Chapter 3

Connections

31. Tangent Connectors

We assume that » € ~ with » > 2 and a C"-manifold M are given. Let a
number s € 1..r and a C* bundle (B, 7, M) be given. We assume that both M
and B have constant dimensions, and we put

n:=dimM and m:=dimB —dim M. (31.1)

Then m = dim B, for all z € M.

Recall that for every bundle chart ¢ € Ch(B, M), we have evio¢(v) = 7(v)
and

o(v) = (z, en(d(v))) where z:=71(v) (31.2)

for all v.€ Dom ¢. Moreover, if ¢,¢ € Ch(B, M), it follows easily from (31.2)
with ¢ replaced by ¢ that

(WeoT)(zu) = (2, en((¥s¢7)(z0))) (31.3)
for all z € Oy N Oy and all u € V. I
Now let b € B be fixed and put = := 7(b). Let in, : B, — B be the

inclusion mapping
inm = 1BxCB- (314)

Consider the following diagram
B, X, B T, M,
the composite 7oin, is the constant mapping with value x. Taking the gradient
of (T oing) at b, we get (Vp7)(Vping) = 0 and hence Rng Vpin, C Null V7.
Indeed, we have Rng Vin, = Null V,,7 as to be shown in Prop.1.
Notation: We define the projection mapping Py, at b by
Py, := V7 € Lin (TbB, Tm./\/l) (315)

and the injection mapping I, at b by

I, := Win, € Lin (Tbe, TbB). (316)



Proposition 1: The projection mapping Py, is surjective, the injection mapping
Iy, is injective, and we have

Null P, = Rng Iy, (31.7)
i.€. ! o
TpyB, — TpB — T, M (31.8)

1$ a short exact sequence.

Proof: Choose a bundle chart ¢ € Ch, (B, M). It follows from (31.2) that

(poing)(d) = (=, ¢J$(d)) for all d e B,.

Using the chain rule and (31.6), we obtain
(Vo) Ip) m = (O, Vb¢Jmm> for all m e TypB, . (31.9)
Since both VW, ¢ and Vbqﬁjw are invertible, it follows that NullI, = {0} and
RngIy = (Vbo) ({0} x TyVy) where v :=evw(p(b)). (31.10)
On the other hand, it follows from (31.2) that
(Tod™)(z,u) =2 forall z € Oy
and all u € V. Using the chain rule and (31.5) we conclude that
Py (Vo) (t,w) =t for all t e T, M (31.11)
and all w € TyVy. Since V¢ is invertible, it follows that Rng Py, = T, M and
Null P, = ((Vb9) 1) ({0} x TyVs) where v :=ev(¢p(b)). (31.12)

Since ((Vpp)™1)s = (Vbo)<, comparison of (31.10) with (31.12) shows that
(31.7) holds. I

Definition: A linear right-inverse of the projection-mapping By, will be called a
right tangent-connector at b, a linear left-inverse of the injection-mapping
I, will be called a left tangent-connector at b. The sets

RconpB := Riv(Pyp)

31.13

Leonp B := Liv(Ip) ( )
of allright tangent-connectors at b and all left tangent-connectors at b will
be called the right tangent-connector space at b and the left tangent-
connector space at b, respectively.




The right tangent connector space Rcony, B is a flat in Lin(T, M, Tp,B) with
direction space

{I,L | L € Lin (T, M, Tp ;) }, (31.14)

and the left tangent connector space Lconp 3 is a flat in Lin (TpB, Tp,B,) with
direction space

{-LP, | L € Lin (T, M, Tp8,) }. (31.15)

Using the identifications
Lin (T, M, TpB,){Pp} = Lin (T, M, TpB,) = {Ip }Lin (T, M, TpB),

we consider Lin (T, M, TpB,;) as the external translation space of both Rcony,B
and Lconp,B. Since dim Lin (T, M, Tp,B,) = nm, we have

dim RconpB = nm = dim LconyB. (31.16)

By Prop. 1 of Sect. 14, there is a flat isomorphism
A : Rconp B — Lconp B
which assigns to every K € RconpB an element A(K) € Leony, B such that
0 TpB, TpyB T, 0 31.17
(0} — TuB. o TeB oo TM — {0} (LD
is again a short exact sequence. We have

KPy, + IbA(K) =115 (31.18)

Proposition 2: For each bundle chart ¢ € Chy(B,M), let Aﬁ in
Lin (T, M, Tp,B) be defined by

Alt = (Vo) L(t,0)  forall teT, M. (31.19)

Then Aﬁ 1 a linear right-inverse of Py; i.e. Aﬁ € RconpB.

Proof : If we substitute w := 0 in (31.11) and use (31.19), we obtain
P,(Alt)=t  forall teT,M

which shows that Aﬁ is a linear right-inverse of Py,. 1
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Proposition 3: If ¢,4 € Ch,(B, M), then AL and A differ by
A} — A} =T, T
b Tb T Th (31.20)
A(A) — A(A}) = ~I)"Py
where
T = (V) ) 7 (e 0 %00 67)( 0], b)) (31.21)
which belongs to Lin (T, M, TpB,).
Proof : It follows from (31.2) that
¢(b) = (x,¢]_b). (31.22)
Using (31.3) and (31.22), we obtain
Vo) (¥ 5¢7)(t,0) = (t , eva (Vi (9o <b‘_)(~,<bij))t)> (31.23)

for all t € T, M.
In view of (23.16), with = replaced by b, v by 9, and x by ¢, we have

