Independence and chromatic number (and random k-SAT): Sparse Case

> Dimitris Achlioptas Microsoft

Random graphs

Each edge appears, independently, with probability p.

We add m edges one-by-one.

W.h.p.: with probability that tends to 1 as $n \to \infty$.

• Let 7_2 be the moment all vertices have degree ≥ 2

- Let 7_2 be the moment all vertices have degree ≥ 2
 - W.h.p. $G(n, m = \tau_2)$ has a Hamiltonian cycle

- Let 7_2 be the moment all vertices have degree ≥ 2
 - W.h.p. $G(n, m = \tau_2)$ has a Hamiltonian cycle
 - W.h.p. it can be found in time $O(n^3 \log n)$

[Ajtai, Komlós, Szemerédi 85] [Bollobás, Fenner, Frieze 87]

- Let 7_2 be the moment all vertices have degree ≥ 2
 - W.h.p. $G(n, m = \tau_2)$ has a Hamiltonian cycle
 - W.h.p. it can be found in time $O(n^3 \log n)$

[Ajtai, Komlós, Szemerédi 85] [Bollobás, Fenner, Frieze 87]

In G(n, 1/2) Hamiltonicity can be decided in O(n) expected time.

[Gurevich, Shelah 84]

• The largest clique in G(n, 1/2) has size $2 \log_2 n - 2 \log_2 \log_2 n \pm 1$

[Bollobás, Erdős 75] [Matula 76]

• The largest clique in G(n, 1/2) has size $2 \log_2 n - 2 \log_2 \log_2 n \pm 1$

[Bollobás, Erdős 75] [Matula 76]

• No maximal clique of size $< \log_2 n$

• The largest clique in G(n, 1/2) has size $2 \log_2 n - 2 \log_2 \log_2 n \pm 1$ [Bollobás, Erdős 75] [Matula 76]

• No maximal clique of size $< \log_2 n$

• Can we find a clique of size $(1 + \epsilon) \log_2 n$?

[Karp 76]

• The largest clique in G(n, 1/2) has size $2 \log_2 n - 2 \log_2 \log_2 n \pm 1$ [Bollobás, Erdős 75] [Matula 76]

• No maximal clique of size $< \log_2 n$

• Can we find a clique of size $(1 + \epsilon) \log_2 n$? What if we "hide" a clique of size $n^{1=2j^2}$?

Two problems for which we know much less.

Chromatic number of sparse random graphs
Random k-SAT

Two problems for which we know much less.

- Chromatic number of sparse random graphs
 Random k-SAT
- Canonical for random constraint satisfaction:
 - Binary constraints over k-ary domain
 - k-ary constraints over binary domain
- Studied in: AI, Math, Optimization, Physics,...

A factor-graph representation of k-coloring

- Each vertex is a variable with domain {1,2,...,k}.
- Each edge is a constraint on two variables.
- All constraints are "not-equal".
- Random graph = each constraint picks two variables at random.

SAT via factor-graphs

 $(\overline{x}_{12} \lor x_5 \lor \overline{x}_9) \land (x_{34} \lor \overline{x}_{21} \lor x_5) \land \cdots \land \land (x_{21} \lor x_9 \lor \overline{x}_{13})$

SAT via factor-graphs

 $(\overline{x}_{12} \lor x_5 \lor \overline{x}_9) \land (x_{34} \lor \overline{x}_{21} \lor x_5) \land \cdots \land (x_{21} \lor x_9 \lor \overline{x}_{13})$

- Edge between x and c iff x occurs in clause c.
- Edges are labeled +/- to indicate whether the literal is negated.
- Constraints are "at least one literal must be satisfied".
- Random k-SAT = constraints pick k literals at random.

Diluted mean-field spin glasses

- Small, discrete domains: *spins*
- Conflicting, fixed constraints: *quenched disorder*
- Random bipartite graph: lack of geometry, mean field
- Sparse: *diluted*
- Hypergraph coloring, random XOR-SAT, error-correcting codes...

