cliques

General observations

- Method works well when the X_{i} are like "needles in a haystack"

General observations

- Method works well when the X_{i} are like "needles in a haystack"
- Lack of correlations \Longrightarrow rapid drop in influence around solutions

General observations

- Method works well when the X_{i} are like "needles in a haystack"
- Lack of correlations \Longrightarrow rapid drop in influence around solutions
- Algorithms get no "hints"

The second moment method for random k-SAT

- Let X be the \# of satisfying truth assignments

The second moment method for random k-SAT

- Let X be the \# of satisfying truth assignments

For every clause-density $r>0$, there is $\beta=\beta(r)>0$ such that

$$
\frac{E[X]^{2}}{E\left[X^{2}\right]}<(1-\beta)^{n}
$$

The second moment method for random k-SAT

- Let X be the \# of satisfying truth assignments

For every clause-density $r>0$, there is $\beta=\beta(r)>0$ such that

$$
\frac{E[X]^{2}}{E\left[X^{2}\right]}<(1-\beta)^{n}
$$

- The number of satisfying truth assignments has huge variance.

The second moment method for random k-SAT

- Let X be the \# of satisfying truth assignments

For every clause-density $r>0$, there is $\beta=\beta(r)>0$ such that

$$
\frac{\mathbf{E}[X]^{2}}{\mathbf{E}\left[X^{2}\right]}<(1-\beta)^{n}
$$

- The number of satisfying truth assignments has huge variance.
- The satisfying truth assignments do not form a "uniformly random mist" in $\{0,1\}^{n}$

To prove $2^{k} \ln 2-k / 2-1$

- Let $H(\sigma, F)$ be the number of satisfied literal occurrences in F under σ

To prove $2^{k} \ln 2-k / 2-1$

- Let $H(\sigma, F)$ be the number of satisfied literal occurrences in F under σ
- Let $X=X(F)$ be defined as

$$
X(F)=\begin{aligned}
& \mathrm{X}_{1 / /=F} \gamma^{H(3 / 4 F)} \\
& \mathrm{X}^{3 / 4} \mathrm{Y}
\end{aligned}
$$

where $\gamma<1$ satisfies $\left(1+\gamma^{2}\right)^{k_{i} 1}\left(1-\gamma^{2}\right)=1$.

To prove $2^{k} \ln 2-k / 2-1$

- Let $H(\sigma, F)$ be the number of satisfied literal occurrences in F under σ
- Let $X=X(F)$ be defined as

$$
\begin{aligned}
X(F) & =X^{1_{3 / /=F}} \gamma^{H(3 / F)} \\
& =X^{3 / 4} \mathrm{Y}_{3 / /=c} \gamma^{H(3 / c)}
\end{aligned}
$$

where $\gamma<1$ satisfies $\left(1+\gamma^{2}\right)^{k_{i} 1}\left(1-\gamma^{2}\right)=1$.

General functions

- Given any t.a. σ and any k-clause c let

$$
\mathbf{v}=\mathbf{v}(\sigma, c) \in\{-1,+1\}^{k}
$$

be the values of the literals in c under σ.

General functions

- Given any t.a. σ and any k-clause c let

$$
\mathbf{v}=\mathbf{v}(\sigma, c) \in\{-1,+1\}^{k}
$$

be the values of the literals in c under σ.

- We will study random variables of the form

$$
X=\begin{array}{lll}
X & Y \\
3 / 4 & c
\end{array} f(\mathbf{v}(\sigma, c))
$$

where $f:\{-1,+1\}^{k} \rightarrow \mathbb{R}$ is an arbitrary function

$$
X=\begin{array}{lll}
X & \mathrm{Y} \\
3 / 4 & { }_{c} \\
& f(\mathbf{V}(\sigma, c)) \\
\hline
\end{array}
$$

$$
\begin{aligned}
& f(\mathbf{v})=1 \quad \text { for all } \mathbf{v} \quad \Longrightarrow \quad 2^{n} \\
& \left(\begin{array}{ll}
0 & \text { if } \mathbf{v}=(-1,-1, \ldots,-1)
\end{array}\right. \\
& 1 \text { otherwise } \\
& f(\mathbf{v})=\begin{array}{ll}
8 \\
\stackrel{8}{\gtrless} 0 & \text { if } \mathbf{v}=(-1,-1, \ldots,-1) \text { or } \\
\text { if } \mathbf{v}=(+1,+1, \ldots,+1)
\end{array} \quad \Longrightarrow \quad \begin{array}{l}
\text { otherwise } \\
\quad 1 \\
\text { \# of "Not All Equal" } \\
\text { truth assignments }
\end{array} \\
& \text { (NAE) }
\end{aligned}
$$

