Chapter 5

Geometric Structures.

We assume in this chapter that numbers r,s €7, with r > 3 and s € 0..r,
a C" manifold M and a C? linear-space bundle B over the manifold M are
given. We also assume that both M and B have constant dimensions, and put
n = dimM and m := dimB — dim M. Then we have n = dim T, M and
m = dim B, for all x € M.

51. Compatible Connections

Let 2 € M be fixed. Let ® be an analytic tensor functor and let E € ®(B,,)
be given.

Notation: We define the mapping

E° : Tlis,. B — ®(B) (51.1)
E°(T) := ®(T)E for all T € Tlis,B. (51.2)

Since ® is analytic, it is clear that E° is differentiable at 15, .

Proposition 1: We have Vi, E® € Lin (S,B, Tz ®(B)) and, for every bundle
chart ¢ € Ch, (B, M),

(Viy, E%)s = AR WP,s + 1.8, (A(A2)s)E (51.3)

for alls € S,.B.

Proof: By using (51.2) and the definition (23.21) of gradient, we obtain the

desired result. ]
. . o | ®(Bz)
Taking the gradient of E°|;. " at 15, we have
(Vlm E° I‘f’(’z))L = (®,(L))E (51.4)

for all L € LinB,.. For the sake of simplicity, we use the following notation

B = Vi, (B°[f ) (51.5)
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Given r € \{0}, we observe from (51.5) that (rE)° = rE° and hence
Null E° = Null (rE)°. (51.6)
It is follows from (51.3) and (51.4) that
P, = B(Viy E°) and (Vi E)L, = LE°,

i.e. the diagram

Lin B, L, S.B 2N T, M

El Vi, El || (51.7)

B(B,) —=5 T.®B) = T, M
commutes. And it also clear from (51.3) that
AS? = (V1 E°)A? € Reong®(B) (51.8)
for all bundle chart ¢ € Ch, (B, M). More generally, we have

(Vis, E°)K € Reong ®(B) for all K € Con,B. (51.9)

In view of (51.9), the mapping Vi, E° induces the following mapping.
Definition: We define the mapping

Jz : Con, B — Reong®(B)

Je(K) := (V1 E°)K for all K € Con,B. (51.10)

Proposition 2: The mapping Jg, defined in (51.10), is flat. Hence, for every
D € Rng Je, J5=({D}) is a flat in Con,B with

dim JZ({D}) =7777.

Let a cross section H : M — ®(B), that is differentiable at x € M, be given.
The gradient of H at z is a tangent connector of ®(B); i.e. V,;H € Rcong,, ®(B).
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Proposition 3: We have
VkH = A((VlBIH(x)O)K)VxH (51.11)

for all K € Con,B and hence VkH = 0 if and only if Ju.,(K) = V,H, i.e.
K eJs, ({VH}).

Proof: The desired result (51.11) follows from (51.8), (41.11), (42.1) and Re-
mark 1 of Sect. 32.

If K € Con,B be such that VkH = 0, then it follows from (51.11) that
A((Vle H(a:)Q)K)VmH = 0. Applyiny Prop.1 of Sect.14, we see that this can
happen if and only if (V1, H(z)°)K = V,H. Since K € Con,B was arbitrary,
the assertion follows. I

Now, let a differentiable cross section H : M — ®(B) be given.

Definition: A connection CM — ConB is called « H-compatible connection
if Vo@yH =0 for all x € M, i.e.

VcH = 0. (51.12)

It clear from Prop.3 that a connection C is H-compatiable if and only if

Ju) (C(z)) = V,H for all = e M. (51.13)

Proposition 4: Let connectors K1, Ky € J5,,({VeH}) be given and determine
L € Lin (T, M, LinB,) such that Ky — Ko = I.L; then we have

H(x)°(Lt) =0 for all te T, M. (51.14)




52. Riemannian and Symplectic Bundles

We apply Sect.51 to the case when ® = Smfy or Skfy (see example (4) of
Sect.13).
Let © € M be fixed and E € ®(B,), ® = Smf, or Skfs, be given. We have

E°(M)=Eo(Mx 15,) + Eo (15, x M), (52.1)

where E° is given in (51.5), for every M € Linl3,.

