
Random Structures and Algorithms

Alan Frieze

Department of Mathematical Sciences,

Carnegie Mellon University,
Pittsburgh, USA.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Contents of talk

(a) Random Discrete Structures
(b) Random Instances of the TSP in the unit square [0,1]2

(c) The Random Graphs Gn,m and Gn,p.
(1) Evolution
(2) Chromatic number
(3) Matchings
(4) Hamilton cycles

(d) Randomly edge weighted graphs
1 Minimum Spanning Tree
2 Shortest Paths
3 3-Dimensional Assignment Problem
4 Random Instances of the TSP with independent costs

(e) Random k -SAT
(f) Open Problems

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Random Discrete Structures

Combinatorics/Discrete Mathematics (in the main) concerns
itself with certain properties of large, finite sets, with some
defined structure.

Given such a set Ω, (often a set of graphs or a set of
permutations) we have certain natural questions:

1 How big is Ω: Enumerative Combinatorics.
2 How big is the greatest element of Ω: Extremal

Combinatorics.
3 What are the properties of a typical member of Ω:

Probabilistic Combinatorics.
4 Analysis of algorithms aims to find the complexity of

computational problems associated with the above topics.
This talk will be about Probabilistic Combinatorics/Analysis of
Algorithms (average case).

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Random Discrete Structures

Combinatorics/Discrete Mathematics (in the main) concerns
itself with certain properties of large, finite sets, with some
defined structure.

Given such a set Ω, (often a set of graphs or a set of
permutations) we have certain natural questions:

1 How big is Ω: Enumerative Combinatorics.

2 How big is the greatest element of Ω: Extremal
Combinatorics.

3 What are the properties of a typical member of Ω:
Probabilistic Combinatorics.

4 Analysis of algorithms aims to find the complexity of
computational problems associated with the above topics.

This talk will be about Probabilistic Combinatorics/Analysis of
Algorithms (average case).

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Random Discrete Structures

Combinatorics/Discrete Mathematics (in the main) concerns
itself with certain properties of large, finite sets, with some
defined structure.

Given such a set Ω, (often a set of graphs or a set of
permutations) we have certain natural questions:

1 How big is Ω: Enumerative Combinatorics.
2 How big is the greatest element of Ω: Extremal

Combinatorics.

3 What are the properties of a typical member of Ω:
Probabilistic Combinatorics.

4 Analysis of algorithms aims to find the complexity of
computational problems associated with the above topics.

This talk will be about Probabilistic Combinatorics/Analysis of
Algorithms (average case).

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Random Discrete Structures

Combinatorics/Discrete Mathematics (in the main) concerns
itself with certain properties of large, finite sets, with some
defined structure.

Given such a set Ω, (often a set of graphs or a set of
permutations) we have certain natural questions:

1 How big is Ω: Enumerative Combinatorics.
2 How big is the greatest element of Ω: Extremal

Combinatorics.
3 What are the properties of a typical member of Ω:

Probabilistic Combinatorics.

4 Analysis of algorithms aims to find the complexity of
computational problems associated with the above topics.

This talk will be about Probabilistic Combinatorics/Analysis of
Algorithms (average case).

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Random Discrete Structures

Combinatorics/Discrete Mathematics (in the main) concerns
itself with certain properties of large, finite sets, with some
defined structure.

Given such a set Ω, (often a set of graphs or a set of
permutations) we have certain natural questions:

1 How big is Ω: Enumerative Combinatorics.
2 How big is the greatest element of Ω: Extremal

Combinatorics.
3 What are the properties of a typical member of Ω:

Probabilistic Combinatorics.
4 Analysis of algorithms aims to find the complexity of

computational problems associated with the above topics.

This talk will be about Probabilistic Combinatorics/Analysis of
Algorithms (average case).

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Random Discrete Structures

Combinatorics/Discrete Mathematics (in the main) concerns
itself with certain properties of large, finite sets, with some
defined structure.

Given such a set Ω, (often a set of graphs or a set of
permutations) we have certain natural questions:

1 How big is Ω: Enumerative Combinatorics.
2 How big is the greatest element of Ω: Extremal

Combinatorics.
3 What are the properties of a typical member of Ω:

Probabilistic Combinatorics.
4 Analysis of algorithms aims to find the complexity of

computational problems associated with the above topics.
This talk will be about Probabilistic Combinatorics/Analysis of
Algorithms (average case).

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Random Discrete Structures

There is unfortunately no time to discuss the Probabilistic
Method where one uses probabilistic arguments to prove the
existence of certain mathematical entities.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Contents of talk

(a) Random Discrete Structures
(b) Random Instances of the TSP in the unit square [0,1]2

(c) The Random Graphs Gn,m and Gn,p.
(1) Evolution
(2) Chromatic number
(3) Matchings
(4) Hamilton cycles

(d) Randomly edge weighted graphs
1 Minimum Spanning Tree
2 Shortest Paths
3 3-Dimensional Assignment Problem
4 Random Instances of the TSP with independent costs

(e) Random k -SAT
(f) Open Problems

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

TSP in the Unit Square

It is a feature of modern computation that many of the problems
we would like to solve seem hard, in some well-defined sense
e.g. NP-hard. As such any algorithm is likely to take a large
amount of time on some problems.

This of course refers to the worst-case scenario for a particular
problem.

In practise, typical problems are often easy to satisfactorily
solve.

Karp (1977) pioneered the idea of finding algorithms that work
well on instances drawn from some natural probability
distribution. He focussed first on the Travelling Salesperson
Problem (TSP).

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

TSP in the Unit Square

It is a feature of modern computation that many of the problems
we would like to solve seem hard, in some well-defined sense
e.g. NP-hard. As such any algorithm is likely to take a large
amount of time on some problems.

This of course refers to the worst-case scenario for a particular
problem.

In practise, typical problems are often easy to satisfactorily
solve.

Karp (1977) pioneered the idea of finding algorithms that work
well on instances drawn from some natural probability
distribution. He focussed first on the Travelling Salesperson
Problem (TSP).

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

TSP in the Unit Square

It is a feature of modern computation that many of the problems
we would like to solve seem hard, in some well-defined sense
e.g. NP-hard. As such any algorithm is likely to take a large
amount of time on some problems.

This of course refers to the worst-case scenario for a particular
problem.

In practise, typical problems are often easy to satisfactorily
solve.

Karp (1977) pioneered the idea of finding algorithms that work
well on instances drawn from some natural probability
distribution. He focussed first on the Travelling Salesperson
Problem (TSP).

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

TSP in the Unit Square

It is a feature of modern computation that many of the problems
we would like to solve seem hard, in some well-defined sense
e.g. NP-hard. As such any algorithm is likely to take a large
amount of time on some problems.

This of course refers to the worst-case scenario for a particular
problem.

In practise, typical problems are often easy to satisfactorily
solve.

Karp (1977) pioneered the idea of finding algorithms that work
well on instances drawn from some natural probability
distribution. He focussed first on the Travelling Salesperson
Problem (TSP).

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

TSP in the Unit Square

Let X = X1,X2, . . . ,Xn be n points chosen independently and
uniformly from [0,1]2.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

TSP in the Unit Square

X1,X2, . . . ,Xn are independently chosen, uniformly from [0,1]2.

Let Z be the minimum total
length of a closed path (tour)
through X1,X2, . . . ,Xn.

We consider the likely value of
Z as n→∞.

Theorem (Beardwood, Halton and Hammersley (1959))
There exists an absolute constant β > 0 such

Z
n1/2 → β with probability 1

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

TSP in the Unit Square

X1,X2, . . . ,Xn are independently chosen, uniformly from [0,1]2.

Let Z be the minimum total
length of a closed path (tour)
through X1,X2, . . . ,Xn.

We consider the likely value of
Z as n→∞.

The precise value of β is unkown to this day.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

TSP in the Unit Square

Karp (1977) described a heuristic that runs in polynomial time
and w.h.p. produces a tour of length Z + o(n1/2).

Sub-square size (log n/n)1/2

Solve the individual problems in each sub-square.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

TSP in the Unit Square

Connect up the smaller tours as shown, by green edges.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

TSP in the Unit Square

Connect up the smaller tours as shown, by green edges.
Convert to tour by deleting excess edges.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

TSP in the Unit Square

The total length of the green edges is O(n1/2/L) = o(n1/2).

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Travelling Salesman in the Unit Square:

Single Sub-Square

Red edges from optimal tour through all n points.
Red plus Brown edges at least as long as the one found in the
sub-square by the algorithm.
Total length of brown edges is O(n/L2)× Ln−1/2 = o(n1/2).

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

TSP in the Unit Square

Theorem (Karp (1977))
There is a polynomial time algorithm that w.h.p. finds a tour of
length (1 + o(1))βn1/2.

Here w.h.p. (with high probability) means with probability
1− o(1) as n→∞.

Note that Papadimitriou (1977) showed that the TSP restricted
to Euclidean instances is still NP-hard.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

TSP in the Unit Square

Theorem (Karp (1977))
There is a polynomial time algorithm that w.h.p. finds a tour of
length (1 + o(1))βn1/2.

Here w.h.p. (with high probability) means with probability
1− o(1) as n→∞.

Note that Papadimitriou (1977) showed that the TSP restricted
to Euclidean instances is still NP-hard.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Contents of talk

(a) Random Discrete Structures
(b) Random Instances of the TSP in the unit square [0,1]2

(c) The Random Graphs Gn,m and Gn,p.
(1) Evolution
(2) Chromatic number
(3) Matchings
(4) Hamilton cycles

(d) Randomly edge weighted graphs
1 Minimum Spanning Tree
2 Shortest Paths
3 3-Dimensional Assignment Problem
4 Random Instances of the TSP with independent costs

(e) Random k -SAT
(f) Open Problems

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Gn,m and Gn,p

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

��
��
��

��
��
��

��
��
��

��
��
��a

b c

d

e
f

Graph G = (V ,E)

Vertices V = {a, b, c, d , e, f}
Edges E = {{a, b}, {a, f}, . . . , {e, f}}

Degree of vertex v :
No. of edges incident with v

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Gn,m and Gn,p

The complete graph Kn has vertex set [n] = {1,2, . . . ,n} and
edge set

([n]
2

)
.

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
�� ��

��
��

��
��
��

��
��
��

��
��
��

K6

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Gn,m and Gn,p

Choosing a graph at random

Gn,m: Vertex set [n] and m random edges.

Gn,p: Each edge e of the complete graph Kn is included
independently with probability p = p(n).

W.h.p. Gn,p has ∼
(n

2

)
p edges, provided

(n
2

)
p →∞

p = 1/2, each subgraph of Kn is equally likely.

If m ∼
(n

2

)
p then Gn,p and Gn,m have “similar” properties.

W.h.p. means with probability 1-o(1) as n→∞.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Gn,m and Gn,p

Choosing a graph at random

Gn,m: Vertex set [n] and m random edges.

Gn,p: Each edge e of the complete graph Kn is included
independently with probability p = p(n).

W.h.p. Gn,p has ∼
(n

2

)
p edges, provided

(n
2

)
p →∞

p = 1/2, each subgraph of Kn is equally likely.

If m ∼
(n

2

)
p then Gn,p and Gn,m have “similar” properties.

W.h.p. means with probability 1-o(1) as n→∞.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Gn,m and Gn,p

Choosing a graph at random

Gn,m: Vertex set [n] and m random edges.

Gn,p: Each edge e of the complete graph Kn is included
independently with probability p = p(n).

W.h.p. Gn,p has ∼
(n

2

)
p edges, provided

(n
2

)
p →∞

p = 1/2, each subgraph of Kn is equally likely.

If m ∼
(n

2

)
p then Gn,p and Gn,m have “similar” properties.

W.h.p. means with probability 1-o(1) as n→∞.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Gn,m and Gn,p

Choosing a graph at random

Gn,m: Vertex set [n] and m random edges.

Gn,p: Each edge e of the complete graph Kn is included
independently with probability p = p(n).

W.h.p. Gn,p has ∼
(n

2

)
p edges, provided

(n
2

)
p →∞

p = 1/2, each subgraph of Kn is equally likely.

If m ∼
(n

2

)
p then Gn,p and Gn,m have “similar” properties.

W.h.p. means with probability 1-o(1) as n→∞.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Contents of talk

(a) Random Discrete Structures
(b) Random Instances of the TSP in the unit square [0,1]2

(c) The Random Graphs Gn,m and Gn,p.
(1) Evolution
(2) Chromatic number
(3) Matchings
(4) Hamilton cycles

(d) Randomly edge weighted graphs
1 Minimum Spanning Tree
2 Shortest Paths
3 3-Dimensional Assignment Problem
4 Random Instances of the TSP with independent costs

(e) Random k -SAT
(f) Open Problems

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

The evolution of a random graph

Graph process G0,G1, . . . where Gi+1 is Gi plus a random
edge.

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
����

��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
�� ��

��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

In the beginning

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

The evolution of a random graph

Graph process G0,G1, . . . where Gi+1 is Gi plus a random
edge.

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
����

��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
�� ��

��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

m = o(n1/2)

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

The evolution of a random graph

Graph process G0,G1, . . . where Gi+1 is Gi plus a random
edge.

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
����

��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
�� ��

��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

m = ω(n1/2)

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

The evolution of a random graph

Graph process G0,G1, . . . where Gi+1 is Gi plus a random
edge.

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
����

��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
�� ��

��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

m = ω(n2/3)

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

The evolution of a random graph

Erdős and Rényi (1960)

m Structure of Gn,m w.h.p.

o(n1/2) Isolated edges and vertices

ω(n1/2) Isolated edges and vertices and paths of length 2
ω(n2/3) Components are of the form

ω(n
k−1

k) Components are trees with 1 ≤ j ≤ k + 1 vertices.
Each possible such tree appears.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

The evolution of a random graph

Erdős and Rényi (1960)

m Structure of Gn,m w.h.p.

o(n1/2) Isolated edges and vertices

ω(n1/2) Isolated edges and vertices and paths of length 2

ω(n2/3) Components are of the form

ω(n
k−1

k) Components are trees with 1 ≤ j ≤ k + 1 vertices.
Each possible such tree appears.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

The evolution of a random graph

Erdős and Rényi (1960)

m Structure of Gn,m w.h.p.

o(n1/2) Isolated edges and vertices

ω(n1/2) Isolated edges and vertices and paths of length 2
ω(n2/3) Components are of the form

ω(n
k−1

k) Components are trees with 1 ≤ j ≤ k + 1 vertices.
Each possible such tree appears.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

The evolution of a random graph

Erdős and Rényi (1960)

m Structure of Gn,m w.h.p.

o(n1/2) Isolated edges and vertices

ω(n1/2) Isolated edges and vertices and paths of length 2
ω(n2/3) Components are of the form

ω(n
k−1

k) Components are trees with 1 ≤ j ≤ k + 1 vertices.
Each possible such tree appears.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

The evolution of a random graph

m Structure of Gn,m w.h.p.

1
2cn Mainly trees. Some unicyclic components. Maximum

c < 1 component size O(log n)

1
2cn Unique giant component of size ∼ γ(c)n. Remainder
c > 1 almost all trees. Second largest component of

size O(log n)

γ(c) is the probability that a branching process where each
particle has a Poisson, mean c, number of descendants, does
not go extinct.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

The evolution of a random graph

m Structure of Gn,m w.h.p.

1
2cn Mainly trees. Some unicyclic components. Maximum

c < 1 component size O(log n)

1
2cn Unique giant component of size ∼ γ(c)n. Remainder
c > 1 almost all trees. Second largest component of

size O(log n)

1
2cn Unique giant component of size ∼ γ(c)n. Remainder
c > 1 almost all trees. Second largest component of

size O(log n)

γ(c) is the probability that a branching process where each
particle has a Poisson, mean c, number of descendants, does
not go extinct.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

The evolution of a random graph

m Structure of Gn,m w.h.p.

1
2cn Mainly trees. Some unicyclic components. Maximum

c < 1 component size O(log n)

1
2cn Unique giant component of size ∼ γ(c)n. Remainder
c > 1 almost all trees. Second largest component of

size O(log n)

1
2n Fascinating. Maximum component size order n2/3.

Has subsequently been the subject of more intensive
study e.g. Janson, Knuth, Łuczak and Pittel (1993).

1
2cn Unique giant component of size ∼ γ(c)n. Remainder
c > 1 almost all trees. Second largest component of

size O(log n)

γ(c) is the probability that a branching process where each
particle has a Poisson, mean c, number of descendants, does
not go extinct.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

The evolution of a random graph

m Structure of Gn,m w.h.p.

1
2cn Unique giant component of size ∼ γ(c)n. Remainder
c > 1 almost all trees. Second largest component of

size O(log n)

γ(c) is the probability that a branching process where each
particle has a Poisson, mean c, number of descendants, does
not go extinct.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

The evolution of a random graph

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
����

��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
�� ��

��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

m = cn/2, c > 1

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

The evolution of a random graph

Theorem (Erdős and Rényi (1959))

m = 1
2 n(log n + cn)

lim
n→∞

Pr(Gn,m is connected) =

0 cn → −∞
e−e−c

cn → c
1 cn → +∞

= lim
n→∞

Pr(δ(Gn,m) ≥ 1)

m

Pr(Gn,m is connected)

Notice the sharp transition from disconnected to connected.
Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

The evolution of a random graph

Connectivity threshold

p = (1 + ε)
log n

n
,

(
m =

1 + ε

2
n log n.

)
Xk = number of k -components, 1 ≤ k ≤ n/2.
X = X1 + X2 + · · ·+ Xn/2
Gn,p is connected iff X = 0.

Pr(X 6= 0) ≤ E(X)

≤
n/2∑
k=1

(
n
k

)
kk−2pk−1(1− p)k(n−k)

≤ n
log n

n/2∑
k=1

(
e log n

n(1+ε)(1−k/n)

)k

→ 0.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

The evolution of a random graph

Connectivity threshold

p = (1 + ε)
log n

n
,

(
m =

1 + ε

2
n log n.

)
Xk = number of k -components, 1 ≤ k ≤ n/2.
X = X1 + X2 + · · ·+ Xn/2
Gn,p is connected iff X = 0.

Pr(X 6= 0) ≤ E(X)

≤
n/2∑
k=1

(
n
k

)
kk−2pk−1(1− p)k(n−k)

≤ n
log n

n/2∑
k=1

(
e log n

n(1+ε)(1−k/n)

)k

→ 0.
Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Evolution: Matchings

A matching in a graph G is a set of vertex disjoint edges. The
matching is perfect if every vertex is covered by an edge of the
matching.

Matching
Perfect Matching

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Evolution: Hamilton cycles

A Hamilton cycle in a graph G is a cycle that passes through
each vertex exactly once.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Evolution: Hamilton cycles

A Hamilton cycle in a graph G is a cycle that passes through
each vertex exactly once.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Evolution: Hitting Times

Consider G0,G1, . . . ,Gm, . . . ,: Gi+1 is Gi plus a random edge.
Let mk denote the minimum m for which the minimum vertex
degree δ(Gm) ≥ k .