$$
X=\underbrace{}_{3 / 4} \quad c \quad f(\mathbf{v}(\sigma, c))
$$

$$
f(\mathbf{v})=1 \quad \text { for all } \mathbf{v} \quad \Longrightarrow \quad 2^{n}
$$

$$
\left(\begin{array}{ll}
0 & \text { if } \mathbf{v}=(-1,-1, \ldots,-1)
\end{array}\right.
$$

$$
1 \text { otherwise }
$$

\# of satisfying truth assignments

$$
f(\mathbf{v})=\begin{array}{ll}
\stackrel{8}{\gtrless} 0 & \text { if } \mathbf{v}=(-1,-1, \ldots,-1) \text { or } \\
? & \text { if } \mathbf{v}=(+1,+1, \ldots,+1) \\
1 & \text { otherwise }
\end{array} \Longrightarrow \begin{aligned}
& \text { \# of satisfying } \\
& \text { truth assignments } \\
& \text { whose complement } \\
& \text { is also satisfying }
\end{aligned}
$$

Overlap parameter = distance

- Overlap parameter is Hamming distance

Overlap parameter = distance

- Overlap parameter is Hamming distance
- For any f, if σ, Tagree on $z=n / 2$ variables

$$
\mathbf{E}^{\mathbf{h}} f(\mathbf{v}(\sigma, c)) f(\mathbf{v}(\tau, c))^{\mathrm{i}}=\mathbf{E}^{£} f(\mathbf{v}(\sigma, c))^{\boldsymbol{a}} \mathbf{E}^{£} f(\mathbf{v}(\tau, c))^{\mathbf{a}}
$$

Overlap parameter = distance

- Overlap parameter is Hamming distance
- For any f, if σ, Tagree on $z=n / 2$ variables

$$
\mathbf{E}^{\mathbf{h}} f(\mathbf{v}(\sigma, c)) f(\mathbf{v}(\tau, c))^{\mathbf{i}}=\mathbf{E}^{£} f(\mathbf{v}(\sigma, c))^{\mathbf{a}} \mathbf{E}^{£} f(\mathbf{v}(\tau, c))^{\mathbf{a}}
$$

- For any f, if $\sigma, \mathcal{\tau}$ agree on z variables, let

$$
\mathcal{C}_{f}(z / n) \equiv \mathbf{E} f(\mathbf{v}(\sigma, c)) f(\mathbf{v}(\tau, c))
$$

Contribution according to distance

$$
\begin{aligned}
\mathbf{E}\left[X^{2}\right] & =\sum_{\sigma, \tau} \prod_{c} \mathbf{E}[f(\sigma, c) f(\tau, c)] \\
& =\sum_{\sigma, \tau}(\mathbf{E}[f(\sigma, c) f(\tau, c)])^{m} \\
& =2^{n} \sum_{z=0}^{n}\binom{n}{z} \mathcal{C}_{f}(z / n)^{m}
\end{aligned}
$$

Independence

Identically distributed

Fixing σ

Entropy vs. correlation

For every function f :

$$
E\left[X^{2}\right]=2^{n=0} z^{n} C_{f}(z / n)^{m}
$$

$$
E[X]^{2}=2^{n}{ }_{z=0}^{x^{n} \mu} z^{\boldsymbol{\pi}} C_{f}(1 / 2)^{m}
$$

Contribution according to distance

$$
\begin{aligned}
\mathbf{E}\left[X^{2}\right] & =\sum_{\sigma, \tau} \prod_{c} \mathbf{E}[f(\sigma, c) f(\tau, c)] & & \text { Independence } \\
& =\sum_{\sigma, \tau}(\mathbf{E}[f(\sigma, c) f(\tau, c)])^{m} & & \text { Identically distribし } \\
& =2^{n} \sum_{z=0}^{n}\binom{n}{z} \mathcal{C}_{f}(z / n)^{m} & & \text { Fixing } \sigma \\
& =\left(\max _{0 \leq \alpha \leq 1} \frac{2 \mathcal{C}_{f}(\alpha)^{r}}{\alpha^{\alpha}(1-\alpha)^{1-\alpha}}\right)^{n} \times \Theta(1) & & \text { Laplace method }
\end{aligned}
$$