Proposition 1: If E is invertiable, then E° is surjective; i.e.

Rng E°® = Sym,(B2,) when & = Smf, (52.2)
i.e., B € Sym,(B2,) and

Rng E° = Skwy(B2,) when & = Skf, (52.3)

i.e., E € Skwo(B2,).

Proof: By using (52.1). 1

Proposition 2: If E is invertiable, then the flat mapping Jg defined in (51.10)
18 surjective.

Proof: The surjectivity follows directly from (51.3), (51.4), (51.5) and the sur-
jectivity of E°. ]

In view of Prop.2 we see taht, for every D € Rcong®(B), the preimage
J5({D}) is a flat in Con,B. Let Ki, Ky € J5({D}) be given and determine
L € Lin(T,M,LinB,;) such that Ky — Ky = I, L. Applying (51.3), we have
0 = Jp(Ko)—Jg(K;) = E°(L), that is L € Lin(T, M, Null E°). Since K, K> €
J5({D}) were arbitrary, we conclude that

dim J5({D}) = dim Lin(T, M, NullE®). (52.4)

Definition: A cross section G : M — Smfy(B) is called a Riemannian field
if, for every x € M, G(x) is invertiable when regard as element of Sym(B,., By ).

A cross section S : M — Skfs(B) is called a symplectic field of B if, for
every x € M, S(x) is invertiable when regard as element of Skw(B,, By).

We say that B is a C* Riemannian linear space bundle if it is endowed
with additional structure by the prescription of a C*® Riemannian field.

We say that B is a C*° symplectic linear space bundle if it is endowed
with additional structure by the prescription of a C° symplectic field.

4



Remark 1: A symplectic field of B exist if and only if, for every x € M,

m := dim B, is even (see Sect.11). If m is odd, then

Skw(B,, B:) N Lis(B,, BZ) = 0.

1
Proposition 3: If G : M — Smfy(B) is a Riemannian field, then
dim JS,, ({2 G}) = n(?) for all x e M. (52.5)
If S : M — Skfy(B) is a symplectic field, then
1
dim J5,, ({V%S}) = n(m;— ) for all x € M. (52.6)
Proof: It following easily from (52.4), (52.2) and (52.3). I

Remark 2: Let G be a Riemannian field and C : M — ConB be a G-
compatible connection. Let L : M — LisB be a cross section with VoL = 0 be
given. Then, it follows from VoG = 0 and VcL = 0 that Vo (Go (L x L)) = 0.

Hence, the Riemannian field H := G o (L x L) satisfies VcH = 0.




53. Riemannian and Symplectic Manifolds.

Definition: We say that M is a« Riemannian manifold if the tangent bundle
TM is endowed with additional structure by the prescription of a C"~1 Rieman-
nian field.

We say that M is a symplectic manifold if the tangent bundle TM is
endowed with additional structure by the prescription of a C™~' symplectic field.

Let a Riemannian field G : M — Sym™ (TM, TM*) of class C"~! be

given.

Proposition 1: For every x € M, the restriction

T, J50 ({VMG}) — Skwa (T, M?, T, M) (53.1)

IS0 ({%GY)

of the torsion mapping T, is bijective.

Proof: Given z € M. If K;,K5 € Con,(TM, M), then we have T,(K;) =
T, (K,) if and only if K; — Ky = I, L for some L € Sym,((T,M)?, T, M) and
hence

(G(2)L)(t,b,d) = (G(z)L)(b, t,d) (53.2)

for all t,b,d € T, M.

