
Monoids, Boolean Algebras, Materially Ordered Sets

Walter Noll and Brian Seguin

March 9, 2007

Abstract

In this paper, the interplay between certain mathematical structures is elucidated. First, it is shown
that there is a one-to-one correspondence between bounded half-lattices and commutative idempotent
monoids (c.i.-monoids). Adding certain additional structural ingredients and axioms, such c.i.-momoids
become Boolean algebras. There is a non-trivial one-to-one correspondence between these and what we
call materially ordered sets, which are half -lattices that satisfy certain additional axioms. Such materially
ordered sets can serve as mathematical models for certain physical systems. The correspondence between
materially ordered sets and Boolean algebras can be used to show, for example, that the law of action and
reaction (Newton’s third law) is not an independent axiom but a consequence of fundamental balance laws.

0. Mathematical Structures

A mathematical structure is described by prescribing ingredients and postulating axioms, which are
conditions that the ingredients are assumed to satisfy. In most cases, one starts with a single set and endows
it with structure by specifying ingredients that are entities involving constructions from this given set. An
isomorphism between two structures of the same type is an invertible mapping between the underlying
sets that induces a correspondence between the ingredients. An automorphism is an isomorphism from the
structured set to itself.

Given a set S endowed with a specified structure and an arbitrary invertible mapping from S to a set
T , one can use this mapping to transport the structure from S to T by transporting the ingredients of S to
T . The axioms for T are then automatically satisfied. In some of the cases, the set T may coincide with
S and then S acquires a second structure of the same type. The mapping is an automorphism only if this
second structure coincides with the given one.

These considerations will be illustrated by the content of the remainder of this paper.
Given a set S we define Sub S to be the set of all subsets of S.
Let f : A → B be a mapping with domain A and codomain B. The image mapping of f is the

mapping f> : Sub A → Sub B defined by

f>(U) := {f(x) | x ∈ U} for all U ∈ Sub A. (1)

Let S ∈ Sub A and T ∈ Sub B be such that f>(S) ⊆ T . Then the adjustment f |TS : S → T of f is
defined by

f |TS (x) := f(x) for all x ∈ S. (2)

A pre-monoid is a set M endowed with structure by the prescription of a mapping cmb : M×M → M
called combination, which satisfies the associative axiom

cmb(cmb(a, b), c) = cmb(a, cmb(b, c)) for all a, b, c ∈ M. (3)

A monoid M is a pre-monoid, with combination cmb, endowed with additional structure by the prescription
of a neutral nt ∈ M which satisfies the neutrality axiom

cmb(a,nt) = cmb(nt, a) = a for all a ∈ M. (4)
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Let M be a pre-monoid. It is easy to prove that M contains at most one element nt which satisfies
the neutrality axiom (4). If such an element exists, we say that M is monoidable, because we can use nt to
endow M with the natural structure of a monoid. If M contains no such element, we can add an additional
element nt to M and extend the combination mapping to M ∪ {nt} by defining

cmb(a,nt) = cmb(nt, a) = a for all a ∈ M ∪ {nt}. (5)

It is easy to see that (3) is still satisfied. For this reason we deal only with monoids.
A monoid is said to be commutative if the additional axiom

cmb(a, b) = cmb(b, a) for all a, b ∈ M (6)

is satisfied and is said to be idempotent if the axiom

cmb(a, a) = a for all a ∈ M (7)

is satisfied.
Let H be a subset of a monoid M . We say H is a submonoid if it is stable under combination and

contains nt, i.e. if
cmb>(H ×H) ⊆ H and nt ∈ H. (8)

If this is the case, then the designation of nt as the neutral and cmb|HH×H as the combination endows H with
the natural structure of a monoid.