$$
\frac{1}{\alpha^{\alpha}(1-\alpha)^{1-\alpha}}
$$

$®=z / n$

The importance of being balanced

- An analytic condition:
$C_{f}^{\prime}(1=2) \neq 0 \Longrightarrow$ the s.m.m. fails

$$
\frac{1}{\alpha^{\alpha}(1-\alpha)^{1-\alpha}}
$$

$®=z / n$

NAE 5-SAT

The importance of being balanced

- An analytic condition:
$C_{f}^{\prime}(1=2) \neq 0 \Longrightarrow$ the s.m.m. fails

The importance of being balanced

- An analytic condition:
$C_{f}^{\prime}(1=2) \neq 0 \Longrightarrow$ the s.m.m. fails
- A geometric criterion:

$$
\underbrace{\mathrm{X}}_{\mathrm{v} \in\left\{-1,+1 j^{k}\right.} \quad \mathrm{f}) \mathrm{v}=0
$$

The importance of being balanced

$$
\mathcal{C}_{f}^{\prime}(1=2)=0 \Longleftrightarrow \sum_{\mathbf{v} \in\{-1 ;+1\}^{k}}^{\mathrm{X}} f(\mathbf{v}) \mathbf{v}=\mathbf{0}
$$

$$
(-1,-1, \ldots,-1)
$$

$(+1,+1, \ldots,+1)$
Constant
$\square \square \square \square$

00000000 \square

SAT

Complementary

Balance \& Information Theory

- Want to balance vectors in "optimal" way

Balance \& Information Theory

- Want to balance vectors in "optimal" way
- Information theory \Longrightarrow maximize the entropy of the $f(\mathbf{v})$ subject to

$$
f(-1,-1, \ldots,-1)=0 \quad \text { and } \underset{\mathbf{v} 2 f_{i}}{ } \quad f\left(\mathbf{1}+1 \mathrm{~g}^{k} \mathrm{v}\right) \mathbf{v}=0
$$

Balance \& Information Theory

- Want to balance vectors in "optimal" way
- Information theory \Longrightarrow maximize the entropy of the $f(\mathbf{v})$ subject to

$$
f(-1,-1, \ldots,-1)=0 \quad \text { and } \underset{\mathbf{v} 2 f_{i}}{ } \quad f\left(\mathbf{1}+1 \mathrm{~g}^{k}\right) \mathbf{v}=0
$$

- Lagrange multipliers \Longrightarrow the optimal f is

$$
f(\mathbf{v})=\gamma^{\# \text { of }+1 \mathrm{~s} \text { in } \mathbf{v}}
$$

for the unique γ that satisfies the constraints

Balance \& Information Theory

- Want to balance vectors in "optimal" way
- Information theory \Longrightarrow maximize the entropy of the $f(\mathbf{v})$ subject to

$$
f(-1,-1, \ldots,-1)=0 \quad \text { and } \underset{\text { v } 2 f_{i}}{ } \quad f(\mathbf{v}) \mathbf{v}=0
$$

$$
(-1,-1, \ldots,-1)
$$

$(+1,+1, \ldots,+1)$

Heroic

Random graph coloring

Threshold formulation

Theorem. A random graph with n vertices and $m=c n$ edgesis w.h.p. k-colorable if

$$
c \leq \hbar \log \hbar-\log \hbar-1
$$

and when non-k-colorable if

$$
c \geq \nless \log k-\frac{1}{2} \log k
$$

Main points

- Non-k-colorability:

Pro of. The \urcorner probability that \urcorner there exists \urcorner any k-coloringㄱis at?most

$$
{\frac{L^{n}}{}}_{\mu}^{1-\frac{1}{k}}{ }_{c n}^{\Pi_{c n}} \rightarrow 0
$$

o k-colorability:
Pro of. Apply second moment method to the number of balanoed k-colorings of $G(n, m)$.

Setup

- Let X_{σ} be the indicator that the balanced k-partition σ is a proper k-coloring.
- We will prove that if $X={ }^{\mathrm{P}}{ }_{3 / 4} X_{3 / 4}$ then for all $c \leq k \log k-\log k-1$ there is a constant $D=D(k)$ such that

$$
E\left[X^{2}\right]<D E[X]^{2}
$$

- This implies that $G(n, c n)$ is k-colorable w.h.p.

