
Chapter 1

Preliminaries

11. Multilinearity

Let (Vi | i ∈ I) be a family of linear spaces, we define (see (04.24) of [FDS]),
for each j ∈ I and each v ∈×i∈I Vi, the mapping (v.j) : Vj →×i∈I Vi by the
rule

((v.j)(u))i :=

vi if i ∈ I\{j}

u if i = j

 for all u ∈ Vj . (11.1)

Definition : Let the family (Vi | i ∈ I) andW be linear spaces. We say that the
mapping M :×i∈I Vi →W is multilinear if, for every v ∈×i∈I Vi and every
j ∈ I the mapping M◦ (v.j) : Vj →W is linear, so that M◦ (v.j) ∈ Lin(Vj ,W).
The set of all multilinear mappings from ×i∈I Vi to W is denoted by

LinI(×i∈I Vi , W). (11.2)

Let linear spaces V and W and a set I be given.
Let Perm I be the permutation group, which consists of all invertible map-

pings from I to itself. For every permutation σ ∈ Perm I we define a mapping
Tσ : VI → VI by

Tσ(v) = v ◦ σ for all v ∈ VI , (11.3)

that is (Tσ(v))i := vσ(i) for all i ∈ I. In view of v ◦ (σ ◦ ρ) = (v ◦ σ) ◦ ρ, we
have Tσ◦ρ = Tρ ◦ Tσ for all σ, ρ ∈ Perm I . It is not hard to see that, for every
multilinear mapping M : VI → W and every permutation σ, the composition
M◦Tσ is again a multilinear mapping from VI toW, i.e. M◦Tσ ∈ LinI(VI , W).

Definition : A multilinear mapping M : VI → W is said to be (completely)
symmetric if

M ◦ Tσ = M for all σ ∈ Perm I ,

and is said to be (completely) skew if

M ◦ Tσ = sgn (σ) M for all σ ∈ Perm I .

The set of all (completely) symmetric multilinear mappings and the set of
all (completely) skew multilinear mappings from VI to W will be denoted by
SymI(VI , W) and by SkewI(VI , W); respectively.

1

Both SymI(VI , W) and SkewI(VI , W) are subspaces of the linear space
LinI(VI , W) with dimensions

dim SymI(VI , W) =
(

dim V + #I − 1
#I

)
dimW (11.4)

and

dim SkewI(VI , W) =
(

dim V
#I

)
dimW. (11.5)

For every k ∈ , we write Link(Vk,W), Symk(Vk,W) and Skewk(Vk,W) for
Link](Vk]

,W), Symk](Vk]
,W) and Skewk](Vk]

,W); respectively.
In applicatins, we often use the following identifications

Link(Vk,W) ∼= Link−1(Vk−1, Lin (V,W))
∼= Lin(V, Link−1(Vk−1,W))

and inclusions

Symk(Vk,W) ⊂ Symk−1(Vk−1,Lin (V,W)),

Skewk(Vk,W) ⊂ Skewk−1(Vk−1,Lin (V,W)).

In particular, we shall use Sym2(V2,) ∼= Sym (V,V∗) := Sym (V, Lin (V,))
and Skew2(V2,) ∼= Skew (V,V∗) := Skew (V, Lin (V,)). It can be shown that
Skew (V,V∗) has invertiable mapping if and only if dim V is even. (See Prop.3
of Sect.87, [FDS].)

Given a number k ∈ and a multilinear mapping A ∈ Link(Vk,W), the
mapping

∑
σ∈Perm k](sgnσ)A ◦ Tσ : Vk → W is a completely skew multilinear

mapping. Moreover, it can be easily shown that

1
k!

∑
σ∈Perm k]

(sgnσ) W ◦ Tσ = W

for all skew multilinear mapping W ∈ Skewk(Vk,W).

Definition : Given a number k ∈ , we define the alternating assignment
Alt : Link(Vk,W)→ Skewk(Vk,W) by

Alt A :=
1
k!

∑
σ∈Perm k]

(sgnσ)A ◦ Tσ (11.6)

for all linear spaces V and W and all A ∈ Link(Vk,W).

Given p ∈ . We define, for each i ∈ (p+1)], a mapping deli : Vp+1 → Vp by

(deli(v))j :=

 vj if 1 ≤ i ≤ j − 1

vi+1 if j ≤ i ≤ p

 for all v ∈ Vp+1. (11.7)

2

Intuitively, deli(v) is obtained from v by deleting the i-th term.
When the alternating assignment Alt restricted to the subspace

Lin (V, Skewp(Vp,W)) of Lin (V, Linp(Vp,W)) ∼= Linp+1(Vp+1,W), we have

(p+ 1) (AltA)v =
∑

i∈(p+1)]

(−1)i−1A(vi,deliv) (11.8)

for all v ∈ Vp+1 and all A ∈ Lin (V, Skewp(Vp,W)). Similarly, when the
alternating assignment Alt restricted to the subspace Skewp(Vp,Lin(V,W)) of
Lin (V, Linp(Vp,W)) ∼= Linp+1(Vp+1,W), we have

(p+ 1) (AltB)v =
∑

i∈(p+1)]

(−1)p+1−iB(deliv,vi) (11.9)

for all v ∈ Vp+1 and all B ∈ Skewp(Vp,Lin(V,W)).

Definition: An algebra is a linear space V together with a bilinear mapping
B ∈ Lin2(V2,V). An algebra V is called a Lie Alegebra if the bilinear mapping
B is skew-symmetric, i.e. B ∈ Skew2(V2,V), and satisfies Jacobi indetity

B(B(v1,v2),v3) + B(B(v2,v3),v1) + B(B(v3,v1),v2) = 0 (11.10)

for all v1,v2,v3 ∈ V.