Theorem (Ajtai, Komlós, Szemerédi (1985), Bollobás (1984))
W.h.p. m2 is the “time” when Gm first has a Hamilton cycle.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Evolution: Hitting Times

Consider G0,G1, . . . ,Gm, . . . ,: Gi+1 is Gi plus a random edge.
Let mk denote the minimum m for which the minimum vertex
degree δ(Gm) ≥ k .

Theorem (Erdős and Rényi (1959))
W.h.p. m1 is the “time” when Gm first becomes connected.

Theorem (Ajtai, Komlós, Szemerédi (1985), Bollobás (1984))
W.h.p. m2 is the “time” when Gm first has a Hamilton cycle.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Evolution: Hitting Times

Consider G0,G1, . . . ,Gm, . . . ,: Gi+1 is Gi plus a random edge.
Let mk denote the minimum m for which the minimum vertex
degree δ(Gm) ≥ k .

Theorem (Erdős and Rényi (1959))
W.h.p. m1 is the “time” when Gm first becomes connected.

Theorem (Erdős and Rényi (1966))
W.h.p. m1 is the “time” when Gm first has a perfect matching.

Theorem (Ajtai, Komlós, Szemerédi (1985), Bollobás (1984))
W.h.p. m2 is the “time” when Gm first has a Hamilton cycle.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Evolution: Hitting Times

Consider G0,G1, . . . ,Gm, . . . ,: Gi+1 is Gi plus a random edge.
Let mk denote the minimum m for which the minimum vertex
degree δ(Gm) ≥ k .

Theorem (Erdős and Rényi (1959))
W.h.p. m1 is the “time” when Gm first becomes connected.

Theorem (Erdős and Rényi (1966))
W.h.p. m1 is the “time” when Gm first has a perfect matching.

Theorem (Ajtai, Komlós, Szemerédi (1985), Bollobás (1984))
W.h.p. m2 is the “time” when Gm first has a Hamilton cycle.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Evolution: Hitting Times

Consider G0,G1, . . . ,Gm, . . . ,: Gi+1 is Gi plus a random edge.
Let mk denote the minimum m for which the minimum vertex
degree δ(Gm) ≥ k .

Theorem (Cooper and Frieze (1989))

W.h.p. at “time” m2, Gm has (log n)n−o(n) Hamilton cycles.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Evolution: Hitting Times

Consider G0,G1, . . . ,Gm, . . . ,: Gi+1 is Gi plus a random edge.
Let mk denote the minimum m for which the minimum vertex
degree δ(Gm) ≥ k .

Theorem (Glebov and Krivelevich (2013))

W.h.p. at “time” m2, Gm has n!pne−o(n) Hamilton cycles.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Evolution: Hitting Times

Consider G0,G1, . . . ,Gm, . . . ,: Gi+1 is Gi plus a random edge.
Let mk denote the minimum m for which the minimum vertex
degree δ(Gm) ≥ k .

Theorem (Bollobás and Frieze (1985))

W.h.p. at “time” mk , k = O(1), Gm has bk/2c disjoint Hamilton
cycles plus a disjoint perfect matching if k is odd– Property Ak .

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Evolution: Hitting Times

Consider G0,G1, . . . ,Gm, . . . ,: Gi+1 is Gi plus a random edge.
Let mk denote the minimum m for which the minimum vertex
degree δ(Gm) ≥ k .

Theorem (Bollobás and Frieze (1985))

W.h.p. at “time” mk , k = O(1), Gm has bk/2c disjoint Hamilton
cycles plus a disjoint perfect matching if k is odd– Property Ak .

Theorem (Knox, Kühn and Osthus (2012))

W.h.p. Gm has property Aδ for n log50 n ≤ m ≤
(n

2

)
− o(n2).

Theorem (Krivelevich and Samotij (2012))

W.h.p. Gm has property Aδ for 1
2n log n ≤ m ≤ n1+ε.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Contents of talk

(a) Random Discrete Structures
(b) Random Instances of the TSP in the unit square [0,1]2

(c) The Random Graphs Gn,m and Gn,p.
(1) Evolution
(2) Chromatic number
(3) Matchings
(4) Hamilton cycles

(d) Randomly edge weighted graphs
1 Minimum Spanning Tree
2 Shortest Paths
3 3-Dimensional Assignment Problem
4 Random Instances of the TSP with independent costs

(e) Random k -SAT
(f) Open Problems

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Chromatic Number

A proper k -coloring of a graph G is a map f : V → [k] such that
if {v ,w} is an edge of G then f (v) 6= f (w).

1

2 3

2

3 1

The chromatic number χ(G) is the smallest k for which there is
a proper k -coloring.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Chromatic Number

A set of vertices S ⊆ V is independent if v ,w ∈ S implies that
{v ,w} is not an edge.

In a proper k -coloring, each color class is an independent set.

The independence number α(G) is the size of the largest
independent set.

Thus
χ(G) ≥ |V |

α(G) .

1

2 3

2

3 1

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Chromatic Number

Theorem (Matula (1970))

W.h.p. the maximum size α(Gn,1/2) of an independent set is

2 log2 n − 2 log2 log2 n + O(1).

Finding an independent set of size ∼ log2 n in polynomial time
is easy.

Greedy Algorithm:
Start with I = {1}.
Repeatedly add v /∈ I that is not adjacent to I, until no such v
can be found.

After k successful steps, E(# choices for v) ∼ n2−k .

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Chromatic Number

Theorem (Matula (1970))

W.h.p. the maximum size α(Gn,1/2) of an independent set is

2 log2 n − 2 log2 log2 n + O(1).

Finding an independent set of size ∼ log2 n in polynomial time
is easy.

Greedy Algorithm:
Start with I = {1}.
Repeatedly add v /∈ I that is not adjacent to I, until no such v
can be found.

After k successful steps, E(# choices for v) ∼ n2−k .

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Chromatic Number

Theorem (Matula (1970))

W.h.p. the maximum size α(Gn,1/2) of an independent set is

2 log2 n − 2 log2 log2 n + O(1).

Finding an independent set of size ∼ log2 n in polynomial time
is easy.

Greedy Algorithm:
Start with I = {1}.
Repeatedly add v /∈ I that is not adjacent to I, until no such v
can be found.

After k successful steps, E(# choices for v) ∼ n2−k .
Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Chromatic Number

Theorem (Matula (1970))

W.h.p. the maximum size α(Gn,1/2) of an independent set is

2 log2 n − 2 log2 log2 n + O(1).

Surprisingly, no-one has been able to find a polynomial time
algorithm that w.h.p. finds an independent set of size
(1 + ε) log2 n for any positive constant ε > 0.

It may not be possible to find such an independent set in
polynomial time w.h.p.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Chromatic Number

Theorem (Matula (1970))

W.h.p. the maximum size α(Gn,1/2) of an independent set is

2 log2 n − 2 log2 log2 n + O(1).

Surprisingly, no-one has been able to find a polynomial time
algorithm that w.h.p. finds an independent set of size
(1 + ε) log2 n for any positive constant ε > 0.

It may not be possible to find such an independent set in
polynomial time w.h.p.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Chromatic Number

It follows from Matula’s result that w.h.p. χ(Gn,1/2) ≥ n
2 log2 n

Theorem (Bollobás and Erdős (1976), Grimmett and
McDiarmid (1975))

W.h.p. a simple greedy algorithm uses ∼ n
log2 n colors.

Given the fact that no-one knows how to find a large
independent set in polynomial time, no-one knows how to find a
coloring with (1− ε)n/ log2 n colors in polynomial time.

It may even be NP-hard to find such a coloring in polynomial
time w.h.p.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Chromatic Number

It follows from Matula’s result that w.h.p. χ(Gn,1/2) ≥ n
2 log2 n

Theorem (Bollobás and Erdős (1976), Grimmett and
McDiarmid (1975))

W.h.p. a simple greedy algorithm uses ∼ n
log2 n colors.

Given the fact that no-one knows how to find a large
independent set in polynomial time, no-one knows how to find a
coloring with (1− ε)n/ log2 n colors in polynomial time.

It may even be NP-hard to find such a coloring in polynomial
time w.h.p.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Chromatic Number

It follows from Matula’s result that w.h.p. χ(Gn,1/2) ≥ n
2 log2 n

Theorem (Bollobás and Erdős (1976), Grimmett and
McDiarmid (1975))

W.h.p. a simple greedy algorithm uses ∼ n
log2 n colors.

Given the fact that no-one knows how to find a large
independent set in polynomial time, no-one knows how to find a
coloring with (1− ε)n/ log2 n colors in polynomial time.

It may even be NP-hard to find such a coloring in polynomial
time w.h.p.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Chromatic Number

It follows from Matula’s result that w.h.p. χ(Gn,1/2) ≥ n
2 log2 n

Theorem (Bollobás and Erdős (1976), Grimmett and
McDiarmid (1975))

W.h.p. a simple greedy algorithm uses ∼ n
log2 n colors.

Given the fact that no-one knows how to find a large
independent set in polynomial time, no-one knows how to find a
coloring with (1− ε)n/ log2 n colors in polynomial time.

It may even be NP-hard to find such a coloring in polynomial
time w.h.p.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Chromatic Number

For a long time, no-one could prove an upper bound
χ(Gn,1/2) ≤ (1 + o(1)) n

2 log2 n

The “discovery” of Martingale Concentration Inequalities was a
great help.

Let Z = Z (X1, . . . ,XN) where X1, . . . ,XN are independent.
Suppose that changing one Xi only changes Z by ≤ 1. Then

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Chromatic Number

For a long time, no-one could prove an upper bound
χ(Gn,1/2) ≤ (1 + o(1)) n

2 log2 n

The “discovery” of Martingale Concentration Inequalities was a
great help.

Let Z = Z (X1, . . . ,XN) where X1, . . . ,XN are independent.
Suppose that changing one Xi only changes Z by ≤ 1. Then

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Chromatic Number

For a long time, no-one could prove an upper bound
χ(Gn,1/2) ≤ (1 + o(1)) n

2 log2 n

The “discovery” of Martingale Concentration Inequalities was a
great help.

Let Z = Z (X1, . . . ,XN) where X1, . . . ,XN are independent.
Suppose that changing one Xi only changes Z by ≤ 1. Then

Pr(|Z − E(Z)| ≥ t) ≤ e−2t2/N .

“Discovered” by Shamir and Spencer (1987), Rhee and
Talagrand (1988), they have had a profound effect on our area.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Chromatic Number

For a long time, no-one could prove an upper bound
χ(Gn,1/2) ≤ (1 + o(1)) n

2 log2 n

The “discovery” of Martingale Concentration Inequalities was a
great help.

Let Z = Z (X1, . . . ,XN) where X1, . . . ,XN are independent.
Suppose that changing one Xi only changes Z by ≤ 1. Then

Pr(Z = 0) ≤ e−2E(Z)2/N .

“Discovered” by Shamir and Spencer (1987), Rhee and
Talagrand (1988), they have had a profound effect on our area.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Chromatic Number

For a long time, no-one could prove an upper bound
χ(Gn,1/2) ≤ (1 + o(1)) n

2 log2 n

The “discovery” of Martingale Concentration Inequalities was a
great help.

Let Z = Z (X1, . . . ,XN) where X1, . . . ,XN are independent.
Suppose that changing one Xi only changes Z by ≤ 1. Then

Pr(Z = 0) ≤ e−2E(Z)2/N .

Further inequalities by Talagrand (1995) and Kim and Vu
(2000) have been extremely useful.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Chromatic Number

Bollobás (1988) proved

Theorem
χ(Gn,1/2) ∼ n

2 log2 n w.h.p.

Let Z be the maximum number of independent sets in a
collection S1, . . . ,SZ , |Si | ∼ 2 log2 n and |Si ∩ Sj | ≤ 1.

E(Z) = n2−o(1) and changing one edge changes Z by ≤ 1

So,

Pr(∃S ⊆ [n] : |S| ≥ n
(log2 n)2 and S doesn′t contain a

(2− o(1)) log2 n independent set) ≤ 2ne−n2−o(1)
= o(1).

So, we color Gn,1/2 with color classes of size ∼ 2 log2 n until
there are ≤ n/(log2 n)2 vertices uncolored and then give each
remaining vertex a new color.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Chromatic Number

Bollobás (1988) proved

Theorem
χ(Gn,1/2) ∼ n

2 log2 n w.h.p.

Let Z be the maximum number of independent sets in a
collection S1, . . . ,SZ , |Si | ∼ 2 log2 n and |Si ∩ Sj | ≤ 1.

E(Z) = n2−o(1) and changing one edge changes Z by ≤ 1

So,

Pr(∃S ⊆ [n] : |S| ≥ n
(log2 n)2 and S doesn′t contain a

(2− o(1)) log2 n independent set) ≤ 2ne−n2−o(1)
= o(1).

So, we color Gn,1/2 with color classes of size ∼ 2 log2 n until
there are ≤ n/(log2 n)2 vertices uncolored and then give each
remaining vertex a new color.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Chromatic Number

Bollobás (1988) proved

Theorem
χ(Gn,1/2) ∼ n

2 log2 n w.h.p.

Let Z be the maximum number of independent sets in a
collection S1, . . . ,SZ , |Si | ∼ 2 log2 n and |Si ∩ Sj | ≤ 1.

E(Z) = n2−o(1) and changing one edge changes Z by ≤ 1

So,

Pr(∃S ⊆ [n] : |S| ≥ n
(log2 n)2 and S doesn′t contain a

(2− o(1)) log2 n independent set) ≤ 2ne−n2−o(1)
= o(1).

So, we color Gn,1/2 with color classes of size ∼ 2 log2 n until
there are ≤ n/(log2 n)2 vertices uncolored and then give each
remaining vertex a new color.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Chromatic Number

Bollobás (1988) proved

Theorem
χ(Gn,1/2) ∼ n

2 log2 n w.h.p.

Let Z be the maximum number of independent sets in a
collection S1, . . . ,SZ , |Si | ∼ 2 log2 n and |Si ∩ Sj | ≤ 1.

E(Z) = n2−o(1) and changing one edge changes Z by ≤ 1

So,

Pr(∃S ⊆ [n] : |S| ≥ n
(log2 n)2 and S doesn′t contain a

(2− o(1)) log2 n independent set) ≤ 2ne−n2−o(1)
= o(1).

So, we color Gn,1/2 with color classes of size ∼ 2 log2 n until
there are ≤ n/(log2 n)2 vertices uncolored and then give each
remaining vertex a new color.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Chromatic Number

There has recently been a lot of research concerning the
chromatic number of sparse random graphs viz. Gn,p, p = d/n
where d = O(1).

Conjecture: There exists a sequence dk : k ≥ 2 such that
w.h.p.

χ(Gn,d/n) = k for dk−1 < d < dk .

Friedgut (1999), Achlioptas and Friedgut (1999) came close to
proving this.

Surprisingly, using a second moment method we get

Theorem (Achlioptas and Naor (2005))
Let kd be the smallest integer k ≥ 2 such that d < 2k log k then
w.h.p. χ(Gn,d/n) ∈ {kd , kd + 1}.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Chromatic Number

Conjecture: There exists a sequence dk : k ≥ 2 such that
w.h.p.

χ(Gn,d/n) = k for dk−1 < d < dk .

Friedgut (1999), Achlioptas and Friedgut (1999) came close to
proving this.

2

χ

d

3

1

Surprisingly, using a second moment method we get

Theorem (Achlioptas and Naor (2005))
Let kd be the smallest integer k ≥ 2 such that d < 2k log k then
w.h.p. χ(Gn,d/n) ∈ {kd , kd + 1}.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Chromatic Number

Conjecture: There exists a sequence dk : k ≥ 2 such that
w.h.p.

χ(Gn,d/n) = k for dk−1 < d < dk .

Friedgut (1999), Achlioptas and Friedgut (1999) came close to
proving this.

Theorem (Łuczak (1991))

W.h.p. χ(Gn,d/n) takes one of two values.

Surprisingly, using a second moment method we get

Theorem (Achlioptas and Naor (2005))
Let kd be the smallest integer k ≥ 2 such that d < 2k log k then
w.h.p. χ(Gn,d/n) ∈ {kd , kd + 1}.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Chromatic Number

Conjecture: There exists a sequence dk : k ≥ 2 such that
w.h.p.

χ(Gn,d/n) = k for dk−1 < d < dk .

Friedgut (1999), Achlioptas and Friedgut (1999) came close to
proving this.

Surprisingly, using a second moment method we get

Theorem (Achlioptas and Naor (2005))
Let kd be the smallest integer k ≥ 2 such that d < 2k log k then
w.h.p. χ(Gn,d/n) ∈ {kd , kd + 1}.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Chromatic Number

Theorem (Achlioptas and Naor (2005))
Let kd be the smallest integer k ≥ 2 such that d < 2k log k then
w.h.p. χ(Gn,d/n) ∈ {kd , kd + 1}.

If X denotes the number of k -colorings of Gn,d/n then

Pr(X > 0) ≥ E(X)2

E(X 2)
= Ω(1)

for d < 2(k − 1) log(k − 1).
Now use results on sharpness of threshold.

The result has been extended to hypergraphs:
Dyer, Frieze and Greenhill (2014).

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Chromatic Number

Theorem (Achlioptas and Naor (2005))
Let kd be the smallest integer k ≥ 2 such that d < 2k log k then
w.h.p. χ(Gn,d/n) ∈ {kd , kd + 1}.

If X denotes the number of k -colorings of Gn,d/n then

Pr(X > 0) ≥ E(X)2

E(X 2)
= Ω(1)

for d < 2(k − 1) log(k − 1).
Now use results on sharpness of threshold.

The idea is straightforward. The difficulty lies in estimating
E(X 2).

The result has been extended to hypergraphs:
Dyer, Frieze and Greenhill (2014).

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Chromatic Number

Theorem (Achlioptas and Naor (2005))
Let kd be the smallest integer k ≥ 2 such that d < 2k log k then
w.h.p. χ(Gn,d/n) ∈ {kd , kd + 1}.

If X denotes the number of k -colorings of Gn,d/n then

Pr(X > 0) ≥ E(X)2

E(X 2)
= Ω(1)

for d < 2(k − 1) log(k − 1).
Now use results on sharpness of threshold.

The result has been extended to hypergraphs:
Dyer, Frieze and Greenhill (2014).

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Chromatic Number

Achlioptas and Naor showed that for approximately half of the
possible values for d , χ(Gn,d/n) is determined w.hp.

Theorem (Achlioptas and Naor (2005))

If d ∈ ((2k − 1) log k ,2k log k) then w.h.p. χ(Gn,d/n) = k + 1.

This has been improved so that we now have

Theorem (Coja-Oghlan and Vilenchik (2013))

(a) Let κd be the smallest integer k ≥ 2 such that
d < (2k − 1) log k. Then χ(Gn,d/n) = κd for d ∈ A where A has
asymptotic density one in R+.

