Random Structures and Algorithms

Alan Frieze

Department of Mathematical Sciences,
Carnegie Mellon University, Pittsburgh, USA.

(a) Random Discrete Structures

(b) Random Instances of the TSP in the unit square $[0,1]^{2}$
(c) The Random Graphs $G_{n, m}$ and $G_{n, p}$.
(1) Evolution
(2) Chromatic number
(3) Matchings
(4) Hamilton cycles
(d) Randomly edge weighted graphs

- Minimum Spanning Tree
(3) Shortest Paths
(0 3-Dimensional Assignment Problem
- Random Instances of the TSP with independent costs
(e) Random k-SAT
(f) Open Problems

Combinatorics/Discrete Mathematics (in the main) concerns itself with certain properties of large, finite sets, with some defined structure.

Combinatorics/Discrete Mathematics (in the main) concerns itself with certain properties of large, finite sets, with some defined structure.

Given such a set Ω, (often a set of graphs or a set of permutations) we have certain natural questions:
(1) How big is Ω : Enumerative Combinatorics.

Combinatorics/Discrete Mathematics (in the main) concerns itself with certain properties of large, finite sets, with some defined structure.

Given such a set Ω, (often a set of graphs or a set of permutations) we have certain natural questions:
(1) How big is Ω : Enumerative Combinatorics.
(2) How big is the greatest element of Ω : Extremal Combinatorics.

Combinatorics/Discrete Mathematics (in the main) concerns itself with certain properties of large, finite sets, with some defined structure.

Given such a set Ω, (often a set of graphs or a set of permutations) we have certain natural questions:
(1) How big is Ω : Enumerative Combinatorics.
(2) How big is the greatest element of Ω : Extremal Combinatorics.
(3) What are the properties of a typical member of Ω : Probabilistic Combinatorics.

Combinatorics/Discrete Mathematics (in the main) concerns itself with certain properties of large, finite sets, with some defined structure.

Given such a set Ω, (often a set of graphs or a set of permutations) we have certain natural questions:
(1) How big is Ω : Enumerative Combinatorics.
(2) How big is the greatest element of Ω : Extremal Combinatorics.
(What are the properties of a typical member of Ω : Probabilistic Combinatorics.
(0) Analysis of algorithms aims to find the complexity of computational problems associated with the above topics.

Combinatorics/Discrete Mathematics (in the main) concerns itself with certain properties of large, finite sets, with some defined structure.

Given such a set Ω, (often a set of graphs or a set of permutations) we have certain natural questions:
(1) How big is Ω : Enumerative Combinatorics.
(2) How big is the greatest element of Ω : Extremal Combinatorics.
(3) What are the properties of a typical member of Ω : Probabilistic Combinatorics.
(9) Analysis of algorithms aims to find the complexity of computational problems associated with the above topics.
This talk will be about Probabilistic Combinatorics/Analysis of Algorithms (average case).

There is unfortunately no time to discuss the Probabilistic Method where one uses probabilistic arguments to prove the existence of certain mathematical entities.
(a) Random Discrete Structures
(b) Random Instances of the TSP in the unit square $[0,1]^{2}$
(c) The Random Graphs $G_{n, m}$ and $G_{n, p}$.
(1) Evolution
(2) Chromatic number
(3) Matchings
(4) Hamilton cycles
(d) Randomly edge weighted graphs

- Minimum Spanning Tree
(3) Shortest Paths
- 3-Dimensional Assignment Problem
- Random Instances of the TSP with independent costs
(e) Random k-SAT
(f) Open Problems

It is a feature of modern computation that many of the problems we would like to solve seem hard, in some well-defined sense e.g. NP-hard. As such any algorithm is likely to take a large amount of time on some problems.

It is a feature of modern computation that many of the problems we would like to solve seem hard, in some well-defined sense e.g. NP-hard. As such any algorithm is likely to take a large amount of time on some problems.

This of course refers to the worst-case scenario for a particular problem.

It is a feature of modern computation that many of the problems we would like to solve seem hard, in some well-defined sense e.g. NP-hard. As such any algorithm is likely to take a large amount of time on some problems.

This of course refers to the worst-case scenario for a particular problem.

In practise, typical problems are often easy to satisfactorily solve.

It is a feature of modern computation that many of the problems we would like to solve seem hard, in some well-defined sense e.g. NP-hard. As such any algorithm is likely to take a large amount of time on some problems.

This of course refers to the worst-case scenario for a particular problem.

In practise, typical problems are often easy to satisfactorily solve.

Karp (1977) pioneered the idea of finding algorithms that work well on instances drawn from some natural probability distribution. He focussed first on the Travelling Salesperson Problem (TSP).

Let $\mathcal{X}=X_{1}, X_{2}, \ldots, X_{n}$ be n points chosen independently and uniformly from $[0,1]^{2}$.

$X_{1}, X_{2}, \ldots, X_{n}$ are independently chosen, uniformly from $[0,1]^{2}$.

Let Z be the minimum total length of a closed path (tour) through $X_{1}, X_{2}, \ldots, X_{n}$.
We consider the likely value of Z as $n \rightarrow \infty$.

Theorem (Beardwood, Halton and Hammersle

$$
\frac{Z}{n^{1 / 2}} \rightarrow \beta \text { with probability } 1
$$

$X_{1}, X_{2}, \ldots, X_{n}$ are independently chosen, uniformly from $[0,1]^{2}$.

Let Z be the minimum total length of a closed path (tour) through $X_{1}, X_{2}, \ldots, X_{n}$.

We consider the likely value of Z as $n \rightarrow \infty$.

The precise value of β is unkown to this day.

Karp (1977) described a heuristic that runs in polynomial time and w.h.p. produces a tour of length $Z+o\left(n^{1 / 2}\right)$.

Sub-square size $(\log n / n)^{1 / 2}$
Solve the individual problems in each sub-square.

Connect up the smaller tours as shown, by green edges.

Connect up the smaller tours as shown, by green edges. Convert to tour by deleting excess edges.

The total length of the green edges is $O\left(n^{1 / 2} / L\right)=O\left(n^{1 / 2}\right)$.

Single Sub-Square

Red edges from optimal tour through all n points.
Red plus Brown edges at least as long as the one found in the sub-square by the algorithm.
Total length of brown edges is $O\left(n / L^{2}\right) \times L n^{-1 / 2}=o\left(n^{1 / 2}\right)$.

Theorem (Karp (1977))

There is a polynomial time algorithm that w.h.p. finds a tour of length $(1+o(1)) \beta n^{1 / 2}$.

Here w.h.p. (with high probability) means with probability $1-o(1)$ as $n \rightarrow \infty$.

Theorem (Karp (1977))

There is a polynomial time algorithm that w.h.p. finds a tour of length $(1+o(1)) \beta n^{1 / 2}$.

Here w.h.p. (with high probability) means with probability $1-o(1)$ as $n \rightarrow \infty$.

Note that Papadimitriou (1977) showed that the TSP restricted to Euclidean instances is still NP-hard.
(a) Random Discrete Structures
(b) Random Instances of the TSP in the unit square $[0,1]^{2}$
(c) The Random Graphs $G_{n, m}$ and $G_{n, p}$.
(1) Evolution
(2) Chromatic number
(3) Matchings
(4) Hamilton cycles
(d) Randomly edge weighted graphs

- Minimum Spanning Tree
(3) Shortest Paths
(0) 3-Dimensional Assignment Problem
- Random Instances of the TSP with independent costs
(e) Random k-SAT
(f) Open Problems

Graph $G=(V, E)$
Vertices $V=\{a, b, c, d, e, f\}$
Edges $E=\{\{a, b\},\{a, f\}, \ldots,\{e, f\}\}$

The complete graph K_{n} has vertex set $[n]=\{1,2, \ldots, n\}$ and edge set $\binom{[n]}{2}$.

Choosing a graph at random

Choosing a graph at random

$G_{n, m}$: Vertex set $[n]$ and m random edges.

Choosing a graph at random

$G_{n, m}$: Vertex set $[n]$ and m random edges.
$G_{n, p}$: Each edge e of the complete graph K_{n} is included independently with probability $p=p(n)$.

Choosing a graph at random

$G_{n, m}$: Vertex set $[n]$ and m random edges.
$G_{n, p}$: Each edge e of the complete graph K_{n} is included independently with probability $p=p(n)$.
W.h.p. $G_{n, p}$ has $\sim\binom{n}{2} p$ edges, provided $\binom{n}{2} p \rightarrow \infty$
$p=1 / 2$, each subgraph of K_{n} is equally likely.

If $m \sim\binom{n}{2} p$ then $G_{n, p}$ and $G_{n, m}$ have "similar" properties.
W.h.p. means with probability $1-0(1)$ as $n \rightarrow \infty$.
(a) Random Discrete Structures
(b) Random Instances of the TSP in the unit square $[0,1]^{2}$
(c) The Random Graphs $G_{n, m}$ and $G_{n, p}$.
(1) Evolution
(2) Chromatic number
(3) Matchings
(4) Hamilton cycles
(d) Randomly edge weighted graphs

- Minimum Spanning Tree
(3) Shortest Paths
- 3-Dimensional Assignment Problem
- Random Instances of the TSP with independent costs
(e) Random k-SAT
(f) Open Problems

Graph process G_{0}, G_{1}, \ldots where G_{i+1} is G_{i} plus a random edge.

In the beginning

Graph process G_{0}, G_{1}, \ldots where G_{i+1} is G_{i} plus a random edge.

Graph process G_{0}, G_{1}, \ldots where G_{i+1} is G_{i} plus a random edge.

Graph process G_{0}, G_{1}, \ldots where G_{i+1} is G_{i} plus a random edge.

$$
m=\omega\left(n^{2 / 3}\right)
$$

Erdős and Rényi (1960)

m Structure of $G_{n, m}$ w.h.p.
$o\left(n^{1 / 2}\right) \quad$ Isolated edges and vertices

Erdős and Rényi (1960)

$m \quad$ Structure of $G_{n, m}$ w.h.p.
$o\left(n^{1 / 2}\right)$ Isolated edges and vertices
$\omega\left(n^{1 / 2}\right)$ Isolated edges and vertices and paths of length 2

Erdős and Rényi (1960)

$m \quad$ Structure of $G_{n, m}$ w.h.p.
$o\left(n^{1 / 2}\right)$ Isolated edges and vertices
$\omega\left(n^{1 / 2}\right)$ Isolated edges and vertices and paths of length 2
$\omega\left(n^{2 / 3}\right)$ Components are of the form

Erdős and Rényi (1960)

$m \quad$ Structure of $G_{n, m}$ w.h.p.
$o\left(n^{1 / 2}\right)$ Isolated edges and vertices
$\omega\left(n^{1 / 2}\right)$ Isolated edges and vertices and paths of length 2
$\omega\left(n^{2 / 3}\right)$ Components are of the form

$\omega\left(n^{\frac{k-1}{k}}\right) \quad$ Components are trees with $1 \leq j \leq k+1$ vertices. Each possible such tree appears.
$m \quad$ Structure of $G_{n, m}$ w.h.p.
$\frac{1}{2} c n \quad$ Mainly trees. Some unicyclic components. Maximum $c<1 \quad$ component size $O(\log n)$
$m \quad$ Structure of $G_{n, m}$ w.h.p.
$\frac{1}{2}$ cn Mainly trees. Some unicyclic components. Maximum $c<1 \quad$ component size $O(\log n)$
$\frac{1}{2} c n \quad$ Unique giant component of size $\sim \gamma(c) n$. Remainder $c>1$ almost all trees. Second largest component of size $O(\log n)$
$m \quad$ Structure of $G_{n, m}$ w.h.p.
$\frac{1}{2} c n \quad$ Mainly trees. Some unicyclic components. Maximum
$c<1 \quad$ component size $O(\log n)$
$\frac{1}{2} c n \quad$ Unique giant component of size $\sim \gamma(c) n$. Remainder $c>1$ almost all trees. Second largest component of size $O(\log n)$
$\frac{1}{2} n \quad$ Fascinating. Maximum component size order $n^{2 / 3}$. Has subsequently been the subject of more intensive study e.g. Janson, Knuth, Łuczak and Pittel (1993).

$m \quad$ Structure of $G_{n, m}$ w.h.p.

$\frac{1}{2} c n \quad$ Unique giant component of size $\sim \gamma(c) n$. Remainder $c>1$ almost all trees. Second largest component of size $O(\log n)$
$\gamma(c)$ is the probability that a branching process where each particle has a Poisson, mean c, number of descendants, does not go extinct.

Theorem (Erdős and Rényi (1959))

$$
m=\frac{1}{2} n\left(\log n+c_{n}\right)
$$

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(G_{n, m} \text { is connected }\right) & = \begin{cases}0 & c_{n} \rightarrow-\infty \\
e^{-e^{-c}} & c_{n} \rightarrow c \\
1 & c_{n} \rightarrow+\infty\end{cases} \\
& =\lim _{n \rightarrow \infty} \operatorname{Pr}\left(\delta\left(G_{n, m}\right) \geq 1\right)
\end{aligned}
$$

Notice the sharp transition from disconnected to connected,

Connectivity threshold

$$
p=(1+\epsilon) \frac{\log n}{n}, \quad\left(m=\frac{1+\epsilon}{2} n \log n .\right)
$$

$X_{k}=$ number of k-components, $1 \leq k \leq n / 2$. $X=X_{1}+X_{2}+\cdots+X_{n / 2}$
$G_{n, p}$ is connected iff $X=0$.

Connectivity threshold

$$
p=(1+\epsilon) \frac{\log n}{n}, \quad\left(m=\frac{1+\epsilon}{2} n \log n .\right)
$$

$X_{k}=$ number of k-components, $1 \leq k \leq n / 2$.
$X=X_{1}+X_{2}+\cdots+X_{n / 2}$
$G_{n, p}$ is connected iff $X=0$.

$$
\begin{aligned}
\operatorname{Pr}(X \neq 0) & \leq \mathbf{E}(X) \\
& \leq \sum_{k=1}^{n / 2}\binom{n}{k} k^{k-2} p^{k-1}(1-p)^{k(n-k)} \\
& \leq \frac{n}{\log n} \sum_{k=1}^{n / 2}\left(\frac{e \log n}{n^{(1+\epsilon)(1-k / n)}}\right)^{k} \\
& \rightarrow 0 .
\end{aligned}
$$

A matching in a graph G is a set of vertex disjoint edges. The matching is perfect if every vertex is covered by an edge of the matching.

Matching

Perfect Matching

A Hamilton cycle in a graph G is a cycle that passes through each vertex exactly once.

A Hamilton cycle in a graph G is a cycle that passes through each vertex exactly once.

Consider $G_{0}, G_{1}, \ldots, G_{m}, \ldots,: G_{i+1}$ is G_{i} plus a random edge. Let m_{k} denote the minimum m for which the minimum vertex degree $\delta\left(G_{m}\right) \geq k$.

Consider $G_{0}, G_{1}, \ldots, G_{m}, \ldots,: G_{i+1}$ is G_{i} plus a random edge. Let m_{k} denote the minimum m for which the minimum vertex degree $\delta\left(G_{m}\right) \geq k$.

Theorem (Erdős and Rényi (1959))

W.h.p. m_{1} is the "time" when G_{m} first becomes connected.

Consider $G_{0}, G_{1}, \ldots, G_{m}, \ldots,: G_{i+1}$ is G_{i} plus a random edge. Let m_{k} denote the minimum m for which the minimum vertex degree $\delta\left(G_{m}\right) \geq k$.

Theorem (Erdős and Rényi (1959))

W.h.p. m_{1} is the "time" when G_{m} first becomes connected.

Theorem (Erdős and Rényi (1966))

W.h.p. m_{1} is the "time" when G_{m} first has a perfect matching.

Consider $G_{0}, G_{1}, \ldots, G_{m}, \ldots,: G_{i+1}$ is G_{i} plus a random edge. Let m_{k} denote the minimum m for which the minimum vertex degree $\delta\left(G_{m}\right) \geq k$.

Theorem (Erdős and Rényi (1959))

W.h.p. m_{1} is the "time" when G_{m} first becomes connected.

Theorem (Erdős and Rényi (1966))

W.h.p. m_{1} is the "time" when G_{m} first has a perfect matching.

Theorem (Ajtai, Komlós, Szemerédi (1985), Bollobás (1984))

W.h.p. m_{2} is the "time" when G_{m} first has a Hamilton cycle.

