Chapter 3

Flat Eventworlds

In this chapter, we introduce another structure important to the theory of
special relativity — the structure of a flat space. We assume some familiarity
on the part of the reader with linear spaces; for reference, a brief summary
of important results is included in Appendix D.

We begin with introductory concepts in §3.1, and proceed immediately to
discuss eventworlds in the context of flat spaces in §3.2 and timed event-
worlds in the context of flat spaces in §3.3. We conclude in §3.4 with some
topological considerations. (This last section may be omitted without loss
by the reader unfamiliar with topological concepts.)

3.1 Flat Spaces

——Translation Groups

Two concepts that are often confused in mathematics are “point” and “vec-
tor”. We often see a pair of real numbers (z,y) representing both a “point
in the plane with coordinates z and y”, and the “vector” which represents,
roughly, the “translation necessary to take a point with coordinates a and
b to a point with coordinates a + z and b+ 4”. In the plane, we often label
p and v with the same pair; namely, (3,2) (see Figure 31a).
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In applying abstract linear algebra to special relativity, it is critical that
these ideas be conceptually distinguished.

Illustration: Suppose P is the set of all points in the plane. How might
we distinguish points from vectors? One way is to make explicit the
idea that vectors represent, roughly, translations.

Imagine that you are sitting at your desk, and on your desk are marked
two points, say x and y (see Figure 31b(1)). (Points on your desk are
“e”’s in the figures.) You then square a small sheet of clear plastic
on your desk, and mark the point z on this sheet (see Figure 31b(2)).
(Points on the plastic sheet are “+”’s in the figures.) Now imagine
sliding the plastic sheet so that the point z on your sheet ends up
directly over the point y on your desk (see Figures 31b(3),(4)). This
“sliding” corresponds, roughly, to a translation. In this context, a
translation may be considered as a mapping from the plane into itself;
that is, a mapping which assigns to each point x in the plane the point
where = “ends up” after the translation. In the previous example, if
the translation given is represented by the mapping v : P — P, we
would have v(z) = y; i.e., “x ends up at y after v”.

In considering that vectors represent translations, and that transla-
tions may be represented as mappings from the plane into itself, the
set of all vectors may be considered a subset of Map(P,P); i.e., the
set of all mappings from P into itself. But how can we describe this
subset? How can we state in a precise mathematical way what distin-
guishes this set of mappings from any other set of mappings?
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We now investigate a structure which allows us to describe mathematically
the intuitive ideas of points and translations. This can be efficiently accom-
plished by considering certain properties of the set of all translations rather
than describing individual translations. (For the purposes of the following
examples, it is useful to imagine sitting at an “infinitely large desk” with an
“infinitely large sheet of plastic” on top of it.)

Let £ be a nonempty set. Roughly, £ may be considered to be the set
of all “points in the plane”, or “points in space”. As mentioned earlier, a
translation v may be considered as a mapping from £ into €. If we denote by
V the set of all translations, we see that V C Map(&, ). In what follows, we
will describe properties that a subset V of Map(€, £) must have in order that
it corresponds, roughly, to the set of translations as described above. Again,
note the distinction between the set of points, £, and the set of translations,

V.
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3100 Definition: Let a nonempty set £ be given. A subset V of Map(&, )
is called a translation group of & if the following axioms are satisfied:

(Vi) For all u,v € V, we have uov € V. (V is stable under
composition.)

(Vo) For allu,v € V,uov =vou. (V is commutative.)

(V3) For all z,y € &, there is some v € V such that v(z) = y. (V
acts transitively on £.)

What does this all mean in the context of the plastic sheet analogy? (V1)
means that the result of performing two successive translations is again a
translation (see Figure 31c(1)).

(V2) says that in performing one translation after another, the order in
which they are performed is irrelevant; the end result is the same (see Figure
31c(3)).

(V3) says, roughly, that given any two points, there is some translation that
sends one to the other. In other words, given two points z,y € &, there is
some translation that fills in the following blank: “z ends up at y after _”
(see Figure 31c(4)).

Remark: Theknowledgeable reader will notice the use of the term “group”
in the previous definition. He or she might have expected axioms such
as “the identity of £ belongs to V” and “V is stable under inversion”.
Such “axioms” actually follow from (V;)—(V3). The former is given in
Prop. 3102, while the fact that V is stable under inversion is given in
Prop. 3103 and illustrated in Figure 31c(2).

Recall the plastic sheet analogy and the type of “sliding” that corresponds
to a translation. Given this, think for a moment about a translation which
has a fized point; that is, a point z for which “z ends up at z after the
translation”. Such a translation must, in fact, leave every point fixed; this
is verified in the following Proposition.

3101 Proposition: If v € V is such that v has a fixed point; that is,
v(z) = x for some x € £, then v = 1g; that is, v(y) =y for all y € €.
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Proof: Let v € V be given, and suppose that v has a fixed point, say
z € £&. We must show that v(y) = y for every point y € £. To this
end, let y € £ be given. Then by (V3), we may choose a translation
u € V such that y = u(z). So

v(y) = v(u(z))
= (vou)(z)
= (uov)(z) by (V2)
= u(v(z))
= u(x) since v(z) =z
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Since y was arbitrary in £, the Proposition is proved. O

A second Proposition follows easily from the first.

3102 Proposition: 1 € V.

Proof: Since £ is not empty, choose z € £. By (V3), we may choose v € V
such that v(z) = z. (Note that (V3) does not require that z and y be
distinct.) By the previous Proposition, it follows that v = 1¢. Hence,
le=veV. O

The following Propositions are stated without proof; the reader is urged to
construct the proofs so as to gain familiarity with the above concepts and
notations.

3103 Proposition: For all v € V, v is invertible and v € V.

3104 Proposition: For all x,y € &, there is exactly one v € V such that
v(z) =y.

Notation: This Proposition essentially states that given z,y € &, there
is exactly one translation from z to y. Hence, we may speak of the
translation from z to y. We write y — = for the translation from z to
y; hence, (y — z)(z) = y. This notation will facilitate the description
of many properties of vectors; this will be seen a little later on in this
section.

We now introduce notation which is commonly used in discussing transla-
tions.