By using the inclusion Skew2(V2,V) ⊂ Lin(V, Lin(V,V)) and (11.9), we see
taht (11.10) can rewriten as

Alt (B ◦B) = 0 (11.11)

where (B ◦B)(v1,v2,v3) := B(B(v1,v2),v3) for all v1,v2,v3 ∈ V.

Remark 1: In the literature the alternating assignment given in (11.6) is of-
ten called “skew-symmetric operator” ([B-W]), “complete antisymmetrization”
([F-C]). The symmetric assignment, “symmetric operator” or “complete sym-
metrization” Sym : Link(Vk,W)→ Symk(Vk,W) is given by

Sym M :=
1
k!

∑
σ∈Perm k]

M ◦ Tσ (11.12)

for all linear spaces V and W and all M ∈ Link(Vk,W).

Remark 2: Both assignments given in (11.6) and (11.12) are “natural linear
assignments” from a functor to another functor (see (13.16) of Sect.13). More
precisely, the alternating assignment is a natural linear assgnment from the
functor Lnk to the functor Skk and the symmetric assignment is a natural linear
assgnment from the functor Lnk to the functor Smk (see Sect. 13).

3

12. Isocategories, isofunctors and
Natural Assignments

An isocategory* ‡ is given by the specification of a class OBJ whose mem-
bers are called objects, a class ISO whose members are called ISOmorphisms,

(i) a rule that associates with each φ ∈ ISO a pair (Domφ,Codφ)
of objects, called the domain and codomain of φ,

(ii) a rule that associates with each A ∈ OBJ a member of ISO
denoted by 1A and called the identity of A,

(iii) a rule that associates with each pair (φ, ψ) in ISO such that
Codφ = Domψ a member of ISO denoted by ψ ◦ φ and called
the composite of φ and ψ, with Dom (ψ ◦ φ) = Domφ and
Cod (ψ ◦ φ) = Codψ.

(iv) a rule that associates with each φ ∈ ISO a member of ISO
denoted by φ← and called the inverse of φ.

subject to the following three axioms:

(I1) φ ◦ 1Dom φ = φ = 1Cod φ ◦ φ for all φ ∈ ISO,

(I2) χ ◦ (ψ ◦ φ) = (χ ◦ ψ) ◦ φ for all φ , ψ , χ ∈ ISO such that
Codφ = Domψ and Codψ = Domχ.

(I3) φ← ◦ φ = 1Dom φ and φ ◦ φ← = 1Cod φ for all φ ∈ ISO.

Given φ ∈ ISO, one writes φ : A −→ B or A φ−→ B to indicate that
Domφ = A and Codφ = B.

There is one to one correspondence between an object A ∈ OBJ and the
corresponding identity 1A ∈ ISO. For this reason, we will usually name an
isocategory by giving the name of its class of ISOmorphisms.

Let isocategories ISO and ISO′ with object-classes OBJ and OBJ ′ be
given. We can then form the product-isocategory ISO × ISO′ whose object-
class OBJ ×OBJ ′ consists of pairs (A,A′) with A ∈ OBJ , A′ ∈ OBJ ′ and
ISOmorphism-class ISO× ISO′ consists of pairs (φ, φ′) with φ ∈ ISO, φ′ ∈ ISO′

and the following

(a) For every (φ, φ′) ∈ ISO × ISO′, Dom (φ, φ′) := (Domφ,Domφ′)
and Cod (φ, φ′) := (Codφ,Codφ′).

* A category, introduced by Eilenberg and MacLane, is defined by (i), (ii) and (iii) with the

axioms (I1) and (I2). Roughly speaking, an isocategory is a special category whose “morphisms”

are called ISO-morphisms.
‡

Since isocategories are widely used in differential geometry, we introduced them directly instead

of making them as a special category.

4

(b) Composition in ISO × ISO′ is defined by termwise composition,
i.e. by (ψ,ψ′) ◦ (φ, φ′) := (ψ ◦ φ , ψ′ ◦ φ′) for all φ, ψ ∈ ISO and
φ′, ψ′ ∈ ISO′ such that Dom (ψ,ψ′) = Cod (φ, φ′).

(c) The identity of a given pair (A,A′) ∈ OBJ × OBJ ′ is defined to
be 1(A,A′) = (1A, 1A′).

The product of an arbitary family of isocategories can be defined in a similar
manner. In particular, if a isocategory ISO and an index set I are given, one can
form the I-power-isocategory ISOI of ISO; its ISOmorphism-class consists of
all families in ISO indexed on I. In the case when I is of the form I := n], we
write ISOn := ISOn]

for short. For example, we write ISO2 := ISO × ISO. We
identify ISO1 with ISO and ISOm+n with ISOm × ISOn for all m,n ∈ in the
obvious manner. The isocategory ISO0 is the trival one whose only object is ∅
and whose only ISOmorphism is 1∅.

A functor Φ is given by the specification of:

(i) a pair (Dom Φ,CodΦ) of categories, called the domain-category
and codomain-category of Φ,

(ii) a rule that associates with every φ ∈ Dom Φ a member of CodΦ
denoted by Φ(φ),

subject to the following conditions:

(F1) We have Cod Φ(φ) = Dom Φ(ψ) and Φ(ψ ◦ φ) = Φ(ψ) ◦ Φ(φ)
for all φ, ψ ∈ Dom Φ such that Codφ = Domψ.