Consider $G_{0}, G_{1}, \ldots, G_{m}, \ldots,: G_{i+1}$ is G_{i} plus a random edge. Let m_{k} denote the minimum m for which the minimum vertex degree $\delta\left(G_{m}\right) \geq k$.

Theorem (Cooper and Frieze (1989))
 W.h.p. at "time" m_{2}, G_{m} has $(\log n)^{n-o(n)}$ Hamilton cycles.

Consider $G_{0}, G_{1}, \ldots, G_{m}, \ldots,: G_{i+1}$ is G_{i} plus a random edge. Let m_{k} denote the minimum m for which the minimum vertex degree $\delta\left(G_{m}\right) \geq k$.

Theorem (Glebov and Krivelevich (2013))

W.h.p. at "time" m_{2}, G_{m} has $n!p^{n} e^{-o(n)}$ Hamilton cycles.

Consider $G_{0}, G_{1}, \ldots, G_{m}, \ldots,: G_{i+1}$ is G_{i} plus a random edge. Let m_{k} denote the minimum m for which the minimum vertex degree $\delta\left(G_{m}\right) \geq k$.

Theorem (Bollobás and Frieze (1985))

W.h.p. at "time" $m_{k}, k=O(1), G_{m}$ has $\lfloor k / 2\rfloor$ disjoint Hamilton cycles plus a disjoint perfect matching if k is odd- Property \mathcal{A}_{k}.

Consider $G_{0}, G_{1}, \ldots, G_{m}, \ldots,: G_{i+1}$ is G_{i} plus a random edge. Let m_{k} denote the minimum m for which the minimum vertex degree $\delta\left(G_{m}\right) \geq k$.

Theorem (Bollobás and Frieze (1985))

W.h.p. at "time" $m_{k}, k=O(1), G_{m}$ has $\lfloor k / 2\rfloor$ disjoint Hamilton cycles plus a disjoint perfect matching if k is odd- Property \mathcal{A}_{k}.

Theorem (Knox, Kühn and Osthus (2012))
W.h.p. G_{m} has property \mathcal{A}_{δ} for $n \log ^{50} n \leq m \leq\binom{ n}{2}-o\left(n^{2}\right)$.

Theorem (Krivelevich and Samotij (2012))
W.h.p. G_{m} has property \mathcal{A}_{δ} for $\frac{1}{2} n \log n \leq m \leq n^{1+\epsilon}$.
(a) Random Discrete Structures
(b) Random Instances of the TSP in the unit square $[0,1]^{2}$
(c) The Random Graphs $G_{n, m}$ and $G_{n, p}$.
(1) Evolution
(2) Chromatic number
(3) Matchings
(4) Hamilton cycles
(d) Randomly edge weighted graphs

- Minimum Spanning Tree
(3) Shortest Paths
- 3-Dimensional Assignment Problem
- Random Instances of the TSP with independent costs
(e) Random k-SAT
(f) Open Problems

A proper k-coloring of a graph G is a map $f: V \rightarrow[k]$ such that if $\{v, w\}$ is an edge of G then $f(v) \neq f(w)$.

The chromatic number $\chi(G)$ is the smallest k for which there is a proper k-coloring.

A set of vertices $S \subseteq V$ is independent if $v, w \in S$ implies that $\{v, w\}$ is not an edge.

In a proper k-coloring, each color class is an independent set.
The independence number $\alpha(G)$ is the size of the largest independent set.

Thus

$$
\chi(G) \geq \frac{|V|}{\alpha(G)} .
$$

Theorem (Matula (1970))

W.h.p. the maximum size $\alpha\left(G_{n, 1 / 2}\right)$ of an independent set is

$$
2 \log _{2} n-2 \log _{2} \log _{2} n+O(1)
$$

Theorem (Matula (1970))

W.h.p. the maximum size $\alpha\left(G_{n, 1 / 2}\right)$ of an independent set is

$$
2 \log _{2} n-2 \log _{2} \log _{2} n+O(1)
$$

Finding an independent set of size $\sim \log _{2} n$ in polynomial time is easy.

Greedy Algorithm:
Start with $I=\{1\}$.
Repeatedly add $v \notin I$ that is not adjacent to I, until no such v can be found.

Theorem (Matula (1970))

W.h.p. the maximum size $\alpha\left(G_{n, 1 / 2}\right)$ of an independent set is

$$
2 \log _{2} n-2 \log _{2} \log _{2} n+O(1)
$$

Finding an independent set of size $\sim \log _{2} n$ in polynomial time is easy.

Greedy Algorithm:
Start with $I=\{1\}$.
Repeatedly add $v \notin I$ that is not adjacent to I, until no such v can be found.

After k successful steps, $\mathbf{E}(\#$ choices for $v) \sim n 2^{-k}$.

Theorem (Matula (1970))

W.h.p. the maximum size $\alpha\left(G_{n, 1 / 2}\right)$ of an independent set is

$$
2 \log _{2} n-2 \log _{2} \log _{2} n+O(1)
$$

Surprisingly, no-one has been able to find a polynomial time algorithm that w.h.p. finds an independent set of size $(1+\epsilon) \log _{2} n$ for any positive constant $\epsilon>0$.

Theorem (Matula (1970))

W.h.p. the maximum size $\alpha\left(G_{n, 1 / 2}\right)$ of an independent set is

$$
2 \log _{2} n-2 \log _{2} \log _{2} n+O(1)
$$

Surprisingly, no-one has been able to find a polynomial time algorithm that w.h.p. finds an independent set of size $(1+\epsilon) \log _{2} n$ for any positive constant $\epsilon>0$.

It may not be possible to find such an independent set in polynomial time w.h.p.

It follows from Matula's result that w.h.p. $\chi\left(G_{n, 1 / 2}\right) \geq \frac{n}{2 \log _{2} n}$

It follows from Matula's result that w.h.p. $\chi\left(G_{n, 1 / 2}\right) \geq \frac{n}{2 \log _{2} n}$

Theorem (Bollobás and Erdős (1976), Grimmett and McDiarmid (1975))

W.h.p. a simple greedy algorithm uses $\sim \frac{n}{\log _{2} n}$ colors.

It follows from Matula's result that w.h.p. $\chi\left(G_{n, 1 / 2}\right) \geq \frac{n}{2 \log _{2} n}$

Theorem (Bollobás and Erdős (1976), Grimmett and McDiarmid (1975))

W.h.p. a simple greedy algorithm uses $\sim \frac{n}{\log _{2} n}$ colors.

Given the fact that no-one knows how to find a large independent set in polynomial time, no-one knows how to find a coloring with $(1-\epsilon) n / \log _{2} n$ colors in polynomial time.

It follows from Matula's result that w.h.p. $\chi\left(G_{n, 1 / 2}\right) \geq \frac{n}{2 \log _{2} n}$

Theorem (Bollobás and Erdős (1976), Grimmett and McDiarmid (1975))

W.h.p. a simple greedy algorithm uses $\sim \frac{n}{\log _{2} n}$ colors.

Given the fact that no-one knows how to find a large independent set in polynomial time, no-one knows how to find a coloring with $(1-\epsilon) n / \log _{2} n$ colors in polynomial time.

It may even be NP-hard to find such a coloring in polynomial time w.h.p.

For a long time, no-one could prove an upper bound
$\chi\left(G_{n, 1 / 2}\right) \leq(1+o(1)) \frac{n}{2 \log _{2} n}$

For a long time, no-one could prove an upper bound
$\chi\left(G_{n, 1 / 2}\right) \leq(1+o(1)) \frac{n}{2 \log _{2} n}$

The "discovery" of Martingale Concentration Inequalities was a great help.

For a long time, no-one could prove an upper bound $\chi\left(G_{n, 1 / 2}\right) \leq(1+o(1)) \frac{n}{2 \log _{2} n}$

The "discovery" of Martingale Concentration Inequalities was a great help.

Let $Z=Z\left(X_{1}, \ldots, X_{N}\right)$ where X_{1}, \ldots, X_{N} are independent. Suppose that changing one X_{i} only changes Z by ≤ 1. Then

$$
\operatorname{Pr}(|Z-\mathbf{E}(Z)| \geq t) \leq e^{-2 t^{2} / N}
$$

"Discovered" by Shamir and Spencer (1987), Rhee and Talagrand (1988), they have had a profound effect on our area.

For a long time, no-one could prove an upper bound $\chi\left(G_{n, 1 / 2}\right) \leq(1+o(1)) \frac{n}{2 \log _{2} n}$

The "discovery" of Martingale Concentration Inequalities was a great help.

Let $Z=Z\left(X_{1}, \ldots, X_{N}\right)$ where X_{1}, \ldots, X_{N} are independent. Suppose that changing one X_{i} only changes Z by ≤ 1. Then

$$
\operatorname{Pr}(Z=0) \leq e^{-2 \mathbf{E}(Z)^{2} / N}
$$

"Discovered" by Shamir and Spencer (1987), Rhee and Talagrand (1988), they have had a profound effect on our area.

For a long time, no-one could prove an upper bound
$\chi\left(G_{n, 1 / 2}\right) \leq(1+o(1)) \frac{n}{2 \log _{2} n}$

The "discovery" of Martingale Concentration Inequalities was a great help.

Let $Z=Z\left(X_{1}, \ldots, X_{N}\right)$ where X_{1}, \ldots, X_{N} are independent. Suppose that changing one X_{i} only changes Z by ≤ 1. Then

$$
\operatorname{Pr}(Z=0) \leq e^{-2 \mathbf{E}(Z)^{2} / N}
$$

Further inequalities by Talagrand (1995) and Kim and Vu (2000) have been extremely useful.

Bollobás (1988) proved

Theorem
 $\chi\left(G_{n, 1 / 2}\right) \sim \frac{n}{2 \log _{2} n}$ w.h.p.

Bollobás (1988) proved

Theorem
$\chi\left(G_{n, 1 / 2}\right) \sim \frac{n}{2 \log _{2} n}$ w.h.p.
Let Z be the maximum number of independent sets in a collection $S_{1}, \ldots, S_{z},\left|S_{i}\right| \sim 2 \log _{2} n$ and $\left|S_{i} \cap S_{j}\right| \leq 1$.

Bollobás (1988) proved

Theorem

$\chi\left(G_{n, 1 / 2}\right) \sim \frac{n}{2 \log _{2} n}$ w.h.p.
Let Z be the maximum number of independent sets in a collection $S_{1}, \ldots, S_{Z},\left|S_{i}\right| \sim 2 \log _{2} n$ and $\left|S_{i} \cap S_{j}\right| \leq 1$.

$\mathrm{E}(Z)=n^{2-o(1)}$ and changing one edge changes Z by ≤ 1

 So,$$
\begin{aligned}
& \operatorname{Pr}\left(\exists S \subseteq[n]:|S| \geq \frac{n}{\left(\log _{2} n\right)^{2}} \text { and } S\right. \text { doesn't contain a } \\
& \left.\quad(2-o(1)) \log _{2} n \text { independent set }\right) \leq 2^{n} e^{-n^{2-o(1)}}=o(1) .
\end{aligned}
$$

Bollobás (1988) proved

Theorem

$\chi\left(G_{n, 1 / 2}\right) \sim \frac{n}{2 \log _{2} n}$ w.h.p.
Let Z be the maximum number of independent sets in a collection $S_{1}, \ldots, S_{Z},\left|S_{i}\right| \sim 2 \log _{2} n$ and $\left|S_{i} \cap S_{j}\right| \leq 1$.

$$
\mathrm{E}(Z)=n^{2-o(1)} \text { and changing one edge changes } Z \text { by } \leq 1
$$

So,

$$
\begin{aligned}
& \operatorname{Pr}\left(\exists S \subseteq[n]:|S| \geq \frac{n}{\left(\log _{2} n\right)^{2}} \text { and } S\right. \text { doesn't contain a } \\
& \left.\quad(2-o(1)) \log _{2} n \text { independent set }\right) \leq 2^{n} e^{-n^{2-o(1)}}=o(1) .
\end{aligned}
$$

So, we color $G_{n, 1 / 2}$ with color classes of size $\sim 2 \log _{2} n$ until there are $\leq n /\left(\log _{2} n\right)^{2}$ vertices uncolored and then give each remaining vertex a new color.

There has recently been a lot of research concerning the chromatic number of sparse random graphs viz. $G_{n, p}, p=d / n$ where $d=O(1)$.

Conjecture: There exists a sequence $d_{k}: k \geq 2$ such that w.h.p.

$$
\chi\left(G_{n, d / n}\right)=k \text { for } d_{k-1}<d<d_{k}
$$

Friedgut (1999), Achlioptas and Friedgut (1999) came close to proving this.

Conjecture: There exists a sequence $d_{k}: k \geq 2$ such that w.h.p.

$$
\chi\left(G_{n, d / n}\right)=k \text { for } d_{k-1}<d<d_{k}
$$

Friedgut (1999), Achlioptas and Friedgut (1999) came close to proving this.

Theorem (Łuczak (1991))

W.h.p. $\chi\left(G_{n, d / n}\right)$ takes one of two values.

Conjecture: There exists a sequence $d_{k}: k \geq 2$ such that w.h.p.

$$
\chi\left(G_{n, d / n}\right)=k \text { for } d_{k-1}<d<d_{k}
$$

Friedgut (1999), Achlioptas and Friedgut (1999) came close to proving this.

Surprisingly, using a second moment method we get
Theorem (Achlioptas and Naor (2005))
Let k_{d} be the smallest integer $k \geq 2$ such that $d<2 k \log k$ then w.h.p. $\chi\left(G_{n, d / n}\right) \in\left\{k_{d}, k_{d}+1\right\}$.

Theorem (Achlioptas and Naor (2005))

Let k_{d} be the smallest integer $k \geq 2$ such that $d<2 k \log k$ then w.h.p. $\chi\left(G_{n, d / n}\right) \in\left\{k_{d}, k_{d}+1\right\}$.

If X denotes the number of k-colorings of $G_{n, d / n}$ then

$$
\operatorname{Pr}(X>0) \geq \frac{\mathbf{E}(X)^{2}}{\mathbf{E}\left(X^{2}\right)}=\Omega(1)
$$

for $d<2(k-1) \log (k-1)$.
Now use results on sharpness of threshold.

Theorem (Achlioptas and Naor (2005))

Let k_{d} be the smallest integer $k \geq 2$ such that $d<2 k \log k$ then w.h.p. $\chi\left(G_{n, d / n}\right) \in\left\{k_{d}, k_{d}+1\right\}$.

If X denotes the number of k-colorings of $G_{n, d / n}$ then

$$
\operatorname{Pr}(X>0) \geq \frac{\mathbf{E}(X)^{2}}{\mathbf{E}\left(X^{2}\right)}=\Omega(1)
$$

for $d<2(k-1) \log (k-1)$.
Now use results on sharpness of threshold.

The idea is straightforward. The difficulty lies in estimating $\mathrm{E}\left(X^{2}\right)$.

Theorem (Achlioptas and Naor (2005))

Let k_{d} be the smallest integer $k \geq 2$ such that $d<2 k \log k$ then w.h.p. $\chi\left(G_{n, d / n}\right) \in\left\{k_{d}, k_{d}+1\right\}$.

If X denotes the number of k-colorings of $G_{n, d / n}$ then

$$
\operatorname{Pr}(X>0) \geq \frac{\mathbf{E}(X)^{2}}{\mathbf{E}\left(X^{2}\right)}=\Omega(1)
$$

for $d<2(k-1) \log (k-1)$.
Now use results on sharpness of threshold.

The result has been extended to hypergraphs:
Dyer, Frieze and Greenhill (2014).

Achlioptas and Naor showed that for approximately half of the possible values for $d, \chi\left(G_{n, d / n}\right)$ is determined w.hp.

Theorem (Achlioptas and Naor (2005))

If $d \in((2 k-1) \log k, 2 k \log k)$ then w.h.p. $\chi\left(G_{n, d / n}\right)=k+1$.
This has been improved so that we now have

Theorem (Coja-Oghlan and Vilenchik (2013))

(a) Let κ_{d} be the smallest integer $k \geq 2$ such that $d<(2 k-1) \log k$. Then $\chi\left(G_{n, d / n}\right)=\kappa_{d}$ for $d \in \mathcal{A}$ where \mathcal{A} has asymptotic density one in R_{+}.
(b) $d_{k}>2 k \log k-\log k-2 \log 2+o_{k}(1)$.