Vo) (¥ 267) = (V1) (Vog) "
If we substitute this formula into (31.23) and use (31.19) and (31.21), we obtain
(ou)(Aft) = (£, Vou] L)"t)
for all t € T, M. Using (31.19) with v replaced by ¢, we conclude that
Aft=Aft+ (o) (0, Viw| TVt)
for all t € T, M. The desired result (31.20); now follows from (31.9), with ¢

replaced by ¥ and m := I‘{f’d’t. Equation (31.20), follows from (31.20); and
Prop. 3 of Sect.14. ]

Notation: Let ¢ € Ch, (B, M) be given. The mapping
I‘l(f : Reonp, B — Lin (T, M, Tp,B,)
18 defined by T? .= T4 in terms of (14.10); i.e. by

Y(K):= —A(A{)K for all K € Reonp,B. (31.24)



If ¢ € Ch, (B, M), we have, by Prop. 6 of Sect. 14,

A K =T, TV(K)

A(A?) — A(K) = -T2 (K)Py, (31.25)

for all K € RconpB. Moreover; if ¢, € Ch, (B, M), then (31.20) and (31.24)
give
Y(K) - TY(K) =T>Y forall K € ReonyB, (31.26)

where I‘ff’w is defined by (31.21). It follows from (31.26) and I‘g} (Aﬁ) = 0 that
L)Y = T2 (A}) for all ¢,9 € Ch, (B, M).

Convention : Assume that B is a flat-space bundle. Let b € B be given and
put x := 7(b). The fiber B, has the structure of a flat space; the translation
space of B, is denoted by U,,. We may and will use the identification as described
in (23.9) and (23.10); i.e. we identify TpB, with U,. Then (31.8) becomes

I, Py

u, —— TpyB — T, M. (31.27)

In particular, if B is a linear-space bundle, we have U, = B, and (31.27) becomes

In P,

B, — TyB — T,M. (31.28)

Remark 1: For every bundle chart ¢ in Ch, (B, M), we have

Py, = ev; 0 V0, Aﬁ = (Vb¢)_1 oinsy,

L 5 » (31.29)
I = (Vo) ' oinsy o Vo) | A(A}) = (Vbo] )" (eva 0 Ving),

. C o] . . . .
where ev; and ins;, ¢ € 2, are evaluations and insertions, respectively.

Proof: Let ¢ € Ch,(B, M) be given. Using (31.9), (31.19) and also observing
AP, + ILA(AL) = 14,5, we have

Voo = Voo (ALP, + IbA(AD)) = (Py, (Vbo)| A(AD)). (31.30)

The desired result (31.29) follows from (31.9), (31.19) and (31.30). 1

If in addition ¢Jm = 1p_, then we have

I, = (Vo) ! oinsy and A(Aﬁ) = (eva 0 V).
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Remark 2: For every cross section s : M — B, we have Tos = 1. If sis
differentiable at z € M, then the gradient of 1y = 7 os at = gives

1Tw/\/l = Vm(T 0] S) = (VS(I)T)(VQCS) = Ps(m)vms. (31.31)
We see that Vs is a right tangent connector at s(z); i.e. Vs € Reong,)(B). 11

Remark 3: Let B be a linear space bundle and let x € M be given. Denote
the zero of the linear space B, by 0,. It follows from (31.21) that I"g:w =0 and

then from (31.20) that A& = Agw for all ¢,1 € Ch, (B, M). This shows that
{Agz | ¢ € Ch,(B, M) } is a singleton and hence

{A$ | ¢ € Chy(B,M)} Reong,B. I

Remark 4: For every b € B, we define the vertical space V,B of B at b by
VbB =NullP, = R,Ilg I, C TbB . (3132)
Since Iy, is injective, VB is isomorphic with Ty B (p,). The sequence

VpB «—— TpB —t T, ;M (31.33)

is a short exact sequence. For every right tangent connector K € RconpB, the
range of K

HEB := RngK ¢ TpB (31.34)
is called the horizontal space of B at b relative to K. It is easily seen that
VB and HE B are supplementary in Ty, B. I

Notes 31

(1) The convention that we made in this section was first introduced by
Noll, in 1974, on the tangent bundle TM (see [N3]). This convention plays a
central role in our development.

(2) The short exact sequence (31.33) can be found in [Sa].



32. Transfer Isomorphisms, Shift Spaces

We assume that » € ~ with r > 2 and a C"-manifold M are given. Let a
number s € 1..r be given and let B be a C? linear-space bundle over M. We
assume that both M and B have constant dimensions, and put n := dim M and
m := dim B — dim M. Then

m =dim B, forall ze M. (32.1)

Now let x € M be fixed. We define the bundle of transfer isomorphisms
of B from x by

Tlis, B := | J Lis(B,,B,). (32.2)
yeM

It is endowed with the natural structure of a C®-fiber bundle as shown below.
The corresponding bundle projection 7, : Tlis, B — M is given by

72(T):€ { y e M | T € Lis(B,,B,) } (32.3)
and the bundle inclusion ¢, : Lis B, — Tlis, B at x is
tz = L1isB, cTlis, B (32.4)
For every bundle chart ¢ € Ch, (B, M), we define
tlis? : Tlis, (Oy) — Oy x Lis(By, V) (32.5)

by
tlis?(T) := (2, ¢].T), where z:=m(T). (32.6)

It is easily seen that tlisﬁ is invertible and that
tlis? (L) = (¢],) 'L (32.7)

for all z € Oy4 and all L € Lis(B,,V,). Moreover, if ¢, ¢ € Ch, (B, M), it follows
easily from (32.7) and (32.6) with ¢ replaced by 1 that

(tlis;f . thsgf> (L) = (2, (Woo)(2)L) (32.8)

for all z € Oy N Oy and all L € Lis(B,,Vs) (See (22.7) for the definition of
Yo ¢). It is clear that tlis? s tlis?  is of class C*. Since ¥, ¢ € Ch,(B, M)
were arbitrary, it follows that { tlis] | @ € Chy(B, M) } is a CS-bundle atlas
of Tlis,B. We consider (Tlist, Wm,M) as being endowed with the C?® fiber
bundle structure over M determined by this atlas.
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Remark : We may view Tlis, B as a Tran,-bundle, where Tran, is the iso-
category whose objects are of the form Lis(B,,V) with V € LS and whose
isomorphisms are of the form

(T — LT) : Lis(B,, DomL) — Lis(B,, CodL)
with L € LIS. I

It is easily seen that the mappings 7, and ¢, defined by (32.3) and (32.4)
are of class C°.