An ordered set is a set S endowed with structure by the prescription of a relation ≺ (read “precedes”)
which is reflexive, antisymmetric and transitive, i.e. which satisfies the following axioms:

a ≺ a, (9)

(a ≺ b and b ≺ a) =⇒ a = b, (10)

(a ≺ b and b ≺ c) =⇒ a ≺ c, (11)

for all a, b, c ∈ S. A relation that satisfies all three of the above axioms is said to be an order on the set S.
Let T be a subset of an ordered set S. Then T becomes an ordered set by restricting the order of S

to T .
We will use the following facts about ordered sets. We say m ∈ S is a maximum of a given ordered

set S with respect to the relation ≺ if a ≺ m for all a ∈ S. It turns out that S can have at most one
maximum, so we write max≺S := m. Given U ∈ Sub S, and c ∈ S, we will write U ≺ c if a ≺ c for all
a ∈ U . There is at most one c ∈ S such that U ≺ c and U ≺ d implies c ≺ d for all d ∈ S. If such a c exists
we say that U has a supremum with respect to ≺ and write sup≺U := c.

The reverse relation � (read “follows”), defined by a � b :⇐⇒ b ≺ a for all a, b ∈ S, is also an order.
We say that m ∈ S is a minimum for S with respect to ≺ if m is a maximum with respect to � so that
min≺S := max�S. Similarly, we say that U has an infimum with respect to ≺ if U has a supremum with
respect to �, and so we have inf≺U := sup�U . Whenever the maximum, minimum, supremum or infimum
are mentioned they will always mean with respect to the relation ≺, so the subscript ≺ will be dropped from
now on.

To summarize, supU and infU , if they exist, are characterized by

U ≺ supU and U ≺ c =⇒ supU ≺ c for all c ∈ S (12)

and
inf U ≺ U and c ≺ U =⇒ c ≺ inf U for all c ∈ S. (13)

If every doubleton has an infimum then so has every non-empty finite set. In particular, we have

inf {a, b, c} = inf {a, inf {b, c}} = inf {inf {a, b}, c} for all a, b, c ∈ S. (14)

If S does not have a maximum we can add to S an element m and extend the relation ≺ to S ∪ {m} by
defining

a ≺ m for all a ∈ S ∪ {m} (15)
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so that m is the maximum of S ∪ {m}.
Similarly, if S doesn’t have a minimum one can add an element to S which will become the minimum

by extending ≺. Therefore, for the purposes of this paper, we only deal with ordered sets that have both a
minimum and a maximum.

Notes:
(0.1) The mathematical infrastructure (notation and terminology) used here is taken, in part, from

Chapter 0 of [FDS].
(0.2) When monoids are usually discussed, a multiplicative notation is often used for the combination

mapping or, if the monoid is commutative, an additive notation is often used. We believe that an impartial
notation should be used because often the combination mapping is neither multiplication nor addition. The
symbol e is a common notation for the neutral, but we feel the symbol nt is better suited since it resembles
the word “neutral” and so is more descriptive. The symbol ≤ is often used when talking about ordered sets
but, as will be seen in Example (1.1), in general orders do not agree with the common order associated with
≤ on R.

(0.3) A group G is a monoid, with combination cmb and neutral nt, endowed with additional structure
by the prescription of a reversion mapping rev : G → G satisfying the reversion axiom

cmb(rev(a), a) = nt = cmb(a, rev(a)) for all a ∈ G. (16)

Let G be a monoid. It is easy to prove that there can be at most one mapping rev : G → G that satisfies (16).
If such a mapping exists, we say that G is groupable because we can use rev to endow G with the structure of
a group. The procedure for converting a pre-monoid into a monoid has no analogue for converting monoids
into groups.

(0.4) In our view, the study of monoids and ordered sets is very much neglected in most undergraduate
curricula. For example, certain types of monoids can be used to define abstract versions of divisibility, prime
elements and prime decompositions. Such treatment unifies what is usually described separately for the
multiplicative monoid of the natural numbers and for the multiplicative monoid of polynomials over a field
(see [N1]).

(0.5) A detailed presentation of the theory of ordered sets is given in Chs. 6 and 7 of [JS].

Examples:
(0.1) The additive structure of the set N of natural numbers, whose neutral is 0, is a monoid.
(0.2) The muliplicative structure of the set N of natural numbers, whose neutral is 1, is a monoid.
(0.3) The set Map(S, S) of all mappings of a gives set S to itself is a monoid. The combination is

composition and the neutral is the identity mapping 1S of S.

1. Monoids and Lattices

We will call a commutative idempotent monoid a c.i.-monoid for short.
Definition: An ordered set S is called a bounded half-lattice if it has a maximum and every dou-

bleton has an infimum.