Constraints

Random graph coloring:

Background

A trivial lower bound

For any graph, the chromatic number is at least:

Number of vertices

Size of maximum independent set

A trivial lower bound

For any graph, the chromatic number is at least:

Number of vertices

Size of maximum independent set

 For random graphs, use upper bound for largest independent set. µ¶

$$s^{n''} \times (1-p)^{\binom{s}{2}} \to 0$$

An algorithmic upper bound

- Repeat
 - Pick a random uncolored vertex
 - Assign it the lowest allowed number (color)

Uses 2 x trivial lower bound number of colors

An algorithmic upper bound

- Repeat
 - Pick a random uncolored vertex
 - Assign it the lowest allowed number (color)

Uses 2 x trivial lower bound number of colors

No algorithm is known to do better

The lower bound is asymptotically tight

As d grows, G(n, d/n) can be colored using independent sets of essentially maximum size

[Bollobás 89] [Łuczak 91]

The lower bound is asymptotically tight

As d grows, G(n, d/n) can be colored using independent sets of essentially maximum size

[Bollobás 89] [Łuczak 91]

Average degree	10^{60}	10^{80}	10^{100}	10^{130}	10^{1000}
Lower bound	$37 \cdot 10^{56}$	$28\cdot 10^{76}$	$22 \cdot 10^{96}$	$17 \cdot 10^{126}$	$21 \cdot 10^{995}$
Upper / Lower	1.97	1.78	1.68	1.53	1.14

Only two possible values

Theorem. For every d > 0, there exists an integer k = k(d) such that w.h.p. the chromatic number of G(n, p = d/n)

is either k or k+1

[Łuczak 91]

"The Values"

Theorem. For every d > 0, there exists an integer k - k(a) such that w.h.p. the chromatic number of G(n, p = d/n)

is either k or k+1

where k is the smallest integer s.t. $d < 2k \log k$.

• If d = 7, w.h.p. the chromatic number is 4 or 5.

Examples

• If d = 7, w.h.p. the chromatic number is 4 or 5.

• If $d = 10^{60}$, w.h.p. the chromatic number is

377145549067226075809014239493833600551612641764765068157 or

377145549067226075809014239493833600551612641764765068157

One value

Theorem. If $(2k-1) \ln k < d < 2k \ln k$ then w.h.p. the chromatic number of G(n, d/n) is k+1.

One value

Theorem. If $(2k-1) \ln k < d < 2k \ln k$ then w.h.p. the chromatic number of G(n, d/n) is k+1.

• If $d = 10^{100}$, then w.h.p. the chromatic number is

Random k-SAT:

Background

Random k-SAT

• Fix a set of n variables $X = \{x_1, x_2, \dots, x_n\}$ • Among all $2^k \begin{bmatrix} \mu & \eta \\ n \\ k \end{bmatrix}$ possible k-clauses select m

uniformly and independently. Typically m = rn.

• Example ($\cancel{k} = 3$):

 $(\overline{x}_{12} \lor x_5 \lor \overline{x}_9) \land (x_{34} \lor \overline{x}_{21} \lor x_5) \land \cdots \land \land (x_{21} \lor x_9 \lor \overline{x}_{13})$

Generating hard 3-SAT instances

[Mitchell, Selman, Levesque 92]

Generating hard 3-SAT instances

[Mitchell, Selman, Levesque 92]

• The critical point appears to be around r pprox 4.2

The satisfiability threshold conjecture

• For every $k \ge 3$, there is a constant γ_k such that $\lim_{n \ge 1} \Pr[\mathcal{F}_k(n, rn) \text{ is satisfiable}] = \begin{cases} \gamma_2 \\ 1 \\ 0 \end{cases} \text{ if } r = r_k - \epsilon \\ 0 \\ \text{ if } r = r_k + \epsilon \end{cases}$

The satisfiability threshold conjecture

• For every $k \ge 3$, there is a constant γ_k such that $\lim_{n \ge 1} \Pr[\mathcal{F}_k(n, rn) \text{ is satisfiable}] = \begin{cases} \frac{1}{2} & \text{if } r = r_k - \epsilon \\ 0 & \text{if } r = r_k + \epsilon \end{cases}$

• For every $k \geq 3$,

 $\frac{2^{k}}{k} < r_{k} < 2^{k} \ln 2$

Unit-clause propagation

Repeat

- Pick a random unset variable and set it to 1
- While there are unit-clauses satisfy them
- If a 0-clause is generated fail
Unit-clause propagation

Repeat

- Pick a random unset variable and set it to 1
- While there are unit-clauses satisfy them
- If a 0-clause is generated fail
- UC finds a satisfying truth assignment if