(b) dk > 2k log k − log k − 2 log 2 + ok (1).

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Chromatic Number

Upper bound on dk : Let Xk (d) denote the number of
k -colorings of Gn,d/n. Then

d > 2k log k − log k implies E(Xk (d))→ 0

and therefore
dk < 2k log k − log k .

Theorem (Coja-Oghlan (2014))

dk ≤ 2k log k − log k − 1 + ok (1).

For large k , the value of dk is now known within an interval of
size less than 0.39.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Chromatic Number

Upper bound on dk :

dk < 2k log k − log k .

Theorem (Coja-Oghlan (2014))

dk ≤ 2k log k − log k − 1 + ok (1).

For large k , the value of dk is now known within an interval of
size less than 0.39.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Chromatic Number

Upper bound on dk :

dk < 2k log k − log k .

Theorem (Coja-Oghlan (2014))

dk ≤ 2k log k − log k − 1 + ok (1).

This problem has attracted the attention of Statistical Physicists
where colors are synonyms for spins. Coja-Oghlan’s proof is
motivated by physicists conjectures about the geometry of the
set of k -colorings near the threshold. His upper bound matches
a physics prediction.

For large k , the value of dk is now known
within an interval of size less than 0.39.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Chromatic Number

Upper bound on dk :

dk < 2k log k − log k .

Theorem (Coja-Oghlan (2014))

dk ≤ 2k log k − log k − 1 + ok (1).

For large k , the value of dk is now known within an interval of
size less than 0.39.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Contents of talk

(a) Random Discrete Structures
(b) Random Instances of the TSP in the unit square [0,1]2

(c) The Random Graphs Gn,m and Gn,p.
(1) Evolution
(2) Chromatic number
(3) Matchings
(4) Hamilton cycles

(d) Randomly edge weighted graphs
1 Minimum Spanning Tree
2 Shortest Paths
3 3-Dimensional Assignment Problem
4 Random Instances of the TSP with independent costs

(e) Random k -SAT
(f) Open Problems

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Matchings

A matching in a graph G is a set of vertex disjoint edges. The
matching is perfect if every vertex is covered by an edge of the
matching.

Matching
Perfect Matching

A largest matching can be found in polynomial time
Edmonds (1965).

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Matchings

A matching in a graph G is a set of vertex disjoint edges. The
matching is perfect if every vertex is covered by an edge of the
matching.

Matching
Perfect Matching

A largest matching can be found in polynomial time
Edmonds (1965).

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Matchings

Karp and Sipser (1981) proposed the following greedy
algorithm for finding a large matching:

KSGREEDY

begin
M ← ∅;
while E(G) 6= ∅ do
begin

A1: If G has a vertex of degree one, choose one, x say,
randomly.
Let e = {x , y} be the unique edge of G incident with x ;

A2: Otherwise, (no vertices of degree one) choose
e = {x , y} ∈ E randomly
G← G \ {x , y};
M ← M ∪ {e}

end;
Output M
end

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Matchings

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Matchings

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Matchings

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Matchings

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Matchings

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Matchings

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Matchings

End of Phase 1

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Matchings

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Matchings

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Matchings

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Matchings

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Matchings

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Matchings

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Matchings

Phase 1 ends and Phase 2 begins the first time that there are
no vertices of degree one.

No mistakes are made in Phase 1 i.e. the set of edges chosen
are in some largest matching.

Karp and Sipser analysed the algorithms performance on Gn,p,
where p = c/n.
In Gn,p each of the

(n
2

)
edges of the complete graph Kn appear

independently with probability p.
Aronson, Frieze and Pittel (1998) gave a more precise analysis.

If c < e then w.h.p. Phase 1 ends with a graph with o(n)
vertices.
If c < e then w.h.p. Phase 1 ends with a graph consisting of
O(1) vertex disjoint cycles, in expectation.

If c ≥ e then w.h.p. Phase 2 isolates o(n) vertices.
If c ≥ e then w.h.p. Phase 2 isolates Θ(n1/5 logO(1) n) vertices.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Matchings

Phase 1 ends and Phase 2 begins the first time that there are
no vertices of degree one.

No mistakes are made in Phase 1 i.e. the set of edges chosen
are in some largest matching.

Karp and Sipser analysed the algorithms performance on Gn,p,
where p = c/n.
In Gn,p each of the

(n
2

)
edges of the complete graph Kn appear

independently with probability p.
Aronson, Frieze and Pittel (1998) gave a more precise analysis.

If c < e then w.h.p. Phase 1 ends with a graph with o(n)
vertices.
If c < e then w.h.p. Phase 1 ends with a graph consisting of
O(1) vertex disjoint cycles, in expectation.

If c ≥ e then w.h.p. Phase 2 isolates o(n) vertices.
If c ≥ e then w.h.p. Phase 2 isolates Θ(n1/5 logO(1) n) vertices.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Matchings

Phase 1 ends and Phase 2 begins the first time that there are
no vertices of degree one.

No mistakes are made in Phase 1 i.e. the set of edges chosen
are in some largest matching.

Karp and Sipser analysed the algorithms performance on Gn,p,
where p = c/n.
In Gn,p each of the

(n
2

)
edges of the complete graph Kn appear

independently with probability p.
Aronson, Frieze and Pittel (1998) gave a more precise analysis.

If c < e then w.h.p. Phase 1 ends with a graph with o(n)
vertices.
If c < e then w.h.p. Phase 1 ends with a graph consisting of
O(1) vertex disjoint cycles, in expectation.

If c ≥ e then w.h.p. Phase 2 isolates o(n) vertices.
If c ≥ e then w.h.p. Phase 2 isolates Θ(n1/5 logO(1) n) vertices.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Matchings

Karp and Sipser analysed the algorithms performance on Gn,p,
where p = c/n.
In Gn,p each of the

(n
2

)
edges of the complete graph Kn appear

independently with probability p.
Aronson, Frieze and Pittel (1998) gave a more precise analysis.

If c < e then w.h.p. Phase 1 ends with a graph with o(n)
vertices.
If c < e then w.h.p. Phase 1 ends with a graph consisting of
O(1) vertex disjoint cycles, in expectation.

If c ≥ e then w.h.p. Phase 2 isolates o(n) vertices.
If c ≥ e then w.h.p. Phase 2 isolates Θ(n1/5 logO(1) n) vertices.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Matchings

Karp and Sipser analysed the algorithms performance on Gn,p,
where p = c/n.
In Gn,p each of the

(n
2

)
edges of the complete graph Kn appear

independently with probability p.
Aronson, Frieze and Pittel (1998) gave a more precise analysis.

If c < e then w.h.p. Phase 1 ends with a graph with o(n)
vertices.
If c < e then w.h.p. Phase 1 ends with a graph consisting of
O(1) vertex disjoint cycles, in expectation.

If c ≥ e then w.h.p. Phase 2 isolates o(n) vertices.
If c ≥ e then w.h.p. Phase 2 isolates Θ(n1/5 logO(1) n) vertices.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Matchings

For the graph G remaining after t steps of the algorithm, let

v1 = the number of vertices of degree one
v = the number of vertices of degree at least two
m = the number of edges

One can show that
The sequence v1, v ,m is a Markov chain.
At each stage G is a random graph with these parameters.
The number of vertices vk of degree k ≥ 2 satisfies

vk ≈
vzk

k !(ez − 1− z)

where z is the solution to
2m − v1

v
=

z(ez − 1)

ez − 1− z

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Matchings

For the graph G remaining after t steps of the algorithm, let

v1 = the number of vertices of degree one
v = the number of vertices of degree at least two
m = the number of edges

One can show that
The sequence v1, v ,m is a Markov chain.

At each stage G is a random graph with these parameters.
The number of vertices vk of degree k ≥ 2 satisfies

vk ≈
vzk

k !(ez − 1− z)

where z is the solution to
2m − v1

v
=

z(ez − 1)

ez − 1− z

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Matchings

For the graph G remaining after t steps of the algorithm, let

v1 = the number of vertices of degree one
v = the number of vertices of degree at least two
m = the number of edges

One can show that
The sequence v1, v ,m is a Markov chain.
At each stage G is a random graph with these parameters.

The number of vertices vk of degree k ≥ 2 satisfies

vk ≈
vzk

k !(ez − 1− z)

where z is the solution to
2m − v1

v
=

z(ez − 1)

ez − 1− z

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Matchings

For the graph G remaining after t steps of the algorithm, let

v1 = the number of vertices of degree one
v = the number of vertices of degree at least two
m = the number of edges

One can show that
The sequence v1, v ,m is a Markov chain.
At each stage G is a random graph with these parameters.
The number of vertices vk of degree k ≥ 2 satisfies

vk ≈
vzk

k !(ez − 1− z)

where z is the solution to
2m − v1

v
=

z(ez − 1)

ez − 1− z

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Matchings

One step transitions:

If v ′1, v
′,m′ denote the values of the parameters after one step

of the algorithm then, given v1, v ,m

E[v ′1 − v1] = −1− v1

2m
+

v2z4ez

(2mf)2 −
v1vz2ez

(2m)2f
+ O

(
log2 v

vz

)
,

E[v ′ − v] = −1 +
v1

2m
− v2z4ez

(2mf)2 + O

(
log2 v

vz

)
,

E[m′ −m] = −1− vz2ez

2mf
+ O

(
log2 v

vz

)
.

E[v ′0 − v0] = O
(v1

m

)
— expected increase in unmatched vertices.

v1, v ,m closely follow the trajectory of a set of differential
equations.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Matchings

One step transitions:

If v ′1, v
′,m′ denote the values of the parameters after one step

of the algorithm then, given v1, v ,m

E[v ′1 − v1] = −1− v1

2m
+

v2z4ez

(2mf)2 −
v1vz2ez

(2m)2f
+ O

(
log2 v

vz

)
,

E[v ′ − v] = −1 +
v1

2m
− v2z4ez

(2mf)2 + O

(
log2 v

vz

)
,

E[m′ −m] = −1− vz2ez

2mf
+ O

(
log2 v

vz

)
.

E[v ′0 − v0] = O
(v1

m

)
— expected increase in unmatched vertices.

v1, v ,m closely follow the trajectory of a set of differential
equations.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Matchings

These equations are:

dv1

dt
= −1− v1

2m
+

v2z4ez

(2mf)2 −
v1vz2ez

(2m)2f
,

dv
dt

= −1 +
v1

2m
− v2z4ez

(2mf)2 ,

dm
dt

= −1− vz2ez

2mf
.

Their solution is

2m =
n
c

z2,

v = n(1− e−z(1 + z))β,

v1 =
n
c
[
z2 − zcβ(1− e−z)

]
,

t =
n
c

[
c(1− β)− 1

2
log2 β

]
,

where βecβ = ez .

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Matchings

These equations are:

dv1

dt
= −1− v1

2m
+

v2z4ez

(2mf)2 −
v1vz2ez

(2m)2f
,

dv
dt

= −1 +
v1

2m
− v2z4ez

(2mf)2 ,

dm
dt

= −1− vz2ez

2mf
.

Their solution is

2m =
n
c

z2,

v = n(1− e−z(1 + z))β,

v1 =
n
c
[
z2 − zcβ(1− e−z)

]
,

t =
n
c

[
c(1− β)− 1

2
log2 β

]
,

where βecβ = ez .
Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Matchings

Super-critical case: c > e

In this case we end Phase 1 with z = z∗ > 0.

We have observed that

E[v ′0−v0] = O
(v1

m

)
— expected increase in unmatched vertices.

So, it is enough to show that w.h.p. v1 = Õ(n1/5) throughout
the algorithm, for then we can argue that w.h.p. there are
Õ
(
n1/5∑cn

m=1
1
m

)
vertices left unmatched in Phase 2.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Matchings

Super-critical case: c > e

In this case we end Phase 1 with z = z∗ > 0.

We have observed that

E[v ′0−v0] = O
(v1

m

)
— expected increase in unmatched vertices.

So, it is enough to show that w.h.p. v1 = Õ(n1/5) throughout
the algorithm, for then we can argue that w.h.p. there are
Õ
(
n1/5∑cn

m=1
1
m

)
vertices left unmatched in Phase 2.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Matchings

Controlling v1

We first observe that

v1 > 0 implies E[v ′1− v1] ≤ −min
(

z2

200
,

1
20000

)
+ O

(
log2 n

vz

)

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Matchings

Controlling v1

We first observe that

v1 > 0 implies E[v ′1− v1] ≤ −min
(

z2

200
,

1
20000

)
+ O

(
log2 n

vz

)

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Matchings

Controlling v1

We first observe that

v1 > 0 implies E[v ′1− v1] ≤ −min
(

z2

200
,

1
20000

)
+ O

(
log2 n

vz

)

Early Phase: z ≥ n−1/100.
Whp v1 stays Õ(z−2).

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Matchings

Controlling v1

We first observe that

v1 > 0 implies E[v ′1− v1] ≤ −min
(

z2

200
,

1
20000

)
+ O

(
log2 n

vz

)

Middle Phase: n−1/100 ≥ z ≥ n−1/5

At this point the graph is very sparse, most vertices are of
degree two.
When v1 > 0 most vertices of degree one are at end of a long
path. Removing such a vertex and its edge does not change v1
i.e.

Pr(v ′1 = v1 | v1 > 0) = 1− z + O(z2).

Whp v1 stays Õ(z−1).
Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Matchings

Controlling v1

We first observe that

v1 > 0 implies E[v ′1− v1] ≤ −min
(

z2

200
,

1
20000

)
+ O

(
log2 n

vz

)

Final Phase: z ≤ n−1/5

We start this phase with

v ∼ v2 ∼ Cnz2 = Õ(n3/5)

Only Õ(n3/5z) = Õ(n2/5) moves made in the “v1 walk” and so
v1 can only move by square root of this.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Matchings

The Karp-Sipser algorithm runs in O(n) time and makes
˜O(n1/5) mistakes.

Chebolu, Frieze and Melsted (2010) show that these mistakes
can be corrected i.e one can find a true maximum matching in
O(n) time w.h.p., for c sufficiently large.

Mistakes are made in Phase 2 that starts with a graph
distributed as Gδ≥2

ν,µ i.e. a random graph with ν vertices and µ
edges and minimum degree δ at least two.

The CFM algorithm pairs up the unmatched vertices and tries
to find an augmenting path joining them.

All statements from now on refer to Phase 2.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Matchings

The Karp-Sipser algorithm runs in O(n) time and makes
˜O(n1/5) mistakes.

Chebolu, Frieze and Melsted (2010) show that these mistakes
can be corrected i.e one can find a true maximum matching in
O(n) time w.h.p., for c sufficiently large.

Mistakes are made in Phase 2 that starts with a graph
distributed as Gδ≥2

ν,µ i.e. a random graph with ν vertices and µ
edges and minimum degree δ at least two.

The CFM algorithm pairs up the unmatched vertices and tries
to find an augmenting path joining them.

All statements from now on refer to Phase 2.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Matchings

The Karp-Sipser algorithm runs in O(n) time and makes
˜O(n1/5) mistakes.

Chebolu, Frieze and Melsted (2010) show that these mistakes
can be corrected i.e one can find a true maximum matching in
O(n) time w.h.p., for c sufficiently large.

Mistakes are made in Phase 2 that starts with a graph
distributed as Gδ≥2

ν,µ i.e. a random graph with ν vertices and µ
edges and minimum degree δ at least two.

The CFM algorithm pairs up the unmatched vertices and tries
to find an augmenting path joining them.

All statements from now on refer to Phase 2.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Matchings

The Karp-Sipser algorithm runs in O(n) time and makes
˜O(n1/5) mistakes.

Chebolu, Frieze and Melsted (2010) show that these mistakes
can be corrected i.e one can find a true maximum matching in
O(n) time w.h.p., for c sufficiently large.

Mistakes are made in Phase 2 that starts with a graph
distributed as Gδ≥2

ν,µ i.e. a random graph with ν vertices and µ
edges and minimum degree δ at least two.

The CFM algorithm pairs up the unmatched vertices and tries
to find an augmenting path joining them.

All statements from now on refer to Phase 2.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Matchings

The Karp-Sipser algorithm runs in O(n) time and makes
˜O(n1/5) mistakes.

Chebolu, Frieze and Melsted (2010) show that these mistakes
can be corrected i.e one can find a true maximum matching in
O(n) time w.h.p., for c sufficiently large.

Mistakes are made in Phase 2 that starts with a graph
distributed as Gδ≥2

ν,µ i.e. a random graph with ν vertices and µ
edges and minimum degree δ at least two.

The CFM algorithm pairs up the unmatched vertices and tries
to find an augmenting path joining them.

All statements from now on refer to Phase 2.
Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Matchings

Unmatched

Vertex

Unmatched
Vertex

Matching edges Non−matching edges

Augmenting Path

Replacing the matching edges by non-matching edges on the
path, and only the path, yields a larger matching.

To find an augmenting path from unmatched vertex x to vertex
unmatched vertex y , we use augmenting trees:

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Matchings

Unmatched

Vertex

Unmatched
Vertex

Matching edges Non−matching edges

Augmenting Path

Replacing the matching edges by non-matching edges on the
path, and only the path, yields a larger matching.

To find an augmenting path from unmatched vertex x to vertex
unmatched vertex y , we use augmenting trees:

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Matchings

Boundary of tree

x

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Matchings

x

y

Boundary

Boundary

a

b

c

d

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Matchings

To make this work properly, we have to use all the edges of the
graph at the beginning of Phase 2, even though we have
“looked at” them while running KSGREEDY.

We assume that the edges of G are given to us in some fixed
random order {e1,e2, . . . ,em}. When we want a random edge
with a given property then we take the first edge in this order,
with the required property.

If v is a vertex that is matched when there are no vertices of
degree one, then we say that v is regular. The set of regular
vertices is denoted by R.

When a regular vertex is deleted, it will be matched to the first
available edge in the order. The next edge in the order
containing v is called the witness for v .

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Matchings

To make this work properly, we have to use all the edges of the
graph at the beginning of Phase 2, even though we have
“looked at” them while running KSGREEDY.

We assume that the edges of G are given to us in some fixed
random order {e1,e2, . . . ,em}. When we want a random edge
with a given property then we take the first edge in this order,
with the required property.

If v is a vertex that is matched when there are no vertices of
degree one, then we say that v is regular. The set of regular
vertices is denoted by R.

When a regular vertex is deleted, it will be matched to the first
available edge in the order. The next edge in the order
containing v is called the witness for v .

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Matchings

To make this work properly, we have to use all the edges of the
graph at the beginning of Phase 2, even though we have
“looked at” them while running KSGREEDY.

We assume that the edges of G are given to us in some fixed
random order {e1,e2, . . . ,em}. When we want a random edge
with a given property then we take the first edge in this order,
with the required property.

If v is a vertex that is matched when there are no vertices of
degree one, then we say that v is regular. The set of regular
vertices is denoted by R.

When a regular vertex is deleted, it will be matched to the first
available edge in the order. The next edge in the order
containing v is called the witness for v .