Theorem 1: Let M be a c.i.-monoid. Define the relation ≺ on M by

a ≺ b :⇐⇒ cmb(a, b) = a for all a, b ∈ M. (17)

Then ≺ is an order on M . Moreover, with this order

max S = nt and cmb(a, b) = inf {a, b} for all a, b ∈ M (18)

so that M has the structure of a bounded half-lattice. Conversly, if S is a bounded half-lattice ordered by ≺,
then it becomes a c.i.-monoid by defining

nt := max S and cmb(a, b) := inf {a, b} for all a, b ∈ S (19)
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Proof: Let a c.i.-monoid M be given and define the relation ≺ on it by (17). Since M is idempotent,
we have a ≺ a for all a ∈ M . Let a, b ∈ M be given and suppose a ≺ b and b ≺ a. Then by (17) and (6)
a = cmb(a, b) = cmb(b, a) = b and so a = b and thus (10) holds.

Now let a, b, c ∈ M be given and suppose a ≺ b and b ≺ c so that, by (17), cmb(a, b) = a and
cmb(b, c) = b. Then, from the associative axiom (3) for the monoid, we have

a = cmb(a, b) = cmb(a, cmb(b, c)) = cmb(cmb(a, b), c) = cmb(a, c) (20)

and hence a ≺ c. Thus, since a, b, c ∈ M were arbitrary, (11) holds and ≺ is an order.
Let a, b, c ∈ M be given. Since cmb(a, cmb(a, b)) = cmb(cmb(a, a), b) = cmb(a, b) by (3) and (7), it

follows that cmb(a, b) ≺ a. Similarly we have cmb(a, b) ≺ b, so that cmb(a, b) is a candidate for inf {a, b}.
Suppose c ≺ {a, b} so that cmb(c, a) = c = cmb(c, b). Then

cmb(c, cmb(a, b)) = cmb(cmb(c, a), b) = cmb(c, b) = c. (21)

Hence, by (17), c ≺ cmb(a, b) and thus by (13) inf {a, b} = cmb(a, b).
By the neutrality axiom for cmb involving nt, it is clear from (17) that a ≺ nt for all a ∈ M so that

nt = max M .
For the converse assertion start by defining cmb(a, b) := inf {a, b} for all a, b ∈ S. Since the infimum

always exists this is a well defined function from S × S to S. From the definition of infimum it is clear
that this operation is commutative, and (14) says it is associative. This mapping is also idempotent since
inf {a, a} = a for all a ∈ M . Let nt denote the maximum of S. Then by the definition of infimum, inf {nt,
a} = a for all a ∈ S and so nt is the neutral element for cmb. �

Definition: A set M is a double c.i.-monoid if it has two commutative idempotent monoid struc-
tures, denoted by (M , meet, tp) (read tp as “top”) and (M , join, bt) (read bt as “bottom”), such that

meet(a, b) = a ⇐⇒ join(a, b) = b (22)

Definition: An ordered set S is said to be a bounded lattice if it is a bounded half-lattice with
respect to the order ≺ and also with respect to the reverse order �.

Equivalently, a bounded lattice is an ordered set which has a minimum and a maximum and in which
every doubleton has an infimum and a supremum.

Corollary 1: Let M be a double c.i.-monoid. Define the relation ≺ on M by

a ≺ b :⇐⇒ meet(a, b) = a for all a, b ∈ M. (23)

Then ≺ is an order on M . Moreover, with this order,

max S = tp, minS = bt, meet(a, b) = inf {a, b} and join(a, b) = sup {a, b} for all a, b ∈ S, (24)

so that M has has the structure of a bounded lattice. Conversly, if S is a bounded lattice ordered by ≺, then
it becomes a double c.i.-monoid by defining

tp := max S, bt := min S, meet(a, b) := inf {a, b} and join(a, b) := sup {a, b} for all a, b ∈ S. (25)

Proof: From Thm. 1 a c.i.-monoid is a bounded half-lattice so a double c.i.-monoid has one bounded
half-lattice structure associated with the operation meet and another with the operation join. Since the meet
and join operations are related through (22), the order associated with meet is just the reverse of the order
associated with join so using the order associated with meet, M becomes a bounded lattice such that (24)
holds.

