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0. Introduction
In much of the mathematical literature, there is talk about the (note the definite article) orthogonal

group O(n, FI ) of degree n ∈ NI over a field FI . This is extremely misleading, because, given a linear space
T of dimension n, one can consider the orthogonal group of any non-degenerate quadratic form Q on T . In
Chapter 6 of the book Basic Algebra I [J], Jacobson denotes this orthogonal group by O(Q). Since there are
many such quadratic forms, there are many orthogonal groups. The main purpose of this paper is to study
the relations between them and, in particular, determine under what conditions they are conjugate, I was
able to find a complete answer in the case when FI is an ordered field. (See Theorem 7 below.1)

The groups O(n, FI ) are usually understood to consist of matrices. My approach to mathematics
and mathematical science is uncompromisingly coordinate-free and matrix-free when dealing with concepts.
Coordinates and matrices should be used only when dealing with special problems and numerical methods.2

This is why I believe that O(n, FI ) should be put into the trash.

An orthogonal group is determined by a non-degenerate quadratic form or by the corresponding
non-degenerate symmetric bilinear form. Since this last 5-word term is much too clumsy for the purposes of
this paper, I replaced it by the one-word term format.

One could ask under what conditions the symplectic groups, determined by non-degenerate alter-
nating bilinear forms on a given linear space, are conjugate. I believe that, in this case, there is a simple
answer: They all are.

The impetus for this paper came from the fact that an infinity of formats (then called configura-
tions) must be used to understand deformations in continuum physics and that the corresponding infinity of
orthogonal groups are needed to understand what is meant by material symmetry and isotropy. This insight,
to the best of my knowledge, was first employed by me in 1972 in [N1]. For details see Sect.8 below.

The mathematical infrastructure used here is taken from my book Finite-Dimensional Spaces: Al-
gebra, Geometry, and Analysis, Vol.I [FDSI]. The first section here is a synopsis of some of the material
presented in Chapters 1 and 2 of [FDSI]. In later sections, material from Chapters 3 and 8 is also used.

I use multi-letter symbols such as Sub, Lin, Sym, Lis, Frm, Orth, etc. when they can be interpreted
as isofunctors and dim, deg, tr, det, qu, ind, sgn+, etc. when they can be interpreted as natural assignments
as explained in my paper Isocategories and Tensor Functors [N2].

Notation and terminology: We denote the set of all natural numbers (including zero) by NI , the set of
all real numbers by RI , the set of all positive reals (including zero) by PI , and the set of all integers by ZZ .
The superscript × is used for the process of removing the zero element from any set that contains a zero. For
example, the set of all strictly positive reals (excluding zero) is denoted by PI ×. The symbol FI denotes any
field in which 1 6= −1, i.e, not of characteristic 2. Given i, k ∈ ZZ , we denote by {i..k} the set of all integers

1The easy part of this theorem is the ”if” part and may have appeared in the past literature. I believe that the ”only if”
part is new.

2For a more detailed explanation, see part F of the Introduction in my book [FDSI].
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between i and k, i.e.,
{i..k} := {j ∈ ZZ | i ≤ j ≤ k}

Note that {i..k} is empty if i > k.

In order to specify a mapping f : A −→ B, one first has to prescribe two sets, A and B, and then
a definite procedure, called the evaluation rule of f , which assigns to each element a ∈ A exactly one
element f(a) ∈ B. The set A is called the domain of f and the set B is called the codomain of f . For
every set A we have the identity mapping 1A : A −→ A of A, defined by 1A(a) := a for all a ∈ A.

The mapping f : A −→ B induces a mapping f> : Sub A −→ SubB, from the set Sub A of all
subsets of A to the set Sub B of all subsets of B. It is defined by

f>(U) := {f(u) ∈ B | u ∈ U} for all U ∈ Sub A

and called the image mapping of f . Given U ∈ Sub A, the restriction f |U : U −→ B of f to U is given by
f |U (u) := f(u) for all u ∈ U . Given, in addition, V ∈ Sub B such that f>(U) ⊂ V, the adjustment f |VU is
given by f |VU (u) := f(u) for all u ∈ U . (This notation is needed, for example, to give a tight and precise
formulation of Witt’s Extension Theorem in Sect.4 below.)

