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1 Invariants, Determinants, Covariants.

11. Skew forms, exterior products.

We assume that a linear space V is given and we put n := dimV. The
members of the space Skewk(Vk, RI ) are called skew k-forms. In view of the
remarks made after Prop.1 of Sect.02 and in view of Prop.4 of Sect.02, we have
the identification

Skew0(V
0, RI ) ∼= RI , Skew1(V

1, RI ) ∼= V∗, (11.1)

i.e., the skew 1-forms may be regarded as linear forms.
Let k ∈ NI , a list s of length k+1, and j ∈ (k+1)] be given. We then define

the list delj(s) of length k by

(delj(s))i :=

{

si if 1 ≤ i ≤ j − 1
si+1 if j ≤ i ≤ k

. (11.2)

Intuitively, delj(s) is obtained from s by deleting the j’th term.
Let k ∈ NI and A ∈ Lin(V,Skewk(Vk, RI ) be given. We then define ΛΛΛ(A) ∈

Map(Vk+1, RI ) by

ΛΛΛ(A)(f) :=
∑

j∈(k+1)]

(−1)k+1−jA(f j)(delj(f)) (11.3)

for all f ∈ Vk+1.

Lemma. ΛΛΛ(A) is a skew (k+1)-form, i.e.ΛΛΛ(A) ∈ Skewk+1(V
k+1, RI ).

Proof: It is immediate from the definition (11.3) that ΛΛΛ(A) is multilinear.
Assume now that a f ∈ Vk+1 with adjacent repeated terms is given. We may
then choose p ∈ k] such that

u := fp := f(p+1). (11.4)

Let j ∈ (k + 1)] be given. If j /∈ {p, p + 1}, then delj(f) has adjacent repeated
terms and hence, by Prop.9 of Sect.11, A(f j)(delj(f)) = 0. Therefore, (11.3)
gives

ΛΛΛ(A)(f) = (−1)k+1−pA(u)(delp(f)) + (−1)k+1−qA(u)(delq(f)). (11.5)

It is clear from (11.4) and the definition (11.2) that delp(f) = del(p+1)(f). Hence
the two terms on the right side of (11.5) cancel and we have ΛΛΛ(A)(f) = 0. Since
the non-injective f ∈ Vk+1 with adjacent repeated terms was arbitrary, it follows
from Prop.9 of Sect.11 that ΛΛΛ(A) is skew.

In View of the Lemma, we may regard (11.3) as the definition of a mapping

ΛΛΛ : Lin(V,Skewk(Vk, RI ) −→ Skewk+1(V
k+1, RI ). (11.6)

It is clear from (11.3) that ΛΛΛ is linear. Given ωωω ∈ Skewk(Vk, RI ) and λλλ ∈
V∗. we have ΛΛΛ(ωωω ⊗ λλλ) ∈ Skewk+1(V

k+1, RI ). Hence the following definition is
meaningful.
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Definition 1. If ωωω is a skew k-form and λλλ a linear form, then the skew (k+1)-
form ΛΛΛ(ωωω ⊗ λλλ) is called the exterior product of ωωω and λλλ, and is denoted
by

ωωω ∧ λλλ := ΛΛΛ(ωωω ⊗ λλλ). (11.7)

In view of (11.3) we have

(ωωω ∧ λλλ)(f) =
∑

j∈(k+1)]

(−1)k+1−j(λλλfj)ωωω(delj(f)) (11.8)

for all f ∈ Vk+1. It is clear that the mapping

((ωωω, λλλ) 7→ ωωω ∧ λλλ) : Skewk(Vk, RI ) × V∗ −→ Skewk+1(V
k+1, RI ) (11.9)

is bilinear.
If k = 0 and ω ∈ Skew0(V

0, RI ) ∼= RI , then ω ∧ λλλ = ωλλλ.

Definition 2. The exterior product
∧

φφφ of a list
φφφ := (φφφi ∈ Lin(V,Skewk(Vk, RI ) | i ∈ k]) of length k ∈ NI in V∗ is defined
recursively by

∧

φφφ :=
∧

∅ = 1 if k = 0 and
∧

φφφ := (
∧

φφφ|(k−1)]) ∧ φφφk if k ≥ 1, (11.10)

where the right side is defined by Def.1.