[Chao, Franco 86]

An asymptotic gap

The probability of satisfiability it at most

$$\begin{array}{rcl} \mu & & & & & \\ 2^n & 1 - \frac{1}{2^k} & & = & 2 & 1 - \frac{1}{2^k} \\ \end{array} \\ \rightarrow & 0 & \text{for } r \ge 2^k \ln 2 \end{array}$$

 $\rightarrow 0$

An asymptotic gap

Since mid-80s, no asymptotic progress over

 $\frac{2^k}{k} < r_k < 2^k \ln 2$

Getting to within a factor of 2

Theorem: For all $k \ge 3$ and

 $r < 2^{k_i} \ln 2 - 1$

a random k-CNF formula with m = rnclauses w.h.p. has a complementary pair of satisfying truth assignments.

The trivial upper bound is the truth!

Theorem: For all $k \ge 3$, a random k-CNF formula with m = rn clauses is w.h.p. satisfiable if

$$r \leq 2^k \ln 2 - \frac{k}{2} - 1$$

Some explicit bounds for the k-SAT threshold

k	3	4	5	7	20	21
Upper bound	4.51	10.23	21.33	87.88	726,817	1,453,635
Our lower bound	2.68	7.91	18.79	84.82	726,809	1,453,626
Algorithmic lower bound	3.52	5.54	9.63	33.23	95,263	181,453

The second moment method For any non-negative r.v. X, $\Pr[X > 0] \ge \frac{\mathbb{E}[X]^2}{\mathbb{E}[X]^2}$

Pro of: Let Y = 1 if X > 0, and Y = 0 otherwise. By Cauchy-Schwartz,

 $E[X]^2 = E[XY]^2 \le E[X^2]E[Y^2] = E[X^2]Pr[X>0]$.

Ideal for sums

X

<

Ideal for sums

Example:

The X_i correspond to the $\stackrel{i_n \phi}{q}$ potential q-cliques in G(n, 1/2)Dominant contribution from non-ovelapping cliques

General observations

Method works well when the X_i are like "needles in a haystack"

General observations

 Method works well when the X_i are like "needles in a haystack"

 Lack of correlations =>> rapid drop in influence around solutions

General observations

 Method works well when the X_i are like "needles in a haystack"

 Lack of correlations =>> rapid drop in influence around solutions

Algorithms get no "hints"

Let X be the # of satisfying truth assignments

Let X be the # of satisfying truth assignments

For every clause-density r > 0, there is $\beta = \beta(r) > 0$ such that

$$\frac{\mathsf{E}[X]^2}{\mathsf{E}[X^2]} < (1 - \beta)^n$$

Let X be the # of satisfying truth assignments

For every clause-density r > 0, there is $\beta = \beta(r) > 0$ such that

$$\frac{\mathsf{E}[\mathcal{X}]^2}{\mathsf{E}[\mathcal{X}^2]} < (1 - \beta)^n$$

 The number of satisfying truth assignments has huge variance.

Let X be the # of satisfying truth assignments

For every clause-density r > 0, there is $\beta = \beta(r) > 0$ such that

$$\frac{\mathsf{E}[\mathcal{X}]^2}{\mathsf{E}[\mathcal{X}^2]} < (1 - \beta)^n$$

- The number of satisfying truth assignments has huge variance.
- The satisfying truth assignments do not form a "uniformly random mist" in $\{0, 1\}^n$

To prove $2^{k} \ln 2 - k/2 - 1$

• Let $H(\sigma, F)$ be the number of satisfied literal occurrences in F under σ

To prove $2^{k} \ln 2 - k/2 - 1$

• Let $H(\sigma, F)$ be the number of satisfied literal occurrences in F under σ

• Let X = X(F) be defined as $X(F) = \mathbf{1}_{3/4} = F \gamma^{H(3/4F)}$ $\chi^{3/4} = \chi$

where $\gamma < 1$ satisfies $(1 + \gamma^2)^{k_i} (1 - \gamma^2) = 1$.