When we use the term linear space we mean a finite-dimensional linear space over a fixed field FI .

1. Linear Algebra
Let linear spaces T1 and T2 be given. We use the notation Lin (T1, T2) for the set of all linear mappings

from T1 to T2. This set also has the structure of a linear space and dim Lin (T1, T2) = dim(T1) × dim(T2).
Given L ∈ Lin (T1, T2) and v ∈ T1 we denote by Lv the element of T2 that L assigns to v.

If L1 and L2 are both linear mappings such that the composite L1 ◦L2 is meaningful, we will denote
this composite simply by L1L2. If a linear mapping L is invertible, we denote its inverse by L−1. We denote
by Lis (T1, T2) the set of all invertible linear mappings, i.e. linear isomorphisms, from T1 to T2. This set
is non-empty if and only if dim T1 = dim T2.

Now let a linear space T be given. We use the abbreviations

Lin T := Lin (T , T ) and Lis T := Lis (T , T ). (1.1)

The elements of Lin T will be called lineons3. The set Lis T of linear automorphisms of T forms a group
with respect to composition, called the linear group of T .

The dual of a linear space T is defined by

T ∗ := Lin(T , FI ). (1.2)

In accordance with the general rule of denoting the evaluation of linear mappings, the value of λ ∈ T ∗ at
v ∈ T will be be denoted simply by λv. The dual T ∗∗ of the dual space T ∗ will be identified with T in
such a way that the value at λ ∈ T ∗ of the element of T ∗∗ identified with v ∈ T is vλ := λv. We have
dim T ∗ = dim T .

Given v ∈ T2 and λ ∈ T ∗1 we define the tensor product v ⊗ λ ∈ Lin (T1, T2) of v and λ by

(v ⊗ λ)u := (λu)v for all u ∈ T1. (1.3)

The dual of Lin T contains a special element tr ∈ (Lin T )∗ called the trace which is characterized
by the property

tr(v ⊗ λ) = λv for all v ∈ T ,λ ∈ T ∗. (1.4)

3short for “linear transformations”
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Another mapping of interest is the determinant det : Lin T −→ RI .4 We use the notation

Unim T := {L ∈ Lis V | det L = ±1} (1.5)

for the unimodular group, which is a subgroup of Lis T , and the notation

Unim+ T := {L ∈ Lis V | det L = 1} (1.6)

for the proper unimodular group, which is a subgroup of Unim T .

To every L ∈ Lin (T1, T2) one can associate exactly one element L> ∈ Lin (T ∗2 , T ∗1 ), called the
transpose of L, characterized by the condition that

λ(Lv) = (L>λ)v for all v ∈ T1, λ ∈ T ∗2 . (1.7)

The space Lin (T , T ∗) will be identified with the space of all bilinear forms on T . The identification is
expressed by

G(u,v) = (Gu)v for all u,v ∈ T , G ∈ Lin (T , T ∗) . (1.8)

The subspace
Sym (T , T ∗) := {G ∈ Lin (T , T ∗) | G> = G} (1.9)

of Lin (T , T ∗) will be identified with the space of all symmetric bilinear forms on T . The subspace

Skew (T , T ∗) := {W ∈ Lin (T , T ∗) | W> = W} (1.10)

of Lin (T , T ∗) will be identified with the space of all alternating bilinear forms on T .

Given G ∈ Sym (T , T ∗) we consider the mapping quG from T to FI defined by

quG(u) := (Gu)u for all u ∈ T (1.11)

and call it the quadratic form corresponding to G. By Prop.2 of Sect.27 in [FDSI], this mapping is linear
and injective. We denote its range, i.e., the set of all quadratic forms on T , by Qu T , so that

qu : Sym (T , T ∗) −→ Qu T (1.12)

is invertible.