Upper bound on d_{k} : Let $X_{k}(d)$ denote the number of k-colorings of $G_{n, d / n}$. Then

$$
d>2 k \log k-\log k \text { implies } \mathrm{E}\left(X_{k}(d)\right) \rightarrow 0
$$

and therefore

$$
d_{k}<2 k \log k-\log k .
$$

Upper bound on d_{k} :

$$
d_{k}<2 k \log k-\log k
$$

Theorem (Coja-Oghlan (2014))

$$
d_{k} \leq 2 k \log k-\log k-1+o_{k}(1) .
$$

Upper bound on d_{k} :

$$
d_{k}<2 k \log k-\log k
$$

Theorem (Coja-Oghlan (2014))

$$
d_{k} \leq 2 k \log k-\log k-1+o_{k}(1)
$$

This problem has attracted the attention of Statistical Physicists where colors are synonyms for spins. Coja-Oghlan's proof is motivated by physicists conjectures about the geometry of the set of k-colorings near the threshold. His upper bound matches a physics prediction.

Upper bound on d_{k} :

$$
d_{k}<2 k \log k-\log k
$$

Theorem (Coja-Oghlan (2014))

$$
d_{k} \leq 2 k \log k-\log k-1+o_{k}(1)
$$

For large k, the value of d_{k} is now known within an interval of size less than 0.39.
(a) Random Discrete Structures
(b) Random Instances of the TSP in the unit square $[0,1]^{2}$
(c) The Random Graphs $G_{n, m}$ and $G_{n, p}$.
(1) Evolution
(2) Chromatic number
(3) Matchings
(4) Hamilton cycles
(d) Randomly edge weighted graphs

- Minimum Spanning Tree
(3) Shortest Paths
- 3-Dimensional Assignment Problem
- Random Instances of the TSP with independent costs
(e) Random k-SAT
(f) Open Problems

A matching in a graph G is a set of vertex disjoint edges. The matching is perfect if every vertex is covered by an edge of the matching.

Matching

Perfect Matching

A matching in a graph G is a set of vertex disjoint edges. The matching is perfect if every vertex is covered by an edge of the matching.

Matching

Perfect Matching

A largest matching can be found in polynomial time Edmonds (1965).

Karp and Sipser (1981) proposed the following greedy algorithm for finding a large matching:
KSGREEDY
begin
$M \leftarrow \emptyset ;$
while $E(G) \neq \emptyset$ do begin

A1: If G has a vertex of degree one, choose one, x say, randomly.
Let $e=\{x, y\}$ be the unique edge of G incident with x;
A2: Otherwise, (no vertices of degree one) choose $e=\{x, y\} \in E$ randomly $G \leftarrow G \backslash\{x, y\} ;$ $M \leftarrow M \cup\{e\}$
end;
Output M
end

End of Phase 1

Phase 1 ends and Phase 2 begins the first time that there are no vertices of degree one.

Phase 1 ends and Phase 2 begins the first time that there are no vertices of degree one.

No mistakes are made in Phase 1 i.e. the set of edges chosen are in some largest matching.

Phase 1 ends and Phase 2 begins the first time that there are no vertices of degree one.

No mistakes are made in Phase 1 i.e. the set of edges chosen are in some largest matching.

Karp and Sipser analysed the algorithms performance on $G_{n, p}$, where $p=c / n$.
In $G_{n, p}$ each of the $\binom{n}{2}$ edges of the complete graph K_{n} appear independently with probability p.
Aronson, Frieze and Pittel (1998) gave a more precise analysis.

Karp and Sipser analysed the algorithms performance on $G_{n, p}$, where $p=c / n$.
In $G_{n, p}$ each of the $\binom{n}{2}$ edges of the complete graph K_{n} appear independently with probability p.
Aronson, Frieze and Pittel (1998) gave a more precise analysis.
If $c<e$ then w.h.p. Phase 1 ends with a graph with $o(n)$ vertices.
If $c<e$ then w.h.p. Phase 1 ends with a graph consisting of $O(1)$ vertex disjoint cycles, in expectation.

Karp and Sipser analysed the algorithms performance on $G_{n, p}$, where $p=c / n$.
In $G_{n, p}$ each of the $\binom{n}{2}$ edges of the complete graph K_{n} appear independently with probability p.
Aronson, Frieze and Pittel (1998) gave a more precise analysis.
If $c<e$ then w.h.p. Phase 1 ends with a graph with $o(n)$ vertices.
If $c<e$ then w.h.p. Phase 1 ends with a graph consisting of $O(1)$ vertex disjoint cycles, in expectation.

If $c \geq e$ then w.h.p. Phase 2 isolates $o(n)$ vertices.
If $c \geq e$ then w.h.p. Phase 2 isolates $\Theta\left(n^{1 / 5} \log ^{O(1)} n\right)$ vertices.

For the graph G remaining after t steps of the algorithm, let $v_{1}=$ the number of vertices of degree one
$v=$ the number of vertices of degree at least two
$m=$ the number of edges

For the graph G remaining after t steps of the algorithm, let $v_{1}=$ the number of vertices of degree one
$v=$ the number of vertices of degree at least two
$m=$ the number of edges

One can show that

- The sequence v_{1}, v, m is a Markov chain.

For the graph G remaining after t steps of the algorithm, let
$v_{1}=$ the number of vertices of degree one
$v=$ the number of vertices of degree at least two
$m=$ the number of edges
One can show that

- The sequence v_{1}, v, m is a Markov chain.
- At each stage G is a random graph with these parameters.

For the graph G remaining after t steps of the algorithm, let
$v_{1}=$ the number of vertices of degree one
$v=$ the number of vertices of degree at least two
$m=$ the number of edges
One can show that

- The sequence v_{1}, v, m is a Markov chain.
- At each stage G is a random graph with these parameters.
- The number of vertices v_{k} of degree $k \geq 2$ satisfies

$$
v_{k} \approx \frac{v z^{k}}{k!\left(e^{z}-1-z\right)}
$$

where z is the solution to

$$
\frac{2 m-v_{1}}{v}=\frac{z\left(e^{z}-1\right)}{e^{z}-1-z}
$$

One step transitions:

If $v_{1}^{\prime}, v^{\prime}, m^{\prime}$ denote the values of the parameters after one step of the algorithm then, given v_{1}, v, m

$$
\begin{aligned}
\mathrm{E}\left[v_{1}^{\prime}-v_{1}\right] & =-1-\frac{v_{1}}{2 m}+\frac{v^{2} z^{4} e^{z}}{(2 m f)^{2}}-\frac{v_{1} v z^{2} e^{z}}{(2 m)^{2} f}+O\left(\frac{\log ^{2} v}{v z}\right) \\
\mathrm{E}\left[v^{\prime}-v\right] & =-1+\frac{v_{1}}{2 m}-\frac{v^{2} z^{4} e^{z}}{(2 m f)^{2}}+O\left(\frac{\log ^{2} v}{v z}\right) \\
\mathrm{E}\left[m^{\prime}-m\right] & =-1-\frac{v z^{2} e^{z}}{2 m f}+O\left(\frac{\log ^{2} v}{v z}\right)
\end{aligned}
$$

$\mathrm{E}\left[v_{0}^{\prime}-v_{0}\right]=O\left(\frac{v_{1}}{m}\right)$ - expected increase in unmatched vertices.

One step transitions:

If $v_{1}^{\prime}, v^{\prime}, m^{\prime}$ denote the values of the parameters after one step of the algorithm then, given v_{1}, v, m

$$
\begin{aligned}
\mathrm{E}\left[v_{1}^{\prime}-v_{1}\right] & =-1-\frac{v_{1}}{2 m}+\frac{v^{2} z^{4} e^{z}}{(2 m f)^{2}}-\frac{v_{1} v z^{2} e^{z}}{(2 m)^{2} f}+O\left(\frac{\log ^{2} v}{v z}\right) \\
\mathrm{E}\left[v^{\prime}-v\right] & =-1+\frac{v_{1}}{2 m}-\frac{v^{2} z^{4} e^{z}}{(2 m f)^{2}}+O\left(\frac{\log ^{2} v}{v z}\right) \\
\mathrm{E}\left[m^{\prime}-m\right] & =-1-\frac{v z^{2} e^{z}}{2 m f}+O\left(\frac{\log ^{2} v}{v z}\right)
\end{aligned}
$$

$\mathrm{E}\left[v_{0}^{\prime}-v_{0}\right]=O\left(\frac{v_{1}}{m}\right)$ - expected increase in unmatched vertices.
v_{1}, v, m closely follow the trajectory of a set of differential equations.

These equations are:

$$
\begin{aligned}
\frac{d v_{1}}{d t} & =-1-\frac{v_{1}}{2 m}+\frac{v^{2} z^{4} e^{z}}{(2 m f)^{2}}-\frac{v_{1} v z^{2} e^{z}}{(2 m)^{2} f}, \\
\frac{d v}{d t} & =-1+\frac{v_{1}}{2 m}-\frac{v^{2} z^{4} e^{z}}{(2 m f)^{2}}, \\
\frac{d m}{d t} & =-1-\frac{v z^{2} e^{z}}{2 m f} .
\end{aligned}
$$

These equations are:

$$
\begin{aligned}
\frac{d v_{1}}{d t} & =-1-\frac{v_{1}}{2 m}+\frac{v^{2} z^{4} e^{z}}{(2 m f)^{2}}-\frac{v_{1} v z^{2} e^{z}}{(2 m)^{2} f}, \\
\frac{d v}{d t} & =-1+\frac{v_{1}}{2 m}-\frac{v^{2} z^{4} e^{z}}{(2 m f)^{2}}, \\
\frac{d m}{d t} & =-1-\frac{v z^{2} e^{z}}{2 m f} .
\end{aligned}
$$

Their solution is

$$
\begin{aligned}
2 m & =\frac{n}{c} z^{2} \\
v & =n\left(1-e^{-z}(1+z)\right) \beta \\
v_{1} & =\frac{n}{c}\left[z^{2}-z c \beta\left(1-e^{-z}\right)\right] \\
t & =\frac{n}{c}\left[c(1-\beta)-\frac{1}{2} \log ^{2} \beta\right]
\end{aligned}
$$

where $\beta e^{c \beta}=e^{z}$.

Super-critical case: $c>e$

In this case we end Phase 1 with $z=z^{*}>0$.

Super-critical case: c>e

In this case we end Phase 1 with $z=z^{*}>0$.

We have observed that
$\mathrm{E}\left[v_{0}^{\prime}-v_{0}\right]=O\left(\frac{v_{1}}{m}\right)$ - expected increase in unmatched vertices.
So, it is enough to show that w.h.p. $v_{1}=\tilde{O}\left(n^{1 / 5}\right)$ throughout the algorithm, for then we can argue that w.h.p. there are $\tilde{O}\left(n^{1 / 5} \sum_{m=1}^{c n} \frac{1}{m}\right)$ vertices left unmatched in Phase 2.

Controlling v_{1}

Controlling v_{1}

We first observe that

$v_{1}>0$ implies $\mathrm{E}\left[v_{1}^{\prime}-v_{1}\right] \leq-\min \left(\frac{z^{2}}{200}, \frac{1}{20000}\right)+O\left(\frac{\log ^{2} n}{v z}\right)$

Controlling v_{1}

We first observe that
$v_{1}>0$ implies $\mathrm{E}\left[v_{1}^{\prime}-v_{1}\right] \leq-\min \left(\frac{z^{2}}{200}, \frac{1}{20000}\right)+O\left(\frac{\log ^{2} n}{v z}\right)$

Early Phase: $z \geq n^{-1 / 100}$.
Whp v_{1} stays $\tilde{O}\left(z^{-2}\right)$.

Controlling v_{1}

We first observe that
$v_{1}>0$ implies $\mathrm{E}\left[v_{1}^{\prime}-v_{1}\right] \leq-\min \left(\frac{z^{2}}{200}, \frac{1}{20000}\right)+O\left(\frac{\log ^{2} n}{v z}\right)$

Middle Phase: $n^{-1 / 100} \geq z \geq n^{-1 / 5}$
At this point the graph is very sparse, most vertices are of degree two.
When $v_{1}>0$ most vertices of degree one are at end of a long path. Removing such a vertex and its edge does not change v_{1} i.e.

$$
\operatorname{Pr}\left(v_{1}^{\prime}=v_{1} \mid v_{1}>0\right)=1-z+O\left(z^{2}\right)
$$

Whp v_{1} stays $\tilde{O}\left(z^{-1}\right)$.

Controlling v_{1}

We first observe that
$v_{1}>0$ implies $\mathrm{E}\left[v_{1}^{\prime}-v_{1}\right] \leq-\min \left(\frac{z^{2}}{200}, \frac{1}{20000}\right)+O\left(\frac{\log ^{2} n}{v z}\right)$

Final Phase: $z \leq n^{-1 / 5}$
We start this phase with

$$
v \sim v_{2} \sim C n z^{2}=\tilde{O}\left(n^{3 / 5}\right)
$$

Only $\tilde{O}\left(n^{3 / 5} z\right)=\tilde{O}\left(n^{2 / 5}\right)$ moves made in the " v_{1} walk" and so v_{1} can only move by square root of this.

The Karp-Sipser algorithm runs in $O(n)$ time and makes $O\left(\tilde{n}^{1 / 5}\right)$ mistakes.

The Karp-Sipser algorithm runs in $O(n)$ time and makes $O\left(\tilde{n}^{1 / 5}\right)$ mistakes.

Chebolu, Frieze and Melsted (2010) show that these mistakes can be corrected i.e one can find a true maximum matching in $O(n)$ time w.h.p., for c sufficiently large.

The Karp-Sipser algorithm runs in $O(n)$ time and makes $O\left(\tilde{n}^{1 / 5}\right)$ mistakes.

Chebolu, Frieze and Melsted (2010) show that these mistakes can be corrected i.e one can find a true maximum matching in $O(n)$ time w.h.p., for c sufficiently large.

Mistakes are made in Phase 2 that starts with a graph distributed as $G_{\nu, \mu}^{\delta \geq 2}$ i.e. a random graph with ν vertices and μ edges and minimum degree δ at least two.

The Karp-Sipser algorithm runs in $O(n)$ time and makes $O\left(\tilde{n}^{1 / 5}\right)$ mistakes.

Chebolu, Frieze and Melsted (2010) show that these mistakes can be corrected i.e one can find a true maximum matching in $O(n)$ time w.h.p., for c sufficiently large.

Mistakes are made in Phase 2 that starts with a graph distributed as $G_{\nu, \mu}^{\delta \geq 2}$ i.e. a random graph with ν vertices and μ edges and minimum degree δ at least two.

The CFM algorithm pairs up the unmatched vertices and tries to find an augmenting path joining them.

The Karp-Sipser algorithm runs in $O(n)$ time and makes $O\left(\tilde{n}^{1 / 5}\right)$ mistakes.

Chebolu, Frieze and Melsted (2010) show that these mistakes can be corrected i.e one can find a true maximum matching in $O(n)$ time w.h.p., for c sufficiently large.

Mistakes are made in Phase 2 that starts with a graph distributed as $G_{\nu, \mu}^{\delta \geq 2}$ i.e. a random graph with ν vertices and μ edges and minimum degree δ at least two.

The CFM algorithm pairs up the unmatched vertices and tries to find an augmenting path joining them.

All statements from now on refer to Phase 2.

Augmenting Path

Replacing the matching edges by non-matching edges on the path, and only the path, yields a larger matching.

Augmenting Path

Replacing the matching edges by non-matching edges on the path, and only the path, yields a larger matching.

To find an augmenting path from unmatched vertex x to vertex unmatched vertex y, we use augmenting trees:

To make this work properly, we have to use all the edges of the graph at the beginning of Phase 2, even though we have "looked at" them while running KSGREEDY.

To make this work properly, we have to use all the edges of the graph at the beginning of Phase 2, even though we have "looked at" them while running KSGREEDY.

We assume that the edges of G are given to us in some fixed random order $\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$. When we want a random edge with a given property then we take the first edge in this order, with the required property.

To make this work properly, we have to use all the edges of the graph at the beginning of Phase 2, even though we have "looked at" them while running KSGREEDY.

We assume that the edges of G are given to us in some fixed random order $\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$. When we want a random edge with a given property then we take the first edge in this order, with the required property.

If v is a vertex that is matched when there are no vertices of degree one, then we say that v is regular. The set of regular vertices is denoted by R.

To make this work properly, we have to use all the edges of the graph at the beginning of Phase 2, even though we have "looked at" them while running KSGREEDY.

We assume that the edges of G are given to us in some fixed random order $\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$. When we want a random edge with a given property then we take the first edge in this order, with the required property.