We now apply the results of Sect.31 by replacing the ISO-bundle B there
by the bundle Tlis, B and b € B there by 15, € Tlis,B.

Definition: The shift-space S, B of B at x € M 1is defined to be
SeB 1= Ty, Tlis,B. (32.9)
We define the projection mapping of S.B by
P, := Py, = Vi, 7 € Lin (S, B, T, M) (32.10)
and the injection mapping of S.B by
I, :=T1,, = Vig, te € Lin(LinB,, S, B) (32.11)

in terms of (31.5) and (31.6); respectively, where 7, and v, are defined by (32.3)
and (32.4).

It is clear from (32.5) that

dim (Tlis,B) = dim (S, B) = n + m?. (32.12)

Proposition 1: The projection mapping P, is surjective, the injection mapping
I, is injective, and we have

NullP, = RngI, (32.13)
1.€.
LinB, = S§,B 2 T,M (32.14)

s a short exact sequence.

Definition: A linear right-inverse of the projection-mapping B, will be called a
right shift-connector (or simply right connector) at x, a linear left-inverse
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of the injection-mapping I, will be called a left shift-connector (or simply left
connector) at x. The sets

Reon, B := Reony, Tlis, B

. (32.15)
Leon, B := Lcony,; Tlis, B

of all right connectors at x and all left connector at x will be called the right
connector space at x and the left connector space at x, respectively.

The right connector space Rcon, B is a flat in Lin(T,M, S, B) with direction
space
{LL|L € Lin(T,M,LinB,) }, (32.16)

and the left connector space Lcon,B is a flat in Lin (S, B8, Lin B,,) with di-
rection space
{ —LP, | L € Lin (T, M, LinS,) }. (32.17)

Using the identifications
Lin (T3 M, LinB,){P, } = Lin (T, M, LinB,) = {I,}Lin (T, M, LinB,),

we consider Lin (T, M, Lin3,) as the external translation space of both Rcon, BB
and Lcon,B. Since dim Lin (T, M, LinB,) = nm?, we have

dim Rcon,B = nm? = dim Lcon,B. (32.18)

The flat isomorphism
A : Rcon,B — Lcon,B
assigns to every K € Rcon, B an element A(K) € Lcon,B such that
Lin B, R) S.B o T, M (32.19)

is again a short exact sequence. We have

KP, +I,AK) =155 forall K € Rcon,B. (32.20)

Convention : Since there is one-to-one correspondence between right connec-
tors and left connectors, we shall only deal with one kind of connectors, say right
connectors. If we say “connector”, we mean a right connector. The notation

Con,B := Rcon,B

is also used.




Proposition 2: For each ¢ € Ch,(B, M), let AS € Lin (T, M,S,B) be defined

tlis?®

by AS := Cy.* in terms of (31.19); i.e.
Aft = (Vi tlis?)7'(t,0)  forall teT, M. (32.21)

xT

Then A$ is a linear right-inverse of P,, i.e. A% € Con,B.

Let ¢ € Ch, (B, M) be given. We have the following short exact sequence

LinB, «— S,B «— T, M (32.22)
A(AD) A
and
ASP, + T,A(A?) = 1g_p. (32.23)

Proposition 3: If ¢, ¢ € Ch, (B, M) are given, then

A? —AY =1,T9Y

32.24
A(AD) - A(AY) = ~TYVR. 22
R tlisi’,tlisf . .
where LY =Ty in terms of (31.21) is of the form
LoV = (] )7 (VMo d)) o (1r,58 x ¢] ) (32.25)

which belongs to Lin (T, Lin B,). Here, the notation (22.7) is used.

Proof : Applying Prop. 3 in Sect. 32 with ¢ replaced by tlisf and v replaced
by tlis¥ together with (32.6) and (32.8), we obtain the desired result (32.25). 1

Notation: Let ¢ € Ch,(B, M) be given. We define the mapping

L : Con,B — Lin (T, M, LinB,)

is? . .
by T? := TAY = TV in terms of (14.10) and (31.24); i.e.

15,

L?(K)=-A(A2)K forall K € Con,B. (32.26)

€T

If ¢ € Ch,(B, M), then (31.25) reduces to

A? -~ K = I, L (K)

A(A?) — A(K) = —-T?(K)P, (32.27)
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for all K € Con,B. Moreover; if ¢, ¢ € Ch, (B, M), then
LK) -LY(K)=T%% forall K € Con,B, (32.28)
where T'?% is defined by (32.25). It follows from (32.28) that T'¥*¢ = —T'$¥ and
fromTY (AY) = 0 that I'Y (AY) = I'$¥ for all bundle charts ¢, ¢ € Ch, (B, M).
For every cross section H : O — Tlis, B of the bundle Tlis, B, the mapping

T : M — Tlis, B defined by

T(y) := H(y)H () for all y e M (32.29)

is a cross section of the bundle Tlis, B with T'(z) = 15, .
Definition: A cross section T : O — Tlis, B of the bundle Tlis, B such that

T(x) = 1p, is called a transport from zx.