2. Formats and Forms
Again, we assume that a linear space T is given. We use the notation

Fmt T := Sym (T , T ∗) ∩ Lis (T , T ∗) . (2.1)

for the set of all symmetric linear isomorphisms from T to T ∗ and call its members formats of T . This set
is identified with the set of all non-degenerate symmetric bilinear forms on T . For every format G ∈ Fmt T ,
we say that the corresponding quadratic form quG : T −→ FI is non-degenrate and call it simply the
form of G.

We have
cG ∈ Fmt T for all G ∈ Fmt T , c ∈ FI × . (2.2)

and
γA(G) := A>GA ∈ Fmt T for all G ∈ Fmt T , A ∈ Lis T . (2.3)

The mapping γ : Lis T −→ Perm Fmt T defined by (2.3), is an action, as defined by Def.1 in Sect.31 of
[FDSI], of the group Lis T on the the set of all formats. We have

qu(γA(G)) = quG ◦A for all G ∈ Fmt T , A ∈ Lis T . (2.4)
4For a matrix-free definition see Sect.14 of [FDSII].
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We say that a subspace U is totally singular relative to a given G if

quG|U = 0 , i.e., quG(u) = 0 for all u ∈ U . (2.5)

Let G ∈ Fmt T and A ∈ Lis T be given. It follows from (2.4) and (2.5) that a subspace U is totally
singular relative to a given G if and only if A>(U) is totally singular relative to γA(G).

The index5 of the format G is defined to be the maximum dimension of all totally singular subspaces
of T , and it is denoted by

ind(G) := max{dimU | U is a subspace of T such that quG|U = 0} . (2.6)

It is easily seen that
ind(γA(G)) = ind(G) for all G ∈ Fmt T , A ∈ Lis T . (2.7)

We now assume that a format G ∈ Fmt T is given. We use the notations

Sym GT := {G−1S | S ∈ Sym (T , T ∗)} = {T ∈ Lin T | T>G = GT } (2.8)

and
Skew GT := {G−1S | S ∈ Skew (T , T ∗)} = {T ∈ Lin T | T>G = −GT } (2.9)

for the set of all lineons that are symmetric relative to G or skew relative to G, respectively. Both are
subspaces of Lin T and the Additive Decomposition Theorem (see Sect.89 of [FDSI]) remains valid in this
context.

We say that two subsets A and B of T are orthogonal relative to G if

(Gu)v = 0 for all u ∈ A, v ∈ B . (2.10)

We say that a family (Ui | i ∈ I) of subspaces of T is orthogonal relative to G if its terms are
pairwise orthogonal relative to G.

Put n := dim T . Given k ∈ {0..n} we say that a basis (bi | i ∈ {1..n}) of T is
G-orthonormal of minus-signature k if

(Gbi)bj =


0 if i 6= j ,

−1 if i = j ∈ {1..k} ,
1 if i = j ∈ {(k + 1)..n} .

(2.11)

We say an orthonormal basis in genuine if it is of minus-signature 0.

We say that the format G is regular if it admits orthonormal bases. We say k is a minus-signature
of G if there is a G-orthonormal basis of minus-signature k. We say that the format G is genuine if 0 is a
minus-signsture of G, i.e., if there is genuine G-orthonormal basis.

Remark:. In the case when FI is an ordered field, every format is regular and has exactly one minus-
signature, as we will see in the Section 3 below. In the case when FI contains and element whose square is
-1, for example when it is the field of complex numbers, then every number in {0..n} is a minus-signature
of every regular format. If FI is arbitrary, I do not know whether there can be non-regular formats or what
the set of minus-signatares for regular formats can be.

Proposition 1: Given any basis (bi | i ∈ {1..n}) of T and and k ∈ {0, , n}, there is at least one format
G ∈ Fmt T such that this basis is G-orthonormal of minus-signature k. It is given by

G := −
∑

i∈{1,,k}

b∗i ⊗ b∗i +
∑

i∈{k+1,,n}

b∗i ⊗ b∗i , (2.12)

5a.k.a Witt index
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where the basis (b∗i | i ∈ {1..n}) of T ∗ is the dual of the given basis.