Let K1, Ky € J5,,({V.G}) with T,(K;) = T,(Ks2) be given and deter-
mining L € Liny((T,M)?, T, M) such that K; — Ky = I,L. Applying (52.1),
(51.14) and (53.2), we have

(G(:L‘)L)(t, b, d) = _(G(x)L)“’v d, b) = _(G(x)Lxdv t, b) =
= (G(2)L)(d, b, t) = (G(z)L)(b,d, t) =
— (G()L)(b,t,d) = —(G()L)(t, b, d)

for all t,b,d € T, M. This shown that G(z)L = 0. Since G(z) is invertible, we
observe that L = 0 and hence K; = K5. In other words, the restriction

a5

s mep  Jow ({%GY) = Skwa(To M, Ty M) (53.3)

of the flat mapping T, is injective and hence bijective. Since x € M was
arbitrary, the assertion follows. I



Proposition 2: For every x € M, we have

I5({V%G)) = {K - %ImG(:z;)_l(S (VkG))|K € Cong(TM, M)} (53.4)

where

(S (VkG)) = VG + VG2 — ¥ G~(19),
Moreover, if K1,Ks € Con, (7 M, M) with T,(K;) = T,(Ka), i.e.

K, — K, € {I,}Sym, (T, M?, T, M)),

then we have

1
K, — 51@(@*1 (Vk,G + Vi, G™1 — e, GT3))

1
=K, — 5136(;(95)*1(%@2(; + Vi, G — v, G,

(53.5)

Proof: By (41.8), we have

(O.G)I,G(2) ' VkG)(s, t,u) = VkG(s, t,u) + Vk G(s, u, t),
([0,G)L,G(2) 'V G~ 1) (s, t,u) = VkG(t,s,u) + VkG(u,s,t), (53.6)
([0,G)LG(2) 'V G~ (s, t,u) = VkG(t, u,s) + VK G(u, t,s);

for all s, t,u € T, M. Observing Vk G € Lin (7, M, Sym, (7, M?,)), we see that
(53.4)) follows easily from (53.6). I

The more general version of “the fundamental theorem of Riemannian ge-
ometry” follows immediately from Prop. 1:

Fundamental Theorem of Riemannian Geometry (with torsion):
For every prescribed torsion field L : M — Skwo(TM?2, TM) of class C*,
s € 0..r — 2, there is exactly one G-compatible connection C, i.e. one satisfying

Ve G = 0, such that T(C) = L. C is of class C*.

Remark 1: When L = 0, the corresponding connection is called the Levi-
Civita connection. ]

Remark 2: It follows from Theorem 3 that for every connection C' : M —
Con7TM of class C®, s € 0..r — 2, there is exactly one connection C : M —
Con 7M such that T(C) = T(C’) and VcG = 0. Moreover, in view of Prop. 2,
we have

1
C=C - 51(;*1 (VoG = Vo G™12) 4 Vo, GTI), (53.7)
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Now let a connection C : — ConTM be given. We may define, for each
r € M, a mapping

AS : Con, TM — Symy (T, M? T, M) (53.8)

AS(K) := A(C(z))K + (A(C(2))K)™ for all K € Con,TM. (53.9)

Let a symplectic field S : M — Skw™ (T M, T* M) of class C"~! be given.

Proposition 3: For every x € M, the restriction

AS 15 (%S J5., ({V%S}) — Symy (T, M?, To M) (53.10)

of the mapping AS is bijective.

Proof: Similar to the proof of Prop. 1. ]

Proposition 4: For every connection C and each prescribed symmetric field
L : M — Symy(TM?2 TM) of class C%, s € 0..r — 2, there is exactly one S-
compatible connection K, i.e. one satisfying VS = 0, such that A°(K) = L.
K is of class C°.

Proof: It follows immediately from Prop.3. ]

Notes 53

(1) The proof of the Fundamental Theorem of Riemannian Geometry given
here is modelled on the proof given by Noll in [N1].

(2) In [Sp], Spivak, M. stated: “Perhaps its only defect [of the fundamental
theorem of Riemannian geometry] is the restriction to symmetric connections.”
We show that this restriction is not needed.