Informally, Def.2 states that
∧

φφφ is given by
∧

φφφ := (· · · (φφφ1 ∧ φφφ2) ∧ φφφ3) ∧ · · · ∧ φφφk−1) ∧ φφφk. (11.11)

We assume now that n ∈ NI and lists f ∈ Vn and φφφ ∈ V∗n are given such
that

φφφifj = δi,j =

{

0 if i 6= j
1 if i = j

(11.13)

for all i, j ∈ n]. Given k ∈ NI , we denote the set of all strictly isotone lists of
length k in n] by Iso(k, n). It is clear that the mapping

(s 7→ Rngs) : Iso(k, n) −→ Fink(n]) (11.14)

is invertible and hence that

#Iso(k, n) =

(

n

k

)

(11.15)

(see Sect.05 of Vol.I). For every s ∈ Iso(k, n) we define σσσs ∈ Skewk(Vk, RI ) by

σσσs :=
∧

(φφφ ◦ s). (11.16)

Informally, by (11.11) we have

σσσs := φφφs1
∧ φφφs2

∧ · · · ∧ φφφsk
. (11.17)

(parentheses are understood.)
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Proposition 1. We have

σσσs(f ◦ t) = δs,t =
{

0 if s 6= t
1 if s = t

(11.18)

for all s, t ∈ Iso(k, n).

In view of (11.17), we may read (11.18) informally as

(φφφs1
∧ φφφs2

∧ · · · ∧ φφφsk
)(ft1 , ft2 , · · · , ftk

) = δs1,t1δs2,t2 · · · δsk,tk
. (11.19)

Proof: We proceed by induction over k ∈ NI . If k = 0, then (11.18) is valid
because σσσ∅ =

∧

∅ = 1. Assume, then, that k ≥ 1, and let s, t ∈ Iso(k, n) be
given. By (11.10) we have σσσs = (σσσs|

(k−1)]
) ∧ σσσsk

and hence, by (11.8),

σσσs(f ◦ t) =
∑

j∈k]

(−1)k−j(φφφsk
ftj

)σσσs|
(k−1)]

(delj(f ◦ t)).

Since φφφsk
ftj

= 0 when sk 6= tj , we obtain σσσs(f ◦ t) = 0 unless sk = tj for some

j ∈ k]. In this last case, we get

σσσs(f ◦ t) = (−1)k−jσσσs|
(k−1)]

(f ◦ delj(t)). (11.20)

By the induction hypothesis, σσσs|
(k−1)]

(f ◦ delj(t)) and hence σσσs(f ◦ t) is zero

except when s|(k−1)] = delj(t).

We conclude that σσσs(f ◦ t) = 0 except when sk = tj for some j ∈ k] and
s|(k−1)] = delj(t). Suppose that this is the case. Since s is strictly isotone, we

then have sk > tj for all i ∈ k]\{j} and hence sk = tj = max{ti| i ∈ k]}. Since
t is strictly isotone, we conclude that j = k and hence s = t. Thus, it follows
that σσσs(f ◦ t) = 0 except when s = t, in which case, by (11.20),

σσσs(f ◦ s) = σσσs|
(k−1)]

(f ◦ delk(s)) = σσσs|
(k−1)]

((f ◦ s)|(k−1)]),

which equals 1 by the induction hypothesis.

12. Bases in spaces of skew forms.

We assume again that a linear space V is given and we put n := dimV. We
assume, also, that a list-basis b := (bi | i ∈ n]) of V is given. We also will make
use of the dual basis b∗ := (b∗

i | i ∈ n]) of b, which is a basis of the dual space
V∗ (see Sect.23 of Vol.I.). We also let k ∈ NI be given.

Theorem on Bases of Skewk(Vk, RI ). The family σσσ := (σσσs | s ∈ Iso(k, n)) in
Skewk(Vk, RI ) defined by

σσσs :=
∧

(b∗ ◦ s) for all s ∈ Iso(k, n). (13.1)

is a basis of Skewk(Vk, RI ).

The proof will depend on the following
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Lemma. Let ρρρ ∈ Skewk(Vk, RI ) be given. If ρρρ(b ◦ s) = 0 for all s ∈ Iso(k, n),
then ρρρ = 0.

Proof: We proceed by induction over k ∈ NI . The assertion is trivial when
k = 0. Assume, then, that k ≥ 1, that ρρρ satisfies the condition, and that the
assertion of the Lemma becomes valid after k has been replaced by k − 1.