Setup

- $\mathrm{E}\left[X^{2}\right]=$ sum over all σ, τ of $\mathrm{E}\left[X_{3} / X_{i}\right]$.
- For any pair of balanced k-partitions σ, τ let $a_{i j} n$ be the \# of vertices having color i in σ and color j in T .

0
1 on
$\operatorname{Pr}[\sigma$ and τ are proper $]=@_{1}-\frac{2}{k}+{ }_{i j}^{\mathrm{X}} a_{i j}^{2} \mathrm{~A}$

Examples

Balance $\Longrightarrow A$ is doubly-stochastic.

When σ, τ are uncorrelated, A is
the flat $1 / k$ matrix

Examples

Balance $\Longrightarrow A$ is doubly-stochastic.

When σ, τ are uncorrelated, A is the flat $1 / k$ matrix

As σ, τ align,
A tends to the identity matrix I

A matrix-valued overlap

A matrix-valued overlap

$$
\text { So, } \mathbf{E}\left[X^{2}\right]={ }_{A_{2} B_{k}}^{X}{ }_{n}^{\mu}{ }_{n}^{\mathbb{T} \mu} 1-\frac{2}{k}+{\frac{1}{h^{2}}}^{\mathrm{X}}{ }_{a_{i j}^{2}}^{\mathbb{T}_{c n}}
$$

which is controlled by the maximizer of

$$
-_{-}^{\mathrm{X}} \quad a_{i j} \log a_{i j}+c \log 1-\frac{2}{k}+{\frac{1}{k^{2}}}^{\mathrm{X}} a_{i j}^{2}
$$

over $\kappa \times \hbar$ doubly-stochastic matrices $A=\left(a_{i j}\right)$.

A matrix-valued overlap

which is controlled by the maximizer of

$$
-^{\mathrm{X}} a_{i j} \log a_{i j}+c \quad{\frac{1}{h^{2}}}^{\mathrm{X}} a_{i j}^{2}
$$

over $k \times k$ doubly-stochastic matrices $A=\left(a_{i j}\right)$.

- Entropy decreases away from the flat $1 / k$ matrix

- Entropy decreases away from the flat $1 / k$ matrix
- For small c, this loss overwhelms the sum of squares gain

- Entropy decreases away from the flat $1 / k$ matrix
- For small c, this loss overwhelms the sum of squares gain
- But for large enough c, \ldots.

- Entropy decreases away from the flat $1 / k$ matrix
- For small c, this loss overwhelms the sum of squares gain
- But for large enough c, \ldots.
- The maximizer jumps instantaneously from flat, to a matrix where k entries capture majority of mass

- Entropy decreases away from the flat $1 / k$ matrix
- For small c, this loss overwhelms the sum of squares gain
- But for large enough c, \ldots
- The maximizer jumps instantaneously from flat, to a matrix where k entries capture majority of mass
- This jump happens only after $c>k \log k-\log k-1$

Proof overview

Proof. Compare the value at the flat matrix with upper bound for everywhere else derived by:

Proof overview

Proof. Compare the value at the flat matrix with upper bound for everywhere else derived by:

1. Relax to singly stochastic matrices.

Proof overview

Proof. Compare the value at the flat matrix with upper bound for everywhere else derived by:

1. Relax to singly stochastic matrices.
2. Prescribe the L_{2} norm of each row ρ_{i}.

Proof overview

Proof. Compare the value at the flat matrix with upper bound for everywhere else derived by:

1. Relax to singly stochastic matrices.
2. Prescribe the L_{2} norm of each row ρ_{i}.
3. Find max-entropy, $f\left(\rho_{i}\right)$, of each row given ρ_{i}.

Proof overview

Proof. Compare the value at the flat matrix with upper bound for everywhere else derived by:

1. Relax to singly stochastic matrices.
2. Prescribe the L_{2} norm of each row ρ_{i}.
3. Find max-entropy, $f\left(\rho_{i}\right)$, of each row given ρ_{i}.
4. Prove that $\mathrm{f}^{\prime \prime \prime}>0$.