If v is a vertex that is matched when there are no vertices of degree one, then we say that v is regular. The set of regular vertices is denoted by R.

When a regular vertex is deleted, it will be matched to the first available edge in the order. The next edge in the order containing v is called the witness for v.

Now fix some small $\epsilon>0$ and another small constant α.

Now fix some small $\epsilon>0$ and another small constant α.

A vertex is early if it is deleted before step $n^{1-\epsilon}$ (of Phase 2) and late otherwise.

An edge e_{i} is punctual if $i \leq(1-\alpha) m$ and tardy otherwise.

Now fix some small $\epsilon>0$ and another small constant α.
A vertex is early if it is deleted before step $n^{1-\epsilon}$ (of Phase 2) and late otherwise.

An edge e_{i} is punctual if $i \leq(1-\alpha) m$ and tardy otherwise.

$$
R_{0}=\{v \in R: v \text { is early and the witness of } v \text { is punctual }\} .
$$

and

$$
\Lambda_{0}=\left\{v: v \text { has punctual degree at least ten in } G\left(n^{1-\epsilon}\right)\right\}
$$

where $G(t)$ is the graph G after t steps of Phase 2 .

The tardy $R_{0}: \Lambda_{0}$ edges are uniformly random from $R_{0} \times \Lambda_{0}$, conditional on all other edges.
This is because they do not affect the course of the algorithm.

These values show an expected
$\Omega\left(n^{2-4 \epsilon}\right)$
paths.
As such,
w.h.p., we
succeed
in finding
augmenting paths.

(a) Random Discrete Structures
(b) Random Instances of the TSP in the unit square $[0,1]^{2}$
(c) The Random Graphs $G_{n, m}$ and $G_{n, p}$.
(1) Evolution
(2) Chromatic number
(3) Matchings
(4) Hamilton cycles
(d) Randomly edge weighted graphs

- Minimum Spanning Tree
(3) Shortest Paths
- 3-Dimensional Assignment Problem
- Random Instances of the TSP with independent costs
(e) Random k-SAT
(f) Open Problems

Determining whether or not a graph has a Hamilton cycle is

 NP-hard Karp (1972).Determining whether or not a graph has a Hamilton cycle is NP-hard Karp (1972).

Theorem (Komlós and Szemerédi (1983))

Suppose that $m=\frac{1}{2} n\left(\log n+\log \log n+c_{n}\right)$. Then

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(G_{n, m} \text { is Hamiltonian }\right)= \begin{cases}0 & c_{n} \rightarrow-\infty \\ e^{-e^{-c}} & c_{n} \rightarrow c \\ 1 & c_{n} \rightarrow \infty\end{cases}
$$

Determining whether or not a graph has a Hamilton cycle is NP-hard Karp (1972).

Theorem (Komlós and Szemerédi (1983))

Suppose that $m=\frac{1}{2} n\left(\log n+\log \log n+c_{n}\right)$. Then

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(G_{n, m} \text { is Hamiltonian }\right)= \begin{cases}0 & c_{n} \rightarrow-\infty \\ e^{-e^{-c}} & c_{n} \rightarrow c \\ 1 & c_{n} \rightarrow \infty\end{cases}
$$

We will describe an algorithm that runs in polynomial time and finds a Hamilton cycle w.h.p. for the case $c_{n}=\omega \rightarrow \infty$.

Posá Rotations

We can start our algorithm with any path.

The red edge extends the blue path.

Alternative way of extending path:

If there is no extension then we rotate the path:

We will in general, have several choices for the red edge here. Each rotation gives another endpoint.

Posá Tree

Each rectangle is a path that is obtained from its parent by a rotation.

BOOST is the set of pairs of endpoints in the leaves.

Let $m=\frac{1}{2} n(\log n+\log \log n+\omega)$ and $m_{2}=\omega n / 4$ and let $m_{1}=m-m_{2}$.

Let $m=\frac{1}{2} n(\log n+\log \log n+\omega)$ and $m_{2}=\omega n / 4$ and let $m_{1}=m-m_{2}$.

Choose m_{2} random edges $X=\left\{e_{1}, e_{2}, \ldots, e_{m_{2}}\right\}$. Try to grow path using Posa trees and $G_{n, m_{1}}$.

Let $m=\frac{1}{2} n(\log n+\log \log n+\omega)$ and $m_{2}=\omega n / 4$ and let $m_{1}=m-m_{2}$.

Choose m_{2} random edges $X=\left\{e_{1}, e_{2}, \ldots, e_{m_{2}}\right\}$. Try to grow path using Posa trees and $G_{n, m_{1}}$.

If we fail to extend and grow the Posá tree to depth D_{0} then we try the next edge e from X. If $e \in B O O S T$ then we can extend. The probability that the next edge does this is at least A for some constant $A>0$.

Let $m=\frac{1}{2} n(\log n+\log \log n+\omega)$ and $m_{2}=\omega n / 4$ and let $m_{1}=m-m_{2}$.

Choose m_{2} random edges $X=\left\{e_{1}, e_{2}, \ldots, e_{m_{2}}\right\}$. Try to grow path using Posa trees and $G_{n, m_{1}}$.

If we fail to extend and grow the Posá tree to depth D_{0} then we try the next edge e from X. If $e \in B O O S T$ then we can extend.
The probability that the next edge does this is at least A for some constant $A>0$.
So, the probability the algorithm fails can be bounded by

$$
\operatorname{Pr}\left(\operatorname{Bin}\left(m_{2}, A\right)<n\right)=o(1)
$$

Let $m=\frac{1}{2} n(\log n+\log \log n+\omega)$ and $m_{2}=\omega n / 4$ and let $m_{1}=m-m_{2}$.

Choose m_{2} random edges $X=\left\{e_{1}, e_{2}, \ldots, e_{m_{2}}\right\}$. Try to grow path using Posa trees and $G_{n, m_{1}}$.

If we fail to extend and grow the Posá tree to depth D_{0} then we try the next edge e from X. If $e \in B O O S T$ then we can extend.
The probability that the next edge does this is at least A for some constant $A>0$.
So, the probability the algorithm fails can be bounded by

$$
\operatorname{Pr}\left(\operatorname{Bin}\left(m_{2}, A\right)<n\right)=o(1)
$$

It is not necessary to partition the edges and the algorithm can be made deterministic, Bollobás, Fenner and Frieze (1985).

With the threshold problem solved, existentially and constructively, we can consider other models of a random graph: We first see what happens if we condition on minimum degree at least two:

Let $G_{n, m ; k}$ be sampled uniformly from all graphs with vertex set $[n]$ that have m edges and minimum degree at least k.

Theorem (Bollobás, Fenner and Frieze (1990))

Let $m=\frac{1}{6} n\left(\log n+\log \log n+c_{n}\right)$ then

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(G_{n, m ; 2} \text { is Hamiltonian }\right)= \begin{cases}0 & c_{n} \rightarrow-\infty \\ e^{-f(c)} & c_{n} \rightarrow c \\ 1 & c_{n} \rightarrow+\infty\end{cases}
$$

for some explicit function $f(c)$.
$e^{-f(c)}$ is the asymptotic probability that there are no spiders.

Spiders

Let $G(n, r)$ denote a random r-regular graph chosen uniformly from the set of all graphs with vertex set $[n]$. (Regular means that all vertices have the same degree)

Theorem

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}(G(n, r) \text { is Hamiltonian })=1, \quad r \geq 3
$$

$r=O(1)$ was proved by Robinson and Wormald $(1992,1994)$ $r \rightarrow \infty$ was proved by Krivelevich, Sudakov, Vu, Wormald (2001) and Cooper, Frieze, Reed (2002).

If each vertex independently chooses k random neighbors then we have the random graph $G_{k-o u t}$.

Theorem (Bohman and Frieze (2009))

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(G_{k-\text { out }} \text { is Hamiltonian }\right)=1, \quad k \geq 3 .
$$

This is not implied by the previous results on random regular graphs.

If each vertex independently chooses k random neighbors then we have the random graph $G_{k-o u t}$.

Theorem (Bohman and Frieze (2009))

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(G_{k-\text { out }} \text { is Hamiltonian }\right)=1, \quad k \geq 3
$$

This is not implied by the previous results on random regular graphs.
We need $k \geq 3$ to avoid spiders:

We now consider conditoning on minimum degree at least

 three. Let$$
L_{c}=\lim _{n \rightarrow \infty} \operatorname{Pr}\left(G_{n, c n ; 3} \text { is Hamiltonian }\right)
$$

Conjecture: $L_{c}=1$ for all $c \geq 3 / 2$.

We now consider conditoning on minimum degree at least three. Let

$$
L_{c}=\lim _{n \rightarrow \infty} \operatorname{Pr}\left(G_{n, c n ; 3} \text { is Hamiltonian }\right)
$$

Conjecture: $L_{c}=1$ for all $c \geq 3 / 2$.
Conjecture true for $c=3 / 2$, Robinson and Wormald (1984)

We now consider conditoning on minimum degree at least three. Let

$$
L_{c}=\lim _{n \rightarrow \infty} \operatorname{Pr}\left(G_{n, c n ; 3} \text { is Hamiltonian }\right)
$$

Conjecture: $L_{c}=1$ for all $c \geq 3 / 2$.

Theorem (Bollobás, Cooper, Fenner, Frieze (2000))

$$
L_{c}=1 \text { for } c \geq 128 .
$$

We now consider conditoning on minimum degree at least

 three. Let$$
L_{c}=\lim _{n \rightarrow \infty} \operatorname{Pr}\left(G_{n, c n ; 3} \text { is Hamiltonian }\right)
$$

Conjecture: $L_{c}=1$ for all $c \geq 3 / 2$.

Theorem (Frieze (2012))
$L_{c}=1$ for $c \geq 10$.

Theorem (Frieze (2012))
 $L_{c}=1$ for $c \geq 10$.

Conjecture true for $c \geq 3$. Assuming numerical solution of some differential equations.

Theorem (Frieze and Haber (2014))

If c is sufficiently large then w.h.p. a Hamilton cycle can be found in $G_{n, \text { cn; }}$ in $O\left(n^{1+o(1)}\right)$ time.

The improved results on Hamilton cycles in $G_{n, c n ; 3}$ rely on the analysis of a greedy algorithm for finding a good 2-matching M viz. a set of edges that induce a graph of maximum degree at most two.

By good, we mean that M has $O(\log n)$ components. This gives us a good basis for constructing a Hamilton cycle. We next discuss an algorithm for finding such a 2-matching.

Algorithm 2GREEDY: The input for this algorithm is $G_{n, c n}^{\delta \geq 3}$ for c suficiently large - currently $c \geq 10$ will suffice.

Algorithm 2GREEDY: The input for this algorithm is $G_{n, c n}^{\delta>3}$ for c suficiently large - currently $c \geq 10$ will suffice.

The algorithm builds a collection of paths and cycles, mainly paths. We use M to denote the set of edges chosen so far. We let B denote the set of vertices that are endpoints of paths of M.

Algorithm 2GREEDY: The input for this algorithm is $G_{n, c n}^{\delta \geq 3}$ for c suficiently large - currently $c \geq 10$ will suffice.

The algorithm builds a collection of paths and cycles, mainly paths. We use M to denote the set of edges chosen so far. We let B denote the set of vertices that are endpoints of paths of M.

In the Karp-Sipser algorithm we took care to "grab" vertices of degree one. Here we take care to grab vertices of degree at most two if they are not incident with M and of degree one if they are. Otherwise we choose a random edge incident to a vertex in \bar{B}. We refer to these as dangerous vertices.

Algorithm 2GREEDY: The input for this algorithm is $G_{n, c n}^{\delta \geq 3}$ for c suficiently large - currently $c \geq 10$ will suffice.

The algorithm builds a collection of paths and cycles, mainly paths. We use M to denote the set of edges chosen so far. We let B denote the set of vertices that are endpoints of paths of M.

In the Karp-Sipser algorithm we took care to "grab" vertices of degree one. Here we take care to grab vertices of degree at most two if they are not incident with M and of degree one if they are.
Otherwise we choose a random edge incident to a vertex in \bar{B}.
We refer to these as dangerous vertices.
Phase 1 ends when $\bar{B}=\emptyset$.

If none of these cases are applicable then we choose a random edge among those incident with a vertex not in B i.e. not yet covered by M.

Phase 1 is over.

At the end of Phase 1, the 2-matching M will consist mainly of vertex disjoint paths. The isolated vertices and the cycles will play no further part in the rest of the 2GREEDY algorithm. They will be part of the output though.

We show that w.h.p. the number of paths is $\Omega(n)$ and that there are $O(\log n)$ isolated vertices.

At the end of Phase 1 , the 2 -matching M will consist mainly of vertex disjoint paths. The isolated vertices and the cycles will play no further part in the rest of the 2GREEDY algorithm. They will be part of the output though.

We show that w.h.p. the number of paths is $\Omega(n)$ and that there are $O(\log n)$ isolated vertices.

The edges not in M define a graph H which is distributed as $G_{\nu, \mu}^{\delta>2}$ for some $\nu, \mu=\Omega(n)$.

At the end of Phase 1 , the 2 -matching M will consist mainly of vertex disjoint paths. The isolated vertices and the cycles will play no further part in the rest of the 2GREEDY algorithm. They will be part of the output though.

We show that w.h.p. the number of paths is $\Omega(n)$ and that there are $O(\log n)$ isolated vertices.

The edges not in M define a graph H which is distributed as $G_{\nu, \mu}^{\delta \geq 2}$ for some $\nu, \mu=\Omega(n)$.

We find a perfect matching M^{\prime} in H in $O(n)$ time. Adding M to M^{\prime} produces a 2-matching in G which has $O(\log n)$ components w.h.p.

The analysis of 2-GREEDY is similar to that of the Karp-Sipser algorithm: Only, it has more parameters:

- μ is the number of edges in Γ,
- $y_{k}=\left|Y_{k}\right|=\left|\left\{v \notin B: d_{\Gamma}(v)=k\right\}\right|, k=1,2$,
- $z_{1}=\left|Z_{1}\right|=\left|\left\{v \in B: d_{\Gamma}(v)=1\right\}\right|$,
- $y=|Y|=\left|\left\{v \notin B: d_{\Gamma}(v) \geq 3\right\}\right|$.
- $z=|Z|=\left|\left\{v \in B: d_{\Gamma}(v) \geq 2\right\}\right|$.

The analysis of 2-GREEDY is similar to that of the Karp-Sipser algorithm: Only, it has more parameters:

- μ is the number of edges in Γ,
- $y_{k}=\left|Y_{k}\right|=\left|\left\{v \notin B: d_{\Gamma}(v)=k\right\}\right|, k=1,2$,
- $z_{1}=\left|Z_{1}\right|=\left|\left\{v \in B: d_{\Gamma}(v)=1\right\}\right|$,
- $y=|Y|=\left|\left\{v \notin B: d_{\Gamma}(v) \geq 3\right\}\right|$.
- $z=|Z|=\left|\left\{v \in B: d_{\Gamma}(v) \geq 2\right\}\right|$.

We can show that y_{1}, y_{2}, z_{1} remain $O(\log n)$ throughout, w.h.p. And that Phase 1 ends with $y=0$ and $z_{1}=\Omega(n)$.

As 2-GREEDY progresses the random sequence ($y_{0}, y_{1}, y_{2}, z_{1}, y, z, \mu$) is a Markov Chain.

The graph defined by the remaining vertices and edges is chosen uniformly from the set of graphs with these parameters.