Using the identification Vk ∼= Vk−1 × V we define, for each j ∈ n], the
(k-1)-form ρρρj by

ρρρj := ρρρ(f ,bj) for all f ∈ Vk−1.

Let j ∈ n] and t ∈ Iso(k−1, n) be given. If j ∈ Rng t then ρρρj(b◦t) = ρρρ(b◦t,bj) =

0 because the last term bj of (b ◦ t,bj) ∈ Vk coincides with one of the other
terms (see Prop.7 of Sect.11). If j /∈ Rng t then

ρρρj(b ◦ t) = ρρρ(b ◦ t,bj) = ±ρρρ(b ◦ s) = 0,

where s is the strictly isotone list of length k obtained from the list t of length
k − 1 by inserting j at the appropriate place. It follows that ρρρj(b ◦ t) = 0 for

all j ∈ n] and t ∈ Iso(k − 1, n). By the induction hypothesis, we conclude that
ρρρj = 0 for all j ∈ n].

Now let g ∈ Vk be given. Since b spans V, we may choose λ ∈ RI n such
that

gk =
∑

j∈n]

λjbj .

Since ρρρ(g.k) : V −→ RI is linear, we obtain

ρρρ(g) = ρρρ(g.k)(gk) =
∑

j∈n]

λjρρρ(g.k)(bj) =

∑

j∈n]

λjρρρ(g|(k−1)] ,bj) =
∑

j∈n]

λjρρρ(g|(k−1)]).

Since ρρρj = 0 for all j ∈ n], as proved above, it follows that ρρρ = 0.

Proof of Theorem: Let ωωω ∈ Skewk(Vk, RI ) be given. We must show that the
equation

? λ ∈ RI Iso(k,n),
∑

s∈Iso(k,n)

λsσσσs = ωωω (13.2)

has exactly one solution.
If λ is a solution of (13.2), it follows from Prop.1 of Sect.11 that

ωωω(b ◦ t) =
∑

s∈Iso(k,n)

λsσσσs(b ◦ t) = λt

for all t ∈ Iso(k, n), which shows that we must have

λ = (ωωω(b ◦ t) | t ∈ Iso(k, n)). (13.3)
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Now let λ ∈ RI Iso(k,n) be defined by (13.3) and put

ρρρ := ωωω −
∑

s∈Iso(k,n)

λsσσσs ∈ Skewk(Vk, RI ).

Using Prop.1 of Sect.11 again we see that

ρρρ(b ◦ t) := λt −
∑

s∈Iso(k,n)

λsσs(b ◦ t) = λt − λt = 0

for all t ∈ Iso(k, n). It follows from the Lemma that ρρρ = 0 and hence that λ, as
defined by (13.3), is indeed a solution of (13.2).

In view of (11.15) we have the following

Corollary 1. We have

dimSkewk(Vk, RI ) =

(

dimV

k

)

. (13.4)

In particular, Skewk(Vk, RI ) is a zero-space when k > dimV.

Since Iso(n, n) = {n]}, the Theorem for k := n reduces to the following

Corollary 2. We have

Skewn(Vn, RI ) = RI (
∧

b∗) (13.5)

and
(
∧

b∗)(b) = 1. (13.6)

Proposition 1. Let φφφ ∈ V∗k be given. Then
∧

φφφ = 0 if and only if φφφ is linearly
dependent.

Proof: Put A := Lsp Rngφφφ, which is a subspace of V∗. We then have φφφ ∈ Ak.
Using the identification A ∼= A∗∗ (see Sect.22 of Vol.I), we may consider

∧

φφφ not
only as an element of Skewk(Vk, RI ) but also as an element of Skewk(A∗k, RI ).
The latter interpretation is related to the former by

(
∧

φφφ)(f̂) = (
∧

φφφ)(f) for all f ∈ Vk (13.7)

when f̂ ∈ A∗k is defined by

f̂j := fj |A for all j ∈ k],

where fj on the right must be interpreted as an element of V∗∗. Since the
mapping (u 7→ u|A) : V∗∗ −→ A∗ is surjective (see Prop.6 of Sect.21 of Vol.I),
it follows from (13.7) that

∧

φφφ, when regarded as an elemant of Skewk(A∗k, RI ),
is zero if and only if it is zero when regarded as an element of Skewk(Vk, RI ).

