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Random graphs

W.h.p.: with probability that tends to 1 as n→∞.
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Let be the moment all vertices have degree     2

W.h.p.                         has a Hamiltonian cycle

W.h.p. it can be found in  time

τ2 ≥

G(n,m = τ2)

O(n3 log n)

[Ajtai, Komlós, Szemerédi 85] [Bollobás, Fenner, Frieze 87]

In                    Hamiltonicity can be decided in G(n, 1/2) O(n)
expected time.

[Gurevich, Shelah 84]

Hamiltonian cycle



Cliques in random graphs

The largest clique in                  has size

[Bollobás, Erdős 75] [Matula 76]
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The largest clique in                  has size

No maximal clique of size  <

Can we find a clique of size                          ?

2 log2 n− 2 log2 log2 n±1

G(n, 1/2)

log2 n

(1 + ²) log2 n

[Karp 76]

Cliques in random graphs

[Bollobás, Erdős 75] [Matula 76]



The largest clique in                  has size

No maximal clique of size  <

Can we find a clique of size                          ?

2 log2 n− 2 log2 log2 n±1

G(n, 1/2)

log2 n

(1 + ²) log2 n

What if we “hide” a clique of size              ?n1=2¡ ²

Cliques in random graphs

[Bollobás, Erdős 75] [Matula 76]
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Two problems for which we know much 
less.

Chromatic number of sparse random graphs 
Random k-SAT 

Canonical for random constraint satisfaction:
– Binary constraints over k-ary domain
– k-ary constraints over binary domain

Studied in: AI, Math, Optimization, Physics,…



A factor-graph representation
of k-coloring

Each vertex is a variable with 
domain {1,2,…,k}. 

Each edge is a constraint on two 
variables. 

All constraints are “not-equal”. 

Random graph = each constraint 
picks two variables at random. 

Vertices

Edges

. . . . . .

v1

e1

e2

v2



SAT via factor-graphs
(x12 ∨ x5 ∨ x9) ∧ (x34 ∨ x21 ∨ x5) ∧ · · · · · ·∧ (x21 ∨ x9 ∨ x13)



SAT via factor-graphs

Edge between x and c iff x
occurs in clause c.

Edges are labeled +/- to indicate 
whether the literal is negated. 

Constraints are “at least one 
literal must be satisfied”.

Random k-SAT = constraints 
pick k literals at random.

Clause nodes

Variable nodes

Clause nodes

. . . . . .

x
c

(x12 ∨ x5 ∨ x9) ∧ (x34 ∨ x21 ∨ x5) ∧ · · · · · ·∧ (x21 ∨ x9 ∨ x13)



Diluted mean-field spin glasses

Variables

Constraints

. . . . . .

x
cSmall, discrete domains: spins

Conflicting, fixed constraints:
quenched disorder

Random bipartite graph: 
lack of geometry, mean field

Sparse: diluted

Hypergraph coloring, random 
XOR-SAT, error-correcting 
codes…



Random graph coloring:

Background
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A trivial lower bound

For any graph, the chromatic number 
is at least:

Number of vertices
Size of maximum independent set

For random graphs, use upper bound for 
largest independent set. µ

n

s

¶
× (1− p)(

s
2) → 0



An algorithmic upper bound 

Repeat
Pick a random uncolored vertex
Assign it the lowest allowed number (color)

Uses 2 x trivial lower bound number of colors



An algorithmic upper bound 

Repeat
Pick a random uncolored vertex
Assign it the lowest allowed number (color)

Uses 2 x trivial lower bound number of colors

No algorithm is known to do better



The lower bound is asymptotically 
tight

As d grows,                    can be colored using 
independent sets of essentially maximum size 

[Bollobás 89] 
[Łuczak 91] 
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G(n, d/n)



Theorem. For every d > 0, there exists an integer
k = k(d) such that w.h.p. the chromatic number of
G(n, p = d/n)

Only two possible values

is either k or k + 1

[Łuczak 91] 



Theorem. For every d > 0, there exists an integer
k = k(d) such that w.h.p. the chromatic number of
G(n, p = d/n)

“The Values”

is either k or k + 1

where k is the smallest integer s.t. d < 2k log k.
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Examples

If           , w.h.p. the chromatic number is     or .