To prove the converse assertion we use the converse assertion of Thm. 1 and the fact that a bounded
lattice has the structure of two bounded half-lattices, one associated with the order and the other associated
with the reverse order. Thus S has two c.i.-monoid structures. Notice if inf {a, b} = a we have sup {a, b} =
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b and vice versa, hence S is a double c.i.-monoid. �

Examples:
(1.1) Consider the set N of natural numbers. N has two natural orders. One, of course, is ≤ (less

then or equal). The other is div (read divides), so that n div m means n is a divisor of m. Thm. 1 applies
because N with div is a bounded lattice and so is also a double c.i.-monoid with meet(a, b) = inf {a, b} =
gcd(a, b) (greatest common divisor) and join(a, b) = sup {a, b} = lcm(a, b) (least common multiple). We also
have maxdivN = 0 and mindivN = 1.

(1.2) The set of all subspaces of a given linear space V , denoted by Subsp V , is ordered by inclusion.
Let U,W ∈ Subsp V be given. It turns out that meet(U,W ) := inf {U,W} = U ∩ W and join(U,W ) =
sup {U,W} = Lsp(U ∪ W ), the linear span of U ∪ W . Since U ∩ V = U and Lsp(U ∪ {0}) = U for all
U ∈ Subsp V , we have V = max V = tp and {0} = min V = bt. This is also a double c.i.-monoid.

(1.3) In the previous example, one can replace “linear space” by “monoid”, “group”, and various other
concepts. Then “linear span” has to be replaced by “monoid span”,“group span” etc. The maximum and
top are the whole set while the minimum and bottom will consist of the singleton of the appropriate neutral.

2. Boolean Algebras

Definition: A commutative monoid is given the structure of a Boolean algebra by specifying an
additional ingredient, a mapping cpt : M → M called the counterpart mapping. In the context of a Boolean
algebra we use meet for the combination mapping and tp for the neutral element. The ingredients of the
Boolean algebra are required to satisfy the following additional axioms:

(BA1) cpt ◦ cpt = 1M ,

(BA2) meet(a, cpt(a)) = cpt(tp) for all a ∈ M ,

and

(BA3) meet(a, cpt(meet(cpt(b), cpt(c)))) = cpt(meet(cpt(meet(a, b)), cpt(meet(a, c)))) for all a, b, c ∈ M.

We define

bt := cpt(tp), join(a, b) := cpt(meet(cpt(a),cpt(b))) for all a, b ∈ M (26)

and use the notation

a ∧ b := meet(a, b), (27)

a ∨ b := join(a, b), (28)

acpt := cpt(a). (29)

Then a complete set of the axioms can be written in the form:

(acpt)cpt = a

a ∧ b = b ∧ a, (30)

(a ∧ b) ∧ c = a ∧ (b ∧ c), (31)

a ∧ tp = a, (32)

a ∧ acpt = bt, (33)

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c), (34)
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valid for all a, b, c ∈ M . In this way, we see that (BA3) is just the distributive law between the join and
meet operations.

Theorem (The Duality Principle): Let M be a Boolean algebra. Then M is naturally endowed
with a second Boolean algebra structure with combination mapping join, neutral element bt and counterpart
mapping cpt. Moreover, this new structure is obtained from the old one by the isomorphism cpt.

Proof: From (BA1) it is evident that cpt is a mapping from M onto itself which is its own inverse.
Thus, it can be used to transfer the existing Boolean algebra structure on M to another one. The definition
(26) expresses the assertion that meet and tp are transported by cpt to join and bt, and vice versa. �

The main consequence of this result is that any formula quantified over all of M remains valid if every
join is replaced by meet and top is replaced by bottom, and vice versa. We will refer to this new version of
the equation as the dual of the original equation. For example, the dual of (33) is a ∨ acpt = tp.