Assume that φφφ is linearly dependent. Then dimA∗ = dimA =
dimLsp Rngφφφ < k. It follows from Cor.1 that Skewk(A∗k, RI ) is a zero-space
and hence that

∧

φφφ = 0.
Assume that φφφ is linearly independent. Then φφφ is a basis of A ∼= A∗∗ and

hence the dual of a basis φφφ∗ of A∗. It follows from Cor.2, applied to the case
when V is replaced by A∗, n by k, and b by φφφ∗, that (

∧

φφφ)(φφφ∗) = 1 and hence
that

∧

φφφ 6= 0.
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Proposition 2. We have

(
∧

φφφ)(f) = (
∧

f)(φφφ) (13.8)

for all f ∈ Vn and all φφφ ∈ V∗n.

Proof: Let f ∈ Vn be given. If f is linearly dependent, then both sides of (13.8)
are zero by Prop.1 above and Prop.7 of Sect.11.

Assume, then, that f is linearly independent and hence a basis of V. It is
clear from Defs.1 and 2 of Sect.11 , from the linearity of the mapping Λ defined
be (11.4), and the bilinearity of the tensor-product that the mapping

(φφφ 7→ (
∧

φφφ)(f)) : V∗n −→ RI (13.9)

is multilinear. Since a given φφφ ∈ V∗n is linearly independent if it fails to be
injective, it follows from Prop.1 above and Prop.8 of Sect.11 that the mapping
(13.9) is skew and hence belongs to Skewk(V∗k, RI ). By Cor.2 above, applied
to the case when V is replaced by V∗ and b by f∗, it follows that the mapping
(13.9) is a scalar multiple of

∧

f . But, in view of (13.6), both the mapping (13.9)
and

∧

f have the value 1 at f∗. Hence
∧

f is the same as the mapping (13.9),
which shows that (13.8) holds for all φφφ ∈ V∗n.

Proposition 3. Let V and W be linear spaces and let L ∈ Lin(W,V) be given.
For every k ∈ NI we then have

(
∧

φφφ)(L×kg) =
∧

((L⊤)×kφφφ)(g) (13.10)

for all φφφ ∈ V∗k and all g ∈ Wk.

Proof: We proceed by induction over k ∈ NI . For k = 0 (13.10) reduces to
1 = 1. Assume, then, that k ∈ NI with k ≥ 1 is given and that the assertion
becomes valid after k has been replaced by k − 1.

Given φφφ ∈ V∗k and g ∈ Wk, we infer from (11.10) and (11.8) that

(
∧

φφφ)(L×kg) = ((
∧

φφφ|(k−1)]) ∧ φφφk)(L×kg) =

=
∑

j∈k]

(−1)k−j(φφφk(Lgj))(
∧

φφφ|(k−1)](delj(L
×kg)). (13.11)

Let j ∈ k] be given. Since delj(L
×kg) = L×(k−1)delj(g), the induction hypoth-

esis yields
∧

φφφ|(k−1)](delj(L
×kg)) =

∧

((L⊤)
×(k−1)

φφφ|(k−1)])(deljg).

Using this result and the fact that φφφk(Lgj) = (L⊤φφφk)gj , we conclude from
(13.11) that

(
∧

φφφ)(L×kg) =
∑

j∈k]

(−1)(k−j)((L⊤φφφk)gj)((L
⊤)×kφφφ)|(k−1)](deljg).

Using (11.8) and (11.10) again, we obtain the desired result (13.10).

14. Determinants

We assume again that a linear space V is given and we put n := dimV.
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Theorem on Characterization of the Determinant. There is exactly one
function det : LinV −→ RI that satisfies

ωωω ◦ L×n = det(L)ωωω (14.1)

for all ωωω ∈ Skewn(Vn, RI ) and all L ∈ LinV. We call det the determinant-

function for V and its value det(L) at a given L ∈ LinV the determinant of
L.

Proof: Let L ∈ LinV and ωωω ∈ Skewn(Vn, RI ) be given.In view of Prop.3 of
Sect.11, we have ωωω ◦ L×n ∈ Linn(Vn, RI ) and, since

(ωωω ◦ L×n)∼(p,q) = ωωω∼(p,q) ◦ L×n = −ωωω ◦ L×n

for all p, q ∈ n] with p 6= q, we have ωωω ◦ L×n ∈ Skewn(Vn, RI ) (see Def.2
of Sect.11). Therefore, since ωωω ◦ L×n ∈ Linn(Vn, RI ) was arbitrary, we may
consider the mapping

(ωωω 7→ ωωω ◦ L×n) : Skewn(Vn, RI ) −→ Skewn(Vn, RI ). (14.2)

In view of Prop.1 of Sect.14 of Vol.I, this mapping is linear. Now, by Cor.1
of Sect.13, we have dimSkewn(Vn, RI ) = 1. It follows that the mapping (14.2)
must be scalar multiplication with a number in RI , which we denote by det(L).