For every bundle chart ¢ € Ch(B, M), we see that
(v (¢],)7"8],) : Oy — Tlis, B

is a transport from z which is of class C*.

Remark 1: For every K € Con, B, there is a bundle chart ¢ € Ch, (B, M) with
qﬁjx = 1p, such that

K=V, (¢])~" = AL. (32.30)
Proof: Let K € Con,B be given. It is not hard to construct a transport
T : O — Tlis, B from z such that (Ask Prof. Noll!!I!IIITHHHIIIIIT
K =V,T. (32.31)
There is a bundle chart ¢ : 7<(0) — O x B, induced from T by
o(v):=(y, T (y)v) where y:=7(v) (32.32)

for all v € 7<(0). It is easily seen that (¢|)~! = T. The first part of (32.30)
follows from (32.31). In view of (31.29) we have

A(A2) (Vi (8])7Y) = (eva 0 Vi, tlis?) V(o)) ?

=evw oV, (y — tlisi((¢Jy)_1)). (32.33)
Using (32.6) and ovbserving gzﬁjy € Lin (By, B;), we have
ist((6],)™) = (v, 6] (6] )71 = (v, 1s,). (32.34)
Taking the gradient of (32.34) at z, we observe that
Vi (y = tlis (6] )7) = (11,4, 0)- (32.35)
It follows from (32.33) and (32.35) that
A(AD)(V(¢])7!) = 0.
This can happen only when V,(¢|)~' = AZ. I
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33. Torsion

Let r €7, with r > 2, and a C"-manifold M be given. For every z € M, we
have; as described in Sect. 32 with B := TM,

Tlis, TM := | ] Lis(T.M, T, M). (33.1)

yeM

We also have the following short exact sequence

I, B

Lin T, M S, TM T, M. (33.2)

The short exact sequence (33.2) is of the form (15.1) and hence all of the
results in Sect.15 can be used here.

For every manifold chart x € Ch.M, the tangent mapping tgt, ; as defined in
(22.13), is a bundle chart of the tangent bundle TM such that evy o tgt, = V.
Note that not every tangent bundle chart ¢ € Ch(T.M, M) can be obtained from
the gradient of a manifold chart. To avoid complicated notations, we replace
all the superscript of ¢ = tgt, by superscript of x; i.e. we use the following
notation ot

AX = AEX TX.=T,%% and TX7.=T,5x"%" (33.3)

for all manifold charts y,v € ChM. Given y,y € ChM. It is easily seen from
(32.25) and (23.16) that

X7 = (%) 'V 9(2)) o (Vx x Vix)- (33.4)

It follows from the Theorem on Symmetry of Second Gradients (see
Sect.612, [FDS]) that X belongs to the subspace Sym,(T,M? T, M) of
Ling(TzM?, T, M) = Lin(T,M, Lin T, M).

Proposition 1: There is exactly one flat F in Con,TM with direction
space {I,}Symy(T,M? T, M) which contains AX for every manifold chart
x € Ch, M, so that

F = AX + {I,}Symy (T, M? T,M) forall x & Ch,M. (33.5)

Definition: The shift-bracket B, € Skws (S, TM?, T, M) of S, TM is de-
fined by
B, :=Br (33.6)

where Br is defined as in (15.5).
Definition: The torsion-mapping T, : Con, TM — Skws (T, M2 T, M) of
Con,TM is defined by

T, .= Tr (33.7)
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where Tr is defined as in (15.8).

It follows from Prop.3 of Sect.15 that, for every manifold chart y € Ch, M,
we have
T, =LX-LX" (33.8)

where ~ denotes the value-wise switch, so that TX (K)(s,t) = LX(K)(t,s) for
all K € Con, M and all s,t € T, M.

The torsion-mapping T, is a surjective flat mapping with T,~({0}) = F
whose gradient

VT, € Lin ( Ling (T, M? T, M) , Skwo (T, M? T, M)) (33.9)
is given by
(VI,)L=L - L (33.10)
for all L € Liny (T, M?, T, M).
Definition: We say that a connector K € Con,TM is torsion-free (or

symmetric) if T,(K) = 0, i.e. K € F. The flat of all symmetric connec-
tors will be denoted by Scony M := T~ ({0}).

The mapping
S, = (1

( Cong TM

] (33.11)

1
_IJET:E
+ 2
is the projection of Con,TM onto Scon, M with
Null VS, = Skws (T, M2, T, M).

If K € Con,TM, we call S,(K) = K + 1I,(T,(K)) the symmetric part of
K.

Theorem : A connector K € Con, TM is symmetric if and only if K = AX
for some x € Chy M. Thus Scon, M = { AX|x € Ch, M}.