Proposition 1: The following statements are true for all a, b ∈ M :

a ∧ a = a (35)

a ∧ bt = bt (36)

a ∧ b = a ⇐⇒ a ∧ bcpt = bt (37)

a ∧ (a ∨ b) = a (38)

Proof: Let a ∈ M be given. Then by the dual of (32), then the dual of (33), then (34), then (33)
and finally the dual of (32) we have

a = a ∧ tp = a ∧ (a ∨ acpt) = (a ∧ a) ∨ (a ∧ acpt) = (a ∧ a) ∨ bt = a ∧ a

which proves (35).
Let a ∈ M be given. Then by (33), (31), (36) and (33) we obtain

a ∧ bt = a ∧ (a ∧ acpt) = (a ∧ a) ∧ acpt = a ∧ acpt = bt

which proves (36).
Assume that a ∧ b = a. Then by (31), then (33) and finally (36) we have

a ∧ bcpt = (a ∧ b) ∧ bcpt = a ∧ (b ∧ bcpt) = a ∧ bt = bt.

Now assume that a ∧ bcpt = bt . Then by (32), then the dual of (33), then (34) and finally the dual of (32)
we have

a = a ∧ tp = a ∧ (b ∨ bcpt) = (a ∧ b) ∨ (a ∧ bcpt) = (a ∧ b) ∨ bt = a ∧ b

hence (37) holds.
Let a, b ∈ M be given. Then by the dual of (32), then (37), then the dual of (34), then the dual of

(32) and finally (30) we obtain

a = a ∨ bt = a ∨ (b ∧ bt) = (a ∨ b) ∧ (a ∨ bt) = (a ∨ b) ∧ a = a ∧ (a ∨ b)

which proves (38). �

Corollary 2: A Boolean algebra M has the structure of a double c.i.-monoid with respect
to (M , meet, tp) and (M , join, bt).

Proof: From (36), (30) and the Duality Principle, it is clear that M has two monoid structures that
are both commutative and idempotent. Let a, b ∈ M be given and suppose a∧ b = a. Then, by substitution
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and the dual of (38), b∨ a = b∨ (a∧ b) = b. The implication a∨ b = b =⇒ b∧ a = a follows from the Duality
Principle. Hence (22) is valid, so M is a double c.i.-monoid. �

There is also the notion of a sub-Boolean algebra. Let M be a Boolean algebra and N a subset of M .
N is a subalgebra if it is a submonoid of the underlying monoid associated with M and if cpt>N ⊆ N .

Notes:
(2.1) In the literature there are many different variations on the definition of a Boolean algebra. The

most common one requires two binary operations on the set M and that each element have a counterpart.
Also, it assumes almost twice the number of axioms as does our definition. This is because the concept of a
counterpart mapping, which is used to prove the Duality Principle, is not introduced. Thus, for every axiom
that is assumed one also has to assume its dual. By initially assuming a counterpart mapping we were able
to prove the Duality Principle, while most textbooks just note it as being true. In some of the literature (38)
of the previous theorem is assumed as an axiom instead of the neutrality law for the underlying monoid.
This property is often called the absorption law (see page 6 of [RS]). We feel that the concept of a monoid,
which is very basic and natural in mathematics, is the proper foundation for a Boolean algebra and that this
absorption law is not natural. As far as we know, this is a new definition for a Boolean algebra.

(2.2) Once again we use impartial terminology for the concept of a Boolean algebra. What we call “the
counterpart” is often called “the complement”. However, as Example (3.2) below will show, the counterpart
may differ from the set-theoretic complement. Often times 0 is used to denote the bottom and 1 to denote
the top (see [J]).

Examples:
(2.1) Consider the set Sub S of all subsets of a given set S. Then Sub S is a Boolean algebra with the

meet of two sets defined to be their intersection and the counterpart mapping to be the complementation.
(2.2) Let S be a set and let Pred(S) be the set of all predicates on S, i.e. the set of all statements,

however defined, about elements of S. If meet := “and”, tp := “true” and cpt := “not” then Pred(S) is a
Boolean algebra if = is replaced by the logical equivalence ⇐⇒. The corresponding order is the implication
=⇒.

(2.3) Given any Boolean algebra M the subset {bt, tp} is a subalgebra. This is called the trivial
subalgebra. Let a ∈ M with a 6∈ {bt, tp} be given and consider {bt, a, acpt, tp}. This is also a subalgebra
of M .

(2.4) Let S be an infinite set and let M be the set of all subsets of S that are either finite or cofinite
(having a finite complement). Then M is a subalgebra of Sub S.