If                , w.h.p. the chromatic number is

or

d = 7

d = 1060

377145549067226075809014239493833600551612641764765068157

3771455490672260758090142394938336005516126417647650681576

5

4 5



Theorem. If (2k − 1) ln k < d < 2k ln k then
w.h.p. the chromatic number of G(n, d/n) is k + 1.

One value



Theorem. If (2k − 1) ln k < d < 2k ln k then
w.h.p. the chromatic number of G(n, d/n) is k + 1.

If             ,     then w.h.p. the chromatic number isd = 10100

One value



Random k-SAT:

Background



Random k-SAT

Fix a set of n variables 

Among all              possible k-clauses select m

uniformly and independently. Typically               .

Example (          ) :

X = {x1, x2, . . . , xn }

2k
µ
n

k

¶

k = 3

(x12 ∨ x5 ∨ x9) ∧ (x34 ∨ x21 ∨ x5) ∧ · · · · · ·∧ (x21 ∨ x9 ∨ x13)

m = rn



Generating hard 3-SAT instances

[Mitchell, 
Selman, 
Levesque 92]
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Selman, 
Levesque 92]

The critical point appears to be around r ≈ 4.2



The satisfiability threshold conjecture

For every           , there is a constant        such that

lim
n !1

Pr[Fk (n, rn) is satisfiable] =

½
1 if r = rk − ²
0 if r = rk + ²

k ≥ 3 rk



The satisfiability threshold conjecture

For every           , there is a constant        such that

lim
n !1

Pr[Fk (n, rn) is satisfiable] =

½
1 if r = rk − ²
0 if r = rk + ²

k ≥ 3 rk

For every           , k ≥ 3

2k

k
< rk < 2

k ln 2



Unit-clause propagation

Repeat
– Pick a random unset variable and set it to 1
– While there are unit-clauses satisfy them
– If a 0-clause is generated fail



Unit-clause propagation

Repeat
– Pick a random unset variable and set it to 1
– While there are unit-clauses satisfy them
– If a 0-clause is generated fail

UC finds a satisfying truth assignment if

[Chao, Franco 86]

r <
2k

k



The probability of satisfiability it at most

An asymptotic gap

2n
µ
1−

1

2k

¶ m

=

·
2

µ
1−

1

2k

¶ r ¸ n

→ 0 for r ≥ 2k ln2



An asymptotic gap

Since mid-80s, no asymptotic progress over

2k

k
< rk < 2

k ln 2



Getting to within a factor of 2

a random k-CNF formula with m = rn
clauses w.h.p. has a complementary pair
of satisfying truth assignments.

r < 2k ¡ 1 ln 2− 1 .

Theorem: For all k ≥ 3 and



The trivial upper bound is the truth! 

r · 2k ln 2− k
2 − 1

Theorem: For all k ≥ 3, a random k-CNF formula
with m = rn clauses is w.h.p. satisfiable if



k 3 4 5 7 20 21
Upper bound 4.51 10.23 21.33 87.88 726, 817 1, 453, 635

Our lower bound 2.68 7.91 18.79 84.82 726, 809 1, 453, 626
Algorithmic lower bound 3.52 5.54 9.63 33.23 95, 263 181, 453

Some explicit bounds for 
the k-SAT threshold



The second moment method

Pr[X > 0]≥
E[X ]2

E[X 2]

For any non-negative r.v. X,

Pro of: Let Y = 1 if X > 0, and Y = 0 otherwise.
By Cauchy-Schwartz,

E [X]2 = E [XY ]2 · E [X2]E [Y 2] = E [X2] Pr[X > 0] .