Proof: Using the definition (1.3) and the fact that the dual basis is characterized by b∗i bj =

{
0 if i 6= j ,

1 if i = j,

(see Sect.23 in [FDSI]), it is clear that G, as defined by (2.12), has the desired property.

Proposition 2: Let G ∈ Fmt T be a format of minus-signature k ∈ {0..n}. Then another format
G′ ∈ Fmt T is also a format of minus-signature k if and only if there is a A ∈ Lis T such that G′ = γA(G).

Proof: Chose a basis (bi | i ∈ {1..n}) of T that is G-orthonormal of minus-signature k.

Let A ∈ Lis T be given and put G′ = γA(G). an easy calculation shows that (Abi | i ∈ {1..n}) is
G′-orthonormal of minus-signature k.

Now assume that G′ ∈ Fmt T is a format of minus-signature k and chose a basis (ci | i ∈ {1..n}) of
T that is G′-orthonormal of minus-signature k. There is exactly one A ∈ Lis T such that ci = Abi for all
i ∈ {1..n} and hence G′ = γA(G).

3. Formats of linear spaces over ordered fields.

Now we consider the case when T is a linear space over an ordered field FI , for example the field of
rational numbers or real numbers.

Let G ∈ Fmt T be given. We say that a subspace U of T is

positive regular relative to G if quG|U is strictly positive, i.e., if

quG(v) > 0 for all v ∈ U× , (3.1)

negative reguar relative to G if quG|U is strictly negative, i.e., if

quG(v) < 0 for all v ∈ U× . (3.2)

The greatest among the dimensions of all positive [negative] regular spaces relative to G is denoted
by sig+G [sig−G], respectively. The pair (sig+G, sig−G) is called the signature of the format G. Recall
(see (2.6)) that the greatest among the dimensions of all subspaces that are totally singular relative to G is
denoted by ind G and is called the index of G. Also recall the definition of minus-signatures given in the
previous section.

Theorem 1: Every format is regular and has exactly one minus-signature. Given G ∈ Fmt T , the minus-
signature of G is sig−G. We have

sig+G + sig−G = dim T , (3.3)

and
ind G = min{sig+G, sig−G} . (3.4)

This Theorem is a reformulation and condensation of the results of Sect.47 of [FDSI] for the present
context. There it is assumed that the field FI is the real field RI , but the proofs are valid for any ordered
field. The Theorem is also equivalent to what is often called “Sylvester’s Law of Inertia”.

Corollary : A number k is the index of some G ∈ Fmt T if and only if k ∈ {0..n2 } if n is even or
k ∈ {0..n−1

2 } if n is odd .
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The subset

Pos+(T ) := {G ∈ Sym (T , T ∗) | (Gv)v = quG(v) > 0 for all v ∈ T ×} (3.5)

of Sym (T , T ∗) will be identified with the set of all strictly positive bilinear forms. It is a linear cone6 in
Sym (T , T ∗), but not a subspace.

Proposition 3: the cone Pos+(T ) coincides with the set of all genuine formats in Fmt (T ).

Proof: It is easily seen that Pos+(T ) ⊂ Lis (T , T ∗) and hence, by (2.1), that Pos+(T ) ⊂ Fmt T . Let
G ∈ Pos+(T ) be given. By (3.1) G is positive regular. Hence, by Thm.1 above , we have sig−G = 0, and
the minus-signature of G is zero, which means that it is genuine.

The following result is an immediate consequence of Props.2 and 3.

Proposition 4: Given any G,G′ ∈ Pos+(T ) there is an A ∈ Lis T such that G′ = γA(G).

Now let G ∈ Pos+(T ) be given. We use the notation

Pos+GT = {G−1H | H ∈ Pos+(T )} = {S ∈ Sym GT | GS ∈ Pos+(T )} (3.6)

for the set of all lineons that are symmetric and strictly positive relative to G.