(F2) For every identity 1A in Dom Φ, where A belongs to the object-
class of Dom Φ, Φ(1A) is an identity in CodΦ.

An isofunctor is a functor whose domain-category and codomain-category are
isocategories. In this book we only deal with isofunctors.

Let isocategories ISO and ISO′ with object-classes OBJ and OBJ ′ be given.
We say that Φ is an isofunctor from ISO to ISO′ and we write ISO Φ−→ ISO′

or Φ : ISO −→ ISO′ to indicate that ISO = Dom Φ and ISO′ = CodΦ. By (F2),
we can associate with each A ∈ OBJ exactly one object in OBJ ′, denoted by
Φ(A), such that

Φ(1A) = 1Φ(A). (12.1)

It easily follows from (I3), (F1) and (F2) that every isofunctor Φ satisfies

Φ(φ←) =
(
Φ(φ)

)← for all φ ∈ Dom Φ. (12.2)

One can construct new isofunctors from given isofunctors in the same way as
new mappings are constructed from given mappings. (See, for example, Sect. 03

5

and 04, [FDS].) Thus, if Φ and Ψ are isofunctors such that Cod Φ = Dom Ψ, one
can define the composite isofunctor Ψ ◦ Φ : Dom Φ→ CodΨ by

(Ψ ◦ Φ)(φ) := Ψ(Φ(φ)) for all φ ∈ Dom Φ (12.3)

Also, given isofunctors Φ and Ψ, one can define the product-isofunctor

Φ×Ψ : Dom Φ×Dom Ψ −→ CodΦ× CodΨ

of Φ and Ψ by
(Φ×Ψ)(φ, ψ) := (Φ(φ),Ψ(ψ)) (12.4)

for all φ ∈ Dom Φ and all ψ ∈ Dom Ψ.
Product-isofunctors of arbitrary families of isofunctors are defined in a sim-

ilar way. In particular, if a isofunctor Φ and an index set I are given, we define
the I-power-isofunctor Φ×I : (Dom Φ)I → (CodΦ)I of Φ by

Φ×I(φi | i ∈ I) = (Φ(φi) | i ∈ I) (12.5)

for all families (φi | i ∈ I) in Dom Φ. We write Φ×n := Φ×n]
when n ∈ .

We now assume that an isocategory ISO with object-class OBJ is given.
The identity-isofunctor Id : ISO→ ISO of ISO is defined by

Id(φ) = φ for all φ ∈ ISO. (12.6)

We then have
Id(A) = A for all A ∈ OBJ . (12.7)

If I is an index set, then the identity-isofunctor of ISOI is Id×I . In particular,
the identity-isofunctor of ISO× ISO is Id× Id.

Given an object C ∈ OBJ . The trivial-isofunctor TrC : ISO→ ISO for C
is defined by

TrC(φ) = 1C for all φ ∈ ISO. (12.8)

We then have
TrC(A) = C for all A ∈ OBJ . (12.9)

One often needs to consider a variety of “accounting isofunctors” whose
domain and codomain isocategories are obtained from ISO by product formation.
For example, the switch-isofunctor Sw : ISO2 → ISO2 is defined by

Sw(φ, ψ) := (ψ, φ) for all φ, ψ ∈ ISO. (12.10)

Given any index set I, the equalization-isofunctor EqI : ISO → ISOI is
defined by

Eq I(φ) := (φ | i ∈ I) for all φ ∈ ISO. (12.11)

6

We write Eqn := Eqn] when n ∈ .

Let a index set I and a family (Φi | i ∈ I) of isofunctors, with Dom Φi =
ISO for all i ∈ I, be given. We then identify the family (Φi | i ∈ I) with the
termwise-formation isofunctor

(Φi | i ∈ I) : ISO→×
i∈I

CodΦi

defined by
(Φi | i ∈ I) :=×

i∈I
Φi ◦ EqI ,

so that
(Φi | i ∈ I)(φ) =×

i∈I
Φi(φ), for all φ ∈ ISO. (12.12)

In particular, if I = 2], we then identify the pair (Φ1,Φ2) with the pair-
formation isofunctor (Φ1,Φ2) : ISO→ CodΦ1 × CodΦ2.

Let isofunctors Φ and Ψ, both from ISO to ISO′, be given. A natural
assignment α form Φ to Ψ is a rule that associates with each object F of ISO
a mapping

αF : Φ(F)→ Ψ(F),

such that
Ψ(χ) ◦ αDom χ

= αCod χ
◦ Φ(χ) for all χ ∈ ISO; (12.13)

i.e. the diagram

Φ(Domχ)
αDom χ−−→ Ψ(Domχ)

Φ(χ)

y yΨ(χ)

Φ(Codχ) −−→
αCod χ

Ψ(Codχ)

is commutative. We write α : Φ −→ Ψ to indicate that Φ is the domain
isofunctor, denoted by Dmfα, and Ψ is the codomain isofunctor, denoted
by Cdfα.

One can construct new natural assignments from given ones in the same
way as new mappings from given ones. Let natural assignments α : Φ→ Ψ
and β : Ψ→ Θ be given. We can define the composite assignment
β ◦ α : Φ→ Θ, by assigning to each object F of Dom Φ = DomΨ the map-
ping (β ◦ α)F := βF ◦ αF . If α, β are natural assignment, one can define the
product-assignment α × β by assigning to each pair (F ,G) of objects the
mapping (α× β)(F,G) := αF × βG .