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Matchings

To make this work properly, we have to use all the edges of the
graph at the beginning of Phase 2, even though we have
“looked at” them while running KSGREEDY.

We assume that the edges of G are given to us in some fixed
random order {e1,e2, . . . ,em}. When we want a random edge
with a given property then we take the first edge in this order,
with the required property.

If v is a vertex that is matched when there are no vertices of
degree one, then we say that v is regular. The set of regular
vertices is denoted by R.

When a regular vertex is deleted, it will be matched to the first
available edge in the order. The next edge in the order
containing v is called the witness for v .

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Matchings

Now fix some small ε > 0 and another small constant α.

A vertex is early if it is deleted before step n1−ε (of Phase 2)
and late otherwise.

An edge ei is punctual if i ≤ (1− α)m and tardy otherwise.

R0 = {v ∈ R : v is early and the witness of v is punctual} .

and

Λ0 =
{

v : v has punctual degree at least ten in G(n1−ε)
}

where G(t) is the graph G after t steps of Phase 2.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Matchings

Now fix some small ε > 0 and another small constant α.

A vertex is early if it is deleted before step n1−ε (of Phase 2)
and late otherwise.

An edge ei is punctual if i ≤ (1− α)m and tardy otherwise.

R0 = {v ∈ R : v is early and the witness of v is punctual} .

and

Λ0 =
{

v : v has punctual degree at least ten in G(n1−ε)
}

where G(t) is the graph G after t steps of Phase 2.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Matchings

Now fix some small ε > 0 and another small constant α.

A vertex is early if it is deleted before step n1−ε (of Phase 2)
and late otherwise.

An edge ei is punctual if i ≤ (1− α)m and tardy otherwise.

R0 = {v ∈ R : v is early and the witness of v is punctual} .

and

Λ0 =
{

v : v has punctual degree at least ten in G(n1−ε)
}

where G(t) is the graph G after t steps of Phase 2.
Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Matchings

The tardy R0 : Λ0 edges are uniformly random from R0 × Λ0,
conditional on all other edges.
This is because they do not affect the course of the algorithm.

These val-
ues show
an expected
Ω(n.2−4ε)
paths.
As such,
w.h.p., we
succeed
in finding
augmenting
paths.

x

y

Boundary

Boundary

R0

R0

Ω(n1−2ε)

Λ0

Ω(n.6−ε)

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Contents of talk

(a) Random Discrete Structures
(b) Random Instances of the TSP in the unit square [0,1]2

(c) The Random Graphs Gn,m and Gn,p.
(1) Evolution
(2) Chromatic number
(3) Matchings
(4) Hamilton cycles

(d) Randomly edge weighted graphs
1 Minimum Spanning Tree
2 Shortest Paths
3 3-Dimensional Assignment Problem
4 Random Instances of the TSP with independent costs

(e) Random k -SAT
(f) Open Problems

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton Cycles

Determining whether or not a graph has a Hamilton cycle is
NP-hard Karp (1972).

Theorem (Komlós and Szemerédi (1983))

Suppose that m = 1
2n(log n + log log n + cn). Then

lim
n→∞

Pr(Gn,m is Hamiltonian) =

0 cn → −∞
e−e−c

cn → c
1 cn →∞

We will describe an algorithm that runs in polynomial time and
finds a Hamilton cycle w.h.p. for the case cn = ω →∞.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton Cycles

Determining whether or not a graph has a Hamilton cycle is
NP-hard Karp (1972).

Theorem (Komlós and Szemerédi (1983))

Suppose that m = 1
2n(log n + log log n + cn). Then

lim
n→∞

Pr(Gn,m is Hamiltonian) =

0 cn → −∞
e−e−c

cn → c
1 cn →∞

We will describe an algorithm that runs in polynomial time and
finds a Hamilton cycle w.h.p. for the case cn = ω →∞.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton Cycles

Determining whether or not a graph has a Hamilton cycle is
NP-hard Karp (1972).

Theorem (Komlós and Szemerédi (1983))

Suppose that m = 1
2n(log n + log log n + cn). Then

lim
n→∞

Pr(Gn,m is Hamiltonian) =

0 cn → −∞
e−e−c

cn → c
1 cn →∞

We will describe an algorithm that runs in polynomial time and
finds a Hamilton cycle w.h.p. for the case cn = ω →∞.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton Cycles

Posá Rotations

We can start our algorithm with any path.

������ ������ ���� ��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

The red edge extends the blue path.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton Cycles

Alternative way of extending path:

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton Cycles

If there is no extension then we rotate the path:

We will in general, have several choices for the red edge here.
Each rotation gives another endpoint.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton Cycles

Depth= D0 ∼
log n

log log n

Levels grow by a
factor Ω(log n)

Number of leaves is at least αn2 for some constant 0 < α < 1
2.

Posá Tree

Each rectangle is a path that is obtained from its parent by a
rotation.

BOOST is the set of pairs of endpoints in the leaves.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton Cycles

Let m = 1
2n(log n + log log n + ω) and m2 = ωn/4 and let

m1 = m −m2.

Choose m2 random edges X = {e1,e2, . . . ,em2}. Try to grow
path using Posa trees and Gn,m1 .

If we fail to extend and grow the Posá tree to depth D0 then we
try the next edge e from X . If e ∈ BOOST then we can extend.
The probability that the next edge does this is at least A for
some constant A > 0.
So, the probability the algorithm fails can be bounded by

Pr(Bin(m2,A) < n) = o(1).

It is not necessary to partition the edges and the algorithm can
be made deterministic, Bollobás, Fenner and Frieze (1985).

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton Cycles

Let m = 1
2n(log n + log log n + ω) and m2 = ωn/4 and let

m1 = m −m2.

Choose m2 random edges X = {e1,e2, . . . ,em2}. Try to grow
path using Posa trees and Gn,m1 .

If we fail to extend and grow the Posá tree to depth D0 then we
try the next edge e from X . If e ∈ BOOST then we can extend.
The probability that the next edge does this is at least A for
some constant A > 0.
So, the probability the algorithm fails can be bounded by

Pr(Bin(m2,A) < n) = o(1).

It is not necessary to partition the edges and the algorithm can
be made deterministic, Bollobás, Fenner and Frieze (1985).

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton Cycles

Let m = 1
2n(log n + log log n + ω) and m2 = ωn/4 and let

m1 = m −m2.

Choose m2 random edges X = {e1,e2, . . . ,em2}. Try to grow
path using Posa trees and Gn,m1 .

If we fail to extend and grow the Posá tree to depth D0 then we
try the next edge e from X . If e ∈ BOOST then we can extend.
The probability that the next edge does this is at least A for
some constant A > 0.

So, the probability the algorithm fails can be bounded by

Pr(Bin(m2,A) < n) = o(1).

It is not necessary to partition the edges and the algorithm can
be made deterministic, Bollobás, Fenner and Frieze (1985).

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton Cycles

Let m = 1
2n(log n + log log n + ω) and m2 = ωn/4 and let

m1 = m −m2.

Choose m2 random edges X = {e1,e2, . . . ,em2}. Try to grow
path using Posa trees and Gn,m1 .

If we fail to extend and grow the Posá tree to depth D0 then we
try the next edge e from X . If e ∈ BOOST then we can extend.
The probability that the next edge does this is at least A for
some constant A > 0.
So, the probability the algorithm fails can be bounded by

Pr(Bin(m2,A) < n) = o(1).

It is not necessary to partition the edges and the algorithm can
be made deterministic, Bollobás, Fenner and Frieze (1985).

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton Cycles

Let m = 1
2n(log n + log log n + ω) and m2 = ωn/4 and let

m1 = m −m2.

Choose m2 random edges X = {e1,e2, . . . ,em2}. Try to grow
path using Posa trees and Gn,m1 .

If we fail to extend and grow the Posá tree to depth D0 then we
try the next edge e from X . If e ∈ BOOST then we can extend.
The probability that the next edge does this is at least A for
some constant A > 0.
So, the probability the algorithm fails can be bounded by

Pr(Bin(m2,A) < n) = o(1).

It is not necessary to partition the edges and the algorithm can
be made deterministic, Bollobás, Fenner and Frieze (1985).

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

With the threshold problem solved, existentially and
constructively, we can consider other models of a random
graph: We first see what happens if we condition on minimum
degree at least two:

Let Gn,m;k be sampled uniformly from all graphs with vertex set
[n] that have m edges and minimum degree at least k .

Theorem (Bollobás, Fenner and Frieze (1990))

Let m = 1
6n(log n + log log n + cn) then

lim
n→∞

Pr(Gn,m;2 is Hamiltonian) =

0 cn → −∞
e−f (c) cn → c
1 cn → +∞

for some explicit function f (c).

e−f (c) is the asymptotic probability that there are no spiders.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

Let Gn,m;k be sampled uniformly from all graphs with vertex set
[n] that have m edges and minimum degree at least k .

Theorem (Bollobás, Fenner and Frieze (1990))

Let m = 1
6n(log n + log log n + cn) then

lim
n→∞

Pr(Gn,m;2 is Hamiltonian) =

0 cn → −∞
e−f (c) cn → c
1 cn → +∞

for some explicit function f (c).

e−f (c) is the asymptotic probability that there are no spiders.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

Spiders

a

b

c

Vertices a, b, c are of
degree two

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

Let G(n, r) denote a random r -regular graph chosen uniformly
from the set of all graphs with vertex set [n].
(Regular means that all vertices have the same degree)

Theorem

lim
n→∞

Pr(G(n, r) is Hamiltonian) = 1, r ≥ 3.

r = O(1) was proved by Robinson and Wormald (1992,1994)
r →∞ was proved by Krivelevich, Sudakov, Vu, Wormald
(2001) and Cooper, Frieze, Reed (2002).

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

If each vertex independently chooses k random neighbors then
we have the random graph Gk−out .

Theorem (Bohman and Frieze (2009))

lim
n→∞

Pr(Gk−out is Hamiltonian) = 1, k ≥ 3.

This is not implied by the previous results on random regular
graphs.

We need k ≥ 3 to avoid spiders:

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

If each vertex independently chooses k random neighbors then
we have the random graph Gk−out .

Theorem (Bohman and Frieze (2009))

lim
n→∞

Pr(Gk−out is Hamiltonian) = 1, k ≥ 3.

This is not implied by the previous results on random regular
graphs.
We need k ≥ 3 to avoid spiders:

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

We now consider conditoning on minimum degree at least
three. Let

Lc = lim
n→∞

Pr(Gn,cn;3 is Hamiltonian)

Conjecture: Lc = 1 for all c ≥ 3/2.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

We now consider conditoning on minimum degree at least
three. Let

Lc = lim
n→∞

Pr(Gn,cn;3 is Hamiltonian)

Conjecture: Lc = 1 for all c ≥ 3/2.

Conjecture true for c = 3/2,
Robinson and Wormald (1984)

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

We now consider conditoning on minimum degree at least
three. Let

Lc = lim
n→∞

Pr(Gn,cn;3 is Hamiltonian)

Conjecture: Lc = 1 for all c ≥ 3/2.

Theorem (Bollobás, Cooper, Fenner, Frieze (2000))
Lc = 1 for c ≥ 128.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

We now consider conditoning on minimum degree at least
three. Let

Lc = lim
n→∞

Pr(Gn,cn;3 is Hamiltonian)

Conjecture: Lc = 1 for all c ≥ 3/2.

Theorem (Frieze (2012))
Lc = 1 for c ≥ 10.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

Theorem (Frieze (2012))
Lc = 1 for c ≥ 10.

Conjecture true for c ≥ 3. Assuming numerical solution of
some differential equations.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

Theorem (Frieze and Haber (2014))
If c is sufficiently large then w.h.p. a Hamilton cycle can be
found in Gn,cn;3 in O(n1+o(1)) time.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

The improved results on Hamilton cycles in Gn,cn;3 rely on the
analysis of a greedy algorithm for finding a good 2-matching M
viz. a set of edges that induce a graph of maximum degree at
most two.

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
����

��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

By good, we mean that M has O(log n) components. This gives
us a good basis for constructing a Hamilton cycle.
We next discuss an algorithm for finding such a 2-matching.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

Algorithm 2GREEDY: The input for this algorithm is Gδ≥3
n,cn for c

suficiently large – currently c ≥ 10 will suffice.

The algorithm builds a collection of paths and cycles, mainly
paths. We use M to denote the set of edges chosen so far.
We let B denote the set of vertices that are endpoints of paths
of M.

In the Karp-Sipser algorithm we took care to “grab” vertices of
degree one.
Here we take care to grab vertices of degree at most two if they
are not incident with M and of degree one if they are.
Otherwise we choose a random edge incident to a vertex in B̄.
We refer to these as dangerous vertices.

Phase 1 ends when B̄ = ∅.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

Algorithm 2GREEDY: The input for this algorithm is Gδ≥3
n,cn for c

suficiently large – currently c ≥ 10 will suffice.

The algorithm builds a collection of paths and cycles, mainly
paths. We use M to denote the set of edges chosen so far.
We let B denote the set of vertices that are endpoints of paths
of M.

In the Karp-Sipser algorithm we took care to “grab” vertices of
degree one.
Here we take care to grab vertices of degree at most two if they
are not incident with M and of degree one if they are.
Otherwise we choose a random edge incident to a vertex in B̄.
We refer to these as dangerous vertices.

Phase 1 ends when B̄ = ∅.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

Algorithm 2GREEDY: The input for this algorithm is Gδ≥3
n,cn for c

suficiently large – currently c ≥ 10 will suffice.

The algorithm builds a collection of paths and cycles, mainly
paths. We use M to denote the set of edges chosen so far.
We let B denote the set of vertices that are endpoints of paths
of M.

In the Karp-Sipser algorithm we took care to “grab” vertices of
degree one.
Here we take care to grab vertices of degree at most two if they
are not incident with M and of degree one if they are.
Otherwise we choose a random edge incident to a vertex in B̄.
We refer to these as dangerous vertices.

Phase 1 ends when B̄ = ∅.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

Algorithm 2GREEDY: The input for this algorithm is Gδ≥3
n,cn for c

suficiently large – currently c ≥ 10 will suffice.

The algorithm builds a collection of paths and cycles, mainly
paths. We use M to denote the set of edges chosen so far.
We let B denote the set of vertices that are endpoints of paths
of M.

In the Karp-Sipser algorithm we took care to “grab” vertices of
degree one.
Here we take care to grab vertices of degree at most two if they
are not incident with M and of degree one if they are.
Otherwise we choose a random edge incident to a vertex in B̄.
We refer to these as dangerous vertices.

Phase 1 ends when B̄ = ∅.
Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

Take this edge

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

Take this edge

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

Take this edge
Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

If none of these cases are applicable then we choose a random
edge among those incident with a vertex not in B i.e. not yet
covered by M.

Take any blue edge

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

Phase 1 is over.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

At the end of Phase 1, the 2-matching M will consist mainly of
vertex disjoint paths. The isolated vertices and the cycles will
play no further part in the rest of the 2GREEDY algorithm. They
will be part of the output though.

We show that w.h.p. the number of paths is Ω(n) and that there
are O(log n) isolated vertices.

The edges not in M define a graph H which is distributed as
Gδ≥2
ν,µ for some ν, µ = Ω(n).

We find a perfect matching M ′ in H in O(n) time. Adding M to
M ′ produces a 2-matching in G which has O(log n) components
w.h.p.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

At the end of Phase 1, the 2-matching M will consist mainly of
vertex disjoint paths. The isolated vertices and the cycles will
play no further part in the rest of the 2GREEDY algorithm. They
will be part of the output though.

We show that w.h.p. the number of paths is Ω(n) and that there
are O(log n) isolated vertices.

The edges not in M define a graph H which is distributed as
Gδ≥2
ν,µ for some ν, µ = Ω(n).

We find a perfect matching M ′ in H in O(n) time. Adding M to
M ′ produces a 2-matching in G which has O(log n) components
w.h.p.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

At the end of Phase 1, the 2-matching M will consist mainly of
vertex disjoint paths. The isolated vertices and the cycles will
play no further part in the rest of the 2GREEDY algorithm. They
will be part of the output though.

We show that w.h.p. the number of paths is Ω(n) and that there
are O(log n) isolated vertices.

The edges not in M define a graph H which is distributed as
Gδ≥2
ν,µ for some ν, µ = Ω(n).

We find a perfect matching M ′ in H in O(n) time. Adding M to
M ′ produces a 2-matching in G which has O(log n) components
w.h.p.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

The analysis of 2-GREEDY is similar to that of the Karp-Sipser
algorithm: Only, it has more parameters:

µ is the number of edges in Γ,

yk = |Yk | = | {v /∈ B : dΓ(v) = k} |, k = 1,2,

z1 = |Z1| = | {v ∈ B : dΓ(v) = 1} |,

y = |Y | = | {v /∈ B : dΓ(v) ≥ 3} |.

z = |Z | = | {v ∈ B : dΓ(v) ≥ 2} |.

We can show that y1, y2, z1 remain O(log n) throughout, w.h.p.
And that Phase 1 ends with y = 0 and z1 = Ω(n).

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

The analysis of 2-GREEDY is similar to that of the Karp-Sipser
algorithm: Only, it has more parameters:

µ is the number of edges in Γ,

yk = |Yk | = | {v /∈ B : dΓ(v) = k} |, k = 1,2,

z1 = |Z1| = | {v ∈ B : dΓ(v) = 1} |,

y = |Y | = | {v /∈ B : dΓ(v) ≥ 3} |.

z = |Z | = | {v ∈ B : dΓ(v) ≥ 2} |.

We can show that y1, y2, z1 remain O(log n) throughout, w.h.p.
And that Phase 1 ends with y = 0 and z1 = Ω(n).

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

As 2-GREEDY progresses the random sequence
(y0, y1, y2, z1, y , z, µ) is a Markov Chain.

The graph defined by the remaining vertices and edges is
chosen uniformly from the set of graphs with these parameters.

The degrees of vertices in Y ,Z are close to truncated Poisson:

Let fi(x) = ex −
∑i−1

t=0
x t

t! and let λ be the solution to

yλf2(λ)

f3(λ)
+

zλf1(λ)

f2(λ)
= 2µ− y1 − 2y2 − z1.

Then w.h.p.

yk ∼
yλk

k !f3(λ)
, k ≥ 3 and zk ∼

zλk

k !f2(λ)
, k ≥ 2.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

There are differential equations that closely model the process:
They only involve variables ŷ , ẑ, µ̂ that represent y , z, µ, other
variables stay small.
It takes some effort, but we reduce them to

dŷ
dt

= Â + B̂ − Ĉ − 1;
dẑ
dt

= 2Ĉ − 2Â− 2B̂;
d µ̂
dt

= −1− D̂

where

Â =
ŷ ẑλ̂5f0(λ̂)

8µ̂2f2(λ̂)f3(λ̂)
, B̂ =

ẑ2λ̂4f0(λ̂)

4µ̂2f2(λ̂)2
, Ĉ =

ŷ λ̂f2(λ̂)

2µ̂f3(λ̂)
, D̂ =

ẑλ̂2f0(λ̂)

2µ̂f2(λ̂)

and
ŷ λ̂f2(λ̂)

f3(λ̂)
+

ẑλ̂f1(λ̂)

f2(λ̂)
= 2µ̂.