The degrees of vertices in Y, Z are close to truncated Poisson:
Let $f_{i}(x)=e^{x}-\sum_{t=0}^{i-1} \frac{x^{t}}{t!}$ and let λ be the solution to

$$
\frac{y \lambda f_{2}(\lambda)}{f_{3}(\lambda)}+\frac{z \lambda f_{1}(\lambda)}{f_{2}(\lambda)}=2 \mu-y_{1}-2 y_{2}-z_{1} .
$$

Then w.h.p.

$$
y_{k} \sim \frac{y \lambda^{k}}{k!!_{3}(\lambda)}, k \geq 3 \text { and } z_{k} \sim \frac{z \lambda^{k}}{k!f_{2}(\lambda)}, k \geq 2 .
$$

There are differential equations that closely model the process: They only involve variables $\hat{y}, \hat{z}, \hat{\mu}$ that represent y, z, μ, other variables stay small.
It takes some effort, but we reduce them to

There are differential equations that closely model the process: They only involve variables $\hat{y}, \hat{z}, \hat{\mu}$ that represent y, z, μ, other variables stay small.
It takes some effort, but we reduce them to

$$
\frac{d \hat{y}}{d t}=\hat{A}+\hat{B}-\hat{C}-1 ; \quad \frac{d \hat{z}}{d t}=2 \hat{C}-2 \hat{A}-2 \hat{B} ; \quad \frac{d \hat{\mu}}{d t}=-1-\hat{D}
$$

where
$\hat{A}=\frac{\hat{y} \hat{z}^{5} f_{0}(\hat{\lambda})}{8 \hat{\mu}^{2} f_{2}(\hat{\lambda}) f_{3}(\hat{\lambda})}, \hat{B}=\frac{\hat{z}^{2} \hat{\lambda}^{4} f_{0}(\hat{\lambda})}{4 \hat{\mu}^{2} f_{2}(\hat{\lambda})^{2}}, \hat{C}=\frac{\hat{y} \hat{\lambda} f_{2}(\hat{\lambda})}{2 \hat{\mu} f_{3}(\hat{\lambda})}, \hat{D}=\frac{\hat{z} \hat{\lambda}^{2} f_{0}(\hat{\lambda})}{2 \hat{\mu} f_{2}(\hat{\lambda})}$
and

$$
\frac{\hat{\hat{\lambda}} \hat{\lambda} f_{2}(\hat{\lambda})}{f_{3}(\hat{\lambda})}+\frac{\hat{z} \hat{\lambda} f_{1}(\hat{\lambda})}{f_{2}(\hat{\lambda})}=2 \hat{\mu} .
$$

There are differential equations that closely model the process: They only involve variables $\hat{y}, \hat{z}, \hat{\mu}$ that represent y, z, μ, other variables stay small.
It takes some effort, but we reduce them to

$$
\frac{d \hat{y}}{d t}=\hat{A}+\hat{B}-\hat{C}-1 ; \quad \frac{d \hat{z}}{d t}=2 \hat{C}-2 \hat{A}-2 \hat{B} ; \quad \frac{d \hat{\mu}}{d t}=-1-\hat{D}
$$

where
$\hat{A}=\frac{\hat{y} \hat{z} \hat{\lambda}^{5} f_{0}(\hat{\lambda})}{8 \hat{\mu}^{2} f_{2}(\hat{\lambda}) f_{3}(\hat{\lambda})}, \hat{B}=\frac{\hat{z}^{2} \hat{\lambda}^{4} f_{0}(\hat{\lambda})}{4 \hat{\mu}^{2} f_{2}(\hat{\lambda})^{2}}, \hat{C}=\frac{\hat{y} \hat{\lambda} f_{2}(\hat{\lambda})}{2 f_{3}(\hat{\lambda})}, \hat{D}=\frac{\hat{z} \hat{\lambda}^{2} f_{0}(\hat{\lambda})}{2 f_{\mu}(\hat{\lambda})}$
and

$$
\frac{\hat{y} \hat{\lambda} f_{2}(\hat{\lambda})}{f_{3}(\hat{\lambda})}+\frac{\hat{z} \hat{\lambda} f_{1}(\hat{\lambda})}{f_{2}(\hat{\lambda})}=2 \hat{\mu} .
$$

Unfortunately, we have not been able to solve these equations.

We observe however, that if $\hat{\lambda}$ is large then

$$
\hat{A} \ll 1 ; \quad \hat{B} \ll 1 ; \quad \hat{C} \approx \frac{\hat{y} \hat{\lambda}}{2 \hat{\mu}} ; \quad \hat{D} \approx \frac{\hat{z} \hat{\lambda}^{2}}{2 \hat{\mu}} ; \quad \hat{\lambda} \approx \frac{2 \hat{\mu}}{\hat{y}+\hat{z}} .
$$

They can then be approximated by the following equations:

$$
\begin{aligned}
& \tilde{y}^{\prime}=-\frac{\tilde{y}}{\tilde{y}+\tilde{z}}-1 \\
& \tilde{z}^{\prime}=\frac{2 \tilde{y}}{\tilde{y}+\tilde{z}} \\
& \tilde{\mu}^{\prime}=-1-\frac{2 \tilde{z} \tilde{\mu}}{(\tilde{y}+\tilde{z})^{2}} \\
& \tilde{\lambda}=\frac{2 \tilde{\mu}}{\tilde{y}+\tilde{z}} .
\end{aligned}
$$

They can then be approximated by the following equations:

$$
\begin{aligned}
& \tilde{y}^{\prime}=-\frac{\tilde{y}}{\tilde{y}+\tilde{z}}-1 \\
& \tilde{z}^{\prime}=\frac{2 \tilde{y}}{\tilde{y}+\tilde{z}} \\
& \tilde{\mu}^{\prime}=-1-\frac{2 \tilde{z} \tilde{\mu}}{(\tilde{y}+\tilde{z})^{2}} \\
& \tilde{\lambda}=\frac{2 \tilde{\mu}}{\tilde{y}+\tilde{z}} .
\end{aligned}
$$

These are solvable and they have the property that there is a time \tilde{T} such that $\tilde{y}(\tilde{T})=0$ and $\tilde{z}(\tilde{T})=\Omega(n)$.

These are solvable and they have the property that there is a time \tilde{T} such that $\tilde{y}(\tilde{T})=0$ and $\tilde{z}(\tilde{T})=\Omega(n)$.

When $c \geq 10$ we can use this to show that there is a time \hat{T} such that $\hat{y}(\hat{T})=0$ and $\hat{z}(\hat{T})=\Omega(n)$.

These are solvable and they have the property that there is a time \tilde{T} such that $\tilde{y}(\tilde{T})=0$ and $\tilde{z}(\tilde{T})=\Omega(n)$.

When $c \geq 10$ we can use this to show that there is a time \hat{T} such that $\hat{y}(\hat{T})=0$ and $\hat{z}(\hat{T})=\Omega(n)$.

And then because the diferential equations describe the process very closely, we can deduce that w.h.p. there is a time T such that $y_{1}(T)=y_{2}(T)=z_{1}(T)=\zeta(T)=y(T)=0$ and $z(T)=\Omega(n)$.

These are solvable and they have the property that there is a time \tilde{T} such that $\tilde{y}(\tilde{T})=0$ and $\tilde{z}(\tilde{T})=\Omega(n)$.

When $c \geq 10$ we can use this to show that there is a time \hat{T} such that $\hat{y}(\hat{T})=0$ and $\hat{z}(\hat{T})=\Omega(n)$.

And then because the diferential equations describe the process very closely, we can deduce that w.h.p. there is a time T such that $y_{1}(T)=y_{2}(T)=z_{1}(T)=\zeta(T)=y(T)=0$ and $z(T)=\Omega(n)$.

In which case, as already noted, we will end Phase 1 having only isolated $O(\log n)$ vertices.

Numerical experiments suggest that such a T exists for $c \geq 2.5$, maybe even for smaller c.

c	$y_{\text {final }}$	$z_{\text {final }}$	$\mu_{\text {final }}$	$\lambda_{\text {final }}$
3.0	0.000008	0.283721	0.398527	1.822428
2.9	0.000009	0.242563	0.326139	1.602749
2.8	0.000010	0.197461	0.253645	1.370798
2.7	0.000010	0.148901	0.182327	1.123928
2.6	0.000000	0.098344	0.114494	0.858355
2.5	0.000010	0.048976	0.054010	0.565840

These are the results of running Euler's method with step length 10^{-5} on the differential equations.

Converting the 2-matching to a hamilton cycle. A regular vertex v is one that is deleted when there are no dangerous vertices to grab. The set of regular vertices is denoted by R.

Converting the 2-matching to a hamilton cycle. A regular vertex v is one that is deleted when there are no dangerous vertices to grab. The set of regular vertices is denoted by R.

When a regular vertex is deleted, it will be matched to the first available edge in the order. The next edge in the order containing v is called the witness for v.

Converting the 2-matching to a hamilton cycle. A regular vertex v is one that is deleted when there are no dangerous vertices to grab. The set of regular vertices is denoted by R.

When a regular vertex is deleted, it will be matched to the first available edge in the order. The next edge in the order containing v is called the witness for v.

We define R_{0}, Λ_{0} more or less as before

$$
\begin{aligned}
& R_{0}=\{v \in R: v \text { is early and the witness of } v \text { is punctual }\} . \\
& \Lambda_{0}=\left\{v: v \text { has punctual degree at least ten in } G\left(n^{1-o(1)}\right)\right\}
\end{aligned}
$$

Once again, the tardy $R_{0}: \Lambda_{0}$ edges are uniformly random from $R_{0} \times \Lambda_{0}$, conditional on all other edges.

We start our search for a Hamilton cycle by choosing a longest

 path in the 2-matching M.We start our search for a Hamilton cycle by choosing a longest path in the 2-matching M.

We try to grow our path using extensions and rotations. With a given path P with endpoints v, w we grow a Posa tree with v as one endpint of all the paths produced.

Posá Tree: rotations with one endpoint fixed.

In the above diagram, each rectangle is a path that is obtained

We let END denote the set of endpoints of the paths produced, other than v.

We let END denote the set of endpoints of the paths produced, other than v.

We either manage an extension of the current path or we grow $E N D$ to size $n^{1 / 2+o(1)}$.

We let END denote the set of endpoints of the paths produced, other than v.

We either manage an extension of the current path or we grow $E N D$ to size $n^{1 / 2+o(1)}$.

For each $x \in E N D$ we carry out the same, creating a set of paths with $n^{1 / 2+o(1)}$ endpoints $\operatorname{END}(x)$.

We let END denote the set of endpoints of the paths produced, other than v.

We either manage an extension of the current path or we grow END to size $n^{1 / 2+o(1)}$.

For each $x \in E N D$ we carry out the same, creating a set of paths with $n^{1 / 2+o(1)}$ endpoints $\operatorname{END}(x)$.

We argue that w.h.p. all paths produced contain $n^{1-o(1)}$ members of R_{0}.

We let END denote the set of endpoints of the paths produced, other than v.

We either manage an extension of the current path or we grow END to size $n^{1 / 2+o(1)}$.

For each $x \in E N D$ we carry out the same, creating a set of paths with $n^{1 / 2+o(1)}$ endpoints $\operatorname{END}(x)$.

We argue that w.h.p. all paths produced contain $n^{1-o(1)}$ members of R_{0}.
if we fail to extend, then the probability we fail to find a tardy $R_{0}: \Lambda_{0}$ edge joining $x \in E N D$ to $y \in E N D(x)$ is $n^{-o(1)}$.

We only need to extend/close a cycle $O\left(\log ^{2} n\right)$ times and so the probability we fail is $O\left(n^{-O(1)} \log ^{2} n\right)=O(1)$, if we are careful with our O (1)'s.

So, for c sufficiently large we can find a Hamilton cycle in $G_{n, c n}^{\delta \geq 3}$ in $O\left(n^{1+o(1)}\right)$ time.
(a) Random Discrete Structures
(b) Random Instances of the TSP in the unit square $[0,1]^{2}$
(c) The Random Graphs $G_{n, m}$ and $G_{n, p}$.
(1) Evolution
(2) Chromatic number
(3) Matchings
(4) Hamilton cycles
(d) Randomly edge weighted graphs

- Minimum Spanning Tree
(3) Shortest Paths
- 3-Dimensional Assignment Problem
- Random Instances of the TSP with independent costs
(e) Random k-SAT
(f) Open Problems
(a) Random Discrete Structures
(b) Random Instances of the TSP in the unit square $[0,1]^{2}$
(c) The Random Graphs $G_{n, m}$ and $G_{n, p}$.
(1) Evolution
(2) Chromatic number
(3) Matchings
(4) Hamilton cycles
(d) Randomly edge weighted graphs
- Minimum Spanning Tree
(3) Shortest Paths
- 3-Dimensional Assignment Problem
- Random Instances of the TSP with independent costs
(e) Random k-SAT
(f) Open Problems

Every edge e of the complete graph K_{n} is given a random length X_{e}.

The edge lengths are independently uniform $[0,1]$ distributed.
Z_{n} is the minimum total length of a spanning tree
i.e. a connected subgraph that contains $n-1$ edges and no cycles.

Spanning Tree

Length=sum of
lengths of edges.

Greedy Algorithm

F has 4 components.

Greedy Algorithm

F is the forest induced
by the edges chosen so far.

Edges between components are longer than edges inside components

The algorithm adds the shortest edge joining components of F.

The algorithm adds longer and longer edges as it progresses.

If ℓ_{F} is the length of the longest edge in F, then edges of length at most ℓ are contained in the components of F.

Therefore the algorithm adds $\kappa-1$ more edges, where κ is the number of components in the graph spanned by edges of length at most ℓ_{F}.

Let T be the minimum spanning tree and let ℓ denote length.

$$
\begin{aligned}
Z_{n}=\ell(T) & =\sum_{e \in T} X_{e} \\
& =\sum_{e \in T} \int_{p=0}^{1} 1_{\left(p \leq X_{e}\right)} d p \\
& =\int_{p=0}^{1} \sum_{e \in T} 1_{\left(p \leq X_{e}\right)} d p \\
& =\int_{p=0}^{1}\left|\left\{e \in T: p \leq X_{e}\right\}\right| d p
\end{aligned}
$$

$$
\begin{aligned}
\ell(T) & =\int_{p=0}^{1}\left|\left\{e \in T: X_{e} \geq p\right\}\right| d p \\
& =\int_{p=0}^{1}\left(\kappa\left(G_{p}\right)-1\right) d p,
\end{aligned}
$$

where $\kappa\left(G_{p}\right)$ is the number of components in the graph induced by edges of length at most p.

$$
\begin{aligned}
\ell(T) & =\int_{p=0}^{1}\left|\left\{e \in T: X_{e} \geq p\right\}\right| d p \\
& =\int_{p=0}^{1}\left(\kappa\left(G_{p}\right)-1\right) d p,
\end{aligned}
$$

where $\kappa\left(G_{p}\right)$ is the number of components in the graph induced by edges of length at most p.

So

$$
\mathrm{E}\left(Z_{n}\right)=\int_{p=0}^{1}\left(\mathbf{E}\left(\# \text { components in } G_{n, p}\right)-1\right) d p
$$

$$
\mathbf{E}\left(Z_{n}\right)=\int_{p=0}^{1}\left(\mathbf{E}\left(\# \text { components in } G_{n, p}\right)-1\right) d p
$$

FACT: $p \geq 6 \log n / n$ implies that $G_{n, p}$ is connected with sufficiently high probability.

FACT: Almost all of the integral is accounted for by small isolated tree components.

So,

$$
\mathbf{E}\left(Z_{n}\right) \sim \int_{p=0}^{6 \log n / n} \mathbf{E}\left(\# \text { small isolated trees in } G_{n, p}\right) d p
$$

$$
\begin{aligned}
\mathbf{E}\left(Z_{n}\right) & \sim \int_{p=0}^{6 \log n / n} \mathbf{E}\left(\# \text { small isolated trees in } G_{n, p}\right) d p \\
& \sim \int_{p=0}^{6 \log n / n}\left(\sum_{k=1}^{\log ^{2} n}\binom{n}{k} k^{k-2} p^{k-1}(1-p)^{k(n-k)+\binom{k}{2}-k+1}\right) d p \\
& \sim \sum_{k=1}^{\log ^{2} n} \frac{n^{k}}{k!} k^{k-2} \frac{k!(k(n-k)!}{(k(n-k+1)!}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{E}\left(Z_{n}\right) & \sim \int_{p=0}^{6 \log n / n} \mathbf{E}\left(\# \text { small isolated trees in } G_{n, p}\right) d p \\
& \sim \int_{p=0}^{6 \log n / n}\left(\sum_{k=1}^{\log ^{2} n}\binom{n}{k} k^{k-2} p^{k-1}(1-p)^{k(n-k)+\binom{k}{2}-k+1}\right) d p \\
& \sim \sum_{k=1}^{\log ^{2} n} \frac{n^{k}}{k!} k^{k-2} \frac{k!(k(n-k)!}{(k(n-k+1)!}
\end{aligned}
$$

So,

$$
\mathbf{E}\left(Z_{n}\right) \sim \sum_{k=1}^{\log ^{2} n} \frac{1}{k^{3}} \sim \zeta(3)
$$

This is most of the proof of the following:

Theorem (Frieze (1985))

$$
Z_{n} \sim \zeta(3) \quad \text { w.h.p. }
$$

Original proof not so "clean":
Remarkable integral formula is due to Janson (1995).