3. Materially Ordered Sets

Definition: An ordered set M with order ≺ is said to be materially ordered if the following axioms
are satisfied:

(MO1) M has a maximum ma and a minimum mn.

(MO2) Every doubleton has an infimum.

(MO3) For every a ∈ M there is exactly one member of M,denoted
by arem, such that inf {a, arem} = mn and sup {a, arem} = ma.

(MO4) (inf {a, brem} = mn) =⇒ a ≺ b for all a, b ∈ M.

In the context of material orders, ma is called the material all and mn is called the material noth-
ing. Given a ∈ M , the element arem is called the remainder of a.
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Remark: The concept of a materially ordered set was first introduced by one of us in the context of
an axiomatic foundation of physical systems (see [N2]). Here M is considered to consist of the whole system
and all of its parts. Given a, b ∈ M , a ≺ b is read “a is a part of b”. The maximum ma is the “material all”,
i.e. the whole system, and the minimum mn is the “material nothing”. The inf {a, b} is the “common part”
of a and b, and arem is the part of the whole system ma that remains after a has been removed. With this
in mind, the two conditions (MO3) and (MO4) are very natural. �

Theorem 2: Let M be a Boolean algebra and ≺ the order induced by meet according to Thm. 1.
Then ≺ is a material order with ma := tp and mn := bt.

Proof: By Cor. 2 M has the structure of a double c.i.-monoid and thus also has the structure of
a bounded lattice by Thm. 1. Therefore (MO1) and (MO2) hold. Let a, b ∈ M be given and assume
inf {a, bcpt} = bt. By (19) with cmb := meet and (27) this is equivalent to a ∧ bcpt = bt. By (37) this is
equivalent to a ∧ b = a and so, by (17), a ≺ b.

Let a ∈ M be given. Using (33) and its dual it is evident that acpt satisfies inf {a, acpt} = bt and
sup {a, acpt} = tp. It must be shown that acpt is the only element with this property. Let b ∈ M satisfy
a ∧ b = bt and a ∨ b = tp. Using the dual of (32), the dual of (34), then the dual of (33), and finally (32),
we obtain

acpt = acpt ∨ bt = acpt ∨ (a ∧ b)
= (acpt ∨ a) ∧ (acpt ∨ b) = tp ∧ (acpt ∨ b)
= acpt ∨ b.

Taking the dual of the final equation gives a = a∧ bcpt, so that a ≺ bcpt by (17). In a similar manner, using
a ∨ b = tp, one obtains bcpt ≺ a and thus b = acpt by (10). Thus, (MO3) holds with arem := acpt. �

Theorem 3: Let M be a materially ordered set. Then M has the structure of a Boolean algebra with
meet(a, b) := inf {a, b} and cpt(a) := arem for all a, b ∈ M , and tp := ma.

This result is not trivial and will be proved in a sequence of lemmas. It follows from Thm. 1 that if
meet(a, b) := inf {a, b} then M has the structure of a commutative monoid with ma as the neutral element
and whose combination mapping is meet. We use the notation a ∧ b := meet(a, b) = inf {a, b} and a ∨ b :=
sup {a, b}. Since (MO3) holds, one can define the function rem := (a 7→ arem) : M → M .

Lemma 1: The mapping rem := (a 7→ arem) : M → M satisfies (BA1) and (BA2). Namely,
rem ◦ rem = 1M and a ∧ arem = mn.

Proof: Let a ∈ M be given and consider arem ∈ M . Then by (MO3) there is a (arem)rem ∈ M such
that arem ∧ (arem)rem = mn and arem ∨ (arem)rem = ma. However, a also satisfies this property so by the
uniqueness guaranteed by (MO3), a = (arem)rem. Thus rem ◦ rem = 1M . It follows immediately from
(MO3) that (BA2) holds. �

Lemma 2: Let a, b ∈ M be given. Then the following are true:

a ≺ b ⇐⇒ a ∧ brem = mn (39)

a ≺ b ⇐⇒ brem ≺ arem (40)

a ∨ b exists and a ∨ b = (arem ∧ brem)rem (41)

Proof: By (17) a ≺ b is equivalent to a ∧ b = a. Thus (39) follows directly from (37).
Using (39) we have a ≺ b if and only if a ∧ brem = mn = brem ∧ a, which is equivalent to brem ≺ arem

by (39) again. This proves (40).
Equation (40) states that the function rem is order reversing and hence changes infima to suprema

and vice vera. Thus, since we have assumed that every doubleton has an infimum, every doubleton also has
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a supremum and so (41) holds. �

All that is left to be shown is that the distributive law holds.