Unfortunately, we have not been able to solve these equations.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

There are differential equations that closely model the process:
They only involve variables ŷ , ẑ, µ̂ that represent y , z, µ, other
variables stay small.
It takes some effort, but we reduce them to

dŷ
dt

= Â + B̂ − Ĉ − 1;
dẑ
dt

= 2Ĉ − 2Â− 2B̂;
d µ̂
dt

= −1− D̂

where

Â =
ŷ ẑλ̂5f0(λ̂)

8µ̂2f2(λ̂)f3(λ̂)
, B̂ =

ẑ2λ̂4f0(λ̂)

4µ̂2f2(λ̂)2
, Ĉ =

ŷ λ̂f2(λ̂)

2µ̂f3(λ̂)
, D̂ =

ẑλ̂2f0(λ̂)

2µ̂f2(λ̂)

and
ŷ λ̂f2(λ̂)

f3(λ̂)
+

ẑλ̂f1(λ̂)

f2(λ̂)
= 2µ̂.

Unfortunately, we have not been able to solve these equations.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

There are differential equations that closely model the process:
They only involve variables ŷ , ẑ, µ̂ that represent y , z, µ, other
variables stay small.
It takes some effort, but we reduce them to

dŷ
dt

= Â + B̂ − Ĉ − 1;
dẑ
dt

= 2Ĉ − 2Â− 2B̂;
d µ̂
dt

= −1− D̂

where

Â =
ŷ ẑλ̂5f0(λ̂)

8µ̂2f2(λ̂)f3(λ̂)
, B̂ =

ẑ2λ̂4f0(λ̂)

4µ̂2f2(λ̂)2
, Ĉ =

ŷ λ̂f2(λ̂)

2µ̂f3(λ̂)
, D̂ =

ẑλ̂2f0(λ̂)

2µ̂f2(λ̂)

and
ŷ λ̂f2(λ̂)

f3(λ̂)
+

ẑλ̂f1(λ̂)

f2(λ̂)
= 2µ̂.

Unfortunately, we have not been able to solve these equations.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

We observe however, that if λ̂ is large then

Â� 1; B̂ � 1; Ĉ ≈ ŷ λ̂
2µ̂

; D̂ ≈ ẑλ̂2

2µ̂
; λ̂ ≈ 2µ̂

ŷ + ẑ
.

They can then be approximated by the following equations:

ỹ ′ = − ỹ
ỹ + z̃

− 1

z̃ ′ =
2ỹ

ỹ + z̃

µ̃′ = −1− 2z̃µ̃
(ỹ + z̃)2

λ̃ =
2µ̃

ỹ + z̃
.

These are solvable and they have the property that there is a
time T̃ such that ỹ(T̃) = 0 and z̃(T̃) = Ω(n).

When c ≥ 10 we can use this to show that there is a time T̂
such that ŷ(T̂) = 0 and ẑ(T̂) = Ω(n).

And then because the diferential equations describe the
process very closely, we can deduce that w.h.p. there is a time
T such that y1(T) = y2(T) = z1(T) = ζ(T) = y(T) = 0 and
z(T) = Ω(n).

In which case, as already noted, we will end Phase 1 having
only isolated O(log n) vertices.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

They can then be approximated by the following equations:

ỹ ′ = − ỹ
ỹ + z̃

− 1

z̃ ′ =
2ỹ

ỹ + z̃

µ̃′ = −1− 2z̃µ̃
(ỹ + z̃)2

λ̃ =
2µ̃

ỹ + z̃
.

These are solvable and they have the property that there is a
time T̃ such that ỹ(T̃) = 0 and z̃(T̃) = Ω(n).

When c ≥ 10 we can use this to show that there is a time T̂
such that ŷ(T̂) = 0 and ẑ(T̂) = Ω(n).

And then because the diferential equations describe the
process very closely, we can deduce that w.h.p. there is a time
T such that y1(T) = y2(T) = z1(T) = ζ(T) = y(T) = 0 and
z(T) = Ω(n).

In which case, as already noted, we will end Phase 1 having
only isolated O(log n) vertices.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

These are solvable and they have the property that there is a
time T̃ such that ỹ(T̃) = 0 and z̃(T̃) = Ω(n).

When c ≥ 10 we can use this to show that there is a time T̂
such that ŷ(T̂) = 0 and ẑ(T̂) = Ω(n).

And then because the diferential equations describe the
process very closely, we can deduce that w.h.p. there is a time
T such that y1(T) = y2(T) = z1(T) = ζ(T) = y(T) = 0 and
z(T) = Ω(n).

In which case, as already noted, we will end Phase 1 having
only isolated O(log n) vertices.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

These are solvable and they have the property that there is a
time T̃ such that ỹ(T̃) = 0 and z̃(T̃) = Ω(n).

When c ≥ 10 we can use this to show that there is a time T̂
such that ŷ(T̂) = 0 and ẑ(T̂) = Ω(n).

And then because the diferential equations describe the
process very closely, we can deduce that w.h.p. there is a time
T such that y1(T) = y2(T) = z1(T) = ζ(T) = y(T) = 0 and
z(T) = Ω(n).

In which case, as already noted, we will end Phase 1 having
only isolated O(log n) vertices.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

These are solvable and they have the property that there is a
time T̃ such that ỹ(T̃) = 0 and z̃(T̃) = Ω(n).

When c ≥ 10 we can use this to show that there is a time T̂
such that ŷ(T̂) = 0 and ẑ(T̂) = Ω(n).

And then because the diferential equations describe the
process very closely, we can deduce that w.h.p. there is a time
T such that y1(T) = y2(T) = z1(T) = ζ(T) = y(T) = 0 and
z(T) = Ω(n).

In which case, as already noted, we will end Phase 1 having
only isolated O(log n) vertices.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

Numerical experiments suggest that such a T exists for
c ≥ 2.5, maybe even for smaller c.

c yfinal zfinal µfinal λfinal
3.0 0.000008 0.283721 0.398527 1.822428
2.9 0.000009 0.242563 0.326139 1.602749
2.8 0.000010 0.197461 0.253645 1.370798
2.7 0.000010 0.148901 0.182327 1.123928
2.6 0.000010 0.098344 0.114494 0.858355
2.5 0.000010 0.048976 0.054010 0.565840

These are the results of running Euler’s method with step
length 10−5 on the differential equations.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

Converting the 2-matching to a hamilton cycle.
A regular vertex v is one that is deleted when there are no
dangerous vertices to grab. The set of regular vertices is
denoted by R.

When a regular vertex is deleted, it will be matched to the first
available edge in the order. The next edge in the order
containing v is called the witness for v .

We define R0,Λ0 more or less as before

R0 = {v ∈ R : v is early and the witness of v is punctual} .

Λ0 =
{

v : v has punctual degree at least ten in G(n1−o(1))
}

Once again, the tardy R0 : Λ0 edges are uniformly random
from R0 × Λ0, conditional on all other edges.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

Converting the 2-matching to a hamilton cycle.
A regular vertex v is one that is deleted when there are no
dangerous vertices to grab. The set of regular vertices is
denoted by R.

When a regular vertex is deleted, it will be matched to the first
available edge in the order. The next edge in the order
containing v is called the witness for v .

We define R0,Λ0 more or less as before

R0 = {v ∈ R : v is early and the witness of v is punctual} .

Λ0 =
{

v : v has punctual degree at least ten in G(n1−o(1))
}

Once again, the tardy R0 : Λ0 edges are uniformly random
from R0 × Λ0, conditional on all other edges.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

Converting the 2-matching to a hamilton cycle.
A regular vertex v is one that is deleted when there are no
dangerous vertices to grab. The set of regular vertices is
denoted by R.

When a regular vertex is deleted, it will be matched to the first
available edge in the order. The next edge in the order
containing v is called the witness for v .

We define R0,Λ0 more or less as before

R0 = {v ∈ R : v is early and the witness of v is punctual} .

Λ0 =
{

v : v has punctual degree at least ten in G(n1−o(1))
}

Once again, the tardy R0 : Λ0 edges are uniformly random
from R0 × Λ0, conditional on all other edges.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

We start our search for a Hamilton cycle by choosing a longest
path in the 2-matching M.

We try to grow our path using extensions and rotations. With a
given path P with endpoints v ,w we grow a Posa tree with v as
one endpint of all the paths produced.

Number of leaves in Λ0 is at least n1/2+o(1).

Depth= D0 = Ω(log n)

Posá Tree: rotations with one endpoint fixed.

In the above diagram, each rectangle is a path that is obtained
from its parent by a rotation.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

We start our search for a Hamilton cycle by choosing a longest
path in the 2-matching M.

We try to grow our path using extensions and rotations. With a
given path P with endpoints v ,w we grow a Posa tree with v as
one endpint of all the paths produced.

Number of leaves in Λ0 is at least n1/2+o(1).

Depth= D0 = Ω(log n)

Posá Tree: rotations with one endpoint fixed.

In the above diagram, each rectangle is a path that is obtained
from its parent by a rotation.Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

We let END denote the set of endpoints of the paths produced,
other than v .

We either manage an extension of the current path or we grow
END to size n1/2+o(1).

For each x ∈ END we carry out the same, creating a set of
paths with n1/2+o(1) endpoints END(x).

We argue that w.h.p. all paths produced contain n1−o(1)

members of R0.

if we fail to extend, then the probability we fail to find a tardy
R0 : Λ0 edge joining x ∈ END to y ∈ END(x) is n−o(1).

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

We let END denote the set of endpoints of the paths produced,
other than v .

We either manage an extension of the current path or we grow
END to size n1/2+o(1).

For each x ∈ END we carry out the same, creating a set of
paths with n1/2+o(1) endpoints END(x).

We argue that w.h.p. all paths produced contain n1−o(1)

members of R0.

if we fail to extend, then the probability we fail to find a tardy
R0 : Λ0 edge joining x ∈ END to y ∈ END(x) is n−o(1).

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

We let END denote the set of endpoints of the paths produced,
other than v .

We either manage an extension of the current path or we grow
END to size n1/2+o(1).

For each x ∈ END we carry out the same, creating a set of
paths with n1/2+o(1) endpoints END(x).

We argue that w.h.p. all paths produced contain n1−o(1)

members of R0.

if we fail to extend, then the probability we fail to find a tardy
R0 : Λ0 edge joining x ∈ END to y ∈ END(x) is n−o(1).

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

We let END denote the set of endpoints of the paths produced,
other than v .

We either manage an extension of the current path or we grow
END to size n1/2+o(1).

For each x ∈ END we carry out the same, creating a set of
paths with n1/2+o(1) endpoints END(x).

We argue that w.h.p. all paths produced contain n1−o(1)

members of R0.

if we fail to extend, then the probability we fail to find a tardy
R0 : Λ0 edge joining x ∈ END to y ∈ END(x) is n−o(1).

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

We let END denote the set of endpoints of the paths produced,
other than v .

We either manage an extension of the current path or we grow
END to size n1/2+o(1).

For each x ∈ END we carry out the same, creating a set of
paths with n1/2+o(1) endpoints END(x).

We argue that w.h.p. all paths produced contain n1−o(1)

members of R0.

if we fail to extend, then the probability we fail to find a tardy
R0 : Λ0 edge joining x ∈ END to y ∈ END(x) is n−o(1).

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Hamilton cycles

We only need to extend/close a cycle O(log2 n) times and so
the probability we fail is O(n−o(1) log2 n) = o(1), if we are
careful with our o(1)’s.

So, for c sufficiently large we can find a Hamilton cycle in Gδ≥3
n,cn

in O(n1+o(1)) time.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Contents of talk

(a) Random Discrete Structures
(b) Random Instances of the TSP in the unit square [0,1]2

(c) The Random Graphs Gn,m and Gn,p.
(1) Evolution
(2) Chromatic number
(3) Matchings
(4) Hamilton cycles

(d) Randomly edge weighted graphs
1 Minimum Spanning Tree
2 Shortest Paths
3 3-Dimensional Assignment Problem
4 Random Instances of the TSP with independent costs

(e) Random k -SAT
(f) Open Problems

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Contents of talk

(a) Random Discrete Structures
(b) Random Instances of the TSP in the unit square [0,1]2

(c) The Random Graphs Gn,m and Gn,p.
(1) Evolution
(2) Chromatic number
(3) Matchings
(4) Hamilton cycles

(d) Randomly edge weighted graphs
1 Minimum Spanning Tree
2 Shortest Paths
3 3-Dimensional Assignment Problem
4 Random Instances of the TSP with independent costs

(e) Random k -SAT
(f) Open Problems

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Minimum Length Spanning Tree

Every edge e of the complete graph Kn is given a random
length Xe.

The edge lengths are independently uniform [0,1] distributed.

Zn is the minimum total length of a spanning tree
i.e. a connected subgraph that contains n − 1 edges and no
cycles.

Spanning Tree

Length=sum of
lengths of edges.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Minimum Length Spanning Tree

Greedy Algorithm

by the edges chosen so far.

F is the forest induced

F has 4 components.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Minimum Length Spanning Tree

Greedy Algorithm

by the edges chosen so far.

Edges between components are longer

than edges inside components

F is the forest induced

The algorithm adds the shortest edge joining components of F .

The algorithm adds longer and longer edges as it progresses.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Minimum Length Spanning Tree

If `F is the length of the longest edge in F , then edges of length
at most ` are contained in the components of F .

Therefore the algorithm adds κ− 1 more edges, where κ is the
number of components in the graph spanned by edges of
length at most `F .

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Minimum Length Spanning Tree

Let T be the minimum spanning tree and let ` denote length.

Zn = `(T) =
∑
e∈T

Xe

=
∑
e∈T

∫ 1

p=0
1(p≤Xe)dp

=

∫ 1

p=0

∑
e∈T

1(p≤Xe)dp

=

∫ 1

p=0
| {e ∈ T : p ≤ Xe} |dp

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Minimum Length Spanning Tree

`(T) =

∫ 1

p=0
| {e ∈ T : Xe ≥ p} |dp

=

∫ 1

p=0
(κ(Gp)− 1)dp,

where κ(Gp) is the number of components in the graph
induced by edges of length at most p.

So

E(Zn) =

∫ 1

p=0
(E(# components in Gn,p)− 1)dp.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Minimum Length Spanning Tree

`(T) =

∫ 1

p=0
| {e ∈ T : Xe ≥ p} |dp

=

∫ 1

p=0
(κ(Gp)− 1)dp,

where κ(Gp) is the number of components in the graph
induced by edges of length at most p.

So

E(Zn) =

∫ 1

p=0
(E(# components in Gn,p)− 1)dp.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Minimum Length Spanning Tree

E(Zn) =

∫ 1

p=0
(E(# components in Gn,p)− 1)dp.

FACT: p ≥ 6 log n/n implies that Gn,p is connected with
sufficiently high probability.

FACT: Almost all of the integral is accounted for by small
isolated tree components.

So,

E(Zn) ∼
∫ 6 log n/n

p=0
E(# small isolated trees in Gn,p)dp.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Minimum Length Spanning Tree

E(Zn) ∼
∫ 6 log n/n

p=0
E(# small isolated trees in Gn,p)dp

∼
∫ 6 log n/n

p=0

log2 n∑
k=1

(
n
k

)
kk−2pk−1(1− p)k(n−k)+(k

2)−k+1

dp

∼
log2 n∑
k=1

nk

k !
kk−2 k !(k(n − k)!

(k(n − k + 1)!

So,

E(Zn) ∼
log2 n∑
k=1

1
k3 ∼ ζ(3).

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Minimum Length Spanning Tree

E(Zn) ∼
∫ 6 log n/n

p=0
E(# small isolated trees in Gn,p)dp

∼
∫ 6 log n/n

p=0

log2 n∑
k=1

(
n
k

)
kk−2pk−1(1− p)k(n−k)+(k

2)−k+1

dp

∼
log2 n∑
k=1

nk

k !
kk−2 k !(k(n − k)!

(k(n − k + 1)!

So,

E(Zn) ∼
log2 n∑
k=1

1
k3 ∼ ζ(3).

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Minimum Length Spanning Tree

This is most of the proof of the following:

Theorem (Frieze (1985))

Zn ∼ ζ(3) w .h.p.

Original proof not so “clean”:
Remarkable integral formula is due to Janson (1995).

With more work we have

Theorem (Cooper, Frieze, Ince, Janson, Spencer (2014))

E(Zn) = ζ(3) +
c1

n
+

c2 + o(1)

n4/3 .

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Minimum Length Spanning Tree

This is most of the proof of the following:

Theorem (Frieze (1985))

Zn ∼ ζ(3) w .h.p.

Original proof not so “clean”:
Remarkable integral formula is due to Janson (1995).

With more work we have

Theorem (Cooper, Frieze, Ince, Janson, Spencer (2014))

E(Zn) = ζ(3) +
c1

n
+

c2 + o(1)

n4/3 .

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Minimum Length Spanning Tree

Theorem (Cooper, Frieze, Ince, Janson, Spencer (2014))

E(Zn) = ζ(3) +
c1

n
+

c2 + o(1)

n4/3 .

c1 = −1− ζ(3)− 1
2

∫ ∞
x=0

log
(
1− (1 + x)e−x)dx

and

c2 =

∫ ∞
x=0

(
x−3ψ(x3/2)e−x3/24 − x−3 −

√
π

8
x−3/2 − 1

2

)
dx

where if Bex =
∫ 1

s=0 Bex(s) ds is the area under a normalized
Brownian excursion,

ψ(t) = EetBex ,

the moment generating function ψ of Bex.
Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Minimum Length Spanning Tree

If we give random weights to an arbitrary r -regular graph G
then under some mild expansion assumptions

Theorem (Beveridge, Frieze, McDiarmid (1998))

E(Zn) =
n
r

(ζ(3) + εr)

where εr → 0 as r →∞.

For example, if G is the complete bipartite graph Kn/2,n/2 then
E(Zn) ∼ 2ζ(3).

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Contents of talk

(a) Random Discrete Structures
(b) Random Instances of the TSP in the unit square [0,1]2

(c) The Random Graphs Gn,m and Gn,p.
(1) Evolution
(2) Chromatic number
(3) Matchings
(4) Hamilton cycles

(d) Randomly edge weighted graphs
1 Minimum Spanning Tree
2 Shortest Paths
3 3-Dimensional Assignment Problem
4 Random Instances of the TSP with independent costs

(e) Random k -SAT
(f) Open Problems

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Shortest Paths

Every edge e of the complete graph Kn is given a random
length Xe.

The edge lengths are independently exponentially distributed
with mean 1 viz. E(1) i.e. Pr(Xe ≥ λ) = e−λ.

The length of a path is the sum of the lengths of its edges.