Given a natural assignment α : Φ → Ψ and a isofunctor Θ such that
CodΘ = Dom Φ = Dom Ψ, one can define the composite assignment

7

α ◦Θ : Φ ◦Θ→ Ψ ◦Θ by assigning to each object F of Dom Φ = Dom Ψ the
mapping (α ◦Θ)F := αΘ(F) .

13. Tensor Functors

We say that an isocategory ISO is concrete if ISO consists of mappings,
the object-class OBJ consists of sets, and if domain and codomain, composi-
tion, identity and inverse have the meanning they are usually given for sets and
mappings. (See, e.g. Sect. 01 – 04 of [FDS]).

Examples of concrete isocategory

The following are some concrete isocategories to be used in this book:

(A) The category FIS whose object-class FS consists of all finite dimen-
sional flat spaces over and whose ISOmorphism-class FIS consists of all flat
isomorphism from one such space onto another or itself.

(B) Fix a field and we consider the concrete isocategory whose object-class
LS consists of all finite dimensional linear spaces over and whose ISOmorphism-
class LIS consists of all linear isomorphism from one such space onto another or
itself.

(C) Given s ∈ , the category DIFs whose object-class DF consists of all
Cs manifolds and whose ISOmorphism-class DIFs consists of all diffeomorphism
from one such manifold onto another or itself.

From now on, in this section, we will deal only with LIS and the categories
obtained from it by product formation, such as LISm × LISn when m,n ∈ . We
use the term tensor functor of degree n ∈ for functor from LISn to LIS.
(Under this definition, composition of tensor functors is somewhat strange: the
second one of those functors must be of degree 1!!!!!!!!!!!!!)

Examples of tensor functor

Here is a list of important tensor functors used in linear algebra and differential
geometry:

(1) The product-space functor Pr : LIS2 → LIS. It is defined by

Pr(A,B) := A×B for all (A,B) ∈ LIS2. (13.1)

We have Pr(V,W) := V ×W (the product-space of V and W) for all V,W ∈ LS .

8

(2) Given k ∈ , the k-lin-map-functor Link : LISk×LIS→ LIS. It assigns
to each list (Vi | i ∈ k]) in LS and each W ∈ LS the linear space

Link((Vi | i ∈ k]),W) := Link

(
×
i∈k]
Vi , W

)
(13.2)

of all k-multilinear mappings from ×i∈k] Vi to W, and it assigns to every list
(Ai | i ∈ k]) in LIS and each B ∈ LIS the linear mapping

Link((Ai | i ∈ k]) , B) (13.3)

from Link

(×i∈k] DomAi,DomB
)

to Link

(×i∈k] CodAi,CodB
)

defined by

Link((Ai | i ∈ k]),B)T := BT ◦ ×
i∈k]

A−1
i (13.4)

for all T ∈ Lin
(×i∈k] DomAi,DomB

)
.

When k = 1, Lin1 : LIS × LIS → LIS is called the lin-map-functor and
abreviated by Lin := Lin1.

(3) Given k ∈ , the k-multilin-functor Lnk : LIS2 → LIS. It is defined by

Lnk := Link ◦ (Eqk × Id). (13.5)

We have
Lnk(A,B)T := BT ◦ (A−1)×k (13.6)

for all A,B ∈ LIS and all T ∈ Link((DomA)k,DomB). and

Lnk(V,W) := Link(Vk,W) (13.7)

for all V,W ∈ LS
There are two very important “subfunctors” (see [E-M]), Smk and Skk, given

in following. The symmetric-k-multilin-functor Smk : LIS2 → LIS assigns to
every pair of linear spaces (V,W) ∈ LS 2 the linear sapce

Smk(V,W) := Symk(Vk,W) (13.8)

of all symmetric k-multilinear mappings from Vk to W. It is clear that

Smk(A,B)T := BT ◦ (A−1)×k (13.9)

for all A,B ∈ LIS and all T ∈ Symk((DomA)k,DomB). The skew-k-multilin-
functor Skk : LIS2 → LIS is defined in the same manner as Smk, except that
Symk(Vk,W) in (13.8) is replaced by the linear space Skewk(Vk,W) of all skew
k-multilinear mappings from Vk to W.

9

(4) Given n ∈ , the k-linform-functor Lnfk, the k-symform-functor
Smfk, the k-skewform-functor Skfk, all from LIS to LIS. They are defined by

Lnfk := Lnk ◦ (Id,Tr) , Smfk := Smk ◦ (Id,Tr) , Skfk := Skk ◦ (Id,Tr). (13.10)

Given V ∈ LS , we have
Lnfk(V) := Link(Vk,), (13.11)

the space of all k-multilinear forms on Vk. We have

Lnfk(A)ω := ω ◦ (A−1)×k for all ω ∈ Link((DomA)k,) (13.12)

and all A ∈ LIS. The formulas (13.11) and (13.12) remain valid if Lin is replaced
by Sym or Skew and Lnf by Smf or Skf correspondingly.

When k = 1, we have Lnf1 = Smf1 = Skf1 which is called the duality-
functor and denoted by Dl : LIS→ LIS.

(5) The lineon-functor Ln : LIS→ LIS. It is defined by

Ln := Lin ◦ Eq2. (13.13)

We have
Ln(V) := Lin(V,V) for all V ∈ LS (13.14)

and

Ln(A)T := ATA−1 for all A ∈ LIS and T ∈ Ln(DomA). (13.15)

It is clear that Lin1 = Ln1, however, Ln1 6= Ln! Notation?