We now assume that T is a linear space over the real field RI . All the considerations of Chap.8 of
[FDSI] can then be relativised to genuine formats. An example is the following

Theorem 2 (Spectral Theorem): A lineon is symmetric relative to a given format G ∈ Pos+(T ) if and only
if the family of its spectral spaces is a decomposition of T that is orthogonal relative to G.

Now we no longer assume that a genuine format is given, but find how such a format can be obtained
to satisfy given conditions.

From Prop.1 of Sect.2 it follow that for any basis (bi | i ∈ {1..n}) of T , there is a genuine format
G ∈ Pos+(T ) such that (bi | i ∈ {1..n}) is genuinely G -orthonormal.

Theorem 3 (Inverse Spectral Theorem): The family of spectral spaces of a given lineon is a decomposition
of T if and only if the lineon is symmetric relative to some format G ∈ Pos+(T ).

We say that a lineon is diagonable if its matrix relative to some basis is diagonal.

Corollary: A lineon is diagonable if and only if it is symmetric relative to some G ∈ Pos+(T ).

Theorem 4: A lineon P belongs to Pos+GT for some configuration G ∈ Pos+(T ) if and only if Spec P ⊂ PI ×

and the family of its spectral spaces is a decomposition of T .

Remark: In most of the literature, an inner-product space V is defined to be a linear space endowed
with additional structure by singling out a specific element ip ∈ Pos+(V,V∗), called the inner-product.
This inner-product is used to identify the linear space V with its dual V∗. It is then customary to use the
notation

v · u := (ipv)u for all v,u ∈ V.

The magnitude |u| of an element u ∈ V is defined by |u| :=
√

u · u.

If T is just a linear space over RI without inner product then the entire theory of inner-product
spaces can be applied relative to any G ∈ Pos+(T ).

In [FDSI], the term inner product is also used when V is a linear space endowed with additional
structure by singling out a specific element ip ∈ Fmt V, not necessarily genuine. If not genuine, it is called
a double-signed inner product.

6For an analysis of linear cones in general, and of the present ones in particular, see the paper [NS] by Noll and Schäffer.
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4. Orthogonal Groups
Let a linear space T over a field FI and a format G ∈ Fmt T be given. We define the orthogonal

group of G by
Orth G := {R ∈ Lis T | γR(G) = R>GR = G}. (4.1) ,

The following result is an immediate consequence of the definition and properties of determinants.

Proposition 5: Orth G is a subgroup of the unimodular group Unim T . We have

Orth G = {R ∈ Lis T | (quG) ◦R = G} . (4, 2)

and
Orth cG = Orth G for all c ∈ FI × . (4.3)

The group
Orth + G := Orth G ∩Unim+ T (4.4)

is called the proper orthogonal group7 of G.

We say that the orthogonal group Orth G is genuine if G is genuine.

Proposition 6: For every A ∈ Lis T , the orthogonal group of γA(G) is conjugate to the orthogonal group
of G. More precisely, we have

Orth (γA(G)) = A−1(Orth G)A := {A−1RA | R ∈ Orth G} . (4.5)

Proof: Let A ∈ Lis T and R ∈ Orth G be given. Then, observing (2.3) and (4.1), we obtain

(A−1RA)>(γA(G))(A−1RA) = (A−1RA)>(A>GA)(A−1RA) =

A>R>(A−>A>)G(AA−1)RA = A>R>GRA = A>GA = γA(G)

Since R ∈ Orth G was arbitrary, this shows that

Orth (γA(G)) ⊃ A−1(Orth G)A .

The reverse inclusion follows by interchanging the roles of G and γA(G).