Ideal for sums

If X = X1+X2+ · · · then

E [X]2 =
X

i;j

E [Xi ]E [Xj ]

E [X2] =
X

i;j

E [XiXj ]

X X



Ideal for sums

If X = X1+X2+ · · · then

E [X]2 =
X

i;j

E [Xi ]E [Xj ]

E [X2] =
X

i;j

E [XiXj ]

X X

Example:
The Xi correspond to the

¡ n
q

¢
potential q-cliques in G(n, 1/2)

Dominant contribution from non-ovelapping cliques



General observations

Method works well when the Xi are like
“needles in a haystack” 
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General observations

Method works well when the Xi are like
“needles in a haystack”

Lack of correlations          rapid drop in
influence around solutions

Algorithms get no “hints”

=⇒



Let X be the # of satisfying truth assignments

The second moment method for random 
k-SAT



Let X be the # of satisfying truth assignments

For every clause-density r > 0, there is β = β(r) > 0 such that

E [X]2
E [X2]

< (1− β)n

The second moment method for random 
k-SAT



Let X be the # of satisfying truth assignments

The number of satisfying truth assignments has
huge variance.

For every clause-density r > 0, there is β = β(r) > 0 such that

E [X]2
E [X2]

< (1− β)n

The second moment method for random 
k-SAT



σ ∈ {0, 1}n

Let X be the # of satisfying truth assignments

The number of satisfying truth assignments has
huge variance.

For every clause-density r > 0, there is β = β(r) > 0 such that

E [X]2
E [X2]

< (1− β)n

The satisfying truth assignments do not form a 
“uniformly random mist” in

The second moment method for random 
k-SAT



Let               be the number of

satisfied literal occurrences in F under σ

H(σ, F )

where             satisfies                                     . (1 + γ2)k ¡ 1(1− γ2) = 1γ < 1

To prove 2k ln2 – k/2 - 1 
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General functions

Given any t.a. σ and any k-clause c let

be the values of the literals in c under σ.

v = v(σ, c) ∈ {−1,+1}k



General functions

Given any t.a. σ and any k-clause c let

be the values of the literals in c under σ.

We will study random variables of the form

where                                  is an arbitrary functionf : {−1,+1}k → R

v = v(σ, c) ∈ {−1,+1}k

X =
X

¾

Y

c
f(v(σ, c))



X =
X

¾

Y

c
f(v(σ, c))

f (v) = 1 for all v

f (v) =

(
0 if v = (−1,−1, . . . ,−1)

1 otherwis e

f (v) =

8
><

>:

0 if v = (−1,−1, . . . ,−1) or
if v = (+1,+1, . . . ,+1)

1 otherwis e

# of satisfying
truth assignments

2n=⇒

=⇒

=⇒ # of “Not All Equal” 

truth assignments

(NAE)



X =
X

¾

Y

c
f(v(σ, c))

f (v) = 1 for all v

f (v) =

(
0 if v = (−1,−1, . . . ,−1)

1 otherwis e

f (v) =

8
><

>:

0 if v = (−1,−1, . . . ,−1) or
if v = (+1,+1, . . . ,+1)

1 otherwis e

# of satisfying
truth assignments

# of satisfying 
truth assignments 
whose complement 
is also satisfying 

2n=⇒

=⇒

=⇒



Overlap parameter = distance

Overlap parameter is Hamming distance
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Overlap parameter is Hamming distance

For any f, if         agree on                  variablesσ, τ z = n/2

E
h
f(v(σ, c))f(v(τ, c))

i
= E

£
f(v(σ, c))

¤
E

£
f(v(τ, c))

¤



Overlap parameter = distance

Overlap parameter is Hamming distance

For any f, if         agree on                  variablesσ, τ z = n/2

E
h
f(v(σ, c))f(v(τ, c))

i
= E

£
f(v(σ, c))

¤
E

£
f(v(τ, c))

¤

For any f , if          agree on     variables, letσ, τ z

Cf (z/n) ≡ E
h
f(v(σ, c))f(v(τ, c))

i



Independence

Contribution according to distance



Entropy vs. correlation

E [X2] = 2n
nX

z=0

µ
n

z

¶
Cf (z/n)

m

E [X]2 = 2n
nX

z=0

µ
n

z

¶
Cf (1/2)

m

For every function f :

Recall:                          
µ
n

αn

¶
=

µ
1

α®(1− α)1¡ ®

¶ n

× poly(n)



Independence

Contribution according to distance



®=z/n



The importance of being balanced

An analytic condition:

C0f (1=2) = 0 =⇒ the s.m.m. fails
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The importance of being balanced

An analytic condition:

C0f (1=2) = 0 =⇒ the s.m.m. fails



The importance of being balanced

C0f (1=2) = 0 ⇐⇒
X

v∈{−1;+1}k

f (v)v = 0

An analytic condition:

C0f (1=2) = 0 =⇒ the s.m.m. fails

A geometric criterion:



The importance of being balanced

C0f (1=2) = 0 ⇐⇒
X

v∈{−1;+1}k

f (v)v = 0

(+1,+1,…,+1)(-1,-1,…,-1)

Constant

SAT

Complementary



Balance & Information Theory

Want to balance vectors in “optimal” way
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Want to balance vectors in “optimal” way

Information theory 

maximize the entropy of the          subject to
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f(−1,−1, . . . ,−1) = 0 and
X

v 2f¡ 1;+1 gk

f(v)v = 0



Balance & Information Theory

Want to balance vectors in “optimal” way

Information theory 

maximize the entropy of the          subject to

=⇒
f(v)

f(−1,−1, . . . ,−1) = 0 and
X

v 2f¡ 1;+1 gk

f(v)v = 0

Lagrange multipliers            the optimal f is

for the unique  that satisfies the constraints

f(v) = γ # of +1s in v

γ

=⇒



Balance & Information Theory

Want to balance vectors in “optimal” way

Information theory 

maximize the entropy of the          subject tof(v)

f(−1,−1, . . . ,−1) = 0 and
X

v 2f¡ 1;+1 gk

f(v)v = 0

(+1,+1,…,+1)(-1,-1,…,-1)

Heroic

=⇒



Random graph coloring



Threshold formulation

Theorem. A random graph with n vertices
and m = cn edgesis w.h.p. k-colorable if

c · k log k − log k − 1 .

c ≥ k log k − 1
2 log k .

and w�h�p� non-k-colorable if



Main points

Non-k-colorability:

k-colorability:

kn
µ
1−

1

k

¶ cn

→ 0

Pro of. Apply second moment method to the
number of balanced k-colorings of G(n,m).

Pro of. The¬probability that¬there exists¬any
k-coloring¬is at¬most



Setup

Let Xσ be the indicator that the balanced 
k-partition σ is a proper k-coloring.

We will prove that if                        then for all
there is a constant

such that

This implies that                  is k-colorable w.h.p.

X =
P

¾X¾

c · k log k − log k − 1
D = D(k) > 0

E [X2] < D E [X]2

G(n, cn)



Setup

sum over all         of                 .

For any pair of balanced k-partitions 
let aijn be the # of vertices having 
color i in σ and color j in τ.

σ, τ E [X¾X¿]

σ, τ

E [X2] =

Pr[σ and τ are proper] =

0

@1−
2

k
+

X

ij

a2
ij

1

A
cn



Examples

When          are 
uncorrelated,     is
the flat         matrix 

σ, τ

1

k

A

Balance is doubly-stochastic.=⇒ A

1/k



Examples

When          are 
uncorrelated,     is
the flat         matrix 

As          align,   
tends to the

identity matrix

σ, τ

1

k

A

Balance is doubly-stochastic.=⇒ A

I

σ, τ

1/k
A



A matrix-valued overlap

So,                                              

k

E [X2] =
X

A 2B k

µ
n

An

¶ µ
1−

2

k
+
1

k2

X
a2

ij

¶ cn



A matrix-valued overlap

over doubly-stochastic matrices                   .k × k A = (aij )

So,                                              

which is controlled by the maximizer of 

k

E [X2] =
X

A 2B k

µ
n

An

¶ µ
1−

2

k
+
1

k2

X
a2

ij

¶ cn

−
X

aij log aij + c log

µ
1−

2

k
+
1

k2

X
a2

ij

¶



−
X

aij log aij + c log

µ
1−

2

k
+
1

k2

X
a2

ij

¶

A matrix-valued overlap

over doubly-stochastic matrices                   .k × k A = (aij )

So,                                              

which is controlled by the maximizer of 

k

E [X2] =
X

A 2B k

µ
n

An

¶ µ
1−

2

k
+
1

k2

X
a2

ij

¶ cn



Entropy decreases away from the flat         matrix

– For small   , this loss overwhelms the sum of squares gain
– But for large enough    ,….