Remark : In much of the literature (see [K-N], Sect. 2 of Ch.I or [M-T-W],
§3.2) the use of the term “tensor” is limited to tensor functors of the form
Tr

s := Lin ◦ (Lnfs,Lnfr) : LIS→ LIS with r, s ∈ , or to tensor functors that are
naturally equivalent to one of this form. Given V ∈ LS a member of the linear
space Tr

s(V) is called a “tensor of contravariant order r and covariant order s.”

Let a family of tensor functors (Φi | i ∈ k]) and a tensor functor Ψ with
Dom×i∈k] Φk = LISk = Dom Ψ be given. We say that a natural assignment
β :×i∈k] Φk → Ψ is a k-linear assignment if, for every F ∈ LSk, the mapping

βF : ×
i∈k]

Φi(Fi)→ Ψ(F) (13.16)

is k-linear.

The following are examples for bilinear natural assignments.

10

(6) Given k ∈ , the alternating assgnment Alt : Lnk → Skk it assigns
each pair (V,W) ∈ LS 2 the mapping

Alt(V,W)A :=
∑

σ∈Perm k]

(sgnσ)A ◦ Tσ (13.17)

where Perm k] is the permutation group of k] and Tσ is defined as in (11.3), for
all A ∈ Link(Vk,W).

(7) The tensor product tpr : Id× Id → Lin ◦ (Dl× Id) ◦ Sw assigns each
pair (V,W) ∈ LS 2 the mapping

tpr(V,W) : V ×W → Lin(W∗,V) (13.18)

defined by

tpr(V,W)(v,w) := v ⊗w for all v ∈ V and w ∈ W, (13.19)

where v⊗w is the tensor product defined according to Def. 1 of Sect. 25, [FDS],
with the identification W ∼=W∗∗.

We use v ⊗ w ∈ Lin(W∗,V) but others use v ⊗ w ∈ Lin(V∗,W) (see e.g.
[B-W]). Our definition of ⊗ bring up the switch functor Sw here!!!!!!!!!!!!!!!!!!!!

The wedge product wpr : Id× Id→ Lin ◦ (Dl× Id) ◦ Sw is defined by

wpr(V,W)(v,w) := v ∧w for all v ∈ V and w ∈ W, (13.20)

where v∧w is the wedge product defined according to (12.9) of Sect. 12, [FDS],
Vol.2, with the identification W ∼=W∗∗.

We have wpr = 1
2 Alt ◦ tpr. Need more development!!!!!!!!!!!!!!!!!!!

We now assume that the field relative to which LS and LIS are defined in
above is the field of real number. Given V,W ∈ LS , the set

Lis(V,W) :=
{
A ∈ LIS

∣∣ DomA = V,CodA =W
}

(13.21)

is then an open subset of the linear space Lin(V,W). (See, for example, the
Differentiation Theorem for Inversion Mappings in Sect.68 of [FDS].).

Let a tensor functor Φ be given. For every pair of objects (V,W) of Dom Φ,
we define the mapping

Φ(V,W) : Lis(V,W)→ Lis(Φ(V),Φ(W)) (13.22)

by
Φ(V,W)(A) := Φ(A) for all A ∈ Lis(V,W). (13.23)

11

Indeed, we can view (13.22) as a bilinear assignment from Lin = Ln1 to
Lin ◦ (Φ× Φ). The one to be used in (13.27)

Φ(V,V) : Lis(V)→ Lis(Φ(V))

is a linear assignment from Ln to Ln◦Φ and hence whose gradient is also a linear
assignment from Ln to Ln ◦ Φ!!!!!!!!!!!!!!!!

We say that the tensor functor Φ is analytic if Φ(V,W) is an analytic map-
ping for every pair of objects (V,W) of Dom Φ. We say that a natural assignment
α : Φ→ Ψ is an analytic assignment if the mapping αF : Φ(F) → Ψ(F) is an
analytic mapping for every object F of Dom Φ. All the tensor functors listed
in above are in fact analytic. (The fact that they are of class C∞ can easily be
inferred from the results of Ch.6 of [FDS]. Proofs that they are analytic can be
inferred, for example, from the results that will be presented in Ch.2 of Vol.2 of
[FDS].)

Theorem : Let an analytic tensor functor Φ be given and associate with each
V ∈ Dom Φ the mapping

Φ
•

V : Ln(V)→ Ln(Φ(V)) (13.24)

defined by
Φ
•

V := ∇1VΦ(V,V). (13.25)

(The gradient-notation used here is explained in [FDS], Sect.63.) Then Φ
•

is a
linear assignment from Ln to Ln ◦ Φ. We call Φ

•
the derivative of Φ.

Proof: Let a pair of objects (V,W) of DomΦ and A ∈ Lis(V,W) be given. It
follows from (13.23), from axiom (F1), and from (12.2) that

Φ(W,W)(ALA−1) = Φ(A)Φ(V,V)(L)Φ(A)−1 (13.26)

for all L ∈ Lis(V,V). By (13.15) we may write (13.26) as(
Φ(W,W) ◦ Ln(A)

)
(L) =

(
Ln(Φ(A)) ◦ Φ(V,V)

)
(L) (13.27)

for all L ∈ Lis(V,V). Taking the gradient of (13.27) with respect to L at L := 1V
yields

Φ
•

W ◦ Ln(A) = (Ln ◦ Φ)(A) ◦ Φ
•

V . (13.28)

In view of (12.13) it follows that Φ
•

is a natural assignment from Ln to Ln ◦Φ.
The linearity of Φ

•
follows from the definition of gradient.

We now list the derivatives of a few analytic tensor functors. The formulas
given are valid for every V ∈ LS .