Proof: Let K € Con, M be given. If K = AX for some xy € Ch, M, then
LX(K) = 0 and hence T, (K) = 0 by (33.8).
Assume now that T, (K) = 0. We choose v € Ch, M and put

L:=VyL'(K)o (%) x (%)) (33.12)

It follows from (33.8) that L is symmetric, i.e. that L € Sym,(12?,)}). We now
define the mapping o : Dom v — ), by

1

a(z) ==v(z) + §L(7(z) —y(z), v(z) =(x)) forall ze€ Domr .
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Take the gradient at x, we have Voo = Vv ie. that is (Va)(Vy) ™ = 1y, It
follows from the Local Inversion Theorem that there exist an open subset N of

Dom « such that y := 04|7v>w) is a bijection of class C". It is easily seen that
x € Ch, M and that
V#x(z) =L

Using (33.12), (32.25) and V. x = V7, we conclude that
I(K) = (V%x) 'V Px 0 (Vy x Vy) =T7X.
Hence, by (32.24) and (32.27), we have
AT - AX=LIVX =LT)(K)= Al - K,

which gives K = AX. 1

34. Connections, Curvature

From now on, in this chapter, we assume a linear-space bundle (B, 7, M)
of class C?, s > 2, is given. We also assume that both M and B have constant
dimensions, and put n := dim M and m := dim B — dim M. Then we have, as
in (32.1),

m =dim B, forall ze& M. (34.1)

Definition: The connector bundle Con B of B is defined to be the union of
all the right-connector spaces

ConB := U Con,B . (34.2)
zeEM

It is endowed with the structure of a C*~'-flat space bundle over M as shown
below.

If P is an open subset of M and z € P, we can identify Con,.A = Con,B,
where A := 7<(P), in the same way as was done for the tangent space. Hence
we may regard ConA as a subset of Con B.

Note that the family (Con,B |z € M) is disjoint. The bundle projection
p: ConB — M is given by

p(K):€ {ye M | Ke Con,B }, (34.3)
and, for every x € M, the bundle inclusion in, : Con,B — Con B at x is
inm = 1C0nIBCCOnB . (344)
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For every (x,¢) € ChM x Ch(B, M) we define

con®?) : Con(Dom¢) — (Dom x N Oy) x Lin(W, Lin)},) (34.5)
by
(68 (H) -— AAYH) (VM x ¢
con : z, 2 2
(H) := (=.0), AADE) (Vx " x 6] ") ) (34.6)
where z := p(H)
for all H € Con(Domg). It is easily seen that con®®) is invertible and
con®9 (2 L) = A? + Iz(bjz_l L (Vix x 6] ) (34.7)

for all z € (Domy N Oy) and all L € Lin(),, Linl},). Let (x, ¢), (7, 9) € ChM x
Ch(B, M) be given. We easily deduce from (34.7) and (34.6), with (x, ¢) replaced
by (v,¢) and A(AY)(A?) = T =T, that

(Conw,w) o Con(xxb)‘_) (z,L)

- ( 2, ] TV x| ) + R(2) L (WA x m(z)_l)) (34.8)
where \:=7yo0x™ and k:=vo¢ (see (22.7))

for all z € (Domyx NOy) N (DomyNOy) and L € Lin()}, Lin)},). It is clear that
con%) o con®? " is of class C*~1. Since (v,v), (x,¢) € ChM x Ch(B, M)
were arbitrary, it follows that { con(*?) | (o, ¢) € ChM x Ch(B, M) } is a C*~1-
bundle atlas of Con B; it determines the natural structure of a C*~! flat-space
bundle over M.

The mappings p and in, defined by (34.3) and (34.4) are easily seen to be
of class C*~1.

Definition: Let O be an open subset of M. A cross section on O of the con-
nector bundle Con B

A:0O— ConB (34.9)

s called a connection on O for the bundle B. A connection on M for the
bundle B is simply called a connection for the bundle B. For every bundle chart
¢ in Ch(B, M), the connection A® on Oy is defined by
A?(z) := A2 for all z € Oy, (34.10)
where A$ is given by (52.21).
Definition: The tangent-space of ConB at K is denoted by
T« Con B. (34.11)
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We define the projection mapping of TxConB by
P« := VYp € Lin (TxCon B, T, M) (34.12)
and the injection mapping of TxCon B by
I := Vkin, € Lin (Lin(T,M, LinB,), TxCon B) (34.13)

where p and in, are defined by (34.3) and (34.4).

It is clear from (34.5) that

dim (Con B) = dim (TxCon B) = n + nm?. (34.14)

Proposition 1: The projection mapping Px is surjective, the injection mapping
I« is injective, and we have

Null B = Rng T (34.15)
i.€. ! b
Lin(T, M, LinB,) — TxConB —— T, M (34.16)

1s a short exact sequence.

The short exact sequence (34.16) is of the form (15.1) and hence all of the
results in Sect.15 can be used here.

Proposition 2: For each (x, ) € Chy M x Chy (B, M), let
AX? € Lin (T, M, TxCon B)
be defined by A1(<X’¢) = A‘;g’“"’“ in terms of the notation (32.21); i.e.
AL = (Veeon®?) ™! o ins, (34.17)

Then A&X’qﬁ) s a linear right-inverse of Pg; i.e. PKA&X’QS) =11, M.
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Proposition 3: If (7,9), (x,¢) € ChyM x Ch, (B, M), with A? = K = AY,

then

(34.18)
A(AE(X’QS)) _ A(AI(;Y’IM) — _I\I((X7¢)a(7,1/’)PK

con<X’¢>,con(7’w) .

where FK(X’@’(%W = Ik in terms of the notation (32.25) is given by
L0 (4 8y = (] )TV (00 ) (Trt, Yy t))e],  (3419)

for all t,t' € T,M. We have I‘K(X’QZ))’(W’W € Sym, (T, M2, LinB,). Here, the
notation (22.7) is used.

Proof: Let (v,1), (x, ¢) € Ch, M x Ch,(B, M), with A? = K = AY, be given.
Then, we have V(¢ o ¢) = A(A%2)(K) = 0. It follows from (34.6) that

con®? | (K) = 0. (34.20)
Using (34.8), (34.20) and (33.25), we obtain
(Con(%w) 5 Con(x,qb)‘_) (z, COH(X»¢)J L(K))
X . (34.21)
= (=, V- od)(Vr x (8] 0w] ).