To prove $2^{k} \ln 2 - k/2 - 1$

• Let $H(\sigma, F)$ be the number of satisfied literal occurrences in F under σ

• Let X = X(F) be defined as $X(F) = \begin{array}{c} X \\ 1_{3/4} = F \end{array} \begin{array}{c} \gamma^{H(3/4F)} \\ \chi^{3/4} \\ 1_{3/4} = c \end{array} \begin{array}{c} \gamma^{H(3/4C)} \\ \chi^{3/4} \\ \chi^{3/4} \end{array} \begin{array}{c} C \end{array}$

where $\gamma < 1$ satisfies $(1 + \gamma^2)^{k_i} (1 - \gamma^2) = 1$.

General functions

• Given any t.a. σ and any k-clause c let $\mathbf{v} = \mathbf{v}(\sigma, c) \in \{-1, +1\}^k$

be the values of the literals in c under σ .

General functions

• Given any t.a. σ and any k-clause c let $\mathbf{v} = \mathbf{v}(\sigma, c) \in \{-1, +1\}^k$

be the values of the literals in c under σ .

• We will study random variables of the form $X = f(\mathbf{v}(\sigma, c))$ $\frac{\sqrt[3]{4} c}{\sqrt[3]{4} c}$

where $f: \{-1, +1\}^k \to \mathbb{R}$ is an arbitrary function

$$X = X Y$$

$$A = \int (\mathbf{V}(\sigma, c))$$

$$\frac{3}{4} c$$

$$f(\mathbf{v}) = 1 \quad \text{for all } \mathbf{v} \qquad \Longrightarrow \qquad 2^{n}$$

$$f(\mathbf{v}) = \begin{pmatrix} 0 & \text{if } \mathbf{v} = (-1, -1, \dots, -1) \\ 1 & \text{otherwise} \end{pmatrix} \qquad \Longrightarrow \qquad \# \text{ of satisfying truth assignments}$$

$$f(\mathbf{v}) = \begin{cases} 8 \\ \geq 0 & \text{if } \mathbf{v} = (-1, -1, \dots, -1) \text{ or } \\ \text{if } \mathbf{v} = (+1, +1, \dots, +1) \\ \geq 1 & \text{otherwise} \end{cases} \qquad \Longrightarrow \qquad \# \text{ of "Not All Equal" truth assignments}$$

(NAE)

$$X = X Y$$

$$A = f(\mathbf{V}(\sigma, c))$$

$$\frac{3}{4} c$$

$$f(\mathbf{v}) = 1 \quad \text{for all } \mathbf{v} \qquad \Longrightarrow \qquad 2^{n}$$

$$f(\mathbf{v}) = \begin{pmatrix} 0 & \text{if } \mathbf{v} = (-1, -1, \dots, -1) \\ 1 & \text{otherwise} \end{pmatrix} \qquad \Longrightarrow \qquad \# \text{ of satisfying truth assignments}$$

$$f(\mathbf{v}) = \begin{cases} 8 & 0 & \text{if } \mathbf{v} = (-1, -1, \dots, -1) \text{ or } \\ \text{if } \mathbf{v} = (+1, +1, \dots, +1) \end{cases} \qquad \Longrightarrow \qquad \# \text{ of satisfying truth assignments}$$

1 otherwise

truth assignments whose complement is also satisfying

Overlap parameter = distance

Overlap parameter is Hamming distance

Overlap parameter = distance

- Overlap parameter is Hamming distance
- For any *f*, if σ , τ agree on z = n/2 variables h $\mathsf{E} f(\mathsf{v}(\sigma,c))f(\mathsf{v}(\tau,c)) = \mathsf{E}^{\mathsf{f}}f(\mathsf{v}(\sigma,c)) \mathsf{E}^{\mathsf{f}}f(\mathsf{v}(\tau,c)) \mathsf{e}^{\mathsf{f$

Overlap parameter = distance

Overlap parameter is Hamming distance

• For any *f*, if σ , τ agree on z = n/2 variables h i $f(\mathbf{v}(\sigma, c))f(\mathbf{v}(\tau, c)) = \mathbf{E}^{\mathbf{f}}f(\mathbf{v}(\sigma, c)) = \mathbf{E}^{\mathbf{f}}f(\mathbf{v}(\sigma, c)) = \mathbf{E}^{\mathbf{f}}f(\mathbf{v}(\tau, c))$

• For any f, if σ , τ agree on z variables, let h $\mathcal{C}_{f}(z/n) \equiv \mathbf{E} f(\mathbf{v}(\sigma, c)) f(\mathbf{v}(\tau, c))$