Notation:
(N7) 0:=1¢ when regarded as an element of V.
(N2) v4+u:=uov for all u,v € V.
(N3) —u :=u" for all u € V.
(Nyg) v—u:=v+(—u) forallu,ve.
(N5) z+v:=v(z) forallz €&, ve.
(N¢) z—v:i=z+(—v)forallze& ve.
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This notation corresponds to the usual usage of the term “vector”. With
this in mind, we use “vector” as a synonym for “translation”. Geometrically,
we have:

Figure 31d(1) Figure 31d(2)

If v is the translation from z to y and u is the translation from y to z, then
since (uov)(z) = u(v(z)) = u(y) = z, uov is the translation from z to z.
In considering translations as vectors, we see that uov corresponds to what
we usually call “the sum of the vectors u and v”, and hence the notation is
consistent with our experience of the addition of vectors (see Figure 31d(1)).

Similarly, if u = y—uz, i.e., u is the translation from z to y, then —u = u* is
the inverse translation, i.e., the translation from y to . Hence, —u=z —y
(see Figure 31d(2)).

0 corresponds to the translation which leaves every point fixed; since for
every translation v we have 1g ov = v o 1g = v, it follows from (N;) and
(N3) that 0 + v = v + 0 = v, as we would expect with vector addition.

The notation (N5) must be used with great care; a second use of the symbol
“+” is introduced. In this context, we write z + v for “the place that z ends
up after v”. Note that an expression like v+ is not meaningful; the second
usage of “+” requires a point before the “+” symbol and a vector afterwards.
Thus, although = + 0 = z, it makes no sense to say that 0+ z = z.
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Why bother introducing all these notations? As it happens, many of the
rules that we usually associate with the symbols “0”, “4”, and “—” remain
valid when dealing with meaningful expressions. Several examples follow.

For all z,y € £ and u,v € V, we have

(R1) z+(y—z) = y

(R2) (z+u)—z = u

(R3) z—z = 0

(R4) u—-u = 0

(Rs) z+(ut+v) = (z+u)+v
(Rg) zH+u=z+v = u=v
(R7) z+u=y+u = z=y

(Rs) (z-y)+v = (z+v)-y
(Ro) (z—y)+(y—2) = (z—2)

(R1) is essentially the restatement of a previous remark on notation.

How may we interpret (R2)? We know that (z + u) — z is the translation
from x to £ + u. We also know that u takes the point z to the point x + u.
Hence, (z + u) — z and u are the same translation.

We illustrate a proof of (Rg); the reader is encouraged to attempt the proofs
of other rules in order to become familiar with the notations and definitions.

To see (Ry), we first note that
(Rip) Forallu,veV,u+v=v+u
This follows from (N3) and (V2).

Now (z — z) is the translation which takes z to z. (y —z) + (z —y) is also a
translation which takes z to z (z is taken to y by (y — z), and then y is taken
to z by (x —y)). Hence, by Prop. 3104, they are the same translation, i.e.,
(y—2)+ (r —y) = (2 — z). (Ry) follows easily upon applying (Rio).

Other rules may be validated similarly. Although detailed, step-by-step
proofs may be given to justify each rule, all that is usually required is to
return to the notational definitions and supply an informal argument. The
following proof is a formal verification of (Ry); however, it masks the essen-
tially intuitive ideas of the proof.
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Verification of (Ry): Let z,y,z € £ be given. Our strategy is as follows:
we show that

z+((e-y)+y—2) =2+ (z-2),

and then use (Rg). To this end,

z+((z-y)+@y—2) =2+ ((y—2) +(z—-y)) by (Riw)
= (¢2+(y—2)+(z—y) by (Rs)
=y+(z—y) by (R1)
=z by (R1)
=z+ (z—2) by (Ry).

Hence, we may apply (Rg) to conclude that (z —y) + (y —z) = (x — 2).
As z,y,z € £ were arbitrary, we conclude that (Rg) holds.

Remark: It is worth noting that using the notations (N1)—(Ng), it follows
that (A1)—(A4) as described in Appendix D are also valid results.

——Flat Spaces

The concept of a translation group, as it happens, is insufficient for the
purpose of developing the concepts needed both in classical geometry and
the theory of special relativity. A “richer” structure is needed; that is, we
need more mathematical structure so that we may easily express subtler and
more varied distinctions. (Analogously, one may prepare a greater variety
of dishes with a more fully stocked pantry.)

One may then ask, “What ideas must we be capable of expressing that
can’t be described by the theory of translation groups?” One answer to the
question is “the idea of a multiple of a vector”. But one might contend,
“We may easily describe multiples of vectors. For example, 3 times a given
vector v is just v+ v +v. Or —2 times a vector v is —(v +v). Any integral
multiple of a vector may likewise be expressed. Even the idea of a fractional
multiple of a vector is possible. For example, % of v is the only vector
u such that 5 times u gives the vector v. Other fractional multiples may
be handled similarly.” And indeed, that would be correct (as long as you
assumed that the notion of fractional multiples makes sense; i.e., that given

a vector v, there is exactly one vector u such that 5 times u gives v). If such
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assumptions are made, we might construct a theory of rational multiples of
vectors. But how does one describe arbitrary real multiples of vectors, like
7 times v? These questions must be answerable so that physical phenomena
germane to the theory of special relativity may be easily described. This is
a motivation for the theory of flat spaces.

3105 Definition: A flat space is a nonempty set £ structured by pre-
scribing two ingredients. The first ingredient is a subset V of Map(&,€)
which is a translation group of £. The second is a mapping

sm: RxV =YV

satisfying axioms (S1)—(S4) as given in Appendix D. In other words, with
the additive structure as described in the previous section, sm gives V the
structure of a linear space. V is called the translation space of £. If V
is finite-dimensional, then the dimension of &£, denoted by dim &, is given
by dim £ :=dim V. We put V* :=V\ {0}.

Notation: We introduce the following notations, which are essentially ex-
tensions of (N3), (N3), (N5), and (Ng). Here, z € £, veV, G, H CE,
and U, W C V.

) H+U:={z+u|zeH,uecl},
) W4+U:={w+u|lweW,uecld},
) z+U :={z}+U,

0) HAv:=H+{v}

Nu) H-G:={y—z[zef,yecH}
N12) —U = {—u|u€L{}.