This is most of the proof of the following:

Theorem (Frieze (1985))

$$
Z_{n} \sim \zeta(3) \quad \text { w.h.p. }
$$

Original proof not so "clean":
Remarkable integral formula is due to Janson (1995).

With more work we have
Theorem (Cooper, Frieze, Ince, Janson, Spencer (2014))

$$
\mathrm{E}\left(Z_{n}\right)=\zeta(3)+\frac{c_{1}}{n}+\frac{c_{2}+o(1)}{n^{4 / 3}}
$$

Theorem (Cooper, Frieze, Ince, Janson, Spencer (2014))

$$
\mathrm{E}\left(Z_{n}\right)=\zeta(3)+\frac{c_{1}}{n}+\frac{c_{2}+o(1)}{n^{4 / 3}}
$$

$$
c_{1}=-1-\zeta(3)-\frac{1}{2} \int_{x=0}^{\infty} \log \left(1-(1+x) e^{-x}\right) d x
$$

and

$$
c_{2}=\int_{x=0}^{\infty}\left(x^{-3} \psi\left(x^{3 / 2}\right) e^{-x^{3} / 24}-x^{-3}-\sqrt{\frac{\pi}{8}} x^{-3 / 2}-\frac{1}{2}\right) d x
$$

where if $\mathcal{B}_{\mathrm{ex}}=\int_{s=0}^{1} B_{\mathrm{ex}}(s) d s$ is the area under a normalized Brownian excursion,

$$
\psi(t)=\mathbf{E} e^{t \mathcal{B}_{\mathrm{ex}}}
$$

the moment generating function ψ of $\mathcal{B}_{\mathrm{ex}}$.

If we give random weights to an arbitrary r-regular graph G then under some mild expansion assumptions

Theorem (Beveridge, Frieze, McDiarmid (1998))

$$
\mathbf{E}\left(Z_{n}\right)=\frac{n}{r}\left(\zeta(3)+\epsilon_{r}\right)
$$

where $\epsilon_{r} \rightarrow 0$ as $r \rightarrow \infty$.

For example, if G is the complete bipartite graph $K_{n / 2, n / 2}$ then $\mathrm{E}\left(Z_{n}\right) \sim 2 \zeta(3)$.
(a) Random Discrete Structures
(b) Random Instances of the TSP in the unit square $[0,1]^{2}$
(c) The Random Graphs $G_{n, m}$ and $G_{n, p}$.
(1) Evolution
(2) Chromatic number
(3) Matchings
(4) Hamilton cycles
(d) Randomly edge weighted graphs

- Minimum Spanning Tree
(3) Shortest Paths
- 3-Dimensional Assignment Problem
- Random Instances of the TSP with independent costs
(e) Random k-SAT
(f) Open Problems

Every edge e of the complete graph K_{n} is given a random length X_{e}.

The edge lengths are independently exponentially distributed with mean 1 viz. $E(1)$ i.e. $\operatorname{Pr}\left(X_{e} \geq \lambda\right)=e^{-\lambda}$.

The length of a path is the sum of the lengths of its edges.

The question to be discussed is what is the length of a shortest path between two given vertices.

Let D_{i} be the length of a shortest path from vertex 1 to vertex i.

We can build a tree of shortest paths, adding the next closest vertex to 1 in each step.

Paths in tree T are shortest paths. If $\Delta_{w}=\min \Delta_{v}, v \notin T$ then $D_{w}=\Delta_{w}$.
In the above diagram we have added the 4 closest vertices to create a tree T. To find the 5th closest we compute Δ_{v} for each $v \notin T$ and then add the vertex that minimises Δ.

If L is the length of $\left(i_{2}, v\right)$ then L is exponential conditioned on $D_{i_{2}}+L \geq D_{i_{5}}$.
So $D_{i_{2}}+L=D_{i_{5}}+E(1)$.
(Memoryless property of exponential).
So, if we add vertices to T in the order $i_{1}=1, i_{2}, \ldots, i_{n}$ then
$D_{i_{k+1}}-D_{i_{k}}$ is the minimum of $k(n-k)$ independent $E(1)$'s.

So, if Z_{i} is the distance from 1 to the i th closest vertex,

$$
Z_{1}=0 \text { and } \mathbf{E}\left(Z_{k+1}\right)=\mathbf{E}\left(Z_{k}\right)+\frac{1}{k(n-k)}
$$

It follows that

$$
\mathrm{E}\left(Z_{n}\right)=\frac{2}{n} \sum_{i=1}^{n-1} \frac{1}{i}
$$

Furthermore, 2 is equally likely to be the i th closest, for $i=2,3, \ldots, n$ and we have

$$
\mathrm{E}\left(D_{2}\right)=\frac{1}{n-1} \sum_{i=1}^{n-1} \frac{1}{i}
$$

Theorem (Janson (1999))

Let $D_{i, j}$ be the shortest distance between i, j in the above model. Then

$$
\begin{aligned}
D_{1,2} & \sim \frac{\log n}{n} . \\
\max _{j} D_{1, j} & \sim \frac{2 \log n}{n} . \\
\max _{i, j} D_{i, j} & \sim \frac{3 \log n}{n} .
\end{aligned}
$$

(a) Random Discrete Structures
(b) Random Instances of the TSP in the unit square $[0,1]^{2}$
(c) The Random Graphs $G_{n, m}$ and $G_{n, p}$.
(1) Evolution
(2) Chromatic number
(3) Matchings
(4) Hamilton cycles
(d) Randomly edge weighted graphs

- Minimum Spanning Tree
(3) Shortest Paths
- 3-Dimensional Assignment Problem
- Random Instances of the TSP with independent costs
(e) Random k-SAT
(f) Open Problems

Background: Two-dimensional Assignment problem

Let M be a real $n \times n$ matrix of costs.

Problem: Minimise

$$
\begin{aligned}
& \sum_{i=1}^{n} \sum_{j=1}^{n} M_{i, j} x_{i, j} \\
& \sum_{i=1}^{n} x_{i, j}=1, \quad j \in[n] \\
& \sum_{j=1}^{n} x_{i, j}=1, \quad i \in[n] \\
& x_{i, j} \in\{0,1\}
\end{aligned}
$$

Solvable in polynomial $\left(O\left(n^{3}\right)\right)$ time.

Suppose now that M is a matrix of i.i.d. random variables: Let
$Z_{A}=Z_{A}(n)$ denote the random minimum value.
(a) $\mathrm{E}\left(Z_{A}\right) \leq 3-$ Walkup (1979) $\quad\left(M_{i, j}\right.$ is uniform $\left.[0,1]\right)$.

Suppose now that M is a matrix of i.i.d. random variables: Let
$Z_{A}=Z_{A}(n)$ denote the random minimum value.
(a) $\mathrm{E}\left(Z_{A}\right) \leq 3$ - Walkup (1979)
$\left(M_{i, j}\right.$ is uniform $\left.[0,1]\right)$.
(b) $\mathrm{E}\left(Z_{A}\right) \leq 2-\operatorname{Karp}(1983)$
$\left(M_{i, j}\right.$ is uniform $\left.[0,1]\right)$

Suppose now that M is a matrix of i.i.d. random variables: Let
$Z_{A}=Z_{A}(n)$ denote the random minimum value.
(a) $\mathrm{E}\left(Z_{A}\right) \leq 3-$ Walkup (1979) $\quad\left(M_{i, j}\right.$ is uniform $\left.[0,1]\right)$.
(b) $\mathrm{E}\left(Z_{A}\right) \leq 2-\operatorname{Karp}(1983)$
($M_{i, j}$ is uniform $[0,1]$)
(c) $\lim _{n \rightarrow \infty} \mathrm{E}\left(Z_{A}\right)$ exists - Aldous (1992)
($M_{i, j}$ is $\left.\operatorname{Exp}(1)\right)$

Suppose now that M is a matrix of i.i.d. random variables: Let
$Z_{A}=Z_{A}(n)$ denote the random minimum value.
(a) $\mathrm{E}\left(Z_{A}\right) \leq 3$ - Walkup (1979) $\quad\left(M_{i, j}\right.$ is uniform $\left.[0,1]\right)$.
(b) $E\left(Z_{A}\right) \leq 2-\operatorname{Karp}(1983) \quad\left(M_{i, j}\right.$ is uniform $\left.[0,1]\right)$
(c) $\lim _{n \rightarrow \infty} \mathbf{E}\left(Z_{A}\right)$ exists - Aldous (1992) ($M_{i, j}$ is Exp(1))
(d) $\lim _{n \rightarrow \infty} \mathbf{E}\left(Z_{A}\right)=\zeta(2)=\frac{\pi^{2}}{6}-$ Aldous (2001) $\quad\left(M_{i, j}\right.$ is Exp(1))

Suppose now that M is a matrix of i.i.d. random variables: Let
$Z_{A}=Z_{A}(n)$ denote the random minimum value.
(a) $\mathrm{E}\left(Z_{A}\right) \leq 3$ - Walkup (1979) $\quad\left(M_{i, j}\right.$ is uniform $\left.[0,1]\right)$.
(b) $\mathrm{E}\left(Z_{A}\right) \leq 2-\operatorname{Karp}(1983) \quad\left(M_{i, j}\right.$ is uniform $\left.[0,1]\right)$
(c) $\lim _{n \rightarrow \infty} \mathbf{E}\left(Z_{A}\right)$ exists - Aldous (1992) ($M_{i, j}$ is Exp(1))
(d) $\lim _{n \rightarrow \infty} \mathbf{E}\left(Z_{A}\right)=\zeta(2)=\frac{\pi^{2}}{6}-$ Aldous (2001) $\quad\left(M_{i, j}\right.$ is Exp(1))
(e) $\mathbf{E}\left(Z_{A}(n)\right)=\sum_{k=1}^{n} \frac{1}{k^{2}}$-Linusson and Wästlund (2004) and Nair, Prabhakar and Sharmar (2005) $\quad\left(M_{i, j}\right.$ is Exp(1))

Three-dimensional Axial Assignment problem.

Let M be a real $n \times n \times n$ tensor of costs.
Problem: Minimise

$$
\begin{aligned}
& \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} M_{i, j, k} x_{i, j, k} \\
& \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i, j, k}=1, \quad \text { subject to } \\
& \sum_{i=1}^{n} \sum_{k=1}^{n} x_{i, j, k}=1, \quad j \in[n] \\
& \sum_{j=1}^{n} \sum_{k=1}^{n} x_{i, j, k}=1, \quad i \in[n] \\
& x_{i, j, k} \in\{0,1\}
\end{aligned}
$$

Each solution has a unique one in every "plane" of the cube.

Three-dimensional Axial Assignment problem.

Let M be a real $n \times n \times n$ tensor of costs.
Problem: Minimise

$$
\begin{aligned}
& \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} M_{i, j, k} x_{i, j, k} \\
& \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i, j, k}=1, \quad \text { subject to } \\
& \sum_{i=1}^{n} \sum_{k=1}^{n} x_{i, j, k}=1, \quad j \in[n] \\
& \sum_{j=1}^{n} \sum_{k=1}^{n} x_{i, j, k}=1, \quad i \in[n] \\
& x_{i, j, k} \in\{0,1\}
\end{aligned}
$$

Each solution has a unique one in every "plane" of the cube. NP-hard - Karp (1972)

We employ a 3-phase algorithm: it has a depth parameter d. To get a solution of value $O\left(n^{-(1-o(1)}\right)$ we take $d=\epsilon \log _{2} \log n$ where $\epsilon<1 / 2$.

To get a feel for the algorithm, we consider $d=2$.

Greedy Phase:
"Greedily" choose a partial assignment containing $n-n^{6 / 7}$ "triples" (i, j, k) at a total cost of about $n^{-6 / 7}$.

Main Phase
Current partial assignment is $(x, x, x), x \in A$ Here, $i \notin A$
$\xi_{1}, \ldots, \xi_{8} \notin A$
$p, q, \ldots, t \in A$
We search for suitable $p \ldots, t$ Then we search for suitable j, k. + triples are added -triples are deleted. +triples have small M-value.

Final Phase
Suppose for example
$A=[n-1]$.
Not enough ξ 's to proceed as before.

$+(n, j, k)$

We have the following theorem from Frieze and Sorkin (201?):

Theorem

There is an $O\left(n^{3+o(1)}\right)$ time algorithm that w.h.p. finds an assignment of value $n^{-(1-o(1))}$.

We have the following theorem from Frieze and Sorkin (201?):

Theorem

There is an $O\left(n^{3+o(1)}\right)$ time algorithm that w.h.p. finds an assignment of value $n^{-(1-o(1))}$.

This raises the question of what is the real growth rate of the optimum value.

One simple consequence of the breakthrough paper of Johannson, Kahn, Vu (2008) is that w.h.p. there is an assignment of value $O(\log n / n)$.
(a) Random Discrete Structures
(b) Random Instances of the TSP in the unit square $[0,1]^{2}$
(c) The Random Graphs $G_{n, m}$ and $G_{n, p}$.
(1) Evolution
(2) Chromatic number
(3) Matchings
(4) Hamilton cycles
(d) Randomly edge weighted graphs

- Minimum Spanning Tree
(3) Shortest Paths
(0 3-Dimensional Assignment Problem
- Random Instances of the TSP with independent costs
(e) Random k-SAT
(f) Open Problems

We are given an $n \times n$ matrix $\left[c_{i, j}\right]$ where we assume that the $c_{i, j}$ are independent uniform $[0,1]$ variables.

The aim is to compute

$$
T(C)=\min \left\{\sum_{i=1}^{n} c_{i, \pi(i)}: \pi \text { is a cyclic permutation of }[n]\right\}
$$

$$
\begin{aligned}
& \pi(1)=6, \pi(2)=4 \\
& \pi(3)=1, \pi(4)=3 \\
& \pi(5)=2, \pi(6)=5
\end{aligned}
$$

Assignment problem The aim is to compute

$$
\begin{gathered}
A(C)=\min \left\{\sum_{i=1}^{n} c_{i, \pi(i)}: \pi \text { is a permutation of }[n]\right\} . \\
\frac{\pi^{2}}{6} \sim A(C) \leq T(C) \leq A(C)+o(1) \text { w.h.p. }
\end{gathered}
$$

The LHS is due to Aldous (1992,2001); Nair,Prabhakar and Sharma (2006); Linusson and Wästlund (2004). The RHS is due to Karp (1979).
$A(C)$ is solvable in polynomial time.

There are two equivalent ways of viewing the assignment problem:

Minimum Weight Cycle Cover

Minimum Weight Perfect Matching

The TSP can then be thought of as finding a minimum weight cycle cover in which there is only one cycle.

Karp's Patching Algorithm:

Karp's Patching Algorithm:

- Solve the associated assignment problem.
- Patch the cycles together to get a tour.

Karp's Patching Algorithm:

- Solve the associated assignment problem.
- Patch the cycles together to get a tour.

Karp observed that if C is a matrix with i.i.d. costs then the optimal permutation is uniformly distributed and so w.h.p. the number of cycles is $\sim \log n-$ Key Observation.

- Karp showed that the cost of patching is o(1) w.h.p.

Figure: Patching two cycles

Theorem (Karp (1979))
 W.h.p. $G A P=T(C)-A(C)=O(1)$.

Theorem (Karp (1979))
 W.h.p. $G A P=T(C)-A(C)=o(1)$.

> Theorem (Karp and Steele (1985))
> W.h.p. $G A P=T(C)-A(C)=O\left(n^{-1 / 2}\right)$.

Theorem (Karp (1979))
 W.h.p. $G A P=T(C)-A(C)=O(1)$.

Theorem (Karp and Steele (1985))

$$
\text { W.h.p. } G A P=T(C)-A(C)=O\left(n^{-1 / 2}\right)
$$

By making the cycles large before doing the patching we have

Theorem (Dyer and Frieze (1990))

W.h.p. $G A P=T(C)-A(C)=O\left(\frac{\log ^{4} n}{n}\right)$.

> Theorem (Karp (1979))
> W.h.p. $G A P=T(C)-A(C)=o(1)$

Theorem (Karp and Steele (1985))

$$
\text { W.h.p. } G A P=T(C)-A(C)=O\left(n^{-1 / 2}\right)
$$

By making the cycles large before doing the patching we have

Theorem (Dyer and Frieze (1990))

W.h.p. $G A P=T(C)-A(C)=O\left(\frac{\log ^{4} n}{n}\right)$.