Taking the gradient of (34.21) with respect to z at  and observing V,.(¥¢¢) = 0,
we have

evy (Vx ((COH(’Y’d}) o conX:9) (_) (-, con(X’d’)J . (K)) )t)
= (VS0 (@0 9) %) Ly, x (8], 0v].")

for all t € T, M. Using (34.22), (34.6) with (x, ¢) replaced by (v,?) and
applying Prop. 3 in Sect. 32 with ¢ replaced by con®® and 1 replaced by
con™¥) | we obtain the desired result (34.19). 1

(34.22)

If ¢, € Ch,(B, M), with A? = K = AY, we have L% = 0 by (33.25).
It follows from (21.9) that the right hand side of (34.19) does not depend on
the manifold charts x,~ € Ch, M. In particular, when ¢ = ¢ we have A&X’d)) =

Ag’d)) for all manifold charts x,y € Ch, M.
By using the definition of the gradient

VA% = (VKconX’¢)_1VX(x) (conX¥? o A% o X7)Vix
and (34.6), we can easily seen that for every bundle chart ¢ € Ch, (B, M) with
A? =K
V,A? = AX?  forall y e ChyM. (34.23)
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for all bundle charts ¢ € Ch, (B, M) with A = K.
Proof: The assertion follows from (34.23) together with (34.18) and (34.19). |

Definition: The bracket By € Skwy (TxCon B2, T, M) of TxCon B is defined
by
Bk =B, (34.25)

where Br, is defined as in (15.5).

Definition: Let A : M — Con B be a connection which is differentiable at x.
The curvature of A at z, denoted by

R, (A) € Skws (T, M? LinB,), (34.26)
18 defined by
R.(A) = Tr,,,(VA) (34.27)

where Tr, ., is defined as in (15.8).

If A 18
differentiable, then the mapping R(A) : M — Skwso(TanM? | LinB) defined
by

R(A)(z) :=R,(A) for all reM

is called the curvature field of the connection A.

A fomula for the curvature field R(A) in terms of covariant gradients will
be given in Prop. 5. If the connection A is of class CP, with p € 1..s — 1, then
VA is of class CP~1, and so is the curvature field R(A).

More generally, if ¢, 1) € Ch,(B, M), without assuming that A = K = AY,
then Eq. (34.19) must be replaced by

Féx’¢)’(7’w)(t,t’)
LV ()L (K)(H) + LY (K)(t)LY (t) + TP (K)LOT (6, t)  (34.28)
— LY NLSY () + (v )T (VP (Yo 9) () (Vv t, iy ) e

for all t,t’ € T, M. If one of those two bundle charts, say ¢, satisfies A? = K,
then it follows from (34.28), T?(K) = 0 and —L[#% = L¥(K) that

I‘I<(X7¢)?(’771/)) (t’ t/)

34.29
= LYWLV (K)t + (¢] ) (V2 (o 9)(2)(Vrt, iy t)e| (3429

for all t,t’' € T, M.
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Proposition 5: Let A : M — ConB be a connection that is differentiable at
x € M. The curvature of A at x is given by
(Rz(A))(s,t) = (V) YT¥(A))(s,t) — (V] 'TY(A))(t,5)

34.30
+ (LY (AG)SEY (At - LY ALY AG)s) O

for all (v,v) € Chy M x Ch, (B, M) and all s,t € T, M.

Proof: Let a bundle chart (v,1) € Ch, M x Ch,(B, M) be given. It follows
from (42.6) and A(AY)(A(z)) = —L¥(A(z)) that

con 0 A(2) = (2, —v] LY (A() (W xv]]")) (34.31)
In view of (32.29), we have

A(Afg(f)))(v A) = con(”*”/’)J " (eVQ 0 VA (z) (con(%‘b))) (VEA)
= con(’y’w)Ja_7 evy 0 (V, (con(%‘“ oA))

= V(2= 0 6] T AR IV x 0] o))

(34.32)

By using
AL =%V(z—=Vy'%) . AY=Vi(z =] %))
and (42.38), we observe that
—1
A(AE&;%)WA) V(2 =), ), THAE) (T Ny x v ) )
(LT (A)) (AL, Aw>
—vngrw(A).

Together with (42.27) and (42.29), we prove (34.12). [

Remark : When the linear-space bundle B is the tangent bundle TM, we have

(Rz(A))(s,t) = (VXTX(A))(s, t) — (VTX(A))(t,5)

(34.33)
+ (LX(A@)STX(A ()t — TX(A(0)PTX (A (2)s)
for all manifold chart x € Ch, M and all s,t € T, M.

If a transport T : M — Tlis, M from x is differentiable at y, we define the
connector-gradient, V, T € Lin (7,,S,), of T at y by

V, T :=V,(z — T(z)T(y)_l). (34.34)

19



Theorem : A connection A : M — ConB is curvature-free if and only if,
locally A agrees with A?® for some bundle chart ¢ € Ch(B, M). In other word,
for every x € M, there is an open neighbourhood N, of x and a transport
T : N, — Tlis, M from x such that VT = A

Na

35. Parallelisms, Geodesics

Let a connector K € Con B be given and put z := p(K).
We now apply the results of Sect. 32 by replacing the ISO-bundle there by
the flat-space bundle Con B and b € B there by K.