We may define in the obvious way analogues to (N7)—(Nig) where “4” is
replaced by “-".

3106 Definition: Let a subspaced of V be given. We say that a nonempty
subset H of £ is a flat in £ with direction space U if H + U = H and
H —H =U. When U is finite-dimensional, we define dim H :=dim U. If H
is a flat in £ such that dim 7 = 1, then we say that H is a straight line.

In addition to defining straight lines in £, we may define line segments in £.
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3107 Definition: For all z,y € £, we define

[z,y] == A{z + aly —2) | € [0,1]}.

[z,y] is called the line segment from z to y. We also define |z,y[:=
[z, y] \ {z, 4}, [z, y[:= [z, 9]\ {y}, and |z, y] := [z, 9]\ {z}.

We now introduce a Theorem which will show how, in many situations, a
set can be endowed with the structure of a flat space in a natural way.

3108 Theorem: Let a nonempty set £, a linear space W, and a mapping
D : &€ x & = W be given which satisfy

(1) D(z,z) =D(z,y) + D(y, 2) for all z,y,z € £, and

(2) Forallz € € and w € W, there is exactly one y € £ such that
D(z,y) = w.

Then £ may be given in exactly one way the structure of a flat space with
translation space V such that there is a mapping ¢ : W — V with the
following properties:

(1) @(D(z,y)) =y —=x for all z,y € £, and
(1) p(aw) = ap(w) for alla € R and w € W.

The mapping ¢ is linear and invertible.

Proof: The condition (2) above can be expressed as follows:

(2") For every w € W, there is exactly one 1w € Map(€,E) such
that D(z,¢w(z)) = w for all z € €.

Now assume that a flat space structure on £ with translation space
V and a mapping ¢ : W — V satisfying (i) and (i7) are given, and
choose q € €. Tt follows from (i) that ¢(D(g,q + v)) = v for all
v € V, showing that ¢ is surjective. It follows from (2') and (i) that
o(w) = 9w (z) — z, and hence

p(w)(z) =z + p(w) = Pw(z)
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for all w € W and z € £. Hence we have p(w) = 1, for all w € W.
Using the surjectivity of ¢, we conclude that

V= {th | W € W} (31.1)

and that ¢ is uniquely determined. It can also be shown that the
linear-space structure on V is uniquely determined by the linear-space
structure on W.

To prove the existence of the flat space structure on £ with the pre-
scribed properties, we define V by (31.1). Let w,w' € W and z € £

be given. Using (1) with y := ¥w(x) and z := Pw (y) = (Yw o w)(z),
we see that

D(‘T’ ("pw’ 0 ¢w)($)) = D($a¢w($)) + D(yaflpw’(y))a

and hence, by (2'), that

D(‘Ta (pr’ © ¢w)(x)) =wtw = D(-Ta Pwtw! (37))

Since z € £ was arbitrary, it follows from the uniqueness of ¥y w
that

¢w—|—w’ = Yw' © Pw. (312)

Since (31.2) holds for all w,w' € W, it follows from the definition
of V (see (31.1)) that V satisfies the conditions (V;) and (V3) for a
translation group (see Def. 3100). The condition (V3) is satisfied
because, given z,y € &, we have from (2') that ¥w(z) = y when
w = D(z,y). We now define ¢ : W — V by ¢(w) := 1y for all
w € W, and the scalar multiplication on V by at)y := Yaw for all
a € Rand w € W. Tt is clear that ¢ has the properties (i) and (%)
and is surjective and linear. The proof of invertibility is left as an
Exercise. O

It very often happens that a nonempty set £, a linear space W, and a
mapping D : £xE — W satisfying conditions (1) and (2) of Thm. 3108 are
given. The previous Theorem then tells us that £ has the natural structure
of a flat space whose translation space is naturally isomorphic to W wvia the
mapping . If this is the case, we normally use ¢ to identify W with the
translation space of £, except that we use the term external translation
space for W to indicate that it is obtained in this way. In many cases, the
mapping D is described by the notation y—z := D(z, y) in the first place, and
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the condition (i) of Thm. 3108 is merely a reflection of the identification
of W with the translation space of £.

The previous Theorem has many applications. We discuss a few in the
context of familiar concepts.

——Examples

1. Upon examining Prop. 2403, it is not difficult to see that the mapping
t* : I' xI' = R is a mapping as described in Thm. 3108. Hence, I’
has the structure of a flat space with external translation space R (see
the discussion following Not. 2404).

2. If V is a linear space, then the subtraction operation is a mapping as
described above. Hence, V may be considered as a flat space which is
its own external translation space.

3. Let a flat space £ be given, and let H be a flat in £ with direction
space U. Then the mapping D : H x H — U given by

D(z,y) ==y —x

for all z,y € H is a mapping as described in Thm. 3108. Hence H
may be considered as a flat space with external translation space U,
the flat space structure of which is “inherited” from &.

4. Let & and &, be flat spaces with translation spaces V; and Vs, respec-
tively. (Either Vi or V, (or both) may be external translation spaces.)
Then the mapping

D: (&1 x&) x (&1 X&) =V x Vs

given by
D((z1,2), (y1,92)) := (y1 — 71,92 — T2)

for all (z1,z2), (y1,y2) € &1 X &2 is a mapping as described above.
(Here, the symbol “—” is used with two possibly different meanings;
the meaning of each occurrence is clear from the context.) Hence, we
may consider & X & as a flat space with external translation space
Vl X Vg.
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3.2 Flat Eventworlds

The structure we have developed thus far has enabled us to find time-
parameterizations of worldpaths where the “time” parameter takes on real
values. However, we are as yet unable to say what it means for a worldpath
to be “continuous” or “smooth”. In particular, we should at least be able
to ask whether or not a worldpath is differentiable with respect to its time
parameter.

The structure of a flat space is well-suited as a context in which to inves-
tigate questions of differentiability. But it makes no sense to consider a
flat-space structure in a timed eventworld unless that structure is related
to the precedence relation and the timelapse function in a reasonable way.
We first discuss the relationship between the precedence relation and the
flat-space structure. The analogous relationship between the timelapse and
the flat-space structure is given in Def. 3300.

