Probabilistic Method

Benny Sudakov

Princeton University

Rough outline

The basic Probabilistic method can be described as follows:

In order to prove the existence of a combinatorial structure with certain properties, we construct an appropriate probability space and show that a randomly chosen element in this space has desired properties with positive probability.

Ramsey theory

Of three ordinary adults, two must have the same sex.
D.J. KIeitman

Ramnsey Theory refers to a large body of deep results in mathematics with underlying philosophy: in large systems complete disorder is impossible!

Theorem: (Ramsey 1930)
$\forall k, l$ there exists $N(k, l)$ such that any two-coloring of the edges of complete graph on N vertices contains either/or

- Red complete graph of size k
- Green complete graph of size l

Ramsey numbers

Definition:
$R(k, l)$ is the minimal N so that every red-green edge coloring of K_{N} contains

- Red complete graph of size k, or
- Green complete graph of size l

Theorem: (Erdös-Szekeresh 1935)

$$
R(k, l) \leq\binom{ k+l-2}{k-1}
$$

In particular

$$
R(k, k) \leq\binom{ 2 k-2}{k-1} \approx 2^{2 k}
$$

Proof: part I

Induction on $k+l$. By definition, $R(2, l)=$ l and $R(k, 2)=k$. Now suppose that

$$
R(a, b) \leq\binom{ a+b-2}{a-1}, \quad \forall a+b<k+l
$$

Let

$$
N=R(k-1, l)+R(k, l-1)
$$

and consider a red-green coloring of the edges of the complete graph K_{N}.

Fix some vertex v of K_{N} and let A, B be the set of vertices connected to v by red, green edges respectively. Since $|A|+|B|=N-1$ we have that

$$
|A| \geq R(k-1, l) \quad \text { or } \quad|B| \geq R(k, l-1)
$$

Proof: part II

If $|A| \geq R(k-1, l)$, then A must contain either a green clique of size l or a red clique of size $k-1$ that together with v gives red clique of size k and we are done. The case $|B| \geq R(k, l-1)$ is similar.

By induction hypothesis, this implies

$$
\begin{aligned}
R(k, l) & \leq N=R(k-1, l)+R(k, l-1) \\
& \leq\binom{ k+l-3}{k-2}+\binom{k+l-3}{k-1} \\
& =\binom{k+l-2}{k-1} .
\end{aligned}
$$

Growth rate of $R(k, k)$

Example:

$k-1$ parts
of
size $k-1$

Conjecture: (P. Turán)
$R(k, k)$ has polynomial growth in k, moreover

$$
R(k, k) \leq c k^{2}
$$

Erdős existence argument

Theorem: (Erdős 1947)

$$
R(k, k) \geq 2^{k / 2}
$$

Proof:
Color the edges of the complete graph K_{N} with $N=2^{k / 2}$ red and green randomly and independently with probabilits $1 / 2$. For any set C of k vertices the probability that C spans a monochrometic clique is $2 \cdot 2^{-\binom{k}{2}}=2^{1-\binom{k}{2} \text {. }}$

Since there are $\binom{N}{k}$ possible choices for C, the probability that coloring contains a monochromatic k-clique is at most

$$
\binom{N}{k} 2^{1-\binom{k}{2}} \leq \frac{N^{k}}{k!} \cdot \frac{2^{k / 2+1}}{2^{k^{2} / 2}}=\frac{2^{k / 2+1}}{k!} \ll 1
$$

Open problem

Determine the correct exponent in the bound for $R(k, k)$

Best current estimates

$$
\frac{k}{2} \leq \log _{2} R(k, k) \leq 2 k
$$

Large girth and large chromatic number

Definitions:

- The girth $g(G)$ of a graph is the length of the shortest cycle in G.
- The chromatic number $\chi(G)$ is the minimal number of colors which needed to color the vertices of G so that adjacent vertices get different colors.

Note:
It is easy to color graph with large girth "locally" using only three colors.

Question:
If girth of G is large, can it be colored by few colors?

Surprising result

Theorem: (P. Erdös 1959.)
For all k and l there exists a finite graph G with girth at least l and chromatic number at least k.

Remark:
Explicit constructions of such graphs were not found until only nine years later in 1968 by Lovász.

Bound on $\chi(G)$

Definition:
A set of pairwise nonadjacent vertices of a graph G is called independent. The independence number $\alpha(G)$ is the size of the largest independent set in G.