54. Identities

Let a C", r > 2, Riemannian manifold M with the Riemannian-field G be

given. Assume that dim M > 2.
For every A, B € X(TM) and a connection C : M — Con(TM), we use

the following notations

(A,B) :==G(A,B) and ViB:=(VcB)A.

Proposition 1: A connection C on a Riemannian manifold M is compatible
with the Riemannian-field G if and only if

A(B, D) = (V4uB, D) + (B, V4D) (54.1)

for all A,B,D € X(TM).
Proof: Taking the covariant gradient of G o (B, D) with respect to C, we obtain

(Vo(G o (B, D)))A = G((VeB)A, D) + G(B, (VeD)A).
+ (VoG)(4A, B, D)

The equation (I.1) holds if and only if VoG = 0. I
For the sake of simplification, we adapt the following notation
(X,Y,Z,T) = (R(X,Y)Z,T) forall X)Y,Z T e X(TM),

where R := R(C) is the curvature field for a given connection C. Also recall

that
R(X,Y,Z) =VyVxZ - VxVyZ+Vixy|Z

for all X|Y,Z € X(TM).

Proposition 2: Let C be a connection on a Riemannian manifold M which is
compatible with the Riemannian-field G, then we have

(X,Y,Z,TY) = —(X,Y,T, 2) (54.2)

for all X, Y, Z, T € X(TM).

Proof: To prove (I.2) is equivalent to show
0=(X,Y,Z,2) = (VyVxZ - VxVyZ+VixyZ 7).
Applying (I.1), we have
(VyVxZ,7Z)=Y(VNxZ,Z) — (VxZ,NyZ)
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and
(VxVyZ,72)=X(NyZ,Z) —(NyZ,NVxZ).

Hence
It follows from (I.1) and the symmetry of the Riemannian-field G that

%A(D,D) = (WuD,D) forall A D e X(TM). (54.3)

And hence

(X,Y,2,7) = %Y(X(Z, 7)) — %X(Y(Z, 7)) + %[X, Y|Z,Z)

1 1
Since X,Y, Z € X(TM) were arbitrary, the equation (I1.2) follows. I

Let C be a compatible connection with the Riemannian-field G.

Given z € M. Since R,(C) € Skwy(T,M? Lin T, M), we observe form

Prop. 2 that
(-, -, ) €Skwy(T,M?, Skwo(T,M?2))).

Lemma : Let an inner-product space T , with dim 7 > 2, and a two-dimensional
subspace S of T be given. If both {u,v} and {s,t} are bases for S, then we have

W(u7v7u7 V) _ W(S7t7s7t) (54 4)

(uAVv)(a,v) (s At)(s,t)

for all W € Skwo (72, Skwa(72,)).

Proof: By calculations. ]

Applying the above Lemma, we arrive the following definition.

Definition : Let V C T, M be a two-dimensional subspace of T, M. Let {u,v}
be a basis for S. The sectional curvature of S at x is defined by

{u, v, u,v)) (54.5)

K (S) = (uAv)(a,v)
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which does not depend on the choice of {u,v}.

Remark : The definition of sectional curvature “does not”

require the assuption
of the compatible connection C to be torsion-free.

Proposition 4: Let C be a connection on a Riemannian manifold M which is
compatible with the Riemannian-field G, then we have

(XY, Z, WY —(Z,W,X,Y) = V(X,Y,Z,W) (54.6)

for all X,Y, Z, W € X(TM).
Proof:

R(X,Y)Z-W+R(Y,2)X -W+R(ZX)Y - W
TR, Z2)W X +R(ZW)Y - X +RW,Y)Z - X
+R(ZW)X Y +RW,X)Z-Y +R(X,Z)W - Y
+RW,X)Y - Z+RX, Y)W -Z+RY,W)X - Z
=VT(X,Y,2) WH+VTY,2,X) - W+VT(Z,X,Y) W