Let &£ be a finite-dimensional flat space with translation space V.
3200 Definition: We say that a relation < on £ is translation-invariant
if

T4y —= rz+vdy+v

for all z,y € £ and v € V. We say that < is connected if [z,y] C [z, y], for
all z,y € € such that x ay.

3201 Definition: A subset K of V is said to be a linear cone if C+K C K
and P*K C K. That is, for all u,v € K and A\ € P*, both u+ v € K and
Au € K.

Relations on £ which have the properties given in Def. 3200 are easily
described, as in the following.

3202 Theorem: If < is a transitive, translation-invariant, and connected
relation on &, then the subset K of V given by

K = {y— | (z,) € Gr(<)}

is a linear cone; this cone is called the direction cone of «.
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Conversely, if K C V is a linear cone, then the relation < on £ defined by
rdAy == y—xz €k

for all z,y € & is transitive, translation-invariant, and connected, and K is
the direction cone of <.

Moreover, given the above notation, KX N (—K) C {0} if and only if < is
antisymmetric.

Proof: Let < be a transitive, translation-invariant, and connected relation
on &, and suppose that K is given by

K:={y—z|(z,y) € Gr(a)}.

To see that K is a linear cone, let u,v € K be given. Given z € &,
we have £ < £+ u as u € K; we also have z + u < z + (u + v) since
veK. Sozx<az+ (u+v), and hence u+v € K. Since u,v € K were
arbitrary, we see that K is stable under addition.

Now let A € P* and u € K be given. Then we may choose n € N
such that A < n. Since K is stable under addition, it follows readily
by induction that nu € K. Since <« is connected, we have

T+ Au € [z,z +nu] C [z,z + nu].,

and therefore z <z + Au. Thus, du € K. As A € P* and u € K
were arbitrary, we see that K is stable under scalar multiplication by
strictly positive numbers. It follows that X is a linear cone.

The remainder of the proof is analogous and is left as an Exercise. ¢

Remark: If «is a connected relation on £, then given z € £, we see that
z being related to some y € £ implies that = < x. Hence, if < is also
translation-invariant, then < fails to be reflexive if and only if Gr(<) = 0
(equivalently, K = 0).

As it happens, some important precedence relations are translation-invariant
and connected relations in a flat space. Thus, the previous Theorem gives us
a useful means of relating the precedence relation to the flat-space structure
of an eventworld. This motivates the following.
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3203 Definition: A flat eventworld is an eventworld £ (with precedence
<) such that £ has the structure of a flat space (with translation space V)
and < is translation-invariant and connected. We denote the direction cone
of < by F, and call F the future cone.

In light of Thm. 3202, we are tempted to conjecture that any linear cone
containing 0 can induce the structure of a flat eventworld on £. This, how-
ever, is not the case; the following Proposition indicates precisely when such
a structure may be induced on £.

3204 Proposition: Let a flat space £ with translation space V be given.
If € is a flat eventworld with future cone F, then V = F — F.

Conversely, if F is a linear cone satisfying V = F — F, then the relation <
on & defined by
Ty~ zcs=yory—x€F

for all z,y € £ gives £ the structure of a flat eventworld.

Proof: Suppose that £ is a flat eventworld with future cone F. Choose
z € &, and let v € V be given. By Def. 1200(2), we may choose z € £
such that z < x and z < x + v. Then we have

v=((z+v)—2)—(z—2) € F-F.

As v € V was arbitrary, the first half of the Proposition is proved.

On the other hand, suppose that F if a linear cone which satisfies
VYV = F — F, and suppose that < is defined as above. As a result of
Thm. 3202, it remains to show that Def. 1200(2) is satisfied. To
this end, let z,y € £ be given. Since V = F — F, we may determine
u,v € F such that y —x = v —u; put z := z —u. Clearly, z < z since
r —z=u € F. Moreover, z < y since

y—z=y—(x—u)=veF.

As z,y € € were arbitrary, we see that Def. 1200(2) is satisfied. ¢

In the context of a flat eventworld, it makes sense to consider the role of
straight lines. As it happens, worldpaths which are also subsets of straight
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lines are very important in special relativity as well as in Galilean spacetimes
(see §4.3), since they may be used to describe worldpaths of particles that
are free from outside influences. Such applications are described in §6.1.

However, not every flat eventworld allows for a trouble-free discussion of
worldpaths which happen to be subsets of straight lines. Examples of such
“troublesome” flat eventworlds will be discussed in the Exercises. We will
avoid such difficulties by introducing a subclass of flat eventworlds which
will be suitable for our purposes.

3205 Definition: A flat eventworld is said to be genuine if whenever
z,y € & are such that x < y, then [z,y] is a worldpath from z to y.

Let a genuine flat eventworld £ be given.

We are now able to provide a definition and a useful characterization of
straight worldpaths.

3206 Definition: A worldpath L is said to be straight if for all z,y € L,
we have [z,y] C L.

3207 Theorem: Let L be a worldpath. Then L is straight if and only if
we may determine a straight line S C £ such that L C S.

Proof: Suppose that L is straight. Choose distinct elements z,y € £ such
that z < y, and put S := z + R(y — ). Clearly, S is a straight line.
We claim that £ C S.

To see this, let ¢ € £ be given. Since L is totally ordered, at least one
of the following cases must apply: ¢ <z, £ < g <y, or y < q.

Suppose that ¢ < z. Since L is straight, we have [¢,y] C L. It follows
from < being connected that

[g,9] C [g,y] N L.

Since z and y are distinct and £ is ordered, we must have z < y and
hence ¢ < y; we then know from Def. 3205 that [g,y] is a worldpath
and hence maximally totally ordered in [g¢,y]. Since L is a worldpath,
[g,y] N L is also maximally totally ordered in [q,y]. Hence, the above
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inclusion must in fact be an equality, yielding [q,y] = [¢,y] N £. Since
[z,y] C [g,y] and < is connected, we have

[z,y] C[z,y] N L C [g,y] N L= [g,y].

It is easy to see that y — ¢ must be a positive scalar multiple of y — z,
and hence g € S.

If either z < ¢ < y or y < ¢, we may argue similarly to conclude
that ¢ € S. Since g € £ was arbitrary, the forward implication of the
Theorem is proved.