Remark 1: If dim T = 1 then Sym (T , T ∗) = Lin (T , T ∗), dim Sym (T , T ∗) = 1 and Fmt T = (Sym (T , T ∗))×.
All formats are regular and any two of them differ only by a non-zero factor. Lin T can be identified with
the field FI and the linear group Lis T with multiplicative group FI ×. In this case, the unimodular group
UnimT is identified with the two-element subgroup {1,−1} of FI × and the proper unimodular group Unim+T
with the trivial group {1}. There is only one orthogonal group and it coincides with the unimodular group
{1,−1}. The only proper orthogonal group is the trivial group {1}. Caution: The spaces T and Sym (T , T ∗),
although one-dimensional, should not be identified with FI because they do not have distinctive elements
corresponding to 1 and −1.

Remark 2: Note that Skew (T , T ∗)∩Lis (T , T ∗) is not empty if and only if the dimension of T is even. Let
W ∈ Skew (T , T ∗) ∩ Lis (T , T ∗) be given, which can be identified with a non-degerate alternating bilinear
form. The corresponding symplectic group is defined by

Sp W := {S ∈ Lis T | S>WS = W} ,

in analogy for (4.1).

7a.k.a. special orthogonal group
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Theorem 5 (Witt’s Extension theorem): Given subspaces U and U ′ of T and L ∈ Lis (U ,U ′) such that

(quG|U ′) ◦ L = quG|U , (4.6)

there exists an R ∈ Orth G such that R>(U) = U ′ and R|U ′

U = L.

A proof of this Theorem can be found in Sect.6.5 of the book [J] by Jacobson.

From now on we assume that there is a c ∈ FI such that c2 6= 1, i.e that the characteristic of FI is
neither 2 nor 3.

Theorem 6: A given subspace U of T is totally singular relative to G if and only if

Lis U = {R|UU | R ∈ Orth G and R>(U) = U} . (4.7)

Proof: It is clear that the right side of (4.7) is included in the left side even if the subspace U of T is not
totally singular relative to G.

Assume that U is totally singular. It follows from (2.4) that (4.6) holds with U ′ = U because both
sides are zero. Hence, by Theorem 5, with U ′ = U , the left side of (4.7) is included in the right side.

Now assume that the left side of (4.7) is included in the right side. Choose c ∈ FI such that c2 6= 1.
Of course, c1U ∈ Lis U . By Theorem 5 again, we can then choose R ∈ Orth G such that R>(U) = U and
R|UU = c1U . Let u ∈ U be given. Since R ∈ Orth G it follows from (4.2) that

(c2quG)(u) = (quG)(cu) = (quG)(Ru) = (quG)(u) .

Since u ∈ U was arbitrary, we conclude that (c2 − 1)quG)|U = 0. Since (c2 − 1) 6= 0, it follows that
quG|U = 0, which means that U is totally singular.

Corollary: The index of the format G is the maximum of the dimensions of subspaces of T for which (4.7)
holds. Hence if the orthogonal groups of two formats are the same, they must have the same index.

From now on we assume, as Sect.3, that T is a linear space over an ordered field FI , for example
the field of rational numbers or real numbers.

Theorem 7: Let G1,G2 ∈ Fmt T be given. Then Orth G1 is conjugate to Orth G2 if and only if ind(G1) =
ind(G2).

Proof: Assume that ind(G1) = ind(G2). Using Thm.1, we conclude that the minus-signature of G2 is equal
to the minus-signature of G1 or the minus-signature of −G1. Hence, by Prop.2, we can choose A ∈ Lis T
such that G2 = ±γA(G). It follows from Prop.5, (4.3), and from Prop.6 that Orth G2 = A−1(Orth G1)A
and hence that Orth G1 is conjugate to Orth G2.

Assume now that Orth G1 is conjugate to Orth G2 and choose A ∈ Lis T such that Orth G2 =
A−1(Orth G1)A. By Prop.6 it follows that Orth G2 = Orth (γAG). In view of (2.7), it follow from the
Corollary to Thm.6 that ind(G1) = ind(G2).

The following result is a consequence of the Theorem above and the Corollary to Thm.1.