Lemma:
For every graph G on n vertices

$$
\chi(G) \geq \frac{n}{\alpha(G)}
$$

Proof:
Consider the coloring of G into $\chi(G)$ colors. Then one of the colors classes has size at least $n / \chi(G)$ and its vertices form an independent set. Thus $\alpha(G) \geq$ $n / \chi(G)$, as desired.

Probabilistic tools

Lemma: (Linearity of expectation.)
Let $X_{1}, X_{2}, \ldots, X_{n}$ be random variables.
Then

$$
\mathbb{E}\left[\sum_{i} X_{i}\right]=\sum_{i} \mathbb{E}\left[X_{i}\right]
$$

(No conditions on random variables!)

Lemma: (Markov's inequality.)
Let X be a non-negative random variable and λ a real number. Then

$$
\mathbb{P}[X \geq \lambda] \leq \frac{\mathbb{E}[X]}{\lambda}
$$

Proof: part I

Fix $\theta<1 / l$. Let n be sufficiently large and G be a random graph $G(n, p)$ with $p=1 / n^{1-\theta}$. Let X be the number of cycles in G of length at most l.

As $\theta \cdot l<1$, by linearity of expectation,

$$
\mathbb{E}[X] \leq \sum_{i=3}^{l} n^{i} \cdot p^{i} \leq O\left(n^{\theta l}\right)=o(n)
$$

By Markov's inequality

$$
\mathbb{P}[X \geq n / 2] \leq \frac{\mathbb{E}[X]}{n / 2}=o(1) .
$$

Set $x=\frac{3}{p} \log n$, so that

$$
\begin{aligned}
\mathbb{P}[\alpha(G) \geq x] & \leq\binom{ n}{x}(1-p)^{\binom{x}{2}} \\
& <\left(n e^{-p x / 2}\right)^{x}=o(1)
\end{aligned}
$$

Proof: part II

For large n both of these events have probability less than $1 / 2$. Thus there is a specific graph G with less than $n / 2$ short cycles, ie., cycles of length at most l, and with

$$
\alpha(G)<x \leq 3 n^{1-\theta} \log n
$$

Remove a vertex from each short cycle of G. This gives G^{\prime} with at least $n / 2$ vertices, girth greater than l and $\alpha\left(G^{\prime}\right) \leq$ $\alpha(G)$. Therefore

$$
\chi\left(G^{\prime}\right) \geq \frac{\left|G^{\prime}\right|}{\alpha\left(G^{\prime}\right)} \geq \frac{n / 2}{3 n^{1-\theta} \log n}=\frac{n^{\theta}}{6 \log n} \gg k .
$$

Set-pair estimate

Theorem: (Bollobás 1965.)
Let A_{1}, \ldots, A_{m} and B_{1}, \ldots, B_{m} be two families of sets such that $A_{i} \cap B_{j}=\emptyset$ only if $i=j$. Then

$$
\sum_{i=1}^{m}\binom{\left|A_{i}\right|+\left|B_{i}\right|}{\left|A_{i}\right|}^{-1} \leq 1
$$

In particular if $\left|A_{i}\right|=a$ and $\left|B_{i}\right|=b$, then

$$
m \leq\binom{ a+b}{a}
$$

Example:
Let X be a set of size $a+b$ and consider pairs $\left(A_{i}, B_{i}=X-A_{i}\right)$ for all $A_{i} \subset X$ of size a. There are $\binom{a+b}{a}$ such pairs, so the above theorem is tight.

Proof: part I

Let $\left|A_{i}\right|=a_{i},\left|B_{i}\right|=b_{i}$ and let

$$
X=\bigcup_{i}\left(A_{i} \cup B_{i}\right)
$$

Consider a random order π of X and let X_{i} be the event that in this order all the elements of A_{i} precede all those of B_{i}.

To compute probability of X_{i} note that

 there are $\left(a_{i}+b_{i}\right)$! possible orders of alement in $A_{i} \cup B_{i}$ and the number of such orders in which all the elements of A_{i} precede all those of B_{i} is exactly $a_{i}!b_{i}!$. Therefore$$
\mathbb{P}\left[X_{i}\right]=\frac{a_{i}!b_{i}!}{\left(a_{i}+b_{i}\right)!}=\binom{a_{i}+b_{i}}{a_{i}}^{-1}
$$

Proof: part II

We claim that events X_{i} are pairwise disjoint. Indeed suppose that there is an order of X in which all the elements of A_{i} precede those of B_{i} and all the elements of A_{j} precede all those of B_{j}. W.I.o.g. assume that the last element of A_{i} appear before the last element of A_{j}. Then all the elements of A_{i} precede all those of B_{j}, contradicting the fact that $A_{i} \cap B_{j} \neq \emptyset$.