The reverse implication is left as an Exercise. O

3208 Corollary: Let L be worldpath. Then L is straight if and only if
there is a straight line H C £ such that L is a genuine interval in ‘H with
respect to <|yx# (see Def. 1404). L is a straight worldline if and only if £
is a straight line in &.

3.3 Timed Flat Eventworlds

In the previous section, we saw how the precedence could be related to the
flat-space structure of an eventworld. It remains to be seen how the time-
lapse function should be related to this flat-space structure. This, however,
is a simple task; the result is as follows.

3300 Definition: A timed flat eventworld £ is a genuine flat eventworld
(with future cone F) which is also a timed eventworld whose timelapse t
satisfies the following two conditions:

(1) t is translation-invariant; that is,
t(z,y) =tlz + v,y +v)

for all (z,y) € Gr(<) and all v € V, and
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(2) For all z,y € £ with x <y, we have

tiey(7,y) = t(z,y);

i.e., the timelapse from x to y coincides with the timelapse
from x to y along the worldpath [z,y] (which is indeed a world-
path since & is genuine; see Def. 3205).

Remark: Recall that in §2.2, we remarked that for z,y € £ which satisfy
z <y, t(z,y) is an upper bound for possible timelapses along world-
paths from z to y. The condition (2) above guarantees that this upper
bound is actually achieved when z < y.

Let a timed flat eventworld £ be given with future cone F. As a result
of condition (1) in the above definition, we see that the timelapse t(z,y)
depends not on the particular choice of events z and y, but only on the
vector y — . With this in mind, we offer Thm. 3302, which will allow for
a simpler expression of some important ideas. But first, we state and prove
a useful preliminary result.

3301 Lemma: Suppose that a given f : P — P satisfies f(a + ) =
fla) + f(B) for all a, B € P. Then f(a) = af(1l) for all o € P.

Proof: It follows easily by induction that f(pa) = pf(«) for all p € N and
«a € P. This in turn implies that for all p € N and ¢ € N*, we have

af (g) = f(p) =pf(1),

/()30

Now let a € P be given, and suppose that p € N and ¢ € N* are
such that p/¢ < a. We see from the preceding argument and the
assumption about the additivity of f that

s =1 (2)+s(a=2) 21 (%) =L

and hence



80 CHAPTER 3. FLAT EVENTWORLDS

Since this inequality holds for all p € N and ¢ € N* with p/q < «, we
must have f(a) > af(1). A similar argument shows that we must also
have f(a) < af(1). Combining these inequalities yields the desired
conclusion. Since a € P was arbitrary, the Lemma, is proved. O

Remark: The statement in the previous Lemma is no longer valid if “P”
is replaced by “R”. In other words, one may show the existence of a
mapping f : R — R which satisfies f(a + ) = f(a) + f(B) for all
a, 3 € R, but which fails to satisfy f(a) = af(1) for all @ € R. Such
a demonstration involves the Axiom of Choice.

3302 Theorem: Let a timed flat eventworld £ be given with future cone
F. There is exactly one 7 : F — P such that

(1) t(z,y) = 7(y — z) for all (z,y) € Gr(=<).
This T satisfies

(2) 7(u)+7(v) <7(u+v) for all u,v € F, and

(3) 7(au) = ar(u) for allu € F and a € P.

Conversely, let £ be a genuine flat eventworld, and let 7 : F — P be a
function satisfying (2) and (3). If t : Gr(<) — P is defined by (1), then t
endows £ with the structure of a timed flat eventworld.

We call T the time-span function.

Proof: We see from Def. 3300(1) that for a given v € F, the value
t(z,z + v) is independent of z € £. We may define 7(v) to be this
value, yielding (1). Condition (2) is then merely a restatement of the
Intermediate Event Inequality (Def. 2100).

To see (3), let u € F be given. If u € —F, then it easy to see (as a
result of Prop. 2101) that 7(au) = 0 for all a € P>, and hence (3) is
valid. Otherwise, we have u € F\ (—F). Now let a, f € P* be given
and put

y:=z+au, z:=y+pu=z+(a+p)u.
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Since u € F \ (—F), we have z < z, and hence [z, z] is worldpath
from x to z since £ is genuine (see Def. 3205). Moreover, we have
{z,y,2z} € Fto[z,z] (see Def. 2200). Thus, we see from (1), Def.
2202, and Def. 3300(2) that

7(cu) + 7(Bu) = t(z,y) + t(y, 2)

= X({z,y,2})
> t|[z,z](xaz)
= t(z, 2)
= 7((a+ B)u).
This, with (2), implies that
T(au) + 7(Bu) = 7((a + B)u). (33.1)

It is also easy to see that (33.1) is valid when either « = 0 or g = 0.
Hence, we see that (33.1) is valid for all «, 8 € P.

Now consider the function f : P — P given by
f(a) == 7(an)
for all o € P. It follows from (33.1) and Lemma 3301 that
()
f(1)
(

7(u)

T(au) =

s

Q

R

for all & € P. Since u € F \ (—F) was arbitrary, we see that (3) is
valid.

The proof of the converse is left as an Exercise. ¢

Remark: Let £ be a genuine flat eventworld which is also a timed event-
world whose timelapse t is translation-invariant. Then the condition
Def. 3300(2) above is equivalent to

(2') Forallv e F\ (—F) and p € N*, we have

7(pv) = p7(V).

One may use this condition, along with Thm. 3302(2), to give an
alternative proof of Thm. 3302(3).
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—Topological Considerations

In the remainder of this section and the next, we discuss issues which arise
when a timed flat eventworld is considered as a topological space with the
usual flat-space topology (see Chapter 5 of [7]). The reader who is unfa-
miliar with topology may skip this discussion without loss. The only results
which will explicitly be used later are Thm. 3407, Prop. 3409, and Cor.
3410.

For this section and the next, let a timed flat eventworld £ be given, whose
precedence is denoted by < and whose direction cone is denoted by F.
We consider £ as being endowed with the structure of a topological space
by the prescription of the usual flat-space topology. Since we may view
the translation space V as a flat space (see Example 2 in §3.1), we may
analogously consider V as being endowed with the usual flat-space topology.

Recall (see Prop. 3204) that V = F — F. This is equivalent (since & is
finite-dimensional) to the statement that F has a nonempty interior. For
S C &€ (or V), we denote by Int S the topological interior of S, and by Clo §
the topological closure of S.