Contribution according to distance

$$\begin{split} \mathbf{E}[X^2] &= \sum_{\sigma,\tau} \prod_c \mathbf{E}\left[f(\sigma,c)f(\tau,c)\right] & \text{Independence} \\ &= \sum_{\sigma,\tau} \left(\mathbf{E}\left[f(\sigma,c)f(\tau,c)\right]\right)^m & \text{Identically distributed} \\ &= 2^n \sum_{z=0}^n \binom{n}{z} \mathcal{C}_f(z/n)^m & \text{Fixing } \sigma \end{split}$$

Entropy vs. correlation

For every function *f* : $\mathbf{E}[X^2] = 2^n \sum_{z=0}^{n} \sum_{z=0}^{n} \mathcal{C}_f(z/n)^m$ z=0 $\mathbf{E}[\mathcal{X}]^{2} = 2^{n} \overset{\mathbf{X}^{n}}{\overset{n}{z}} \overset{\mathbf{\mu}}{\overset{n}{z}} \mathcal{C}_{f} (1/2)^{m}$ $z=0 \overset{z}{\overset{z}{z}} \mathcal{C}_{f} (1/2)^{m}$

Contribution according to distance

$$\begin{split} \mathbf{E}[X^2] &= \sum_{\sigma,\tau} \prod_c \mathbf{E}\left[f(\sigma,c)f(\tau,c)\right] & \text{Independence} \\ &= \sum_{\sigma,\tau} \left(\mathbf{E}\left[f(\sigma,c)f(\tau,c)\right]\right)^m & \text{Identically distributed} \\ &= 2^n \sum_{z=0}^n \binom{n}{z} \mathcal{C}_f(z/n)^m & \text{Fixing } \sigma \\ &= \left(\max_{0 \leq \alpha \leq 1} \frac{2\mathcal{C}_f(\alpha)^r}{\alpha^{\alpha}(1-\alpha)^{1-\alpha}}\right)^n \times \Theta(1) & \text{Laplace method} \end{split}$$

The importance of being balanced

• An analytic condition:

$$\mathcal{C}_{f}(1=2) \neq 0 \implies \text{the s.m.m. fails}$$

The importance of being balanced

• An analytic condition:

$$\mathcal{C}_{f}(1=2) \neq 0 \implies \text{the s.m.m. fails}$$

The importance of being balanced
An analytic condition:

$$\mathcal{C}_{f}(1=2) \neq 0 \implies$$
 the s.m.m. fails

• A geometric criterion:

$$\begin{aligned}
& X \\
& f(\mathbf{v})\mathbf{v} = 0 \\
& \mathbf{v} \in \{-1; +1\}^k
\end{aligned}$$

Want to balance vectors in "optimal" way

Want to balance vectors in "optimal" way
Information theory ⇒
maximize the entropy of the f(V) subject to
f(-1, -1, ..., -1) = 0 and f(V) v = 0
v2fi 1;+1 g^k

- Want to balance vectors in "optimal" way
 Information theory ⇒
 maximize the entropy of the f(V) subject to
 f(-1, -1, ..., -1) = 0 and f(V) V = 0
 v 2f_i 1;+1 g^k
- Lagrange multipliers \implies the optimal f is $f(\mathbf{v}) = \gamma \# \text{ of } +1 \text{ s in } \mathbf{v}$

for the unique γ that satisfies the constraints

Want to balance vectors in "optimal" way
Information theory ⇒
maximize the entropy of the f(v) subject to
f(-1, -1, ..., -1) = 0 and f(v)v = 0
v2fi 1;+1 g^k

Random graph coloring

Threshold formulation

Theorem. A random graph with n vertices and m = cn edgesis w.h.p. k-colorable if

$$c \le k \log k - \log k - 1$$

and w h p non-k-colorable if

$$c \geq k \log k - \frac{1}{2} \log k$$
.

Main points

• Non-*k*-colorability:

Pro of. The¬probability that¬there exists¬any k-coloring¬is at¬most $\mu_1^{\P_{cn}}$

$$k^n \quad 1 - \frac{1}{k} \longrightarrow 0$$

• *k*-colorability:

Pro of. Apply second moment method to the number of balanced k-colorings of G(n, m).