12

(6) Ln
•

V : Ln(V)→ Ln(Ln(V)) is given by

(Ln
•

VL)M = LM−ML for all L,M ∈ Ln(V) (13.29)

(This formula is an easy consequence of (13.15) and, [FDS] (68.9).).

(7) Let k ∈ be given. In order to describe

(Lnfk)
•

V : Ln(V)→ Ln(Link(Vk,)), (13.30)

we define, for every L ∈ Ln(V) and every j ∈ k], Dj(L) ∈ (Ln(V))k by

(Dj(L))i :=

 L if i = j

1V if i 6= j

 for all i ∈ k]. (13.31)

We then have

((Lnfk)
•

VL)ω = −
∑
j∈k]

ω ◦Dj(L) for all ω ∈ Link(Vk,) (13.32)

and all L ∈ Ln(V). The formula (13.32) remains valid if Lnf is replaced by Smf
or Skf and Lin by Sym or Skew, correspondingly.

The General Chain Rule for gradients (see [FDS], Sect.63) and the definition
(13.25) immediately lead to the following

Chain Rule for Analytic Tensor Functors
Let Φ and Ψ be analytic tensor functors. Then the composite functor Ψ ◦Φ

is also an analytic tensor functor and we have

(Ψ ◦ Φ)
•

= (Ψ
•
◦ Φ) ◦ Φ

•
, (13.33)

where the composite assignments on the right are explained in the end of Sect.12.

For example, (13.33) shows that, for each V ∈ LS ,

(Ln ◦ Ln)
•

V : Ln(V)→ Ln(Ln(Ln(V)))

is given by
(Ln ◦ Ln)

•

V = Ln
•

Ln(V)Ln
•

V . (13.34)

In view of (13.29.) above, (13.34) gives((
(Ln ◦ Ln)

•

VL
)
K

)
M =

(
(Ln

•

VL)K−K(Ln
•

VL)
)
M

= L(KM)− (KM)L−K(LM−ML)
(13.35)

13

for all V ∈ LS , all K ∈ Ln(Ln(V)), and all L,M ∈ Ln(V).

If Φ and Ψ are analytic tensor functors so is Pr ◦ (Φ,Ψ) and we have

(Pr ◦ (Φ,Ψ))
•

V = (Φ
•

VL)× 1Ψ(V) + 1Ψ(V) × (Φ
•

VL) (13.36)

for all V ∈ LS and all L ∈ Ln(V).

Let α be an analytic assignment of degree n ∈ . If we associate with each
V ∈ LS the mapping (∇α)V := ∇(αV), the gradient of the mapping αV , then
∇α is again an analytic assignment of degree n and we have Dmf∇α = Dmfα

and Cdf∇α = Lin ◦ (Dmfα,Cdfα). We call ∇α the gradient of α.

Let tensor functors Φ1, Φ2, Ψ, all of degree n ∈ but not necessarily analytic,
be given. Each bilinear assignment β : Pr ◦ (Φ1,Φ2) → Ψ is then analytic and
its gradient ∇β : Pr ◦ (Φ1,Φ2)→ Lin ◦ (Pr ◦ (Φ1,Φ2),Ψ) is given by

(
(∇β)V(v1,v2)

)
(u1,u2) = βV(v1,u2) + βV(u1,v2) (13.37)

for all V ∈ LS , all v1,u1 ∈ Φ1(V), and all v2,u2 ∈ Φ2(V).

If α is an analytic assignment of degree n ∈ and if Φ is any isofunctor from
LISk to LISn with k ∈ , then α ◦Φ is an analytic assignment of degree k and we
have ∇(α ◦ Φ) = (∇α) ◦ Φ.

14

14. Short Exact Sequences

Let a pair (I,P) of mappings be given such that Cod I = DomP. We often
write

U I−→ V P−→ W or W P←− V I←− U (14.1)

to indicate that U = Dom I, V = Cod I = DomP and CodP =W. If U , V and
W are linear spaces and if I is injective linear mapping, P is surjective linear
mapping with

Rng I = NullP,

we say that (I,P), or (14.1), is a short exact sequence *. In the literature, a
short exact sequence is often expressed as

0 −→ U I−→ V P−→ W −→ 0 .

Let a short exact sequence U I−→ V P−→ W be given.

Notation: The set of all linear right-inverses of P is denoted by

Riv(P) :=
{
K ∈ Lin (W,V) PK = 1W

}
, (14.2)

and the set of all linear left-inverses of I is denoted by

Liv(I) :=
{
D ∈ Lin (V,U) DI = 1U

}
. (14.3)

Proposition 1: There is a bijection Λ : Riv(P) → Liv(I) such that, for every
K ∈ Riv(P)

U ←−
Λ(K)

V ←−
K

W (14.4)

is again a short exact sequence. We have

KP + IΛ(K) = 1V for all K ∈ Riv(P). (14.5)

Proof: It is easily seen that (K 7→ Rng K) is a bijection from Riv(P) to the
set of all supplements of NullP = Rng I in V. Also, (D 7→ NullD) is a bijection
from Liv(I) to the set of all supplements of Rng I = NullP in V. The mapping
Λ is the composite of the first of these bijections with the inverse of the second
one.

* The term short exact sequence comes from the more general concept of an “exact sequence”

which is not needed here.

15

Let K ∈ Riv (P) be given. Both KP and IΛ(K) are idempotents with
Rng KP = Rng K and Rng IΛ(K) = Rng I. Since Rng K and Rng I are supple-
mentary in V, it follows that

KP + IΛ(K) = 1V . (14.6)

Since K ∈ Riv (P) was arbitrary, the assertion follows.