Proof overview

Proof. Compare the value at the flat matrix with upper bound for everywhere else derived by:

1. Relax to singly stochastic matrices.
2. Prescribe the L_{2} norm of each row ρ_{i}.
3. Find max-entropy, $f\left(\rho_{i}\right)$, of each row given ρ_{i}.
4. Prove that $\mathrm{f}^{\mathrm{f} \mathrm{\prime} \mathrm{\prime}}>0$.
5. Use (4) to determine the optimal distribution of the ρ_{i} given their total ρ.

Proof overview

Proof. Compare the value at the flat matrix with upper bound for everywhere else derived by:

1. Relax to singly stochastic matrices.
2. Prescribe the L_{2} norm of each row ρ_{i}.
3. Find max-entropy, $f\left(\rho_{i}\right)$, of each row given ρ_{i}.
4. Prove that $\mathrm{f}^{\mathrm{\prime} \mathrm{\prime} \mathrm{\prime}}>0$.
5. Use (4) to determine the optimal distribution of the ρ_{i} given their total ρ.
6. Optimize over ρ.

Random regular graphs

Theorem. For every integer $d>0$, w.h.p. the chromatic number of a random d-regular graph is either $k, k+1$, or $k+2$ where k is the smallest integer s.t. $d<2 \kappa \log k$.

A vector analogue (optimizing a single row)

Maximize

$$
-_{i=1}^{X^{k}} a_{i} \log a_{i}
$$

subject to

$$
x^{k}
$$

$$
a_{i}=1
$$

$$
i=1
$$

X

$$
a_{i}^{2}=\rho
$$

$i=1$
for some $1 / k<\rho<1$

A vector analogue (optimizing a single row)

Maximize

$$
-{ }_{i=1}^{X^{k}} a_{i} \log a_{i}
$$

subject to

$$
x^{k}
$$

$$
a_{i}=1
$$

$$
i=1
$$

χ^{k}

$$
a_{i}^{2}=\rho
$$

$i=1$
for some $1 / k<\rho<1$

A vector analogue (optimizing a single row)

Maximize

$$
-{ }_{i=1}^{X^{k}} a_{i} \log a_{i}
$$

subject to

$$
x^{k}
$$

$$
a_{i}=1
$$

$$
i=1
$$

X^{k}

$$
a_{i}^{2}=\rho
$$

$i=1$
for some $1 / k<\rho<1$

For $\kappa=3$ the maximizer is (x, y, y) where $x>y$

A vector analogue (optimizing a single row)

Maximize

$$
-{ }_{i=1}^{X^{k}} a_{i} \log a_{i}
$$

subject to

$$
\begin{aligned}
& x^{x^{k}} a_{i=1}=1 \\
& x_{i}^{k} \\
& a_{i}^{2}=\rho
\end{aligned}
$$

$i=1$
for some $1 / k<\rho<1$

For $k=3$ the maximizer is (x, y, y) where $x>y$

A vector analogue (optimizing a single row)

Maximize

$$
-{ }_{i=1}^{X^{k}} a_{i} \log a_{i}
$$

subject to

$$
\begin{aligned}
& x^{X^{k}} a_{i=1}=1 \\
& x^{k} \\
& a_{i}^{2}=\rho
\end{aligned}
$$

$i=1$
for some $1 / k<\rho<1$

For $k=3$ the maximizer is (x, y, y) where $x>y$

A vector analogue (optimizing a single row)

Maximize

$$
-{ }_{i=1}^{X^{k}} a_{i} \log a_{i}
$$

subject to

$$
\begin{aligned}
& X^{X^{k}} a_{i=1}=1 \\
& x^{k} a_{i}=\rho
\end{aligned}
$$

$i=1$
for some $1 / k<\rho<1$

For $k=3$ the maximizer is (x, y, y) where $x>y$

A vector analogue (optimizing a single row)

Maximize

$$
-{ }_{i=1}^{X^{k}} a_{i} \log a_{i}
$$

subject to

$$
\begin{aligned}
& X^{X^{k}} a_{i=1}=1 \\
& x^{k} \\
& a_{i}^{2}=\rho
\end{aligned}
$$

$$
i=1
$$

for some $1 / k<\rho<1$

For $k=3$ the maximizer is (x, y, y) where $x>y$

For $k>3$ the maximizer is

$$
(x, y, \ldots, y)
$$

Maximum entropy image restoration

- Create a composite image of an object that:
- Minimizes "empirical error"
- Typically, least-squares error over luminance
- Maximizes "plausibility"
- Typically, maximum entropy

Maximum entropy image restoration

Structure of maximizer helps detect stars in astronomy

> The End