In the following Theorem, we use 7 as described in Thm. 3302.

3303 Theorem: 7 is continuous at 0. Hence, t is continuous at (z,z) for
allz € £.

Proof: We must show that for all ¢ € P*, there is some neighborhood O
of 0 in V such that 7~ (O NF) C [0,¢].

Let ¢ € P* be given, and choose u € Int F. Determine v € P* such
that y7(u) < ¢, and put O := yu — F. Since u € Int F, O is a
neighborhood of 0 in V.

Now let v € O N F be given. Then we may choose f € F such that
v =~yu — f. By Thm. 3302(2) and (3), we have

0<7(v)+7(f) <7(yu) = y7(u) <e.

Hence 7(v) < e. Since v € O NF was arbitrary, we have 7~ (ONF) C
[0,e[. Since € € P* was arbitrary, the first statement of the Theorem
is proved. The second statement follows immediately from the first. ¢
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Remark: As it happens, the condition Thm. 3302(3) is not needed in
the foregoing proof. Instead of selecting v € P* such that y7(u) <
g, one may determine ¢ € N* such that 7(u) < ge. With such a
determination of ¢, one may dispense with Thm. 3302(3).

Moreover, using Thm. 3302(3), one may show that 7 is continuous
on Int . One may also construct examples of functions 7 : F — R
satisfying Thm. 3302(2) but not Thm. 3302(3) and failing to be
continuous at some v € Int F. Details are left to the Exercises.

3.4 Parameterizations

Let a flat eventworld £ with translation space V and future cone F be given.

We wish to impose further requirements on £ which, while not being too
restrictive, still allow for a discussion of some important results which will
be useful later. As a result, we confine our attention to the case when F is
closed because a discussion of parameterizations becomes simpler with this
assumption.

Hence, for the remainder of this section, we assume that F is closed. We
note the following consequence of this assumption. The proof is left as an
Exercise.

3400 Proposition: £ is genuine.

The following two Propositions give conditions sufficient to ensure that a
given mapping is the parameterization of a worldpath.

3401 Proposition: Let I be a genuine interval in R, andq : I — & be con-
tinuous and strictly isotone; i.e., for all t1,ty € I, t1 <ty = q(t1) < q(t2).
Then L := Rng q is a worldpath and q is a parameterization of L (see Def.
2305).

Proof: Since ¢ is strictly isotone, then L is totally ordered by <, and
hence by <. To show that £ is L. m.t.o. (see Def. 1300), let z1,z2 € L
be given such that z; < zo and let z € [z1,z2] be given such that
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{2z} U (L N [z1,z2]) is totally ordered. Determine t1,t, € I such that
z1 = q(t1) and x2 = ¢q(t2). Then t; < t3 and

L0 [z1, 2] = ¢>([t1,t2])-

The assumptions that z € [z1,z2] and that {z} U g~ ([t1,12]) is totally
ordered imply that the sets

Jti={t €[t,ta]lq(t) — 2 € F} = ¢ (2 + F)

and
J= = {s €[t1,ts]]z — q(s) € F} = ¢<(z — F)

are nonempty and satisfy J* U J~ = [t1,%s]. Since g is continuous, F
is closed, and hence J* = ¢<(z+F) is closed, it follows that J~ is also
closed (in R). Moreover, since ¢ is isotone, we have s < ¢t for all s € J—
and t € J*. These observations imply that ¢ := inf JJ* = supJ~
satisfies {o} = J* N J~. Therefore, we have ¢(c) < z and z < ¢(0).
Since the restriction of < to {z} U g>([t1,12]) is antisymmetric, we
conclude that z = ¢(o) and hence that z € £ N [z1,22]. Since z
was arbitrary, it follows that £ is l.m.t.o. Since [ is genuine and ¢ is
strictly isotone, £ must contain at least two events, and hence £ is a
worldpath.

That ¢ is a parameterization of £ follows immediately upon inspection
of Def. 2305. O

3402 Proposition: Let I be a genuine interval in R, and let ¢ : I — &
be differentiable with Rng ¢* C F \ (=F). Then L := Rng q is a worldpath,
and q is a parameterization of L.

Proof: Since F is closed and convex and Rng ¢* C F, we have by the

Difference-Quotient Theorem (see [7], §61) that
q(t2) —q(t) € (2 —t))F C F

for all ¢1,t9 € I such that ¢; < t9. Hence ¢ is isotone.

Now assume that g is not strictly isotone. Then we may find t1,%3 € T
with t; < to such that z := ¢(t1) = q(t2). Let s1,s2 € [t1,12] be given
such that s; < s9. Since t; < s1 < 89 < t9, the isotonicity of ¢ implies
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that z < g(s1) < g(s2) < z, and hence g(s2) —g(s1) € FN(—F). Since
81,82 € [t1,t2] were arbitrary and F N (—F) is closed, it follows that
¢ (Jt1,t2[) € FN(—F), which is inconsistent with the assumption that
Rng ¢* C F\ (—F). Hence ¢ must be strictly isotone. The assertion
of the Proposition then follows from Prop. 3401. O

Remark: When the precedence < is relativistic (that is, antisymmetric),
the condition “Rng ¢* C F \ (—F)” in the previous Proposition is
equivalent to the condition “Rng ¢* C F*”.

When the precedence is classical (that is, total), the condition “Rng ¢* C
F\ (—F)” is equivalent to “Rng ¢* C Int F”.

We now discuss a few results which are valid when < is relativistic. The
proof of the first Proposition is left as an Exercise.

3403 Proposition: The precedence < is relativistic (i.e., FN(—F) = {0})
and F is closed if and only if for all z,y € € such that z < y, [z,y] is closed
and bounded.

3404 Proposition: Assume that < is relativistic. Then every closed, to-
tally ordered, nonempty set of £ bounded below [above] has a mimimum
[maximum].

Proof: Suppose that S is a closed, totally ordered, nonempty set bounded
below by a € £. For each ¢ € S, define 7; := [a,q] NS, and put
T:={7,|q € S}. By Prop.3403, T is a collection of closed, bounded,
nonempty subsets of £ and is easily seen to be totally ordered by set
inclusion. Hence, by a familiar topological result, (| T # 0.