Proposition 2: Riv(P) is a flat in Lin(W,V) whose direction space is{
IL L ∈ Lin(W,U)

}
,

Liv(I) is a flat in Lin (V,U) whose direction space is{
− LP L ∈ Lin(W,U)

}
.

Proof: Given K,K′ ∈ Riv(P), we have 1W = PK = PK′ and hence
P (K−K′) = 0. It follows that Rng (K − K′) ⊂ NullP = Rng I and hence
K −K′ = IL for some L ∈ Lin(W,U). On the other hand, given K ∈ Riv(P)
and L ∈ Lin(W,U), we have P(IL) = 0 and hence 1W = PK = P(K + IL),
which implies K + IL ∈ Riv(P). These facts show that Riv(P) is a flat in
Lin(W,V) with direction space

{
IL

∣∣ L ∈ Lin(W,U)
}
.

Similar arguments show that Liv(I) is a flat in Lin (V,U) with direction
space

{
− LP

∣∣ L ∈ Lin(W,U)
}
.

Proposition 3: Let K and K′ in Riv(P) be given and determine L ∈ Lin(W,U)
such that K−K′ = IL. Then

Λ(K)−Λ(K′) = −LP. (14.7)

Proof: It follows from (14.5) that KP + IΛ(K) = 1V = K′P + IΛ(K′) and
hence

I(Λ(K)−Λ(K′)) = −(K−K′)P.

Since K−K′ = IL and I is injective, we obtain Λ(K)−Λ(K′) = −LP.

It follows from the injectivity of I and from the surjectivity of P that
both the direction space {I}Lin(W,U) of Riv(P) and the direction space
Lin(W,U){P} of Liv(I) are naturally isomorphic to Lin(W,U). Hence we may
and will consider Lin(W,U) to be the external translation space (see Conventions
and Notations) of both Riv(P) and Liv(I). We have

dim Riv(P) = (dimW)(dim U) = dim Liv(I). (14.8)

16

Proposition 4: The mapping Λ : Riv(P)→ Liv(I), as described in Prop. 1, is
a flat isomorphism whose gradient ∇Λ ∈ Lin(Lin(W,U)) is −1Lin(W,U), so that

∇Λ(L) = −L for all L ∈ Lin(W,U). (14.9)

Proof: It follows from Prop. 2 and the identification Lin(W,U){P} ∼= Lin(W,U)
that Λ : Riv(P)→ Liv(I) is a flat isomorphism with ∇Λ = −1Lin(W,U).

Notation: Let K ∈ Riv(P) be given. We define the mapping

ΓK : Riv(P)→ Lin (W,U)

by
ΓK(K′) := −Λ(K)K′ for all K′ ∈ Riv(P). (14.10)

Proposition 5: For every K ∈ Riv(P), the mapping ΓK : Riv(P)→ Lin (W,U)
is a flat isomorphism whose gradient ∇ΓK ∈ Lin(Lin(W,U)) is −1Lin(W,U); i.e.

∇ΓK(L) = −L for all L ∈ Lin(W,U).

Proof: Let K1,K2 ∈ Riv(P) be given; then we determine L ∈ Lin(W,U) such
that K1 −K2 = IL. It follows from (14.10) and Λ(K)I = 1U that

ΓK(K1)− ΓK(K2) = −Λ(K)(K1 −K2) = −Λ(K)(IL) = −L.

Since K1,K2 ∈ Riv(P) were arbitrary, the assertion follows.

Proposition 6: We have

K−K′ = IΓK(K′)

Λ(K)−Λ(K′) = −ΓK(K′)P
(14.11)

and hence ΓK′
(K) = −ΓK(K′) for all K,K′ ∈ Riv(P). Moreover,

ΓK1(K3)− ΓK2(K3) = ΓK1(K2) (14.12)

for all K1,K2,K3 ∈ Riv(P).

Proof: In view of (14.5) and (14.10), we have

K−K′ = (KP− 1V)K′ = −(IΛ(K))K′ = IΓK(K′)

17

for all K′,K ∈ Riv(P). The second equation (14.11)2 follows from (14.11)1 and
Prop. 2 with L replaced by ΓK(K′).

We observe from (14.11) that

IΓK1(K2) = K1 −K2 = (K1 −K3)− (K2 −K3)

= I(ΓK1(K3)− ΓK2(K3))

for all K1,K2,K3 ∈ Riv(P). Since I is injective, (14.12) follows.

Remark: We consider Lin(W,U) to be the external translation space of Riv(P).
Given K ∈ Riv(P), in view of (14.11)1, we have

ΓK(K′) = K−K′ for all K′ ∈ Riv(P).

Roughly speaking, the flat isomorphism ΓK : Riv(P) → Lin(W,U) identify
Riv(P) with Lin(W,U) by choosing K as the “zero” (or “orgin”).

15. Brackets and Twists

We assume now that linear spaces V, W and Z and a short exact sequence

Lin(W,Z) I−→ V P−→ W (15.1)

are given. Recall from Prop. 1 of Sec. 14 that to every linear right-inverse K of
P there corresponds exactly one linear left-inverse Λ(K) of I such that

Lin(W,Z) ←−
Λ(K)

V ←−
K

W (15.2)

is again a short exact sequence. In view of the identification

Lin
(
W,Lin (W,Z)

) ∼= Lin2 (W2,Z) (15.3)

we may identify the external translation space Lin
(
W,Lin (W,Z)

)
of Riv(P)

with Lin2 (W2,Z).