With more care
Theorem (Frieze and Sorkin (2007))

$$
\text { W.h.p. } G A P=T(C)-A(C)=O\left(\frac{\log ^{2} n}{n}\right) \text {. }
$$

The main tool in the improvements to Karp and Steele comes from cheaply transforming the cycle cover so that each cycle has length at least $n_{0}=n \log \log n / \log n$.

Having increased the cycle size to $n_{0}=n \log \log n / \log n$ we patch the cycles together using short edges. Each patch will cost $O(\log n / n)$ and so the patching cost is $O\left(\log ^{2} n / n\right)$.

Figure: Patching two cycles

The probability we cannot patch a pair of cycles is at most

$$
\left(1-\Omega\left(\frac{\log ^{2} n}{n^{2}}\right)\right)^{\Omega\left(n_{0}^{2}\right)}=e^{-\Omega\left(\log ^{2} \log n\right)}=o(1 / \log n)
$$

Increasing the cycle size:

- Partition the edges into
red edges $E_{1}=\left\{(i, j): c_{i, j} \leq L=K \log n\right\}$, blue edges $E_{2}=\left\{(i, j): c_{i, j} \in[L, 2 L]\right\}$, green edges $E_{3}=\left\{(i, j): c_{i, j} \in[2 L, 3 L]\right\}$ and uncolored edges $E_{4}=[n]^{2} /\left(E_{1} \cup E_{2} \cup E_{3}\right)$.

Increasing the cycle size:

- Partition the edges into
red edges $E_{1}=\left\{(i, j): c_{i, j} \leq L=K \log n\right\}$, blue edges $E_{2}=\left\{(i, j): c_{i, j} \in[L, 2 L]\right\}$, green edges $E_{3}=\left\{(i, j): c_{i, j} \in[2 L, 3 L]\right\}$ and uncolored edges $E_{4}=[n]^{2} /\left(E_{1} \cup E_{2} \cup E_{3}\right)$.
- Compute the optimal assignment only using edges E_{1}.

Increasing the cycle size:

- Partition the edges into
red edges $E_{1}=\left\{(i, j): c_{i, j} \leq L=K \log n\right\}$, blue edges $E_{2}=\left\{(i, j): c_{i, j} \in[L, 2 L]\right\}$, green edges $E_{3}=\left\{(i, j): c_{i, j} \in[2 L, 3 L]\right\}$ and uncolored edges $E_{4}=[n]^{2} /\left(E_{1} \cup E_{2} \cup E_{3}\right)$.
- Compute the optimal assignment only using edges E_{1}.
- Only using the edges in $E_{1} \cup E_{2}$, increase the minimum cycle size to $n_{0}=n \log \log n / \log n$.

Increasing the cycle size:

- Partition the edges into
red edges $E_{1}=\left\{(i, j): c_{i, j} \leq L=K \log n\right\}$, blue edges $E_{2}=\left\{(i, j): c_{i, j} \in[L, 2 L]\right\}$, green edges $E_{3}=\left\{(i, j): c_{i, j} \in[2 L, 3 L]\right\}$ and uncolored edges $E_{4}=[n]^{2} /\left(E_{1} \cup E_{2} \cup E_{3}\right)$.
- Compute the optimal assignment only using edges E_{1}.
- Only using the edges in $E_{1} \cup E_{2}$, increase the minimum cycle size to $n_{0}=n \log \log n / \log n$.
- Using the edges in E_{3} only, patch the cycles into a tour.

Choose some small cycle C i.e. one of length less than n_{0}.

Choose some small cycle C i.e. one of length less than n_{0}. Delete an edge (v, w) and examine the blue edges with tail v.

Choose some small cycle C i.e. one of length less than n_{0}.
Delete an edge ($v, w)$ and examine the blue edges with tail v. Suppose that we have blue edge (v, x) with x in a large cycle C^{\prime}.

Choose some small cycle C i.e. one of length less than n_{0}.
Delete an edge (v, w) and examine the blue edges with tail v.
Suppose that we have blue edge (v, x) with x in a large cycle C^{\prime}.
Delete the edge (y, x) of C^{\prime}.

Choose some small cycle C i.e. one of length less than n_{0}.
Delete an edge (v, w) and examine the blue edges with tail v. Suppose that we have blue edge (v, x) with x in a large cycle C^{\prime}.
Delete the edge (y, x) of C^{\prime}.

By repeating this operation, which we call a splice, we create a large number of partitions of $[n]$ into a path with initial vertex w and a collection of cycles. We call such a collection a Near

Another possibility for a splice:

In the second version of the splice we insist that the resultant path and cycle, both have length at least n_{0}.

In the above diagram, each rectangle is an NPD that is obtained from its parent by a splice. A node ν is allowed d_{ν} children. Fot the root ρ we have $d_{\rho}=\Theta(\log n)$ for any other node ν we have $d_{\nu}=\Theta(1)$. We use the cheapest available edges to extend our path. If we build this tree to depth $\sim \log n / 2$ then at the bottom of the tree there will be $n^{1 / 2+o(1)}$ leaves.

In the above diagram, each rectangle is an NPD that is obtained from its parent by a splice. A node ν is allowed d_{ν} children. Fot the root ρ we have $d_{\rho}=\Theta(\log n)$ for any other node ν we have $d_{\nu}=\Theta(1)$. We use the cheapest available edges to extend our path. If we build this tree to depth $\sim \log n / 2$ then at the bottom of the tree there will be $n^{1 / 2+o(1)}$ leaves.

We can assume that the ith leaf corresponds to an NPD where

Now for each v_{i} we build a tree of NPD's where we begin by examining the edges into w.

Let the leaves of the ith tree have paths from $w_{i, j}$ to v_{i} for $j=1,2, \ldots, n^{1 / 2+o(1)}$.

Let the leaves of the ith tree have paths from $w_{i, j}$ to v_{i} for $j=1,2, \ldots, n^{1 / 2+o(1)}$.

- An edge v_{i} to $w_{i, j}$ results in a cycle cover with (at least) one less small cycle.

Let the leaves of the ith tree have paths from $w_{i, j}$ to v_{i} for $j=1,2, \ldots, n^{1 / 2+o(1)}$.

- An edge v_{i} to $w_{i, j}$ results in a cycle cover with (at least) one less small cycle.
- The probability there is no such edge is at most

$$
\left(1-O\left(\frac{\log n}{n}\right)\right)^{n^{1+o(1)}}=o\left(\frac{1}{\log n}\right)
$$

Let the leaves of the ith tree have paths from $w_{i, j}$ to v_{i} for $j=1,2, \ldots, n^{1 / 2+o(1)}$.

- An edge v_{i} to $w_{i, j}$ results in a cycle cover with (at least) one less small cycle.
- The probability there is no such edge is at most

$$
\left(1-O\left(\frac{\log n}{n}\right)\right)^{n^{1+o(1)}}=O\left(\frac{1}{\log n}\right)
$$

- The cost of removing all small cycles is evidently

$$
O(\log n) \times O(\log n) \times O\left(\frac{\log n}{n}\right)=O\left(\frac{\log ^{3} n}{n}\right) .
$$

Let the leaves of the ith tree have paths from $w_{i, j}$ to v_{i} for $j=1,2, \ldots, n^{1 / 2+o(1)}$.

- An edge v_{i} to $w_{i, j}$ results in a cycle cover with (at least) one less small cycle.
- The cost of removing all small cycles is evidently

$$
O(\log n) \times O(\log n) \times O\left(\frac{\log n}{n}\right)=O\left(\frac{\log ^{3} n}{n}\right) .
$$

- The factor $O(\log n) \times O\left(\frac{\log n}{n}\right)$ can be replaced by $O\left(\frac{\log n}{n}\right)$ with some care.

Theorem (Held and Karp (1962))
 In the worst-case the TSP can be solved exactly in time $O\left(n^{2} 2^{n}\right)$.

Theorem (Held and Karp (1962))
 In the worst-case the TSP can be solved exactly in time $O\left(n^{2} 2^{n}\right)$.

Theorem (Frieze and Sorkin (2007))

W.h.p. the TSP can be solved exactly in $2^{O\left(n^{1 / 2}\right)}$ time.

Let

$$
I_{k}=\frac{(\log n)^{2}}{n}\left[2^{-k}, 2^{-k+1}\right]
$$

W.h.p. there are $\leq c_{1} 2^{-(k-1)} n \log n$ non-basic variables with reduced cost in $I_{k}, 1 \leq k \leq k_{0}=\frac{1}{2} \log _{2} n$ and $\leq 2 c_{1} \sqrt{n} \log n$ non-basic variables with reduced cost $\leq c_{1} \frac{(\log n)^{2}}{n^{3 / 2}}$.

Let

$$
I_{k}=\frac{(\log n)^{2}}{n}\left[2^{-k}, 2^{-k+1}\right]
$$

W.h.p. there are $\leq c_{1} 2^{-(k-1)} n \log n$ non-basic variables with reduced cost in $I_{k}, 1 \leq k \leq k_{0}=\frac{1}{2} \log _{2} n$ and $\leq 2 c_{1} \sqrt{n} \log n$ non-basic variables with reduced cost $\leq c_{1} \frac{(\log n)^{2}}{n^{3 / 2}}$.

Thus w.h.p. we need only check at most

$$
2^{2 c_{1} \sqrt{n} \log n} \prod_{k=1}^{k_{0}} \sum_{t=1}^{2^{k}}\binom{c_{1} 2^{-(k-1)} n \log n}{t}=e^{O\left(\sqrt{n} \log ^{O(1)} n\right)}
$$

sets.

It is natural to consider the case where we contrain $c_{i, j}=c_{j, i}$ i.e consider a weighted graph rather than digraph.

It is natural to consider the case where we contrain $c_{i, j}=c_{j, i}$ i.e consider a weighted graph rather than digraph.

It is natural to replace the assignment problem by that of finding a minimum weight 2 -factor viz. a collection of vertex disjoint cycles that cover every vertex.

It is natural to consider the case where we contrain $c_{i, j}=c_{j, i}$ i.e consider a weighted graph rather than digraph.

It is natural to replace the assignment problem by that of finding a minimum weight 2 -factor viz. a collection of vertex disjoint cycles that cover every vertex.

We lose control over the number of cycles in the minimum weight 2 -factor. In the following theorem we only had a bound of $O(n / \log n)$ for this.

Theorem (Frieze (2004))

W.h.p. $T(C)-2 F A C(C)=o(1)$.
(a) Random Discrete Structures
(b) Random Instances of the TSP in the unit square $[0,1]^{2}$
(c) The Random Graphs $G_{n, m}$ and $G_{n, p}$.
(1) Evolution
(2) Chromatic number
(3) Matchings
(4) Hamilton cycles
(d) Randomly edge weighted graphs

- Minimum Spanning Tree
(3) Shortest Paths
(0 3-Dimensional Assignment Problem
- Random Instances of the TSP with independent costs
(e) Random k-SAT
(f) Open Problems

Variables $V=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$
Literals $L=\left\{x_{1}, \bar{x}_{1}, x_{2}, \bar{x}_{2}, \ldots, x_{n}, \bar{x}_{n}\right\}$
Negated variables $\bar{V}=\left\{\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n}\right\}$
Clause: $S \subseteq L$

Variables $V=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$
Literals $L=\left\{x_{1}, \bar{x}_{1}, x_{2}, \bar{x}_{2}, \ldots, x_{n}, \bar{x}_{n}\right\}$
Negated variables $\bar{V}=\left\{\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n}\right\}$
Clause: $S \subseteq L$
Instance / of k-SAT: Clauses $C_{1}, C_{2}, \ldots, C_{m}$ where
$\left|C_{i}\right|=k, i=1,2, \ldots, m$.

Variables $V=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$
Literals $L=\left\{x_{1}, \bar{x}_{1}, x_{2}, \bar{x}_{2}, \ldots, x_{n}, \bar{x}_{n}\right\}$
Negated variables $\bar{V}=\left\{\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n}\right\}$
Clause: $S \subseteq L$
Instance I of k-SAT: Clauses $C_{1}, C_{2}, \ldots, C_{m}$ where
$\left|C_{i}\right|=k, i=1,2, \ldots, m$.
Truth Assignment $\phi: L \rightarrow\{0,1\}$ such that $\phi\left(\bar{x}_{j}\right)=1-\phi\left(x_{j}\right)$ for $j=1,2, \ldots, n$.
ϕ satisfies $/$ if $1 \in \phi\left(C_{i}\right)$ for $i=1,2, \ldots, m$.

Variables $V=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$
Literals $L=\left\{x_{1}, \bar{x}_{1}, x_{2}, \bar{x}_{2}, \ldots, x_{n}, \bar{x}_{n}\right\}$
Negated variables $\bar{V}=\left\{\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n}\right\}$
Clause: $S \subseteq L$

Instance I of k-SAT: Clauses $C_{1}, C_{2}, \ldots, C_{m}$ where
$\left|C_{i}\right|=k, i=1,2, \ldots, m$.

Truth Assignment $\phi: L \rightarrow\{0,1\}$ such that $\phi\left(\bar{x}_{j}\right)=1-\phi\left(x_{j}\right)$ for $j=1,2, \ldots, n$.
ϕ satisfies $/$ if $1 \in \phi\left(C_{i}\right)$ for $i=1,2, \ldots, m$.

For example $\phi\left(x_{1}\right)=0, \phi\left(x_{2}\right)=\phi\left(x_{3}\right)=1$ satisfies $\left\{\bar{x}_{1}, \bar{x}_{2}, \bar{x}_{3}\right\},\left\{x_{1}, x_{2}, \bar{x}_{3}\right\},\left\{\bar{x}_{1}, \bar{x}_{2}, x_{3}\right\}$.

Variables $V=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$
Literals $L=\left\{x_{1}, \bar{x}_{1}, x_{2}, \bar{x}_{2}, \ldots, x_{n}, \bar{x}_{n}\right\}$
Negated variables $\bar{V}=\left\{\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n}\right\}$
Clause: $S \subseteq L$

Instance I of k-SAT: Clauses $C_{1}, C_{2}, \ldots, C_{m}$ where
$\left|C_{i}\right|=k, i=1,2, \ldots, m$.

Truth Assignment $\phi: L \rightarrow\{0,1\}$ such that $\phi\left(\bar{x}_{j}\right)=1-\phi\left(x_{j}\right)$ for $j=1,2, \ldots, n$.
ϕ satisfies $/$ if $1 \in \phi\left(C_{i}\right)$ for $i=1,2, \ldots, m$.
$\left\{\bar{x}_{1}, \bar{x}_{2}\right\},\left\{x_{1}, \bar{x}_{2}\right\},\left\{\bar{x}_{1}, x_{2}\right\},\left\{\bar{x}_{1}, \bar{x}_{2}\right\}$ is unsatisfiable.

Variables $V=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$
Literals $L=\left\{x_{1}, \bar{x}_{1}, x_{2}, \bar{x}_{2}, \ldots, x_{n}, \bar{x}_{n}\right\}$
Negated variables $\bar{V}=\left\{\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n}\right\}$
Clause: $S \subseteq L$

Instance I of k-SAT: Clauses $C_{1}, C_{2}, \ldots, C_{m}$ where $\left|C_{i}\right|=k, i=1,2, \ldots, m$.

Truth Assignment $\phi: L \rightarrow\{0,1\}$ such that $\phi\left(\bar{x}_{j}\right)=1-\phi\left(x_{j}\right)$ for $j=1,2, \ldots, n$.
ϕ satisfies $/$ if $1 \in \phi\left(C_{i}\right)$ for $i=1,2, \ldots, m$.
k-SAT problem: Determine whether or not there is a satisfying assignment for l.
Solvable in polynomial time for $k \leq 2$. NP-hard for $k \geq 3$.

Random instance $/$: Choose literals $\ell_{1}, \ell_{2}, \ldots, \ell_{k}$ independently and uniformly for each C_{i}.

Random instance I : Choose literals $\ell_{1}, \ell_{2}, \ldots, \ell_{k}$ independently and uniformly for each C_{i}.

Let $m=c n$. Then for a fixed ϕ,

$$
\operatorname{Pr}(\phi \text { satisfies } I)=\left(1-\frac{1}{2^{k}}\right)^{m}
$$

Random instance I : Choose literals $\ell_{1}, \ell_{2}, \ldots, \ell_{k}$ independently and uniformly for each C_{i}.