Lemma 3: Given a1, a2, b ∈ M , we have b ∧ (a1 ∨ a2) = (b ∧ a1) ∨ (b ∧ a2).

Proof: Notice that by the characterization of infimum and supremum, (12) and (13), ai ∧ b ≺ b and
ai ∧ b ≺ ai ≺ (a1 ∨ a2) for i = 1, 2. Thus, (a1 ∧ b) ∨ (a2 ∧ b) ≺ b and (a1 ∧ b) ∨ (a2 ∧ b) ≺ a1 ∨ a2 which
together yield

(a1 ∧ b) ∨ (a2 ∧ b) ≺ b ∧ (a1 ∨ a2). (42)

In order to show that (42) remains valid if ≺ is replaced by �, the property (MO4) of materially ordered
sets is crucial. Start by defining c := (a1 ∧ b) ∨ (a2 ∧ b) so that

{a1 ∧ b, a2 ∧ b} ≺ c. (43)

With this fact, along with (39), we obtain a1 ∧ b∧ crem = a2 ∧ b∧ crem = mn. Using Lem. 2 along with (12),
we obtain

a1 ∧ b ∧ crem = a2 ∧ b ∧ crem = mn ⇒ {a1, a2} ≺ (b ∧ crem)rem

⇒ a1 ∨ a2 ≺ (b ∧ crem)rem

⇒ (a1 ∨ a2) ∧ b ∧ crem = mn
⇒ (a1 ∨ a2) ∧ b ≺ c.

Hence, b∧ (a1 ∨ a2) ≺ (a1 ∧ b)∨ (a2 ∧ b), and so together with (42) and (10) we obtain the desired result. �

Proof of Thm. 3 Putting together the comments after the statement of Thm. 3, Lem. 1, Lem. 2
and Lem. 3 we have the promised result. �

Corollary 3: Let M be a commutative monoid. Then there is at most one mapping cpt : M → M
that satisfies (BA1)-(BA3).

Proof: First of all, from Prop. 1, if M is not idempotent then M cannot be made into a Boolean
algebra and hence there doesn’t exist a mapping that satisfies (BA1)-(BA3). If M is idempotent then one
can define an order on M by (17). Either this order is material or it isn’t. If it is then by Thm. 3 M
has the structure of a Boolean algebra and hence there exists a mapping that satisfies (BA1)-(BA3). This
mapping is unique by (M03). If the order is not material then there doesn’t exist a mapping that satisfies
(BA1)-(BA3) because if there did exist such a mapping then by Thm. 1 M would have the structure of a
materially ordered set, which is a contradiction. �

If there exists a mapping cpt : M → M that satisfies properties (BA1)-(BA3), then M is said to be
Booleanable because this mapping endows M with the structure of a Boolean algebra.

Pitfall: Given a materially ordered set M it is possible to have a proper subset N of M that is also
materially ordered. From Thm. 3, both M and N also have the structure of a Boolean algebra; however, N
need not be a subalgebra of M . For an example of such a proper subset of M consider Mp, with p 6=ma, as
defined in Thm. 4.

Notes:
(3.1) A proof of a result very similar to Cor. 3 can be found on p. 474 in [J]. The proof found there

uses just the Boolean algebra structure and so is different from the proof presented here.

Examples:
(3.1) Let a set S be given. Then Sub S is materially ordered by inclusion.
(3.2) Let T be a topological space. Then the set of regularly open sets Ro(T ), i.e., the set of open sets

that are equal to the interior of their closure, is materially ordered by inclusion. Also the set of regularly
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closed sets Rc(T ), the set of closed sets that are equal to the closure of their interior, is materially ordered by
inclusion. The remainder mapping for Ro(T ) is the interior of the complement and, for Rc(T ), the remainder
mapping is the closure of the complement. It is not hard to see that, in general, neither the open nor the
closed sets are materially ordered by inclusion.