Definition: The shift bundle SB of (B, T, M) is defined to be the union of all
the shift spaces of B :
sB:= | J s,B. (35.1)
yeM

It is endowed with the structure of a C™~2-manifold.
We defined the mapping o : SB — M by
o(s):e{yeM|seSB}, (35.2)
and every y € M the mapping in, : S,B8 — SB by
iny := 1g gcss - (35.3)
We define the projection P : SB — TM by
P(s) := P, (s)s for all s € SB (35.4)
and the injection I: Lin B — SB by
I(L) := L)L for all L e LinB (35.5)

where Ln is the lineon functor (see Sect.13) and

Lin B :=Ln(B) = | J LinB,. (35.6)
yeM
We have
pt(P(s)) = o(s) for all s €SB (35.7)
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and

o(IL)=7""(L) forall L&LinB. (35.8)

It is easily seen that P and I are of class C" 2.

We now fix x € M and consider the bundle Tlis, B of transfer-isomorphism
from x as defined by (32.2). A mapping of the type

T:[0,d — Tlis, B  with  T(0) =15 (35.9)

x )

where d € *, will be called a transfer-process of B from x. If T is differentiable
at a given ¢ € [0, d], we defined the shift-derivative sd;T € S, (p())B at ¢ of
T by

sdyT := 9, (s T(s)T(t)") . (35.10)

We have
o (sd;T) =7, (T(¢)) , (35.11)

when 7, is defined by (32.3). If T is differentiable, we define the shift-
derivative (-process) sdT : [0,d] — SB by

(sdT) (t) := sd;T forall  t€]0,d] . (35.12)

If T is of class C*%, s € 1..(r — 2), then sdT is of class C5~ 1.

Proposition 1: Let T : [0,d] — Tlis, B be a transfer-process of B from x and
put
p:=my,0T =00(sdT):[0,d — M. (35.13)

Then p is differentiable and

Po(sdT)=p" . (35.14)

Proof: Let ¢t € [0, d] be given and put y := p(¢). Then T(s)T(¢)™* € Tlis,B and

my (T(s)T(t) ™) = ma (T(s)) = p(s)

for all s € [0,d]. Differentiation with respect to s at ¢, using (35.10), (32.10),
and the chain rule, gives P, (sd;T) = p*(t). Since ¢ € [0, d] was arbitrary, (35.14)
follows. 1
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Proposition 2: Let T be a differentiable transfer-process from x and let p be de-
fined as in Prop. 1. Assume, moreover, that ¢ € Ch, (B, M) is a chart such that
Rngp C Op. If we define H :[0,d] — LisB, and V :[0,d] — LinB, by

H(t) .= (gbjy) T(t) (35.15)
and
V(1) = ¢], (A(AD)(sd,T)) (8] )7 (35.16)
when y :=p(t) and t € [0,d], then
H =VH , H(0)=1s, . (35.17)

Proof: Let t € [0,d] be given and put y := p(t). Using (32.6) with = replaced
by y and T by T(s)T(t)™}, we obtain from (35.15) that

tlis( (T(s)T(6) ") = (p(s) , @] H(s)HE) (@] )7") foral se0,d.
In view of (31.30) with ¢ replaced by tlisg’ and (35.10) we conclude that
(Vhe, Hs2) (s T) = (1 () , 6] (H)@)(6] )7).
Comparing this result with (31.29) and (35.16), and using the injectivity of
Vir, tlisg, we obtain (H'H™)(¢) = V(t). Since t € [0,d] was arbitrtary, (35.17);

follows. Since both qzﬁjx = 1, and T(0) = 15,, (35.17)9 is a direct consequence
of (35.15). I

Theorem on Shift-Processes: Let U : [0,d] — SB, with d €, be a continu-
ous shift-process of B such that p := o o U is differentiable and

PoU=p :[0,d] - TanM . (35.18)

Then there exists exactly one transfer-process T : [0,d] — Tlis,B of B from
x := p(0), of class C', such that sdT = U.

Proof: Assume first that ¢ € Ch(B, M) can be chosen such that Rngp C
Dom x. Define V : [0,d| — LinV, by

V(t):=(¢],) (AMADU() (¢],)7 when y:=p(t). (35.19)

Since U is continuous, so is V. Let H : [0, d] — LinV, be the unique solution of
the initial value problem

TH

H=VH , H0)=1y,. (35.20)

Y
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This solution is of class C!.

Now, if T is a process that satisfies the conditions, then V, as defined by
(35.19), coincides with V, as defined by (35.16). Therefore, by Prop. 2, we have
H = H and hence T must be given by

T(t):(qﬁjp(t))_lﬁ(t)qﬁjw forall  t€0,d]. (35.21)

On the other hand, if we define T by (35.21) and then H and V by (35.15) and
(35.16), we have 7, o T = p, H = H, and V = V. Thus, using (31.30) with ¢
replaced by tlis,;/*'s and (35.19), we conclude that

(Vlsy tlisz)(sdtT) = (VlBy tlisz))(U(t)) when y := p(t)

for all ¢ € [0,d]. Since V4, tlisf; is injective for all y € M, we conclude that
U =sdT.

There need not be a single bundle chart ¢ € Ch(B, M) such that Rngp C
Dom x. However, since Rngp is a compact subset of M, we can find a finite set
§ € ChM such that

Rngp C U Dom .
XES

We can then determine a strictly isotone list (a; |7 € (m + 1)[ ) in such that

ap = 0, a,, = d and such that, for each 7 € m[, P ([ai, ai+1]) is included in a
single chart belonging to §. By applying the result already proved, for each
1€ m[, to the case when U is replaced by

(t—Ula; +t) ) : [0, aiy1 — a;] — SB,
one easily sees that the assertion of the theorem is valid in general. ]

We assume now that a continuous connection C is prescribed.
Let d € * and a process p : [0,d] — M of class C! be given and put
x := p(0). We define the shift process U : [0,d] — SB by

U(t) :== C(p(t))p (t) forall ¢e[0,d]. (35.22)

Clearly, U is continuous and, since B,C(y) = 1, for all y € M, (35.18) is valid.
Hence, by the Theorem on Shift Processes there is a unique transfer process
T : [0,d] — Tlis, B of class C! such that

sdT = (Cop)p . (35.23)
This process is called the parallelism along p for the connection C.