Assumption : From now on, we assume that in this section, a flat F in Riv(P)
with direction space {I}Sym2 (W2,Z) is given. Here Sym2 (W2,Z) is regarded
as a subspace of Lin2 (W2,Z) ∼= Lin

(
W,Lin (W,Z)

)
.

Proposition 1: For every K1,K2 ∈ F ,

(Λ(K1)v)(Pv′)− (Λ(K1)v′)(Pv) = (Λ(K2)v)(Pv′)− (Λ(K2)v′)(Pv) (15.4)

holds for all v,v′ ∈ V.

18

Proof: Let K1,K2 ∈ F be given. Then we determine L ∈ Sym2 (W2,Z) such
that K1 −K2 = IL . It follows from Prop.3 of Sect.14 that

(Λ(K1)v)(Pv′)− (Λ(K2)v)(Pv′) = −L(Pv,Pv′)

holds for all v,v′ ∈ V. By interchanging v and v′ and observing that L is
symmetric, we conclude that (15.4) follows.

Definition: In view of Prop. 1, the F-bracket BF ∈ Skw2 (V2,Z) can be
defined such that

BF (v,v′) := (Λ(K)v)(Pv′)− (Λ(K)v′)(Pv) for all v,v′ ∈ V (15.5)

is valid for all K ∈ F . Using the identification (15.3) we also have

BF ∈ Lin
(
V,Lin (V,Z)

)
.

Proposition 2: The F-bracket BF ∈ Lin
(
V,Lin (V,Z)

)
satisfies

BF (IM) = MP for all M ∈ Lin(W,Z),
(BFv)K = Λ(K)v for all K ∈ F and all v ∈ V.

(15.6)

If dimZ 6= 0, then BF is injective; i.e. Null BF = {0}.

Proof: The equations (15.6)1 and (15.6)2 follow from Definition (15.5) together
with Λ(K) I = 1Lin(W,Z) and PK = 1W , respectively.

Let v ∈ NullBF be given, so that BF v = 0 and hence

0 =
(
BFv

)
IM = BF (v, IM) = −

(
BF (IM)

)
v

for all M ∈ Lin(W,Z). Using (15.6)1, it follows that −MPv = 0 for all
M ∈ Lin(W,Z), which can happen, when dimZ 6= 0, only if Pv = 0 and hence
v ∈ NullP = Rng I. Thus we may choose M′ ∈ Lin(W,Z) such that v = IM′

and hence BF (IM′) = 0. Using (15.6)1 again, it follows that M′P = 0. Since
P is surjective , we conclude that M′ = 0 and hence v = 0. Since v ∈ NullBF
was arbitrary, it follows that NullBF = {0}.

Definition: The F-twist

TF : Riv(P)→ Skw2 (W2,Z) (15.7)

is defined by

TF (K) := −BF ◦ (K×K) for all K ∈ Riv(P), (15.8)

19

where BF is the F-bracket defined by (15.5).

Proposition 3: For every H ∈ F , we have

TF = ΓH − ΓH ˜ (15.9)

where ˜ denotes the value-wise switch, so that ΓH ˜(K)(s, t) = ΓH(K)(t, s) for
all K ∈ Riv(P) and all s, t ∈ W.

Proof: Let K ∈ Riv(P) and s, t ∈ W be given. By (15.8) and (15.5), we see
that for every H ∈ F we have

TF (K)(s, t) = −BF (Ks,Kt)
= −Λ(H)(Ks)P(Kt) + Λ(H)(Kt)P(Ks).

(15.10)

We conclude from PK = 1W , (15.10) and (14.10) that

TF (K)(s, t) = ΓH(K)(s, t)− ΓH(K)̃ (s, t).

Since s, t ∈ W and K ∈ Riv(P) were arbitrary, (15.9) follows.

Remark: It is clear from (15.9) and (11.6) that

TF = 2 Alt ◦ ΓH for all H ∈ F .

The numerical factor 2 is conventional which reduces numerical factors in cal-
culations.

Proposition 4: The F-torsion TF is a surjective flat mapping whose gradient

∇TF ∈ Lin
(
Lin2 (W2,Z) , Skw2 (W2,Z)

)
is given by

(∇TF)L = L˜− L (15.11)

for all L ∈ Lin2 (W2,Z).

Proof: Let H ∈ F be given. It follows from (15.8) and (15.5)

TF
(
H− 1

2IL
)

= L for all L ∈ Skw2 (W2,Z)

and hence TF is surjective.
Prop. 3 together with Prop. 4 in Sec. 14 shows that the F-torsion TF is a

flat mapping whose gradient is given by (15.11).

In view of definitions (15.8), (15.5) and (15.11), we have TF<({0}) = F .

20

Definition: We say that K ∈ Riv(P) is F-twist-free (or F-symmetric) if
TF (K) = 0, i.e. if K ∈ F .

F is a flat in Riv(P) with the (external) direction space Sym2 (W2,Z) and
hence

dim TF<({0}) = dim Sym2 (W2,Z) =
n(n+ 1)

2
m, (15.12)

where n := dimW and m := dimZ. The mapping

SF :=
(
1Riv(P) + 1

2ITF
) ∣∣∣TF<({0})

(15.13)

is the projection of Riv(P) onto T<
F ({0}) with Null∇SF = Skw2 (W2,Z). If

K ∈ Riv(P), we call

SF (K) = K +
1
2
I
(
TF (K)

)
the F-symmetric part of K.

21