The question to be discussed is what is the length of a shortest
path between two given vertices.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Shortest Paths

Let Di be the length of a shortest path from vertex 1 to vertex i .

We can build a tree of shortest paths, adding the next closest
vertex to 1 in each step.

i2

i3

i4

i5

v

∆v is the minimum length
of a path to v /∈ T using one edge
not in T .

If ∆w = min ∆v , v /∈ T then Dw = ∆w .

T

Paths in tree T are shortest paths.

i1 = 1

L

In the above diagram we have added the 4 closest vertices to
create a tree T . To find the 5th closest we compute ∆v for each
v /∈ T and then add the vertex that minimises ∆.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Shortest Paths

If L is the length of (i2, v) then L is exponential conditioned on Di2 + L ≥ Di5.

So Di2 + L = Di5 + E(1).

So, if we add vertices to T in the order i1 = 1, i2, . . . , in then
Dik+1 − Dik is the minimum of k(n − k) independent E(1)’s.

i2

i3

i4

i5

v

∆v is the minimum length
of a path to v /∈ T using one edge
not in T .

T

i1 = 1

(Memoryless property of exponential).

L

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Shortest Paths

So, if Zi is the distance from 1 to the i th closest vertex,

Z1 = 0 and E(Zk+1) = E(Zk) +
1

k(n − k)
.

It follows that

E(Zn) =
2
n

n−1∑
i=1

1
i
.

Furthermore, 2 is equally likely to be the i th closest, for
i = 2,3, . . . ,n and we have

E(D2) =
1

n − 1

n−1∑
i=1

1
i
.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Shortest Paths

Theorem (Janson (1999))
Let Di,j be the shortest distance between i , j in the above
model. Then

D1,2 ∼
log n

n
.

max
j

D1,j ∼
2 log n

n
.

max
i,j

Di,j ∼
3 log n

n
.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Contents of talk

(a) Random Discrete Structures
(b) Random Instances of the TSP in the unit square [0,1]2

(c) The Random Graphs Gn,m and Gn,p.
(1) Evolution
(2) Chromatic number
(3) Matchings
(4) Hamilton cycles

(d) Randomly edge weighted graphs
1 Minimum Spanning Tree
2 Shortest Paths
3 3-Dimensional Assignment Problem
4 Random Instances of the TSP with independent costs

(e) Random k -SAT
(f) Open Problems

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

3-Dimensional Assignment Problem

Background: Two-dimensional Assignment problem

Let M be a real n × n matrix of costs.

Problem: Minimise
n∑

i=1

n∑
j=1

Mi,jxi,j subject to

n∑
i=1

xi,j = 1, j ∈ [n]

n∑
j=1

xi,j = 1, i ∈ [n]

xi,j ∈ {0,1}

Solvable in polynomial (O(n3)) time.
Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Suppose now that M is a matrix of i.i.d. random variables: Let

ZA = ZA(n) denote the random minimum value.

(a) E(ZA) ≤ 3 – Walkup (1979) (Mi,j is uniform [0,1]).

(b) E(ZA) ≤ 2 – Karp (1983) (Mi,j is uniform [0,1])

(c) limn→∞ E(ZA) exists – Aldous (1992) (Mi,j is Exp(1))

(d) limn→∞ E(ZA) = ζ(2) = π2

6 – Aldous (2001) (Mi,j is
Exp(1))

(e) E(ZA(n)) =
∑n

k=1
1
k2 – Linusson and Wästlund (2004) and

Nair, Prabhakar and Sharmar (2005) (Mi,j is Exp(1))

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Suppose now that M is a matrix of i.i.d. random variables: Let

ZA = ZA(n) denote the random minimum value.

(a) E(ZA) ≤ 3 – Walkup (1979) (Mi,j is uniform [0,1]).

(b) E(ZA) ≤ 2 – Karp (1983) (Mi,j is uniform [0,1])

(c) limn→∞ E(ZA) exists – Aldous (1992) (Mi,j is Exp(1))

(d) limn→∞ E(ZA) = ζ(2) = π2

6 – Aldous (2001) (Mi,j is
Exp(1))

(e) E(ZA(n)) =
∑n

k=1
1
k2 – Linusson and Wästlund (2004) and

Nair, Prabhakar and Sharmar (2005) (Mi,j is Exp(1))

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Suppose now that M is a matrix of i.i.d. random variables: Let

ZA = ZA(n) denote the random minimum value.

(a) E(ZA) ≤ 3 – Walkup (1979) (Mi,j is uniform [0,1]).

(b) E(ZA) ≤ 2 – Karp (1983) (Mi,j is uniform [0,1])

(c) limn→∞ E(ZA) exists – Aldous (1992) (Mi,j is Exp(1))

(d) limn→∞ E(ZA) = ζ(2) = π2

6 – Aldous (2001) (Mi,j is
Exp(1))

(e) E(ZA(n)) =
∑n

k=1
1
k2 – Linusson and Wästlund (2004) and

Nair, Prabhakar and Sharmar (2005) (Mi,j is Exp(1))

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Suppose now that M is a matrix of i.i.d. random variables: Let

ZA = ZA(n) denote the random minimum value.

(a) E(ZA) ≤ 3 – Walkup (1979) (Mi,j is uniform [0,1]).

(b) E(ZA) ≤ 2 – Karp (1983) (Mi,j is uniform [0,1])

(c) limn→∞ E(ZA) exists – Aldous (1992) (Mi,j is Exp(1))

(d) limn→∞ E(ZA) = ζ(2) = π2

6 – Aldous (2001) (Mi,j is
Exp(1))

(e) E(ZA(n)) =
∑n

k=1
1
k2 – Linusson and Wästlund (2004) and

Nair, Prabhakar and Sharmar (2005) (Mi,j is Exp(1))

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Suppose now that M is a matrix of i.i.d. random variables: Let

ZA = ZA(n) denote the random minimum value.

(a) E(ZA) ≤ 3 – Walkup (1979) (Mi,j is uniform [0,1]).

(b) E(ZA) ≤ 2 – Karp (1983) (Mi,j is uniform [0,1])

(c) limn→∞ E(ZA) exists – Aldous (1992) (Mi,j is Exp(1))

(d) limn→∞ E(ZA) = ζ(2) = π2

6 – Aldous (2001) (Mi,j is
Exp(1))

(e) E(ZA(n)) =
∑n

k=1
1
k2 – Linusson and Wästlund (2004) and

Nair, Prabhakar and Sharmar (2005) (Mi,j is Exp(1))

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

3-Dimensional Assignment Problem

Three-dimensional Axial Assignment problem.
Let M be a real n × n × n tensor of costs.
Problem: Minimise

n∑
i=1

n∑
j=1

n∑
k=1

Mi,j,k xi,j,k subject to

n∑
i=1

n∑
j=1

xi,j,k = 1, k ∈ [n]

n∑
i=1

n∑
k=1

xi,j,k = 1, j ∈ [n]

n∑
j=1

n∑
k=1

xi,j,k = 1, i ∈ [n]

xi,j,k ∈ {0,1}

Each solution has a unique one in every “plane” of the cube.

NP-hard – Karp (1972)

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

3-Dimensional Assignment Problem

Three-dimensional Axial Assignment problem.
Let M be a real n × n × n tensor of costs.
Problem: Minimise

n∑
i=1

n∑
j=1

n∑
k=1

Mi,j,k xi,j,k subject to

n∑
i=1

n∑
j=1

xi,j,k = 1, k ∈ [n]

n∑
i=1

n∑
k=1

xi,j,k = 1, j ∈ [n]

n∑
j=1

n∑
k=1

xi,j,k = 1, i ∈ [n]

xi,j,k ∈ {0,1}

Each solution has a unique one in every “plane” of the cube.
NP-hard – Karp (1972)

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

3-Dimensional Assignment Problem

We employ a 3-phase algorithm: it has a depth parameter d .
To get a solution of value O(n−(1−o(1)) we take d = ε log2 log n
where ε < 1/2.

To get a feel for the algorithm, we consider d = 2.

Greedy Phase:
”Greedily” choose a partial assignment containing n − n6/7

”triples” (i , j , k) at a total cost of about n−6/7.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

3-Dimensional Assignment Problem

+(i, j, k)

−(j, j, j) −(k , k , k)

+(j, p, q) +(k , r , s)

−(p, p, p) −(q, q, q) −(r , r , r) −(s, s, s)

+(p, ξ1, ξ2) +(q, ξ3, ξ4) +(r , ξ5, ξ6) +(s, ξ7, ξ8)

Main Phase
Current partial
assignment
is (x, x, x), x ∈ A
Here, i /∈ A
ξ1, . . . , ξ8 /∈ A
p, q, . . . , t ∈ A
We search for
suitable p . . . , t
Then we search
for suitable j, k .
+triples are added
-triples are deleted.
+triples have small
M-value.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

3-Dimensional Assignment Problem
+(n, j, k)

−(j, j, j) −(k , k , k)

+(j, p, q) +(k , r , s)

−(p, p, p) −(q, q, q) −(r , r , r) −(s, s, s)

+(p, n, p) +(q, q, j) +(r , k , r) +(s, s, n)

Final Phase
Suppose for example
A = [n − 1].
Not enough ξ’s
to proceed as before.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

3-Dimensional Assignment Problem

We have the following theorem from Frieze and Sorkin (201?):

Theorem

There is an O(n3+o(1)) time algorithm that w.h.p. finds an
assignment of value n−(1−o(1)).

This raises the question of what is the real growth rate of the
optimum value.

One simple consequence of the breakthrough paper of
Johannson, Kahn, Vu (2008) is that w.h.p. there is an
assignment of value O(log n/n).

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

3-Dimensional Assignment Problem

We have the following theorem from Frieze and Sorkin (201?):

Theorem

There is an O(n3+o(1)) time algorithm that w.h.p. finds an
assignment of value n−(1−o(1)).

This raises the question of what is the real growth rate of the
optimum value.

One simple consequence of the breakthrough paper of
Johannson, Kahn, Vu (2008) is that w.h.p. there is an
assignment of value O(log n/n).

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Contents of talk

(a) Random Discrete Structures
(b) Random Instances of the TSP in the unit square [0,1]2

(c) The Random Graphs Gn,m and Gn,p.
(1) Evolution
(2) Chromatic number
(3) Matchings
(4) Hamilton cycles

(d) Randomly edge weighted graphs
1 Minimum Spanning Tree
2 Shortest Paths
3 3-Dimensional Assignment Problem
4 Random Instances of the TSP with independent costs

(e) Random k -SAT
(f) Open Problems

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

TSP with independent costs:

We are given an n × n matrix [ci,j] where we assume that the
ci,j are independent uniform [0,1] variables.

The aim is to compute

T (C) = min

{
n∑

i=1

ci,π(i) : π is a cyclic permutation of [n]

}

1

2

4

6

5

3

c1,6 c6,5

c5,2c3,2

c2,4
c4,3

π(1) = 6, π(2) = 4
π(3) = 1, π(4) = 3
π(5) = 2, π(6) = 5

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

TSP with independent costs:

Assignment problem The aim is to compute

A(C) = min

{
n∑

i=1

ci,π(i) : π is a permutation of [n]

}
.

π2

6
∼ A(C) ≤ T (C) ≤ A(C) + o(1) w .h.p.

The LHS is due to Aldous (1992,2001); Nair,Prabhakar and
Sharma (2006); Linusson and Wästlund (2004).
The RHS is due to Karp (1979).

A(C) is solvable in polynomial time.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

TSP with independent costs:

There are two equivalent ways of viewing the assignment
problem:

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������

����������
����������
����������
����������
���������������������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

����
��

��
��
��
��
�
�
�
�

1

2

3

4

5

6

1

2

3

4

5

6

1

4

3

2

5

6

Minimum Weight Perfect Matching

Minimum Weight Cycle Cover

The TSP can then be thought of as finding a minimum weight
cycle cover in which there is only one cycle.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

TSP with independent costs:

Karp’s Patching Algorithm:

Solve the associated assignment problem.
Patch the cycles together to get a tour.

Karp observed that if C is a matrix with i.i.d. costs then the
optimal permutation is uniformly distributed and so w.h.p.
the number of cycles is ∼ log n – Key Observation.
Karp showed that the cost of patching is o(1) w.h.p.

Figure: Patching two cycles

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

TSP with independent costs:

Karp’s Patching Algorithm:
Solve the associated assignment problem.
Patch the cycles together to get a tour.

Karp observed that if C is a matrix with i.i.d. costs then the
optimal permutation is uniformly distributed and so w.h.p.
the number of cycles is ∼ log n – Key Observation.
Karp showed that the cost of patching is o(1) w.h.p.

Figure: Patching two cycles

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

TSP with independent costs:

Karp’s Patching Algorithm:
Solve the associated assignment problem.
Patch the cycles together to get a tour.

Karp observed that if C is a matrix with i.i.d. costs then the
optimal permutation is uniformly distributed and so w.h.p.
the number of cycles is ∼ log n – Key Observation.
Karp showed that the cost of patching is o(1) w.h.p.

Figure: Patching two cycles

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

TSP with independent costs:

Theorem (Karp (1979))

W.h.p. GAP = T (C)− A(C) = o(1).

Theorem (Karp and Steele (1985))

W.h.p. GAP = T (C)− A(C) = O(n−1/2).

By making the cycles large before doing the patching we have

Theorem (Dyer and Frieze (1990))

W.h.p. GAP = T (C)− A(C) = o
(

log4 n
n

)
.

With more care

Theorem (Frieze and Sorkin (2007))

W.h.p. GAP = T (C)− A(C) = O
(

log2 n
n

)
.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

TSP with independent costs:

Theorem (Karp (1979))

W.h.p. GAP = T (C)− A(C) = o(1).

Theorem (Karp and Steele (1985))

W.h.p. GAP = T (C)− A(C) = O(n−1/2).

By making the cycles large before doing the patching we have

Theorem (Dyer and Frieze (1990))

W.h.p. GAP = T (C)− A(C) = o
(

log4 n
n

)
.

With more care

Theorem (Frieze and Sorkin (2007))

W.h.p. GAP = T (C)− A(C) = O
(

log2 n
n

)
.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

TSP with independent costs:

Theorem (Karp (1979))

W.h.p. GAP = T (C)− A(C) = o(1).

Theorem (Karp and Steele (1985))

W.h.p. GAP = T (C)− A(C) = O(n−1/2).

By making the cycles large before doing the patching we have

Theorem (Dyer and Frieze (1990))

W.h.p. GAP = T (C)− A(C) = o
(

log4 n
n

)
.

With more care

Theorem (Frieze and Sorkin (2007))

W.h.p. GAP = T (C)− A(C) = O
(

log2 n
n

)
.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

TSP with independent costs:

Theorem (Karp (1979))

W.h.p. GAP = T (C)− A(C) = o(1).

Theorem (Karp and Steele (1985))

W.h.p. GAP = T (C)− A(C) = O(n−1/2).

By making the cycles large before doing the patching we have

Theorem (Dyer and Frieze (1990))

W.h.p. GAP = T (C)− A(C) = o
(

log4 n
n

)
.

With more care

Theorem (Frieze and Sorkin (2007))

W.h.p. GAP = T (C)− A(C) = O
(

log2 n
n

)
.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

TSP with independent costs:

The main tool in the improvements to Karp and Steele comes
from cheaply transforming the cycle cover so that each cycle
has length at least n0 = n log log n/ log n.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

TSP with independent costs:

Having increased the cycle size to n0 = n log log n/ log n we
patch the cycles together using short edges. Each patch will
cost O(log n/n) and so the patching cost is o(log2 n/n).

Figure: Patching two cycles

The probability we cannot patch a pair of cycles is at most(
1− Ω

(
log2 n

n2

))Ω(n2
0)

= e−Ω(log2 log n) = o(1/ log n).

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

TSP with independent costs:

Increasing the cycle size:
Partition the edges into
red edges E1 =

{
(i , j) : ci,j ≤ L = K log n

}
,

blue edges E2 =
{

(i , j) : ci,j ∈ [L,2L]
}

,
green edges E3 =

{
(i , j) : ci,j ∈ [2L,3L]

}
and

uncolored edges E4 = [n]2/(E1 ∪ E2 ∪ E3).

Compute the optimal assignment only using edges E1.

Only using the edges in E1 ∪ E2, increase the minimum
cycle size to n0 = n log log n/ log n.

Using the edges in E3 only, patch the cycles into a tour.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

TSP with independent costs:

Increasing the cycle size:
Partition the edges into
red edges E1 =

{
(i , j) : ci,j ≤ L = K log n

}
,

blue edges E2 =
{

(i , j) : ci,j ∈ [L,2L]
}

,
green edges E3 =

{
(i , j) : ci,j ∈ [2L,3L]

}
and

uncolored edges E4 = [n]2/(E1 ∪ E2 ∪ E3).

Compute the optimal assignment only using edges E1.

Only using the edges in E1 ∪ E2, increase the minimum
cycle size to n0 = n log log n/ log n.

Using the edges in E3 only, patch the cycles into a tour.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

TSP with independent costs:

Increasing the cycle size:
Partition the edges into
red edges E1 =

{
(i , j) : ci,j ≤ L = K log n

}
,

blue edges E2 =
{

(i , j) : ci,j ∈ [L,2L]
}

,
green edges E3 =

{
(i , j) : ci,j ∈ [2L,3L]

}
and

uncolored edges E4 = [n]2/(E1 ∪ E2 ∪ E3).

Compute the optimal assignment only using edges E1.

Only using the edges in E1 ∪ E2, increase the minimum
cycle size to n0 = n log log n/ log n.

Using the edges in E3 only, patch the cycles into a tour.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

TSP with independent costs:

Increasing the cycle size:
Partition the edges into
red edges E1 =

{
(i , j) : ci,j ≤ L = K log n

}
,

blue edges E2 =
{

(i , j) : ci,j ∈ [L,2L]
}

,
green edges E3 =

{
(i , j) : ci,j ∈ [2L,3L]

}
and

uncolored edges E4 = [n]2/(E1 ∪ E2 ∪ E3).

Compute the optimal assignment only using edges E1.

Only using the edges in E1 ∪ E2, increase the minimum
cycle size to n0 = n log log n/ log n.

Using the edges in E3 only, patch the cycles into a tour.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

TSP with independent costs:

C

Choose some small cycle C i.e.
one of length less than n0.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

TSP with independent costs:

v

w

x

y

C

C ′

Choose some small cycle C i.e.
one of length less than n0.
Delete an edge (v ,w) and ex-
amine the blue edges with tail v .

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

TSP with independent costs:

v

w

x

y

C

C ′

Choose some small cycle
C i.e. one of length less
than n0.
Delete an edge (v ,w)
and examine the blue
edges with tail v .
Suppose that we have
blue edge (v , x) with x in
a large cycle C′.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

TSP with independent costs:

y

x

v

w

C

C ′

Choose some small cycle
C i.e. one of length less
than n0.
Delete an edge (v ,w)
and examine the blue
edges with tail v .
Suppose that we have
blue edge (v , x) with x in
a large cycle C′.
Delete the edge (y , x) of
C′.