Choose m € (] T. By the definition of T, we must have m € S, as well
as m € [a,q] and hence m < ¢ for all ¢ € S. Hence, since <|g is an
order, m must be the minimum of §.

The proof regarding the maximum is analogous. ¢

We introduce the following convenient notation.

Notation: N :=F U (—F).
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We remark that for all z,y € &, z is related to y if and only if y —z € N.
In addition, since F is closed, it immediately follows that A is closed.

3405 Proposition: Assume that < is relativistic. Let a totally ordered,
nonempty set S C € be given such that S is bounded below [above]. Then
S has an infimum [supremum] which belongs to Clo S.

Proof: We first show that Clo S is totally ordered, nonempty, and bounded
below. To see that < restricted to Clo S is total, let z,y € Clo § and
g € S be given. Since S is totally ordered, then S C g+N. Since ¢+ N
is closed, it follows that z € Clo S C ¢+ N. As N = —N/, we see that
g € ¢+ N. This relationship is valid for all ¢ € S, so that S C z + N
Again, since z + N is closed, we have that y € Clo S C z +N. Thus
y € z+ N, and hence z is related to y. As z,y € Clo S were arbitrary,
it follows that < on Clo S is total. Since < on £ is an order, so is <
restricted to Clo §, and hence we see that Clo S is totally ordered.

We now show that Clo S is bounded below. To this end, let a be a
lower bound for S. Then § C a + F. Since a + F is closed, we must
have Clo § C a + F, and hence a is a lower bound for Clo §. Thus,
Clo S is bounded below. Finally, since S is nonempty, so is Clo S.

These observations allow us to apply the previous Proposition to Clo S;
we denote by m the minimum of Clo §. Clearly, m < g for allg € S
since § C Clo §. To see that m is the greatest lower bound for S,
suppose that m’ € £ is such that m < m/ < ¢ for all ¢ € S. Then
we have § C m' + F. Since m' + F is closed, this results in m €
Clo S c m' + F, and hence m' < m. The antisymmetry of < implies
that m = m/. Thus, m € Clo § is seen to be the infimum of S.

The proof regarding the supremum is analogous. O

We assume now and for the remainder of this section that £ has the structure
of a timed flat eventworld (see Def. 3300). As a result, we are in a position
to prove some interesting results about timelapses along worldpaths and
time-parameterizations of material worldpaths.

We first prove a result about time-parameterizations of material worldpaths
in the case when the precedence is relativistic.
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3406 Theorem: Assume that the precedence is relativistic. Suppose that
a material worldpath L, I C R, and a time-parameterization p : I — £ of
L are given. Then I is a genuine interval in R.

Proof: To see that I is an interval, let a,b € I be given and suppose that
¢ € R is such that a < ¢ < b. Define

Jt:={rel|lc<r<b}nla,b,

J =={rella<r<c}nia,b=IN]a,b])\J",
Lt = p>(J+)a

L7 :=p-(J)=L\ LT

Now LT is totally ordered and bounded below by p(a), and £ is
totally ordered and bounded above by p(b). Hence, by Prop. 3405,
we may define both e* := inf LT and e~ := sup £L~. In addition, we
must have e™ = e~ € L, otherwise (LN [p(a),p(b)])U[e”, eT] would be
a totally ordered subset of [p(a), p(b)] strictly including £LN[p(a),p(b)],
which is impossible as £ is l.m.t.o.

As a result, we may choose ¢’ € T such that p(c’) = e~ = e™. Since
et = inf L7 it follows from the continuity of t at (e™,e") (see Thm.
3303) that

0 = inf{t(e*,p(t)) |t € J*}.

Now t(et,p(t)) > tc(eT,p(t)) for all t € JT, so we have, since ¢ <
inf J7T,

0 = inf{t(e®,p(t)) |t € JT}
inf{tz(p(c'), p(t) |t € T}
inf{t —c|[te J}

= infJT — ¢

/
c—C.

\Y%

v

This implies that ¢ < ¢’. We may analogously show that ¢’ < ¢ by
applying the same analysis to £7; from this we may conclude that
c=c e€I. Since a,b € I and ¢ € R were arbitrary, and since £ being
a worldpath implies that I contains at least two members, we see that
I is a genuine interval in R. ¢
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We now assume that 7 is continuous. This will allow for a simple description
of the timelapse function along material worldpaths.

Although the following result is often used to define the timelapse along a
material worldpath, it follows from the more general consideration of time-
lapses discussed in Chapter 2. We leave the technical proof as an Exercise.
It is directly analogous to the derivation of the formula for arc length in a
Euclidean space.

3407 Theorem: Let I be a genuine interval in R, and let ¢ : I — & be
a smooth' mapping such that Rng ¢* C F\ (=F). Then L := Rng q is a
worldpath, and for all a,b € I, we have

b
t(q(a), q(b)) = / rog. (34.1)

For convenience, we introduce the following notation.
3408 Notation: F; := {v € F|7(v) = 1}.

3409 Proposition: Let a genuine interval I in R and a smooth mapping
q : I — & such that Rng ¢* C F be given. If(q*(t)) > 0 for allt € I, then L
is a material worldpath. In this case, £ has a smooth time-parameterization.

Moreover, q is a time-parameterization of L if and only if Rng ¢* C Fi.

Proof: It is easy to show that v € F N (—F) implies that 7(v) = 0.
Hence the assumption that 7(¢*(t)) > 0 for all ¢ € I implies that
Rng ¢* C F\(—F). It follows from Prop. 3402 that L is a worldpath.
That £ is material follows immediately from Def. 2300 and (34.1).
That £ has a smooth time-parameterization is an application of Thm.
2306.

"More precisely, we assume that g is continuously differentiable, and that ¢° is differ-
entiable except at a discrete set of points, at which the derivative of ¢* has both a left
and right limit.
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Now suppose that ¢ is a time-parameterization of £. Then it follows
from (34.1) that for all a,b € I, we have

b
/ Tog"=b—a.
a

We see from the Fundamental Theorem of Calculus that 7o0¢° = 1,
and hence Rng ¢°* C Fi.

If Rng ¢° C Fi, then the fact that ¢ is a time-parameterzation of £
follows directly from Def. 2305 and (34.1). O

Remark: The converse of the first assertion in the previous Proposition
is not necessarily true. One may, for example, exhibit material world-
paths for which there is ¢ € I such that 7(¢*(¢)) = 0.