Corrollary: If n is even, there are 1 + n
2 conjugacy classes of orthogonal groups, one for each index in

{0..(n
2 )}. If n is odd, there are 1 + (n−1

2 ) such classes , one for each index in {0..(n−1
2 )}.

From now on we assume that T is a linear space over the field RI of real numbers, so that, by Prop.3,
the set of genuine formats is the cone Pos+(T ).

Remark: If dim T ≥ 2, then every genuine orthogonal group is a maximal subgroup of UnimT and every
genuine proper orthogonal group is a maximal subgroup of Unim+T . The first of these results is highly
non-trivial, and a proof is given in my paper [N3]. The second result is an easy consequence of the first. It is
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not known to me whether these results remain valid for non-genuine orthogonal groups or for the case when
the field FI is not the real field.

Theorem 8: Let a pair (G1,G2) of genuine formats be given. Then there is exactly one
U ∈ Pos+G1

T ∩ Pos+G2
T such that

G2 = G1U2 = U>G1U = γU(G1) . (4.8)

We have
Orth G2 = U−1(Orth G1)U . (4.9)

Proof: It is easily seen that
(G1)−1G2 ∈ Pos+G1

T ∩ Pos+G2
T , (4.10)

i.e., that (G1)−1G2 is symmetric and strictly positive relative to both G1 and G2. It follows from the
Lineonic Square Root Theorem (see Sect.85 of [FDS]) that there is exactly one U ∈ Pos+G1

T ∩Pos+G2
T such

that U2 = (G1)−1G2 and hence G2 = G1U2. Since U ∈ Sym G1
T , it follows from (2.8) that U>G1 = G1U,

which shows that (4.8) holds. (4.9) follows from Prop.6 above.

The following Theorem will be stated without proof even though the proof is not very hard.

Theorem 9: Consider the family of spectral spaces of U, which is an orthogonal decomposition of T relative
to both G1 and G2. Then the intersection (Orth G2) ∩ (Orth G1) consists of all lineons in Orth G1 that
leave each of these spectral spaces invariant.

Corollary 1: The intersection (Orth G2)∩ (Orth G1) is a finite group if and only if all the spectral spaces
of U are one-dimensional. In this case the intersection has 2dim T elements.

Corollary 2: We have

Orth G1 = Orth G2 ⇐⇒ G1 = cG2 for some c ∈ PI × . (4.11)

Remark: Let dist : Pos+(T )× Pos+(T ) :−→ RI be defined by

dist(G1,G2) := max{|λ | |λ ∈ Spec U}, (4.12)

where U is determined according to Thm.9. This function turns out to be a natural metric on the cone
Pos+(T ). The metric given by the formula (5.11) in the paper [NS] by Noll and Schäffer is just twice the
metric defined here by (4.12).

5. Applications
In continuum physics, a continuous body system B is described by a mathematical structure as

defined in part 3 of my book Five Contributions to Natural Philosophy [FC]. The axioms for this structure
endow B with the structure of a differentiable manifold. Hence at each point X ∈ B there is a tangent space
TX , which is a real three-dimensional linear space. It is called the infinitesimal body element of B at X, since it
is the mathematical representation of what many engineers refer to as an ”infinitesimal element” of the body.
The genuine formats of TX are called configurations and a pair of such configuration is called a deformation.
The material properties of the element, as described by a constitutive law, assign to each configuration G a
symmetry group, which is a subgroup of Orth G. For an example see my paper A Frame-Free Formulation
of Elasticity [N4].

The event-world of the theory of Special Relativity is described by a four-dimensional non-genuine
Euclidean space, called Minkowskian Spacetime, whose translation space is endowed with additional structure
by singling out a format of index one, as defined by (2.6) above. The orthogonal group of this format is called
the Lorentz Group. A detailed analysis is given in the book Mathematical Structures of Special Relativity
[MN] by V. Matsko and me.
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It is conceivable that a future theory for reconciling quantum mechanics with relativity might involve
varying the the format of index one for spacetime and hence the Lorentz group.
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