By repeating this operation, which we call a splice, we create a
large number of partitions of [n] into a path with initial vertex w
and a collection of cycles. We call such a collection a Near
Permutation Digraph (NPD).

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

TSP with independent costs:

y

x

v

w

C

C ′

Choose some small cycle
C i.e. one of length less
than n0.
Delete an edge (v ,w)
and examine the blue
edges with tail v .
Suppose that we have
blue edge (v , x) with x in
a large cycle C′.
Delete the edge (y , x) of
C′.

By repeating this operation, which we call a splice, we create a
large number of partitions of [n] into a path with initial vertex w
and a collection of cycles. We call such a collection a Near
Permutation Digraph (NPD).Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

TSP with independent costs:

Another possibility for a splice:

���
���
���
���

���
���
���
���

����
����
����
����

���
���
���
���

���
���
���
���

����
����
����
����

���
���
���
���

����
����
����
����

���
���
���
���

����
����
����

����
����
����

����
����
����
����

���
���
���
���

����
����
����
����

���
���
���
���

���
���
���
���

���
���
���
���

����
����
����
����

���
���
���
���

����
����
����
����

���
���
���
���

���
���
���
���

����
����
����
����

���
���
���
���

����
����
����

����
����
����

���
���
���
���

���
���
���
���

���
���
���
��� ��

vxy

vxy

In the second version of the splice we insist that the resultant
path and cycle, both have length at least n0.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

TSP with independent costs:

In the above diagram, each rectangle is an NPD that is obtained
from its parent by a splice. A node ν is allowed dν children. Fot
the root ρ we have dρ = Θ(log n) for any other node ν we have
dν = Θ(1). We use the cheapest available edges to extend our
path. If we build this tree to depth ∼ log n/2 then at the bottom
of the tree there will be n1/2+o(1) leaves.

We can assume that the i th leaf corresponds to an NPD where
the path starts at w and ends at vi , where the vi are distinct.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

TSP with independent costs:

In the above diagram, each rectangle is an NPD that is obtained
from its parent by a splice. A node ν is allowed dν children. Fot
the root ρ we have dρ = Θ(log n) for any other node ν we have
dν = Θ(1). We use the cheapest available edges to extend our
path. If we build this tree to depth ∼ log n/2 then at the bottom
of the tree there will be n1/2+o(1) leaves.

We can assume that the i th leaf corresponds to an NPD where
the path starts at w and ends at vi , where the vi are distinct.Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

TSP with independent costs:

Now for each vi we build a tree of NPD’s where we begin by
examining the edges into w .

w vi

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

TSP with independent costs:

Let the leaves of the i th tree have paths from wi,j to vi for
j = 1,2, . . . ,n1/2+o(1).

An edge vi to wi,j results in a cycle cover with (at least) one
less small cycle.

The cost of removing all small cycles is evidently

O(log n)×O(log n)×O
(

log n
n

)
= O

(
log3 n

n

)
.

The factor O(log n)×O
(

log n
n

)
can be replaced by

O
(

log n
n

)
with some care.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

TSP with independent costs:

Let the leaves of the i th tree have paths from wi,j to vi for
j = 1,2, . . . ,n1/2+o(1).

An edge vi to wi,j results in a cycle cover with (at least) one
less small cycle.

The cost of removing all small cycles is evidently

O(log n)×O(log n)×O
(

log n
n

)
= O

(
log3 n

n

)
.

The factor O(log n)×O
(

log n
n

)
can be replaced by

O
(

log n
n

)
with some care.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

TSP with independent costs:

Let the leaves of the i th tree have paths from wi,j to vi for
j = 1,2, . . . ,n1/2+o(1).

An edge vi to wi,j results in a cycle cover with (at least) one
less small cycle.

The probability there is no such edge is at most(
1−O

(
log n

n

))n1+o(1)

= o
(

1
log n

)

The cost of removing all small cycles is evidently

O(log n)×O(log n)×O
(

log n
n

)
= O

(
log3 n

n

)
.

The factor O(log n)×O
(

log n
n

)
can be replaced by

O
(

log n
n

)
with some care.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

TSP with independent costs:

Let the leaves of the i th tree have paths from wi,j to vi for
j = 1,2, . . . ,n1/2+o(1).

An edge vi to wi,j results in a cycle cover with (at least) one
less small cycle.

The probability there is no such edge is at most(
1−O

(
log n

n

))n1+o(1)

= o
(

1
log n

)

The cost of removing all small cycles is evidently

O(log n)×O(log n)×O
(

log n
n

)
= O

(
log3 n

n

)
.

The factor O(log n)×O
(

log n
n

)
can be replaced by

O
(

log n
n

)
with some care.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

TSP with independent costs:

Let the leaves of the i th tree have paths from wi,j to vi for
j = 1,2, . . . ,n1/2+o(1).

An edge vi to wi,j results in a cycle cover with (at least) one
less small cycle.

The cost of removing all small cycles is evidently

O(log n)×O(log n)×O
(

log n
n

)
= O

(
log3 n

n

)
.

The factor O(log n)×O
(

log n
n

)
can be replaced by

O
(

log n
n

)
with some care.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

TSP with independent costs:

Theorem (Held and Karp (1962))
In the worst-case the TSP can be solved exactly in time
O(n22n).

Theorem (Frieze and Sorkin (2007))

W.h.p. the TSP can be solved exactly in 2O(n1/2) time.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

TSP with independent costs:

Theorem (Held and Karp (1962))
In the worst-case the TSP can be solved exactly in time
O(n22n).

Theorem (Frieze and Sorkin (2007))

W.h.p. the TSP can be solved exactly in 2O(n1/2) time.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

TSP with independent costs:

Let

Ik =
(log n)2

n
[2−k ,2−k+1].

W.h.p. there are ≤ c12−(k−1)n log n non-basic variables with
reduced cost in Ik ,1 ≤ k ≤ k0 = 1

2 log2 n and ≤ 2c1
√

n log n

non-basic variables with reduced cost ≤ c1
(log n)2

n3/2 .

Thus w.h.p. we need only check at most

22c1
√

n log n
k0∏

k=1

2k∑
t=1

(
c12−(k−1)n log n

t

)
= eO(

√
n logO(1) n)

sets.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

TSP with independent costs:

Let

Ik =
(log n)2

n
[2−k ,2−k+1].

W.h.p. there are ≤ c12−(k−1)n log n non-basic variables with
reduced cost in Ik ,1 ≤ k ≤ k0 = 1

2 log2 n and ≤ 2c1
√

n log n

non-basic variables with reduced cost ≤ c1
(log n)2

n3/2 .

Thus w.h.p. we need only check at most

22c1
√

n log n
k0∏

k=1

2k∑
t=1

(
c12−(k−1)n log n

t

)
= eO(

√
n logO(1) n)

sets.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

TSP with independent costs:

It is natural to consider the case where we contrain ci,j = cj,i i.e
consider a weighted graph rather than digraph.

It is natural to replace the assignment problem by that of finding
a minimum weight 2-factor viz. a collection of vertex disjoint
cycles that cover every vertex.

We lose control over the number of cycles in the minimum
weight 2-factor. In the following theorem we only had a bound
of O(n/ log n) for this.

Theorem (Frieze (2004))

W.h.p. T (C)− 2FAC(C) = o(1).

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

TSP with independent costs:

It is natural to consider the case where we contrain ci,j = cj,i i.e
consider a weighted graph rather than digraph.

It is natural to replace the assignment problem by that of finding
a minimum weight 2-factor viz. a collection of vertex disjoint
cycles that cover every vertex.

We lose control over the number of cycles in the minimum
weight 2-factor. In the following theorem we only had a bound
of O(n/ log n) for this.

Theorem (Frieze (2004))

W.h.p. T (C)− 2FAC(C) = o(1).

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

TSP with independent costs:

It is natural to consider the case where we contrain ci,j = cj,i i.e
consider a weighted graph rather than digraph.

It is natural to replace the assignment problem by that of finding
a minimum weight 2-factor viz. a collection of vertex disjoint
cycles that cover every vertex.

We lose control over the number of cycles in the minimum
weight 2-factor. In the following theorem we only had a bound
of O(n/ log n) for this.

Theorem (Frieze (2004))

W.h.p. T (C)− 2FAC(C) = o(1).

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Contents of talk

(a) Random Discrete Structures
(b) Random Instances of the TSP in the unit square [0,1]2

(c) The Random Graphs Gn,m and Gn,p.
(1) Evolution
(2) Chromatic number
(3) Matchings
(4) Hamilton cycles

(d) Randomly edge weighted graphs
1 Minimum Spanning Tree
2 Shortest Paths
3 3-Dimensional Assignment Problem
4 Random Instances of the TSP with independent costs

(e) Random k -SAT
(f) Open Problems

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Random k -SAT

Variables V = {x1, x2, . . . , xn}
Literals L = {x1, x̄1, x2, x̄2, . . . , xn, x̄n}
Negated variables V̄ = {x̄1, x̄2, . . . , x̄n}
Clause: S ⊆ L

Instance I of k -SAT: Clauses C1,C2, . . . ,Cm where
|Ci | = k , i = 1,2, . . . ,m.

Truth Assignment φ : L→ {0,1} such that φ(x̄j) = 1− φ(xj) for
j = 1,2, . . . ,n.
φ satisfies I if 1 ∈ φ(Ci) for i = 1,2, . . . ,m.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Random k -SAT

Variables V = {x1, x2, . . . , xn}
Literals L = {x1, x̄1, x2, x̄2, . . . , xn, x̄n}
Negated variables V̄ = {x̄1, x̄2, . . . , x̄n}
Clause: S ⊆ L

Instance I of k -SAT: Clauses C1,C2, . . . ,Cm where
|Ci | = k , i = 1,2, . . . ,m.

Truth Assignment φ : L→ {0,1} such that φ(x̄j) = 1− φ(xj) for
j = 1,2, . . . ,n.
φ satisfies I if 1 ∈ φ(Ci) for i = 1,2, . . . ,m.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Random k -SAT

Variables V = {x1, x2, . . . , xn}
Literals L = {x1, x̄1, x2, x̄2, . . . , xn, x̄n}
Negated variables V̄ = {x̄1, x̄2, . . . , x̄n}
Clause: S ⊆ L

Instance I of k -SAT: Clauses C1,C2, . . . ,Cm where
|Ci | = k , i = 1,2, . . . ,m.

Truth Assignment φ : L→ {0,1} such that φ(x̄j) = 1− φ(xj) for
j = 1,2, . . . ,n.
φ satisfies I if 1 ∈ φ(Ci) for i = 1,2, . . . ,m.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Random k -SAT

Variables V = {x1, x2, . . . , xn}
Literals L = {x1, x̄1, x2, x̄2, . . . , xn, x̄n}
Negated variables V̄ = {x̄1, x̄2, . . . , x̄n}
Clause: S ⊆ L

Instance I of k -SAT: Clauses C1,C2, . . . ,Cm where
|Ci | = k , i = 1,2, . . . ,m.

Truth Assignment φ : L→ {0,1} such that φ(x̄j) = 1− φ(xj) for
j = 1,2, . . . ,n.
φ satisfies I if 1 ∈ φ(Ci) for i = 1,2, . . . ,m.

For example φ(x1) = 0, φ(x2) = φ(x3) = 1 satisfies
{x̄1, x̄2, x̄3} , {x1, x2, x̄3} , {x̄1, x̄2, x3}.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Random k -SAT

Variables V = {x1, x2, . . . , xn}
Literals L = {x1, x̄1, x2, x̄2, . . . , xn, x̄n}
Negated variables V̄ = {x̄1, x̄2, . . . , x̄n}
Clause: S ⊆ L

Instance I of k -SAT: Clauses C1,C2, . . . ,Cm where
|Ci | = k , i = 1,2, . . . ,m.

Truth Assignment φ : L→ {0,1} such that φ(x̄j) = 1− φ(xj) for
j = 1,2, . . . ,n.
φ satisfies I if 1 ∈ φ(Ci) for i = 1,2, . . . ,m.

{x̄1, x̄2} , {x1, x̄2} , {x̄1, x2} , {x̄1, x̄2} is unsatisfiable.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Random k -SAT

Variables V = {x1, x2, . . . , xn}
Literals L = {x1, x̄1, x2, x̄2, . . . , xn, x̄n}
Negated variables V̄ = {x̄1, x̄2, . . . , x̄n}
Clause: S ⊆ L

Instance I of k -SAT: Clauses C1,C2, . . . ,Cm where
|Ci | = k , i = 1,2, . . . ,m.

Truth Assignment φ : L→ {0,1} such that φ(x̄j) = 1− φ(xj) for
j = 1,2, . . . ,n.
φ satisfies I if 1 ∈ φ(Ci) for i = 1,2, . . . ,m.

k -SAT problem: Determine whether or not there is a satisfying
assignment for I.
Solvable in polynomial time for k ≤ 2. NP-hard for k ≥ 3.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Random k -SAT

Random instance I: Choose literals `1, `2, . . . , `k independently
and uniformly for each Ci .

So, if Z is the number of satisfying assignments,

Pr(∃φ satisfying I) ≤ E(Z)

= 2n
(

1− 1
2k

)m

=

(
2
(

1− 1
2k

)c)n

.

So I is unsatisfiable w.h.p. if c > 2k log 2.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Random k -SAT

Random instance I: Choose literals `1, `2, . . . , `k independently
and uniformly for each Ci .

Let m = cn. Then for a fixed φ,

Pr(φ satisfies I) =

(
1− 1

2k

)m

.

So, if Z is the number of satisfying assignments,

Pr(∃φ satisfying I) ≤ E(Z)

= 2n
(

1− 1
2k

)m

=

(
2
(

1− 1
2k

)c)n

.

So I is unsatisfiable w.h.p. if c > 2k log 2.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Random k -SAT

Random instance I: Choose literals `1, `2, . . . , `k independently
and uniformly for each Ci .

Let m = cn. Then for a fixed φ,

Pr(φ satisfies I) =

(
1− 1

2k

)m

.

So, if Z is the number of satisfying assignments,

Pr(∃φ satisfying I) ≤ E(Z)

= 2n
(

1− 1
2k

)m

=

(
2
(

1− 1
2k

)c)n

.

So I is unsatisfiable w.h.p. if c > 2k log 2.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Random k -SAT

Random instance I: Choose literals `1, `2, . . . , `k independently
and uniformly for each Ci .

So, if Z is the number of satisfying assignments,

Pr(∃φ satisfying I) ≤ E(Z)

= 2n
(

1− 1
2k

)m

=

(
2
(

1− 1
2k

)c)n

.

So I is unsatisfiable w.h.p. if c > 2k log 2.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Random k -SAT

Conjecture: ∃ck such that if m = cn then

lim
n→∞

Pr(I is satisfiable) =

{
1 c < ck

0 c > ck

Friedgut (1999) has come close to proving this.

Conjecture is true for k = 2. It is known that c2 = 1.

Now if m = cn and

Pr(Z > 0) ≥ E(Z)2

E(Z 2)

and if the RHS here is bounded below then Friedgut’s result
implies that c ≤ ck .

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Random k -SAT

Conjecture: ∃ck such that if m = cn then

lim
n→∞

Pr(I is satisfiable) =

{
1 c < ck

0 c > ck

Friedgut (1999) has come close to proving this.

Conjecture is true for k = 2. It is known that c2 = 1.

Now if m = cn and

Pr(Z > 0) ≥ E(Z)2

E(Z 2)

and if the RHS here is bounded below then Friedgut’s result
implies that c ≤ ck .

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Random k -SAT

With Z equal to the number of satisfying assignments, the
second moment method fails.

Achlioptas and Peres (2004) replace Z by

Z1 =
∑

φ satisfies I

γH(φ,I)

where H(φ, I) = # true literals - # false literals in I for φ.

With a careful choice of 0 < γ < 1 they proved

Theorem
If

c < 2k log 2− (k + 1)
log 2

2
− 1− ok (1)

then I is satisfiable w.h.p.

Z1 reduces the weight of satisfying assignments with an
“excess” of true literals.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Random k -SAT

Achlioptas and Peres (2004) replace Z by

Z1 =
∑

φ satisfies I

γH(φ,I)

where H(φ, I) = # true literals - # false literals in I for φ.

With a careful choice of 0 < γ < 1 they proved

Theorem
If

c < 2k log 2− (k + 1)
log 2

2
− 1− ok (1)

then I is satisfiable w.h.p.

Z1 reduces the weight of satisfying assignments with an
“excess” of true literals.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Random k -SAT

Using a more complicated random variable, based on insights
from Physicists, and doing more conditioning, but still using the
second moment method,

Theorem (Coja-Oghlan and Panagiotou (2012))

If
c < 2k log 2− 3

log 2
2
− 1− ok (1)

then I is satisfiable w.h.p.

Theorem (Coja-Oghlan (2013))

If
c < 2k log 2− 1 + log 2

2
− ok (1)

then I is satisfiable w.h.p.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Random k -SAT

Using a more complicated random variable, based on insights
from Physicists, and doing more conditioning, but still using the
second moment method,

Theorem (Coja-Oghlan and Panagiotou (2012))

If
c < 2k log 2− 3

log 2
2
− 1− ok (1)

then I is satisfiable w.h.p.

Theorem (Coja-Oghlan (2013))

If
c < 2k log 2− 1 + log 2

2
− ok (1)

then I is satisfiable w.h.p.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Random k -SAT

Greedy Algorithms
Start with no values assigned to the variables.

Repeatedly, choose a random clause and assign a value to a
variable to satisfy it.
Number of variables in problem goes down by one.
Some clauses get satisfied and disappear from the problem,
others shrink in size by one.
Caveat: If there are “small” clauses be careful.
Repeat until all clauses are satisfied (success) or there is a
clause remaining that is empty (fail).

Most of these find a satisfying assignment w.h.p. provided there
are at most c2k

k n clauses, for small enough c.
A notable exception is the algorithm of Coja-Oghlan (2009)
which finds a satisfying assignment w.h.p. provided there are at
most (1−ε)2k log k

k n clauses.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Random k -SAT

Greedy Algorithms
Start with no values assigned to the variables.
Repeatedly, choose a random clause and assign a value to a
variable to satisfy it.

Number of variables in problem goes down by one.
Some clauses get satisfied and disappear from the problem,
others shrink in size by one.
Caveat: If there are “small” clauses be careful.
Repeat until all clauses are satisfied (success) or there is a
clause remaining that is empty (fail).

Most of these find a satisfying assignment w.h.p. provided there
are at most c2k

k n clauses, for small enough c.
A notable exception is the algorithm of Coja-Oghlan (2009)
which finds a satisfying assignment w.h.p. provided there are at
most (1−ε)2k log k

k n clauses.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Random k -SAT

Greedy Algorithms
Start with no values assigned to the variables.
Repeatedly, choose a random clause and assign a value to a
variable to satisfy it.
Number of variables in problem goes down by one.