Let H : [0,d] — ®(B) be a process on ®(B) and put p := 7 0o H. We say
that H is a parallel process for C if H(0) # 0 and if

H(t) = ®(T(t))H(0)  forall te [0,d] (35.24)
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where T is the parallelism along p for C.
Let H : [0,d] — ®(B) be a process on ®(B) and let T be the parallelism
along p := 7% o H for the connection C. Given ¢ € Ch,(B, M) that satisfies
Rngp C Oy. Define (H?!)" : [0,d] — 7<(Rngp) and (HT)" : [0,d] — 7<(Rngp)
by
. -1
(BH)*(1) = 01 (5 = (6] 0] () ) H() )

. (35.25)
(HT)"(t) := 0, ( s — ®(T(t)T(s))H(s) )

for all t € [0,d].

Proposition 3: A process H : [0,d] — ®(B) is parallel with respect to C if and
only if H is of class C' and satisfies the differential equation

0= (H")" = (H*)" + & ((I*(C)op)p*)H. (35.26)

We assume now that the linear space bundle B is the tangent bundle TM
and that a continuous connection C : M — ConTM for TM is prescribed.
We say that p: [0,d] — M is a geodesic process for C if p*(0) # 0 and if

T(t)p*(0) =p°(t) forall te]0,d], (35.28)
where T is the parallelism along p for C, i.e. p*® is parallel with respect to the
parallelism T.

Let p: [0,d] — M be a process of class C* such that p*(0) # 0 and given
x € ChM that satisfies Rngp C Dom x. Define p: [0,d] — Codx by p:= xop
and I : Cod x — Liny (VZ,V,) by

T(2) == VxLX(C) o (Vx™ x Vx™') when y:=x"(z),  (35.29)

where L)X is defined by (33.3).

Proposition 4: The process p is a geodedic process if and only if p is of class
C? and satisfies the differential equation

p*+ (Top)(p*,p*)=0. (35.30)

Geodesic Deviations: Study the derivative of (35.26)777
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36. Holonomy

Let a continuous connection C : M — ConlB be given. For every C! process
p : [0,dp] — M there is exactly one parallelism T, : [0,d,] — Tlis,B from
x := p(0) along p for the connection C. The reverse process p~ : [0,d,] — M
of p:[0,d,] — M is given by

p (t) :=p(d, — 1) for all ¢ € [0,d,].

Proposition 1: Let p~ : [0,d,] — M be the reverse process of a C' process
p:[0,dp] — M. We have

T, (t) = T,(d, — )T, (d,) forall te]0,d,). (36.1)

p

Let C! processes p : [0,d,] — M and ,q : [0,d,] — M with ¢(0) = p(d,) be
given. We define the continuation process ¢ * p : [0,d, + d,] — M of p with
q by

p(t) te [0,d,),
(g% p)(t) = (36.2)
q(t — dp) t € [dp,dp + dg.

If in addition that ¢* (0) = p° (dp), then the continuation process ¢ * p is of class

C! and
Ty (t) t€[0,dy),

Tyup(t) = (36.3)
Ty(t —dy)Tp(dy) t € [dy,dp +dg].

Definition: For every pair of C* processes p : [0,d,] — M and ,q : [0,d,] — M
with q(0) = p(d,) be given. We define the piecewise parallelism (along ¢ *p)

Typ: [0,d, +dy] — Tlis, B where =z :=p(0)

T, (t) t€0,dp],
Toup(t) := (36.4)
Ty(t —dy)Tp(dy) t € [dp,dp +dgl.

In view of (36.1), if ¢ := p~ we have T,,- (t — d,,)Ty(d,) = T, (2d, —t) and
hence
T,(t) t €[0,d,],
T_,,(t) == (36.5)
T,(2d, —t) t € [dp,2d,).




In particular, T,-,,(2d,) = T_p.,(0) = 15,.
Let O be an open neighboorhood of z € M and let £(O, x) be the set of all

piecewise C! loops p : [0,d,] — M at z with Rngp C O. It is easily seen that
(L(O,x),*) is a group. We also use the following notation

H(O,z) :={Ty(dp) |p € L(O,x)}. (36.6)

Proposition 3: For every q,p € L(O,x), we have
Tq*p(dp + dq) = Tq(dq)Tp(dp)~ (36.7)

Hence H(O, x) is a subgroup of LisB,, which is called the holonomy group on
O of the connection C at x.

Let T : M — Tlis, M be a transport from € M of class C'. For every
differentiable process A : [0,1] — M, we see that T o A : [0,1] — Tlis, M is a
transfer process from x and

sdT = ((VT) o M)A
Hence To\ is the parallelism along A for the connection VT. For every t € [0, 1],
(T o A)(t) = T(A(t)) depends on, of course, only on the point y := A(¢), not on
the process \. When A\ is closed, beginning and ending at A(0) = 2 = A(1), then
(ToA)(1)=T(z) =1g,.

T

The following theorem is a immediated consequence of the above discussion and
the Theorem of Sect.34.

Theorem : A continuous connection C : M — ConB is curvature-free; i.e.
R(C) = 0 if and only if locally the holonomy groups are H(O,z) = {1,} for
some open subset set O of M and all x € M.

Question ?: Does there exist a connection C such that H(O,z) = LisB, for
some x?
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