Setup

- Let X_{σ} be the indicator that the balanced k-partition σ is a proper k-coloring.
- We will prove that if $X = \int_{\frac{3}{4}}^{P} X_{\frac{3}{4}}$ then for all $c \leq k \log k - \log k - 1$ there is a constant D = D(k) such that

$$\mathbf{E}[X^2] < D \mathbf{E}[X]^2$$

• This implies that G(n, cn) is k-colorable w.h.p.

Setup

• $\mathbf{E}[X^2] = \text{sum over all } \sigma, \tau \text{ of } \mathbf{E}[X_{\frac{3}{4}}X_{\dot{c}}].$

• For any pair of balanced k-partitions σ, τ let $a_{ij}n$ be the # of vertices having color i in σ and color j in T. 0 1 _{cn} $\Pr[\sigma \text{ and } \tau \text{ are proper}] = @1 - \frac{2}{k} + X \frac{2}{ij} A$

Examples

Balance \implies A is doubly-stochastic.

When σ, τ are uncorrelated, A is the flat 1/k matrix

Examples

Balance \implies A is doubly-stochastic.

When σ, τ are uncorrelated, A is the flat 1/k matrix

As σ, τ align, \mathcal{A} tends to the identity matrix \mathcal{I}

A matrix-valued overlap So, $\mathbf{E}[\mathcal{X}^2] = \begin{bmatrix} \mathbf{X} & \mathbf{\mu} & \mathbf{\Pi} & \mathbf{\mu} \\ & n & 1 - \frac{2}{k} + \frac{1}{k^2} & \mathbf{X} & \mathbf{\Pi} & \mathbf{n} \\ A 2B_k & An & 1 - \frac{2}{k} + \frac{1}{k^2} & \mathbf{X} & \mathbf{X}_{ij} \end{bmatrix}$

A matrix-valued overlap
So,
$$\mathbf{E}[\mathcal{X}^2] = \begin{pmatrix} \mathbf{X} & \boldsymbol{\mu} & \mathbf{\Pi} & \boldsymbol{\mu} \\ \mathbf{X} & n & \mathbf{\Pi} & \mathbf{\mu} \\ A 2B_k & An & 1 - \frac{2}{k} + \frac{1}{k^2} & A_{ij}^2 \end{pmatrix}^{\mathsf{T} cn}$$

which is controlled by the maximizer of

$$\begin{array}{ccc} \mathsf{X} & \mathsf{\mu} \\ - & a_{ij} \log a_{ij} + \mathbf{c} \log & 1 - \frac{2}{k} + \frac{1}{k^2} \mathsf{X} & a_{ij}^2 \end{array}$$

over $k \times k$ doubly-stochastic matrices $A = (a_{ij})$.

A matrix-valued overlap
So,
$$\mathbf{E}[X^2] = \begin{pmatrix} X & \mu & \Pi & \mu \\ X & n & \Pi & \mu \\ A2B_k & & 1 - \frac{2}{k} + \frac{1}{k^2} & d_{ij}^2 \end{pmatrix} \int dn$$

which is controlled by the maximizer of

over $k \times k$ doubly-stochastic matrices $A = (a_{ij})$.

$$- \begin{array}{c} X \\ - & a_{ij} \log a_{ij} + c \cdot \frac{1}{k^2} \\ i;j \end{array} \begin{array}{c} \lambda \\ i;j \end{array} \begin{array}{c} a_{ij} \end{array}$$

• Entropy decreases away from the flat 1/k matrix

$$- \begin{array}{c} X \\ - & a_{ij} \log a_{ij} \end{array} + c \cdot \frac{1}{k^2} \begin{array}{c} X \\ i;j \end{array} \begin{array}{c} a_{ij}^2 \end{array}$$

• Entropy decreases away from the flat 1/k matrix

– For small *C*, this loss overwhelms the sum of squares gain

$$- \begin{array}{c} X \\ - & a_{ij} \log a_{ij} + c \cdot \frac{1}{k^2} \\ i j \end{array} \begin{array}{c} \lambda \\ i j \end{array} \begin{array}{c} a_{ij}^2 \end{array}$$

• Entropy decreases away from the flat 1/k matrix

- For small *C*, this loss overwhelms the sum of squares gain
- But for large enough *C*,....

$$- \begin{array}{c} X \\ - & a_{ij} \log a_{ij} \end{array} + c \cdot \frac{1}{k^2} \begin{array}{c} X \\ i;j \end{array} \begin{array}{c} a_{ij}^2 \end{array}$$