Some clauses get satisfied and disappear from the problem,
others shrink in size by one.
Caveat: If there are “small” clauses be careful.
Repeat until all clauses are satisfied (success) or there is a
clause remaining that is empty (fail).

Most of these find a satisfying assignment w.h.p. provided there
are at most c2k

k n clauses, for small enough c.
A notable exception is the algorithm of Coja-Oghlan (2009)
which finds a satisfying assignment w.h.p. provided there are at
most (1−ε)2k log k

k n clauses.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Random k -SAT

Greedy Algorithms
Start with no values assigned to the variables.
Repeatedly, choose a random clause and assign a value to a
variable to satisfy it.
Number of variables in problem goes down by one.
Some clauses get satisfied and disappear from the problem,
others shrink in size by one.

Caveat: If there are “small” clauses be careful.
Repeat until all clauses are satisfied (success) or there is a
clause remaining that is empty (fail).

Most of these find a satisfying assignment w.h.p. provided there
are at most c2k

k n clauses, for small enough c.
A notable exception is the algorithm of Coja-Oghlan (2009)
which finds a satisfying assignment w.h.p. provided there are at
most (1−ε)2k log k

k n clauses.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Random k -SAT

Greedy Algorithms
Start with no values assigned to the variables.
Repeatedly, choose a random clause and assign a value to a
variable to satisfy it.
Number of variables in problem goes down by one.
Some clauses get satisfied and disappear from the problem,
others shrink in size by one.
Caveat: If there are “small” clauses be careful.

Repeat until all clauses are satisfied (success) or there is a
clause remaining that is empty (fail).

Most of these find a satisfying assignment w.h.p. provided there
are at most c2k

k n clauses, for small enough c.
A notable exception is the algorithm of Coja-Oghlan (2009)
which finds a satisfying assignment w.h.p. provided there are at
most (1−ε)2k log k

k n clauses.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Random k -SAT

Greedy Algorithms
Start with no values assigned to the variables.
Repeatedly, choose a random clause and assign a value to a
variable to satisfy it.
Number of variables in problem goes down by one.
Some clauses get satisfied and disappear from the problem,
others shrink in size by one.
Caveat: If there are “small” clauses be careful.
Repeat until all clauses are satisfied (success) or there is a
clause remaining that is empty (fail).

Most of these find a satisfying assignment w.h.p. provided there
are at most c2k

k n clauses, for small enough c.
A notable exception is the algorithm of Coja-Oghlan (2009)
which finds a satisfying assignment w.h.p. provided there are at
most (1−ε)2k log k

k n clauses.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Random k -SAT

Greedy Algorithms
Start with no values assigned to the variables.
Repeatedly, choose a random clause and assign a value to a
variable to satisfy it.
Number of variables in problem goes down by one.
Some clauses get satisfied and disappear from the problem,
others shrink in size by one.
Caveat: If there are “small” clauses be careful.
Repeat until all clauses are satisfied (success) or there is a
clause remaining that is empty (fail).

Most of these find a satisfying assignment w.h.p. provided there
are at most c2k

k n clauses, for small enough c.

A notable exception is the algorithm of Coja-Oghlan (2009)
which finds a satisfying assignment w.h.p. provided there are at
most (1−ε)2k log k

k n clauses.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Random k -SAT

Greedy Algorithms
Start with no values assigned to the variables.
Repeatedly, choose a random clause and assign a value to a
variable to satisfy it.
Number of variables in problem goes down by one.
Some clauses get satisfied and disappear from the problem,
others shrink in size by one.
Caveat: If there are “small” clauses be careful.
Repeat until all clauses are satisfied (success) or there is a
clause remaining that is empty (fail).

Most of these find a satisfying assignment w.h.p. provided there
are at most c2k

k n clauses, for small enough c.
A notable exception is the algorithm of Coja-Oghlan (2009)
which finds a satisfying assignment w.h.p. provided there are at
most (1−ε)2k log k

k n clauses.
Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Random k -SAT

Walksat
Start with the “all true” assignment: φ(xj) = 1, ∀j
Repeat

Choose an unsatisfied clause C
Choose a random variable from C and change its assigned

value
Until instance is satisfied.

Aleknovich and Ben-Sasson (2007) show that Walksat solves a
random instance of 3-SAT w.h.p. for m < 1.67n.

Coja-Oghlan, Feige, Frieze, Krivelevich and Vilenchik (2009)
show that for large k , Walksat solves a random instance of
k -SAT w.h.p. for m/n ≤ c2k/k2.

Coja-Oghlan and Frieze (2012) show that for large k , Walksat
solves a random instance of k -SAT w.h.p. for m/n ≤ c2k/k .

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Random k -SAT

Walksat
Start with the “all true” assignment: φ(xj) = 1, ∀j
Repeat

Choose an unsatisfied clause C
Choose a random variable from C and change its assigned

value
Until instance is satisfied.

Aleknovich and Ben-Sasson (2007) show that Walksat solves a
random instance of 3-SAT w.h.p. for m < 1.67n.

Coja-Oghlan, Feige, Frieze, Krivelevich and Vilenchik (2009)
show that for large k , Walksat solves a random instance of
k -SAT w.h.p. for m/n ≤ c2k/k2.

Coja-Oghlan and Frieze (2012) show that for large k , Walksat
solves a random instance of k -SAT w.h.p. for m/n ≤ c2k/k .

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Random k -SAT

Walksat
Start with the “all true” assignment: φ(xj) = 1, ∀j
Repeat

Choose an unsatisfied clause C
Choose a random variable from C and change its assigned

value
Until instance is satisfied.

Aleknovich and Ben-Sasson (2007) show that Walksat solves a
random instance of 3-SAT w.h.p. for m < 1.67n.

Coja-Oghlan, Feige, Frieze, Krivelevich and Vilenchik (2009)
show that for large k , Walksat solves a random instance of
k -SAT w.h.p. for m/n ≤ c2k/k2.

Coja-Oghlan and Frieze (2012) show that for large k , Walksat
solves a random instance of k -SAT w.h.p. for m/n ≤ c2k/k .

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Random k -SAT

Walksat
Start with the “all true” assignment: φ(xj) = 1, ∀j
Repeat

Choose an unsatisfied clause C
Choose a random variable from C and change its assigned

value
Until instance is satisfied.

Aleknovich and Ben-Sasson (2007) show that Walksat solves a
random instance of 3-SAT w.h.p. for m < 1.67n.

Coja-Oghlan, Feige, Frieze, Krivelevich and Vilenchik (2009)
show that for large k , Walksat solves a random instance of
k -SAT w.h.p. for m/n ≤ c2k/k2.

Coja-Oghlan and Frieze (2012) show that for large k , Walksat
solves a random instance of k -SAT w.h.p. for m/n ≤ c2k/k .

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Random k -SAT

Outline of Walksat for m/n ≤ c2k/k2.

We say that a clause C is infected by Walksat if its assigned
value could be changed in the course of the algorithm.

Let A denote the set of infected clauses and let VA =
⋃

C∈A C.

W1 C ⊆ V̄ implies C ∈ A.
W2 If C ∩ V ⊆ VA then C ∈ A

Because m is small, this means that w.h.p. A is small and then
C,C′ ∈ A are almost disjoint.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Random k -SAT

Outline of Walksat for m/n ≤ c2k/k2.
We say that a clause C is infected by Walksat if its assigned
value could be changed in the course of the algorithm.

Let A denote the set of infected clauses and let VA =
⋃

C∈A C.

W1 C ⊆ V̄ implies C ∈ A.
W2 If C ∩ V ⊆ VA then C ∈ A

Because m is small, this means that w.h.p. A is small and then
C,C′ ∈ A are almost disjoint.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Random k -SAT

Outline of Walksat for m/n ≤ c2k/k2.
We say that a clause C is infected by Walksat if its assigned
value could be changed in the course of the algorithm.

Let A denote the set of infected clauses and let VA =
⋃

C∈A C.

W1 C ⊆ V̄ implies C ∈ A.

W2 If C ∩ V ⊆ VA then C ∈ A

Because m is small, this means that w.h.p. A is small and then
C,C′ ∈ A are almost disjoint.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Random k -SAT

Outline of Walksat for m/n ≤ c2k/k2.
We say that a clause C is infected by Walksat if its assigned
value could be changed in the course of the algorithm.

Let A denote the set of infected clauses and let VA =
⋃

C∈A C.

W1 C ⊆ V̄ implies C ∈ A.
W2 If C ∩ V ⊆ VA then C ∈ A

Because m is small, this means that w.h.p. A is small and then
C,C′ ∈ A are almost disjoint.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Random k -SAT

Outline of Walksat for m/n ≤ c2k/k2.
We say that a clause C is infected by Walksat if its assigned
value could be changed in the course of the algorithm.

Let A denote the set of infected clauses and let VA =
⋃

C∈A C.

W1 C ⊆ V̄ implies C ∈ A.
W2 If C ∩ V ⊆ VA then C ∈ A

Because m is small, this means that w.h.p. A is small and then
C,C′ ∈ A are almost disjoint.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Random k -SAT

C ∈ A

LC

|LC| = 2k
3

Figure: Each C ∈ A has its own unique set of 2k/3 literals

Putting σA(x) = 0 for x̄ ∈ V̄ ∩
⋃

C∈A LC and σA(x) = 1
otherwise, yields a satisfying assignment.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Random k -SAT

C ∈ A

LC

|LC| = 2k
3

Figure: Each C ∈ A has its own unique set of 2k/3 literals

Putting σA(x) = 0 for x̄ ∈ V̄ ∩
⋃

C∈A LC and σA(x) = 1
otherwise, yields a satisfying assignment.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Random k -SAT

Now consider the Hamming distance between the current
assignment σW of Walksat and σA.

An iteration of Walksat reduces this by one with probability at
least 2/3 and so by properties of simple random walk, this
distance becomes zero in O(n) time w.h.p., (unless another
satisfying assignment is found).

Similar idea to that of Papadimitriou (1994) for 2-SAT.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Random k -SAT

Now consider the Hamming distance between the current
assignment σW of Walksat and σA.

An iteration of Walksat reduces this by one with probability at
least 2/3 and so by properties of simple random walk, this
distance becomes zero in O(n) time w.h.p., (unless another
satisfying assignment is found).

Similar idea to that of Papadimitriou (1994) for 2-SAT.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Random k -SAT

Now consider the Hamming distance between the current
assignment σW of Walksat and σA.

An iteration of Walksat reduces this by one with probability at
least 2/3 and so by properties of simple random walk, this
distance becomes zero in O(n) time w.h.p., (unless another
satisfying assignment is found).

Similar idea to that of Papadimitriou (1994) for 2-SAT.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Random k -SAT

Finding ck for k = O(1) is a major open problem. If we allow k
to grow then things become simple: Coja-Oghlan and Frieze
(2008) proved

Theorem

Suppose that k − log2 n→∞ and that m = 2k (n ln 2 + c) for an
absolute constant c. Then,

lim
n→∞

Pr(Im is satisfiable) = 1− e−e−c

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Contents of talk

(a) Random Discrete Structures
(b) Random Instances of the TSP in the unit square [0,1]2

(c) The Random Graphs Gn,m and Gn,p.
(1) Evolution
(2) Chromatic number
(3) Matchings
(4) Hamilton cycles

(d) Randomly edge weighted graphs
1 Minimum Spanning Tree
2 Shortest Paths
3 3-Dimensional Assignment Problem
4 Random Instances of the TSP with independent costs

(e) Random k -SAT
(f) Open Problems

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Open Questions/Problems

Find a polynomial time algorithm that w.h.p. finds a clique of
size at least 1.001 log2 n in Gn,1/2.

Find a polynomial time
algorithm that w.h.p. finds a planted clique of size o(n1/2) in
Gn,1/2.

Choose a p-subset S ⊆ [n] and add all edges contained in S to
Gn,1/2. Now ask someone else to find S.

Hidden clique

Gn,1/2

Figure: Planted Clique

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Open Questions/Problems

Find a polynomial time algorithm that w.h.p. finds a planted
clique of size o(n1/2) in Gn,1/2.

Choose a p-subset S ⊆ [n] and add all edges contained in S to
Gn,1/2. Now ask someone else to find S.

Hidden clique

Gn,1/2

Figure: Planted Clique

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Open Questions/Problems

Find a polynomial time algorithm that w.h.p. finds a planted
clique of size o(n1/2) in Gn,1/2.

Choose a p-subset S ⊆ [n] and add all edges contained in S to
Gn,1/2. Now ask someone else to find S.

Hidden clique

Gn,1/2

Figure: Planted Clique

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Open Questions/Problems

Find a polynomial time algorithm that w.h.p. finds a planted
clique of size o(n1/2) in Gn,1/2.

Choose a p-subset S ⊆ [n] and add all edges contained in S to
Gn,1/2. Now ask someone else to find S.

Hidden clique

Gn,1/2

Figure: Planted Clique

If p � n1/2 then enough to check vertices of high degree,
Kucera (1995).

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Open Questions/Problems

Find a polynomial time algorithm that w.h.p. finds a planted
clique of size o(n1/2) in Gn,1/2.

Choose a p-subset S ⊆ [n] and add all edges contained in S to
Gn,1/2. Now ask someone else to find S.

Hidden clique

Gn,1/2

Figure: Planted Clique

If p = O(n1/2) then spectral methods work, Alon, Krivelevich
and Sudakov (1998).

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Open Questions/Problems

Find a polynomial time algorithm that w.h.p. finds a planted
clique of size o(n1/2) in Gn,1/2.

Choose a p-subset S ⊆ [n] and add all edges contained in S to
Gn,1/2. Now ask someone else to find S.

Hidden clique

Gn,1/2

Figure: Planted Clique

If p = o(n1/2) then there are negative results on statistical
algorithms, Feldman, Grigorescu, Reyzin, Vempala and Xiao
(2013).

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Open Questions/Problems

Find the precise threshold for the k -colorability of the random
graph Gn,p.

2

χ

d

3

1

Find a polynomial time algorithm that optimally colors Gn,p
w.h.p. or prove that this is impossible under some accepted
complexity conjecture.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Open Questions/Problems

Find the precise threshold for the k -colorability of the random
graph Gn,p.

2

χ

d

3

1

Find a polynomial time algorithm that optimally colors Gn,p
w.h.p. or prove that this is impossible under some accepted
complexity conjecture.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Open Questions/Problems

Find the precise threshold for the satisfiability of random k -SAT.

Find a polynomial time algorithm that determines the
satisfiability of random k -SAT w.h.p. or prove that this is
impossible under some accepted complexity conjecture.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Open Questions/Problems

Find the precise threshold for the satisfiability of random k -SAT.

Find a polynomial time algorithm that determines the
satisfiability of random k -SAT w.h.p. or prove that this is
impossible under some accepted complexity conjecture.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Open Questions/Problems

Prove that limn→∞ Pr(Gn,cn;3 is Hamiltonian) = 1 for c > 3/2.

Construct a linear time algorithm for finding a Hamilton cycle in
this model.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Open Questions/Problems

Prove that limn→∞ Pr(Gn,cn;3 is Hamiltonian) = 1 for c > 3/2.

Construct a linear time algorithm for finding a Hamilton cycle in
this model.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Open Questions/Problems

Determine whether or not solving random asymmetric TSPs
with independent costs by branch and bound runs in
polynomial time w.h.p. when the bound used is the assignment
problem value.

In practise, branch and bound works well on these instances.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Open Questions/Problems

Determine whether or not solving random asymmetric TSPs
with independent costs by branch and bound runs in
polynomial time w.h.p. when the bound used is the assignment
problem value.

In practise, branch and bound works well on these instances.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Open Questions/Problems

Analyse the ordinary simplex algorithm on random instances.

Significant results are limited to more sophisticated versions
such as the shadow simplex algorithm, Borgwardt (1980).

Led to the notion of smoothed analysis: Spielman and Teng
(2004).

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Open Questions/Problems

Analyse the ordinary simplex algorithm on random instances.

Significant results are limited to more sophisticated versions
such as the shadow simplex algorithm, Borgwardt (1980).

Led to the notion of smoothed analysis: Spielman and Teng
(2004).

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Open Questions/Problems

Analyse the ordinary simplex algorithm on random instances.

Significant results are limited to more sophisticated versions
such as the shadow simplex algorithm, Borgwardt (1980).

Led to the notion of smoothed analysis: Spielman and Teng
(2004).

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Open Questions/Problems

Let M be randomly chosen from the set of n × n symmetric
{0,1} matrices with r ≥ 3 ones in each row and column. Prove
that M is non-singular w.h.p.

0 1 0 0 1 1 0 0 0 0
1 0 1 0 0 0 1 0 0 0
0 1 0 1 0 0 0 1 0 0
0 0 1 0 1 0 0 0 1 0
1 0 0 1 0 0 0 0 0 1
1 0 0 0 0 0 0 1 1 0
0 1 0 0 0 0 0 0 1 1
0 0 1 0 0 1 0 0 0 1
0 0 0 1 0 1 1 0 0 0
0 0 0 0 1 0 1 1 0 0

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Open Questions/Problems

Find a heuristic for the TSP in the unit square that w.h.p. comes
with nα of the optimum, where 0 < α < 1/2 is constant.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Open Questions/Problems

Determine the constant β in the Beardwood, Halton and
Hammersley theorem.

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Open Questions/Problems

Determine the asymptotics for the value of a random
multi-dimensional assignment problem and find asymptotically
optimal heuristics.

Give a uniform [0,1] weight Xe to each edge of the complete
3-uniform hypergraph Hn:3. Let Zn denote the minimum weight
of a perfect matching.

It is known that w.h.p.

c1

n
≤ Zn ≤

c2 log n
n

.

The LHS is easy. The RHS depends on a deep result of
Johansson, Kahn and Vu (2008).

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Open Questions/Problems

Determine the asymptotics for the value of a random
multi-dimensional assignment problem and find asymptotically
optimal heuristics.

Give a uniform [0,1] weight Xe to each edge of the complete
3-uniform hypergraph Hn:3. Let Zn denote the minimum weight
of a perfect matching.

It is known that w.h.p.

c1

n
≤ Zn ≤

c2 log n
n

.

The LHS is easy. The RHS depends on a deep result of
Johansson, Kahn and Vu (2008).

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Open Questions/Problems

Determine the asymptotics for the value of a random
multi-dimensional assignment problem and find asymptotically
optimal heuristics.

Give a uniform [0,1] weight Xe to each edge of the complete
3-uniform hypergraph Hn:3. Let Zn denote the minimum weight
of a perfect matching.

It is known that w.h.p.

c1

n
≤ Zn ≤

c2 log n
n

.

The LHS is easy. The RHS depends on a deep result of
Johansson, Kahn and Vu (2008).

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

Open Questions/Problems

Determine the threshold for a random subgraph of the n-cube
to be Hamiltonian.

Figure: 3-cube

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

THANK YOU

정말 감사합니다

Alan Frieze, Carnegie Mellon University Random Structures and Algorithms