Let $m=c n$. Then for a fixed ϕ,

$$
\operatorname{Pr}(\phi \text { satisfies } I)=\left(1-\frac{1}{2^{k}}\right)^{m}
$$

So, if Z is the number of satisfying assignments,
$\operatorname{Pr}(\exists \phi$ satisfying $I) \leq \mathbf{E}(Z)$

$$
=2^{n}\left(1-\frac{1}{2^{k}}\right)^{m}=\left(2\left(1-\frac{1}{2^{k}}\right)^{c}\right)^{n} .
$$

Random instance I : Choose literals $\ell_{1}, \ell_{2}, \ldots, \ell_{k}$ independently and uniformly for each C_{i}.

So, if Z is the number of satisfying assignments,
$\operatorname{Pr}(\exists \phi$ satisfying $I) \leq \mathbf{E}(Z)$

$$
=2^{n}\left(1-\frac{1}{2^{k}}\right)^{m}=\left(2\left(1-\frac{1}{2^{k}}\right)^{c}\right)^{n}
$$

So l is unsatisfiable w.h.p. if $c>2^{k} \log 2$.

Conjecture: $\exists c_{k}$ such that if $m=c n$ then

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}(/ \text { is satisfiable })= \begin{cases}1 & c<c_{k} \\ 0 & c>c_{k}\end{cases}
$$

Friedgut (1999) has come close to proving this.

Conjecture is true for $k=2$. It is known that $c_{2}=1$.

Conjecture: $\exists c_{k}$ such that if $m=c n$ then

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}(/ \text { is satisfiable })= \begin{cases}1 & c<c_{k} \\ 0 & c>c_{k}\end{cases}
$$

Friedgut (1999) has come close to proving this.

Conjecture is true for $k=2$. It is known that $c_{2}=1$.

Now if $m=c n$ and

$$
\operatorname{Pr}(Z>0) \geq \frac{\mathrm{E}(Z)^{2}}{\mathrm{E}\left(Z^{2}\right)}
$$

and if the RHS here is bounded below then Friedgut's result implies that $c \leq c_{k}$.

With Z equal to the number of satisfying assignments, the

 second moment method fails.Achlioptas and Peres (2004) replace Z by

$$
Z_{1}=\sum_{\phi \text { satisfies } /} \gamma^{H(\phi, l)}
$$

where $H(\phi, I)=$ \# true literals - \# false literals in / for ϕ.

With a careful choice of $0<\gamma<1$ they proved

Theorem

If

$$
c<2^{k} \log 2-(k+1) \frac{\log 2}{2}-1-o_{k}(1)
$$

then I is satisfiable w.h.p.
Z_{1} reduces the weight of satisfying assignments with an "excess" of true literals.

Using a more complicated random variable, based on insights from Physicists, and doing more conditioning, but still using the second moment method,

Theorem (Coja-Oghlan and Panagiotou (2012))

If

$$
c<2^{k} \log 2-3 \frac{\log 2}{2}-1-o_{k}(1)
$$

then I is satisfiable w.h.p.

Using a more complicated random variable, based on insights from Physicists, and doing more conditioning, but still using the second moment method,

Theorem (Coja-Oghlan and Panagiotou (2012))

If

$$
c<2^{k} \log 2-3 \frac{\log 2}{2}-1-o_{k}(1)
$$

then I is satisfiable w.h.p.

Theorem (Coja-Oghlan (2013))

If

$$
c<2^{k} \log 2-\frac{1+\log 2}{2}-o_{k}(1)
$$

then I is satisfiable w.h.p.

Greedy Algorithms Start with no values assigned to the variables.

Greedy Algorithms
Start with no values assigned to the variables.
Repeatedly, choose a random clause and assign a value to a variable to satisfy it.

Greedy Algorithms
Start with no values assigned to the variables.
Repeatedly, choose a random clause and assign a value to a variable to satisfy it.
Number of variables in problem goes down by one.

Greedy Algorithms
Start with no values assigned to the variables.
Repeatedly, choose a random clause and assign a value to a variable to satisfy it.
Number of variables in problem goes down by one.
Some clauses get satisfied and disappear from the problem, others shrink in size by one.

Greedy Algorithms
Start with no values assigned to the variables.
Repeatedly, choose a random clause and assign a value to a variable to satisfy it.
Number of variables in problem goes down by one.
Some clauses get satisfied and disappear from the problem, others shrink in size by one.
Caveat: If there are "small" clauses be careful.

Greedy Algorithms
Start with no values assigned to the variables.
Repeatedly, choose a random clause and assign a value to a variable to satisfy it.
Number of variables in problem goes down by one.
Some clauses get satisfied and disappear from the problem, others shrink in size by one.
Caveat: If there are "small" clauses be careful.
Repeat until all clauses are satisfied (success) or there is a clause remaining that is empty (fail).

Greedy Algorithms

Start with no values assigned to the variables.
Repeatedly, choose a random clause and assign a value to a variable to satisfy it.
Number of variables in problem goes down by one.
Some clauses get satisfied and disappear from the problem, others shrink in size by one.
Caveat: If there are "small" clauses be careful.
Repeat until all clauses are satisfied (success) or there is a clause remaining that is empty (fail).

Most of these find a satisfying assignment w.h.p. provided there are at most $\frac{c 2^{k}}{k} n$ clauses, for small enough c.

Greedy Algorithms

Start with no values assigned to the variables.
Repeatedly, choose a random clause and assign a value to a variable to satisfy it.
Number of variables in problem goes down by one.
Some clauses get satisfied and disappear from the problem, others shrink in size by one.
Caveat: If there are "small" clauses be careful.
Repeat until all clauses are satisfied (success) or there is a clause remaining that is empty (fail).

Most of these find a satisfying assignment w.h.p. provided there are at most $\frac{c 2^{k}}{k} n$ clauses, for small enough c.
A notable exception is the algorithm of Coja-Oghlan (2009) which finds a satisfying assignment w.h.p. provided there are at most $\frac{(1-\epsilon) 2^{k} \log k}{k} n$ clauses.

Walksat

Start with the "all true" assignment: $\phi\left(x_{j}\right)=1, \forall j$
Repeat
Choose an unsatisfied clause C
Choose a random variable from C and change its assigned value
Until instance is satisfied.

Walksat

Start with the "all true" assignment: $\phi\left(x_{j}\right)=1, \forall j$
Repeat
Choose an unsatisfied clause C
Choose a random variable from C and change its assigned value
Until instance is satisfied.

Aleknovich and Ben-Sasson (2007) show that Walksat solves a random instance of 3-SAT w.h.p. for $m<1.67 n$.

Walksat

Start with the "all true" assignment: $\phi\left(x_{j}\right)=1, \forall j$
Repeat
Choose an unsatisfied clause C
Choose a random variable from C and change its assigned value
Until instance is satisfied.

Aleknovich and Ben-Sasson (2007) show that Walksat solves a random instance of 3-SAT w.h.p. for $m<1.67 n$.

Coja-Oghlan, Feige, Frieze, Krivelevich and Vilenchik (2009) show that for large k, Walksat solves a random instance of k-SAT w.h.p. for $m / n \leq c 2^{k} / k^{2}$.

Walksat

Start with the "all true" assignment: $\phi\left(x_{j}\right)=1, \forall j$
Repeat
Choose an unsatisfied clause C
Choose a random variable from C and change its assigned value
Until instance is satisfied.

Aleknovich and Ben-Sasson (2007) show that Walksat solves a random instance of 3-SAT w.h.p. for $m<1.67 n$.

Coja-Oghlan, Feige, Frieze, Krivelevich and Vilenchik (2009) show that for large k, Walksat solves a random instance of k-SAT w.h.p. for $m / n \leq c 2^{k} / k^{2}$.

Coja-Oghlan and Frieze (2012) show that for large k, Walksat solves a random instance of k-SAT w.h.p. for $m / n \leq c 2^{k} / k$.

Outline of Walksat for $m / n \leq c 2^{k} / k^{2}$.

Outline of Walksat for $m / n \leq c 2^{k} / k^{2}$.
We say that a clause C is infected by Walksat if its assigned value could be changed in the course of the algorithm.

Let A denote the set of infected clauses and let $V_{A}=\bigcup_{C \in A} C$.

Outline of Walksat for $m / n \leq c 2^{k} / k^{2}$.
We say that a clause C is infected by Walksat if its assigned value could be changed in the course of the algorithm.

Let A denote the set of infected clauses and let $V_{A}=\bigcup_{C \in A} C$.
W1 $C \subseteq \bar{V}$ implies $C \in A$.

Outline of Walksat for $m / n \leq c 2^{k} / k^{2}$.
We say that a clause C is infected by Walksat if its assigned value could be changed in the course of the algorithm.

Let A denote the set of infected clauses and let $V_{A}=\bigcup_{C \in A} C$.
W1 $C \subseteq \bar{V}$ implies $C \in A$.
W2 If $C \cap V \subseteq V_{A}$ then $C \in A$

Outline of Walksat for $m / n \leq c 2^{k} / k^{2}$.
We say that a clause C is infected by Walksat if its assigned value could be changed in the course of the algorithm.

Let A denote the set of infected clauses and let $V_{A}=\bigcup_{C \in A} C$.
W1 $C \subseteq \bar{V}$ implies $C \in A$.
W2 If $C \cap V \subseteq V_{A}$ then $C \in A$

Because m is small, this means that w.h.p. A is small and then $C, C^{\prime} \in A$ are almost disjoint.

Figure: Each $C \in A$ has its own unique set of $2 k / 3$ literals

Figure: Each $C \in A$ has its own unique set of $2 k / 3$ literals

Putting $\sigma_{A}(x)=0$ for $\bar{x} \in \bar{V} \cap \bigcup_{C \in A} L_{C}$ and $\sigma_{A}(x)=1$ otherwise, yields a satisfying assignment.

Now consider the Hamming distance between the current assignment σ_{W} of Walksat and σ_{A}.

Now consider the Hamming distance between the current assignment σ_{W} of Walksat and σ_{A}.

An iteration of Walksat reduces this by one with probability at least $2 / 3$ and so by properties of simple random walk, this distance becomes zero in $O(n)$ time w.h.p., (unless another satisfying assignment is found).

Now consider the Hamming distance between the current assignment σ_{W} of Walksat and σ_{A}.

An iteration of Walksat reduces this by one with probability at least $2 / 3$ and so by properties of simple random walk, this distance becomes zero in $O(n)$ time w.h.p., (unless another satisfying assignment is found).

Similar idea to that of Papadimitriou (1994) for 2-SAT.

Finding c_{k} for $k=O(1)$ is a major open problem. If we allow k to grow then things become simple: Coja-Oghlan and Frieze (2008) proved

Theorem

Suppose that $k-\log _{2} n \rightarrow \infty$ and that $m=2^{k}(n \ln 2+c)$ for an absolute constant c. Then,

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(I_{m} \text { is satisfiable }\right)=1-e^{-e^{-c}}
$$

(a) Random Discrete Structures
(b) Random Instances of the TSP in the unit square $[0,1]^{2}$
(c) The Random Graphs $G_{n, m}$ and $G_{n, p}$.
(1) Evolution
(2) Chromatic number
(3) Matchings
(4) Hamilton cycles
(d) Randomly edge weighted graphs

- Minimum Spanning Tree
(3) Shortest Paths
- 3-Dimensional Assignment Problem
- Random Instances of the TSP with independent costs
(e) Random k-SAT
(f) Open Problems

Find a polynomial time algorithm that w.h.p. finds a clique of size at least $1.001 \log _{2} n$ in $G_{n, 1 / 2}$.

Find a polynomial time algorithm that w.h.p. finds a planted clique of size $O\left(n^{1 / 2}\right)$ in $G_{n, 1 / 2}$.

Find a polynomial time algorithm that w.h.p. finds a planted clique of size $o\left(n^{1 / 2}\right)$ in $G_{n, 1 / 2}$.

Choose a p-subset $S \subseteq[n]$ and add all edges contained in S to $G_{n, 1 / 2}$. Now ask someone else to find S.

Figure: Planted Clique

Find a polynomial time algorithm that w.h.p. finds a planted clique of size $o\left(n^{1 / 2}\right)$ in $G_{n, 1 / 2}$.

Choose a p-subset $S \subseteq[n]$ and add all edges contained in S to $G_{n, 1 / 2}$. Now ask someone else to find S.

Figure: Planted Clique
If $p \gg n^{1 / 2}$ then enough to check vertices of high degree, Kucera (1995).

Find a polynomial time algorithm that w.h.p. finds a planted clique of size $o\left(n^{1 / 2}\right)$ in $G_{n, 1 / 2}$.

Choose a p-subset $S \subseteq[n]$ and add all edges contained in S to $G_{n, 1 / 2}$. Now ask someone else to find S.

Figure: Planted Clique
If $p=O\left(n^{1 / 2}\right)$ then spectral methods work, Alon, Krivelevich and Sudakov (1998).

Find a polynomial time algorithm that w.h.p. finds a planted clique of size $o\left(n^{1 / 2}\right)$ in $G_{n, 1 / 2}$.

Choose a p-subset $S \subseteq[n]$ and add all edges contained in S to $G_{n, 1 / 2}$. Now ask someone else to find S.

Figure: Planted Clique
If $p=o\left(n^{1 / 2}\right)$ then there are negative results on statistical algorithms, Feldman, Grigorescu, Reyzin, Vempala and Xiao (2013).

Find the precise threshold for the k-colorability of the random graph $G_{n, p}$.

Find the precise threshold for the k-colorability of the random graph $G_{n, p}$.

Find a polynomial time algorithm that optimally colors $G_{n, p}$ w.h.p. or prove that this is impossible under some accepted complexity conjecture.

Find the precise threshold for the satisfiability of random k-SAT.

Find the precise threshold for the satisfiability of random k-SAT.

Find a polynomial time algorithm that determines the satisfiability of random k-SAT w.h.p. or prove that this is impossible under some accepted complexity conjecture.

Prove that $\lim _{n \rightarrow \infty} \operatorname{Pr}\left(G_{n, c n ; 3}\right.$ is Hamiltonian $)=1$ for $c>3 / 2$.

Prove that $\lim _{n \rightarrow \infty} \operatorname{Pr}\left(G_{n, c n ; 3}\right.$ is Hamiltonian $)=1$ for $c>3 / 2$.

Construct a linear time algorithm for finding a Hamilton cycle in this model.

Determine whether or not solving random asymmetric TSPs with independent costs by branch and bound runs in polynomial time w.h.p. when the bound used is the assignment problem value.

Determine whether or not solving random asymmetric TSPs with independent costs by branch and bound runs in polynomial time w.h.p. when the bound used is the assignment problem value.

In practise, branch and bound works well on these instances.

Analyse the ordinary simplex algorithm on random instances.

Analyse the ordinary simplex algorithm on random instances.

Significant results are limited to more sophisticated versions such as the shadow simplex algorithm, Borgwardt (1980).

Analyse the ordinary simplex algorithm on random instances.

Significant results are limited to more sophisticated versions such as the shadow simplex algorithm, Borgwardt (1980).

Led to the notion of smoothed analysis: Spielman and Teng (2004).

Let M be randomly chosen from the set of $n \times n$ symmetric $\{0,1\}$ matrices with $r \geq 3$ ones in each row and column. Prove that M is non-singular w.h.p.

$$
\left|\begin{array}{llllllllll}
0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0
\end{array}\right|
$$

Find a heuristic for the TSP in the unit square that w.h.p. comes with n^{α} of the optimum, where $0<\alpha<1 / 2$ is constant.

Determine the constant β in the Beardwood, Halton and

 Hammersley theorem.Determine the asymptotics for the value of a random multi-dimensional assignment problem and find asymptotically optimal heuristics.

Determine the asymptotics for the value of a random multi-dimensional assignment problem and find asymptotically optimal heuristics.

Give a uniform $[0,1]$ weight X_{e} to each edge of the complete 3-uniform hypergraph $H_{n: 3}$. Let Z_{n} denote the minimum weight of a perfect matching.

Determine the asymptotics for the value of a random multi-dimensional assignment problem and find asymptotically optimal heuristics.

Give a uniform $[0,1]$ weight X_{e} to each edge of the complete 3-uniform hypergraph $H_{n: 3}$. Let Z_{n} denote the minimum weight of a perfect matching.

It is known that w.h.p.

$$
\frac{c_{1}}{n} \leq Z_{n} \leq \frac{c_{2} \log n}{n}
$$

The LHS is easy. The RHS depends on a deep result of Johansson, Kahn and Vu (2008).

Determine the threshold for a random subgraph of the n-cube to be Hamiltonian.

Figure: 3-cube

THANK YOU

정말 감사합니다