The maximizer jumps instantaneously from flat, to a 
matrix where      vertices capture the majority of mass

Proved this happens only for

−
X

i;j

aij log aij + c ·
1

k

X

i;j

a2
ij

1/k

c
c

k

c > k log k − log k − 1

2
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Entropy decreases away from the flat         matrix

– For small   , this loss overwhelms the sum of squares gain
– But for large enough    ,….

The maximizer jumps instantaneously from flat, to a 
matrix where      entries capture majority of mass

−
X

i;j

aij log aij + c ·
1

k

X

i;j

a2
ij

1/k

k

c
c
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Entropy decreases away from the flat         matrix

– For small   , this loss overwhelms the sum of squares gain
– But for large enough    ,….

The maximizer jumps instantaneously from flat, to a 
matrix where      entries capture majority of mass

−
X

i;j

aij log aij + c ·
1

k

X

i;j

a2
ij

1/k

k

c > k log k − log k − 1This jump happens only after

c
c

2



Proof overview

Proof. Compare the value at the flat matrix with 
upper bound for everywhere else derived by:



Proof overview

Proof. Compare the value at the flat matrix with 
upper bound for everywhere else derived by:

1. Relax to singly stochastic matrices.



Proof overview

Proof. Compare the value at the flat matrix with 
upper bound for everywhere else derived by:

1. Relax to singly stochastic matrices.
2. Prescribe the L2 norm of each row ρi.



Proof overview

Proof. Compare the value at the flat matrix with 
upper bound for everywhere else derived by:

1. Relax to singly stochastic matrices.
2. Prescribe the L2 norm of each row ρi.
3. Find max-entropy, f(ρi), of each row given ρi.



Proof overview

Proof. Compare the value at the flat matrix with 
upper bound for everywhere else derived by:

1. Relax to singly stochastic matrices.
2. Prescribe the L2 norm of each row ρi.
3. Find max-entropy, f(ρi), of each row given ρi.

4. Prove that f’’’ > 0.



Proof overview

Proof. Compare the value at the flat matrix with 
upper bound for everywhere else derived by:

1. Relax to singly stochastic matrices.
2. Prescribe the L2 norm of each row ρi.
3. Find max-entropy, f(ρi), of each row given ρi.

4. Prove that f’’’ > 0.
5. Use (4) to determine the optimal distribution of 
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Proof overview

Proof. Compare the value at the flat matrix with 
upper bound for everywhere else derived by:

1. Relax to singly stochastic matrices.
2. Prescribe the L2 norm of each row ρi.
3. Find max-entropy, f(ρi), of each row given ρi.

4. Prove that f’’’ > 0.
5. Use (4) to determine the optimal distribution of 

the ρi given their total ρ.
6. Optimize over ρ.



Theorem. For every integer d > 0, w.h.p. the
chromatic number of a random d-regular graph

is either k, k + 1, or k + 2

where k is the smallest integer s.t. d < 2k log k.

Random regular graphs
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(x, y, y) where x > y

Maximize

A vector analogue
(optimizing a single row)



−
kX

i =1

ai log ai

kX

i =1

ai = 1

kX

i =1

a2
i = ρ

subject to

for some 1/k < ρ < 1

For k = 3 the maximizer is
(x, y, y) where x > y

Maximize

A vector analogue
(optimizing a single row)



−
kX

i =1

ai log ai

kX

i =1

ai = 1

kX

i =1

a2
i = ρ

subject to

for some 1/k < ρ < 1

For k = 3 the maximizer is
(x, y, y) where x > y

For the maximizer isk > 3

(x, y, . . . , y)

Maximize

A vector analogue
(optimizing a single row)



Create a composite image of an object that: 

– Minimizes “empirical error”
Typically, least-squares error over luminance

– Maximizes “plausibility”
Typically, maximum entropy

Maximum entropy image 
restoration



Structure of maximizer helps detect stars 
in astronomy

Maximum entropy image 
restoration



The End