3410 Corollary: Let I be a genuine interval in R and letd : I — F
be a mapping which is piecewise continuously differentiable and satisfies
Rngd C Fy forallt € I. Givenc € I and q € £, the mappingp : I — &
defined by

p(t) :=q+/ctd

for all t € I is a smooth time-parameterization of a material worldpath.

Exercises

EXERCISES, 1

1. Prove Prop. 3103.
2. Prove Prop. 3104.
3. Complete the proof of Thm. 3108.
4. Complete the proof of Thm. 3202.

5. Complete the proof of Thm. 3207.
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10.

11.

12.

13.
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Complete the proof of Thm. 3302.

As alluded to in the Remark following the proof of Thm. 3303, prove
Thm. 3303 without using the assumption Thm. 3302(3).

Let £ be a flat timed eventworld (see Def. 3300). Show that 7 is
continuous on Int F (see the Remark following the proof of Thm.
3303).

As alluded to in the Remark following the proof of Thm. 3303, pro-
duce an example of a timed flat eventworld £ with future cone F, a
mapping 7 : F — P which satisfies Thm. 3302(1)—(2), fails to satisfy
Thm. 3302(3), and fails to be continuous at some v € Int F.

Prove Prop. 3400.
Prove Prop. 3403.
Prove Thm. 3407.

Prove Cor. 3410.

EXERCISES, 11

In Exercises 1-3, let a flat space £ with translation space V be given. In these
Exercises, the results to be shown are theorems of affine geometry (i.e., the
theory of flat spaces). That is, they are results about parallelism of lines,
concurrence of lines, or ratios of line segments. In affine geometry, there
is no length or angle measurement — these subjects belong to the realm of
Euclidean geometry. Nonetheless, many interesting theorems can be proved.

1.

Let z,y € £ and A\, u € P* be given.
(a) Show that there is exactly one point z € £ such that
wx—2z)+ Ay —=z) =0.

We say that z is the point that divides the pair (z,y) in the
ratio A\ : u. The point that divides (z,y) in the ratio 1 : 1 is
called the midpoint of (z,y).
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(b)

Show that the point z described in (a) satisfies

1

z:q+m()\($—Q)+N(y—Q))

for all g € £.

Let p,q,r, s € £ be given. Show that the following are equivalent:
i. The midpoint of (p,r) coincides with the midpoint of (g, s),

ii.g—p=r-—s,
ili. r—g¢g=s—p.
If any one (and hence all three) of these conditions is satisfied,

then we say that p, ¢, r, and s are the vertices of a parallelo-
gram.

Show that the midpoints of the sides of a quadrilateral (not nec-
essarily plane) in a flat space are the vertices of a parallelogram.
In other words, given a,b,c,d € £, show that the midpoints p, g,
r, and s of the pairs (a,b), (b,¢), (¢,d), and (d,a), respectively,
are the vertices of a parallelogram.

3. We may interpret three points a,b,c € £ which do not all lie in the
same straight line as the vertices of a triangle. We call (a,b), (b,¢),
and (c,a) the sides of the triangle. Given a vertex, then the pair
whose terms are the other two vertices of the triangle is called the
side opposite the vertex. For example, (b, c) is the side opposite a.

(a)

A median of a triangle is a line segment (see Def. 3107) from
a vertex to the midpoint of the side opposite that vertex. Show
that the three medians of a triangle are concurrent; that is, they
intersect in exactly one point. This intersection is called the
centroid of the triangle. Show also that the centroid divides a
vertex and the midpoint of the side opposite this vertex in the
ratio 1 : 2.

Consider three points z1,z9,z3 € £ which do not all lie on the
same line. Assume that y; divides (z2,z3) in the ratio A1 : uq,
and y, divides (z1,x3) in the ratio Ay : p9. Determine the ratios
in which the point ¢ of intersection of [z1,y:1] and [z2,y2] divides
(z1,91) and (22, y2).
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4. (a) Let z1,z9,z3 be three points not on a line. Suppose that y;
divides (z2, z3) in the ratio A; : 1, yo divides (z3, 1) in the ratio
A2 : 1, and y3 divides (z1,2z2) in the ratio A3 : 1. Show that the
line segments [z1,y1], [z2,y2], and [z3,y3] are concurrent if and
only if AyAoA3 = 1. This result is often referred to as Ceva’s
theorem.

(b) Use the result of (a) to obtain a possibly different proof for Ex-
ercise 3(a).

5. Let £ be a flat space with translation space V, and let K be a linear
cone in V. Show that K satisfies both

KN(-K)={0} and KU(-K)=V
if and only if K is the direction cone of a total order.

6. Let a flat eventworld £ be given. Show that the subsets Pres(z) — x
and Past(z) — z of V do not depend on the choice of z € £.

EXERCISES, 111

1. Let < and t be as in Exercise II,2 of Chapter 2. We see that R? has
the structure of a flat space with translation space R2. Show that R?
is in fact a timed flat eventworld, and find the direction cone of <. Is
this eventworld genuine (in the sense of Def. 3205)?

2. Consider the example in Exercise I1,5 of Chapter 1, with 7 := R and
S := R & = R? has a natural flat-space structure. Show that < is
translation-invariant and connected, and find the direction cone of <.
Is £ genuine (in the sense of Def. 3205)7

EXERCISES, IV
1. Give an example of a flat, non-genuine (in the sense of Def. 3205),

relativistic eventworld of dimension two.

2. Give an example of a flat space £ and a reflexive, transitive relation «
on & such that:

(a) <« is translation-invariant but not connected,
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(b) < is connected but not translation-invariant.

3. Give an example of a genuine flat eventworld £ and z,y € £ with
x # y such that z < y but [z,y] is not a worldpath from z to y.

4. Produce an example of a genuine flat timed eventworld £ with time-
lapse t such that

(a) G:={(z,y) € Gr(<) |z #y and t(z,y) = 0} # 0, and
(b) At every pair in G, t fails to be continuous.
5. Produce an example of a flat eventworld such that there is a totally
ordered subset that is bounded below but has no infimum. (Hint: Is

this possible if the precedence is relativistic and the future cone is
closed?)
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