(3.3) Let V be a (genuine) inner product space. Then Subsp V is not a Boolean algebra. One might
think that by defining meet and join as in example (1.2) and then defining cpt(U) := U⊥, where U⊥ denotes
the orthogonal supplement of U , one might obtain the structure of a Boolean algebra. However, the axiom
(BA3) is not satisfied, although the others are. Looking at it from the point of view of a materially ordered
set, (MA3) is not satisfied.

4. Application to Physics

As was noted in the previous section, materially ordered sets have applications to physics. In this
section we will outline an application that was first introduced in [N2].

Let M be a materially ordered set and V a linear space. We say that the parts p and q are separate
if p ∧ q = mn. We use the notation

(M2)sep := {(p, q) ∈ M2 | p ∧ q = mn}. (44)

A function H : M → V is said to be additive if

H(p ∨ q) = H(p) + H(q) for all (p, q) ∈ (M2)sep. (45)

Theorem 4: Let M be a materially ordered set and p ∈ M . Then Mp := {q ∈ M | q ≺ p} is a
materially ordered set and the remainder mapping in Mp is given by

remp := (a 7→ arem ∧ p). (46)

Proof: Since Mp is a subset of M it is also ordered by ≺ and mn ≺ a ≺ p for all a ∈ Mp so it has a
minimum and a maximum. Since the infimum of every doubleton in M exists by (MO2), it is clear that every
doubleton in Mp has an infimum. It is a straight forward calculation using (48) to show that a∧aremp = mn
and a∨aremp = p. Property (MO4) also follows from the fact that Mp is a subset of a materially ordered set. �

A function I : (M2)sep → V is said to be an interaction in M if, for all p ∈ M , both I( · , prem) :
Mp → V and I(prem, · ) : Mp → V are additive.

The resultant RI : M → V of a given interaction I in M is defined by

RI(p) := I(p, prem). (47)

We say that a given interaction is skew if

I(q, p) = −I(p, q) for all (p, q) ∈ (M2)sep. (48)

Let (a, b) ∈ (M2)sep be given. Then a simple calculation, using the additivity of I( · , arem) and
I( · , brem), shows that

I(a, b) + I(b, a) = I(a, arem) + I(b, brem)− I(a ∨ b, (a ∨ b)rem). (49)

Theorem 5: An interaction is skew if and only if its resultant is additive.

Proof: The result follows immediately from (51) and (49). �

Remark: The previous theorem is fairly easy to prove based on the Boolean algebra structure of M
according to Thm. 3. It states that the law of action and reaction, which is referred to as Newton’s Third
Law when the interactions are interpreted as forces, is true if and only if the resultant is additive. The
fact that the resultant caused by the interaction is additive is a consequence of basic balance laws. Thus, if
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one assumes appropriate balance laws, one can prove Newton’s Third Law instead of assuming it. Such a
balance law can be formulated as follows: “The resultant of a given interaction is balanced by the action of
the exterior world on the system.” �

Examples:
(4.1) Let a finite set S be given. Then M := Sub S can be thought of as a system of discrete particles.
(4.2) It is more difficult to construct a continuous system. Let E be a Euclidean space and D a subset

of E. D is said to be a fit region in E if it satisfies the following properties:

(F1) D is a bounded subset of E
(F2) D is regularly open (see example (3.2))
(F3) D has negligible boundary, i.e. Bdy(D) can be covered by a finite number of balls

whose total volume can be made arbitrarily small
(F4) D has finite perimeter as defined, for example, in [NV].

Denote the set of all fit regions in E by Fr(E). Let B ∈ Fr(E) be given and define M := {P ∈ Sub B | P ∈
Fr(E)}. Then one can prove that M is materially ordered by inclusion. The counterpart mapping is cpt(P )
= int(B\P ) and hence is different from the complement B\P of P in B. The proof that this is indeed
materially ordered is highly non-trivial (see [NV]).

The Boolean algebra structure of M is a subalgebra of the Boolean algebra of the regularly open
subsets of B.

Acknowledgement: We are grateful to Vincent Matsko and Juan Schäffer for helpful suggestions and
proofreading.
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