- Entropy decreases away from the flat 1/k matrix
 - For small *C*, this loss overwhelms the sum of squares gain
 But for large enough *C*,....
- The maximizer jumps instantaneously from flat, to a matrix where *k* entries capture majority of mass

$$- \begin{array}{c} X \\ - & a_{ij} \log a_{ij} \end{array} + c \cdot \frac{1}{k^2} \begin{array}{c} X \\ i;j \end{array} \begin{array}{c} a_{ij}^2 \end{array}$$

- Entropy decreases away from the flat 1/k matrix
 - For small *C*, this loss overwhelms the sum of squares gain
 But for large enough *C*,....
- The maximizer jumps instantaneously from flat, to a matrix where *k* entries capture majority of mass

• This jump happens only after $c > k \log k - \log k - 1$

Proof. Compare the value at the flat matrix with upper bound for everywhere else derived by:

1. Relax to singly stochastic matrices.

- 1. Relax to singly stochastic matrices.
- 2. Prescribe the L₂ norm of each row ρ_i .

- 1. Relax to singly stochastic matrices.
- 2. Prescribe the L₂ norm of each row ρ_i .
- 3. Find max-entropy, $f(\rho_i)$, of each row given ρ_i .

- 1. Relax to singly stochastic matrices.
- 2. Prescribe the L₂ norm of each row ρ_i .
- 3. Find max-entropy, $f(\rho_i)$, of each row given ρ_i .
- 4. Prove that f'' > 0.

- 1. Relax to singly stochastic matrices.
- 2. Prescribe the L₂ norm of each row ρ_i .
- 3. Find max-entropy, $f(\rho_i)$, of each row given ρ_i .
- 4. Prove that f'' > 0.
- 5. Use (4) to determine the optimal distribution of the ρ_i given their total ρ .

- 1. Relax to singly stochastic matrices.
- 2. Prescribe the L₂ norm of each row ρ_i .
- 3. Find max-entropy, $f(\rho_i)$, of each row given ρ_i .
- 4. Prove that f'' > 0.
- 5. Use (4) to determine the optimal distribution of the ρ_i given their total ρ .
- 6. Optimize over ρ .

Random regular graphs

Theorem. For every integer d > 0, w.h.p. the chromatic number of a random d-regular graph

is either k, k+1, or k+2

where k is the smallest integer s.t. $d < 2k \log k$.

A vector analogue (optimizing a single row) For k = 3 the maximizer is Maximize Xk (x, y, y) where x > y $a_i \log a_i$ *i*=1 subject to \mathbf{X}^{k} = 1 $a_{\mathbf{i}}$ *i*=1 Xk $a_i^2 = \rho$ i=1for some $1/k < \rho < 1$

A vector analogue (optimizing a single row) For k = 3 the maximizer is Maximize Xk (x, y, y) where x > y $a_i \log a_i$ *i*=1 subject to \mathbf{X}^{k} $a_{\mathbf{i}}$ *i*=1 0.8 0.6 0.4 0.2 0. Xk 0.8 $a_i^2 = \rho$ i=1for some $1/k < \rho < 1$

A vector analogue (optimizing a single row) For k = 3 the maximizer is Maximize Xk (x, y, y) where x > y $a_i \log a_i$ *i*=1 subject to \mathbf{X}^{k} $a_{\mathbf{i}}$ *i*=1 0.8 0.6 0.4 0.2 0.2 0.8 0.6 0.4 0.4 Xk 0.8 $a_i^2 = \rho$ i=1for some $1/k < \rho < 1$

A vector analogue (optimizing a single row) For k = 3 the maximizer is Maximize Xk (x, y, y) where x > y $a_i \log a_i$ *i*=1 subject to \mathbf{X}^{k} $a_{\mathbf{i}}$ *i*=1 0.8 0.6 0.4 0.2 0.2 Xk 0.8 $a_i^2 = \rho$ i=1for some $1/k < \rho < 1$

Maximum entropy image restoration

Create a composite image of an object that:

- Minimizes "empirical error"

Typically, least-squares error over luminance

Maximizes "plausibility"
Typically, maximum entropy
Maximum entropy image restoration

Structure of maximizer helps detect stars in astronomy

The End