Therefore events X_{i} are pairwise disjoint and so we get

$$
1 \geq \sum_{i=1}^{m} \mathbb{P}\left[X_{i}\right]=\sum_{i=1}^{m}\binom{a_{i}+b_{i}}{a_{i}}^{-1}
$$

Sperner's lemma

Theorem: (Sperner 1928.)
Let A_{1}, \ldots, A_{m} be a family of subsets of n element set X which is an antichain, i.e., $A_{i} \nsubseteq A_{j}$ for all $i \neq j$. Then

$$
m \leq\binom{ n}{\lfloor n / 2\rfloor}
$$

Proof:
Let $B_{i}=X-A_{i}$ and let $\left|A_{i}\right|=a_{i}$. Then
$\left|B_{i}\right|=b_{i}=n-a_{i}, A_{i} \cap B_{i}$ is empty but $A_{j} \cap B_{i} \neq \emptyset$ for all $i \neq j$. Therefore by Bollobás' theorem

$$
1 \geq \sum_{i=1}^{m}\binom{a_{i}+b_{i}}{a_{i}}^{-1}=\sum_{i=1}^{m}\binom{n}{a_{i}}^{-1} \geq \frac{m}{\binom{n}{\lfloor n / 2\rfloor}} .
$$

Theorem: (Erdős 1945.)
Let $x_{1}, x_{2}, \ldots, x_{n}$ be real numbers such that all $\left|x_{i}\right| \geq 1$. For every sequence $\alpha=$ $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ with $\alpha_{i} \in\{-1,+1\}$ let

$$
x_{\alpha}=\sum_{i=1}^{n} \alpha_{i} x_{i}
$$

Then every open interval I in the real line of length 2 contains at most $\binom{n}{\lfloor n / 2\rfloor}$ of the numbers x_{α}.

Remark:
Kleitman (1970) proved that this is still true if x_{i} are vectors in arbitrary normed space.

Proof

Replacing $x_{i}<0$ by $-x_{i}$ we can assume that all $x_{i} \geq 1$. For every $\alpha \in\{-1,1\}^{n}$ let A_{α} be the subset of $\{1, \ldots, n\}$ containing all $1 \leq i \leq n$ with $\alpha_{i}=-1$. Note that if $A_{\alpha} \subset A_{\beta}$ then $\alpha_{i}-\beta_{i}$ is either 0 or 2. Hence

$$
x_{\alpha}-x_{\beta}=\sum_{i}\left(\alpha_{i}-\beta_{i}\right) x_{i}=2 \sum_{i \in A_{\beta}-A_{\alpha}} x_{i} \geq 2
$$

This implies that $\left\{A_{\alpha} \mid x_{\alpha} \in I\right\}$ form an antichain and by Sperner's lemma their number is bounded by $\binom{n}{\lfloor n / 2\rfloor}$.

Explicit constructions

Theorem: (Erdős 1947)
There is a 2-edge-coloring of complete graph $K_{N}, N=2^{k / 2}$ with no monochromatic clique of size k.

Problem: (Erdős \$100)
Find an "explicit" such coloring.

Explicit $\stackrel{\text { def }}{=}$ constructible in polynomial time

Theorem: (Frankl and Wilson 1981)

There is an explicit 2-edge-coloring of complete graph $K_{N}, N=k^{\frac{\log ^{\log k} \log k}{l o t h}}$ with no monochromatic clique of size k.

Bipartite Ramsey

Problem:
Find "large" 0,1 matrix A with no $k \times k$ homogeneous submatrices.

Submatrix $\xlongequal{\text { def }}$ intersection of k rows and columns Homogeneous $\stackrel{\text { def }}{=}$ containing all 0 or all 1

Randomly:
There is $N \times N$ matrix A with $k=2 \log _{2} N$.

Explicitly:
There is $N \times N$ matrix A with $k=N^{1 / 2}$.

$$
\begin{gathered}
\text { E.g., take }[N]=\{0,1\}^{n} \text { and define } \\
a_{x, y}=x \cdot y(\bmod 2)
\end{gathered}
$$

Breaking 1/2 barrier

Theorem: (Barak, Kindler, Shaltiel, S., Wigderson) For every constant $\delta>0$ there exists a polynomial time computable $N \times N$ matrix A with 0,1 entries such that none of its $N^{\delta} \times N^{\delta}$ submatrices is homogeneous.

Moreover, every $N^{\delta} \times N^{\delta}$ submatrix of A has constant proportion of 0 and of 1.