TVTY,Z,W) - X +VT(ZW,Y) X+VTW,Y,2) X
+VT(Z,W,X)- Y +VT(W,X,2)- Y +VT(X,W,2)-Y
FVT(W,X,Y) Z+VT(X,Y,W)- Z+VT(Y,W,X)-Z
+TT(T(X,Y),2) - W+ T(T(Y,2),X) W+ T(T(Z,X),Y) W
T(T(Y, Z),W)- X + T(T(Z,W),Y)- X + T(T(W,Y),Z) - X
T(T(Z,W),X) Y + T(T(W, X),2)- Y + T(T(X,2),W) Y
T(T(W, X),Y) - Z + T(T(X,Y),W) - Z + T(T(Y,W),X) - Z

Proposition 5: Let C be a connection on a Riemannian manifold M which is
compatible with the Riemannian-field G, then we have

tr <R(x)(s, )t — R(z)(t, )s + R(2)(t, s)) —7777 (54.7)

for alls,t € T, M.

Second Proof of Pro. 2:
In view of (I.1) we have, for all X,Y,Z,T € X(TM),

(VyVxZ,T)=Y(VxZT)— (VxZ VyT),
(VxVyZ,T) = X(VyZ,T) — (Vy Z,VxT)
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and
(Vixv2,T) = [X,Y(Z,T) - (Z,VixyT).

Hence

(X,Y,Z2,T) =(VyVxZT) = (VxVyZ,T) + (Vixv)Z,T)
— Y(VxZ,T) — (VxZ,VyT) — X(Vy Z,T) + (Vy 2,V xT)
+[X,Y[(Z,T) = (Z,VixyT)
— Y(X(Z,T)) - Y{(Z,VxT) — X(Y(Z,T)) + X(Z,VyT)
(VX Z,VyT) + (Vy Z,VxT) + [X, Y|Z.T) — (Z,V x| T)
— Y(Z,VxT) + X(Z,VyT)
—(VxZ,NVyT)+ (VyZ,VxT) — <Z,V[X7Y]T>
=—(VyVxT,Z)+ (VxVyT,Z) — <V[X’Y]T, Z)
=—(X,Y,T,2) .

Since X, Y, Z, T € X(TM) was arbitrary, the assertion of Prop. 2 follows.

55. Einstein-tensor field

Let a C" manifold M, with » > 2 and dim M > 2, and a C" connection
C : M — Con(TM) be given. Assume that G : M — Sym,(TM?2,) be a
Riemannian-field compatiable with the connection C.

Let x € M be given and assume that the following condition hold
tr (R(m)(s, )t — R(z)(t,)s + R(z)(t, s)) —0, (55.1)
i.e. we have
tr (R(x)(s,-)t) — tr (R(z)(t,-)s) + tr (R(z)(t,s)) = 0.
Since R(z)(t,s) is skew-symmetric with respect to G, we obtain that

tr (R(x)(s,)t) = tr (R(z)(t,-)s) for all s,t €T, M.

Definition : The Ricci-tensor field Ric: M — Sym,(TM?2,) is defined by
Ric(z)(s,t) := tr (R(x)(s,-) t) (55.2)
for all x € M and all s,t € T, M.
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Definition : The Einstein-tensor field Ein: M — Sym,(TM?)) is defined
by
1
Ein(x) := Ric(z) — §tr (G™(x)Ric(z)) G(x) (55.3)

for all z € M. (The factor 1/2 is determined by the assumption dim T, M = 4!)
It follows from the 2nd Bianchi Identity (this condition should be weaken)

that
dive Ein = 0. (55.4)

Remark: The matter tensor field Mat : M — Sym,(TM?)) satisfying
Ein(x) = k Mat(x) (55.5)
where € is the universal gravitational constant. It follows from (Ein.4)

and (Ein 5) that
dive Mat = 0 (55.6)

(balance of world-momentum). I
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