Let I be any finite index set with #I = n. By enumerating I, it follws from
the Theorem just proved that

ωωω ◦ L×I = det(L)ωωω (14.3)

holds for all ωωω ∈ SkewI(V
I , RI ) and all L ∈ LinV.

Of course, the determinant function depends on V. We write detV instead
of det when we wish to emphasize this fact.
Pitfall: the determinant function det is not linear except when n = 1.

It is evident from (14.1) that

det(1V) = 1. (14.4)

Basic Rules for the Determinant. Let s ∈ RI and L,M ∈ LinV be given.
We then have

det(sL) = sndet(L), (14.5)

det(LM) = det(L)det(M), (14.6)

L is invertible if and only if det(L) 6= 0, (14.7)

det(L−1) = det(L)−1 if L ∈ LisV, (14.8)

detV
∗

(L⊤) = detV(L). (14.9)
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Proof: The assertion (14.5) follows from (14.1) because ωωω◦(sL)×n = sn(ωωω◦L×n)
for all ωωω ∈ Linn(Vn, RI )

The assertion (14.6) follows from (14.1) because (LM)×n = L×nM×n.
If L is invertible, then (14.6) with M := L−1 and (14.4) yield

det(L)det(L−1) = det(LL−1) = det(1V) = 1 (14.10)

and hence det(L) 6= 0.
We now choose a list-basis b of V. Using (14.1) with ω :=

∧

b∗, it follows
from (12.6) that

det(L) = det(L)(
∧

b∗)(b) = (
∧

b∗)(L×nb). (14.11)

Now, if L fails to be invertible, then L×nb is linearly dependent (see Prop.2 of
Sect.16 of Vol.I). Hence, by Prop.2 of Sect.11 , the right side of (14.11) is zero
and so we have det(L) = 0, which completes the proof of (14.7).

The assertion (14.8) is an immediate consequence of (14.10).
To prove (14.9), we apply Props.3 and 2 of Sect.13 to the right side of

(14.11) and obtain

det(L) = (
∧

b∗)(L×nb) = (
∧

(L⊤)×nb∗))(b) = (
∧

b)((L⊤)×nb∗).

Using (14.11) with V replaced by V∗ and L replaced by L⊤ and with b and b∗

interchanged, we arrive at the desired result (14.9).

Proposition 1. Let a linear space V ′ and a linear isomorphism A : V −→ V ′

be given. Then

detV
′

(ALA−1) = detV(L) for all L ∈ LinV. (14.11)

Proof: By Cor.2 of the Theorem on Characterisation of Dimension of Vol.I
we have dimV ′ = dimV = n. Let ωωω ∈ Skewn(Vn, RI ) be given. Noting that
ωωω ◦ (A−1)×n ∈ Skewn(V ′n, RI ), we apply (14.1) and then (14.1) again with
V, L, and ωωω replaced by V ′, ALA−1, and ωωω ◦ (A−1)×n and obtain

detV(L)ωωω = ωωω ◦ L×n = (ωωω ◦ (A−1)×n) ◦ (ALA−1)×n ◦ A×n =

= detV
′

(ALA−1)(ωωω ◦ (A−1)×n) ◦ A×n = detV
′

(ALA−1)(ωωω).

Since ωωω ∈ Skewn(Vn, RI ) was arbitrary, (14.11) follows.
Now let a basis b := (bi | i ∈ I) be given. If we apply Prop.1 to the case

when A := lncb
−1, we see that

det(L) = det([L]
b
) for all L ∈ LinV, (14.13),

where [L]
b

is the matrix of L relative to b (see (18.6) of Vol.I).
We assume now that a finite index set I, a subset J of I, and h ∈ VI\J are

given. Note that for every ωωω ∈ SkewI(V
I , RI ) we have ωωω(h.J) ∈ SkewJ(VI\J , RI )

(see Sect.01).
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Lemma. Let a subspace U of V, a projection P : V −→ W to a subspace W
of V be given such that NullP = U (see Sect.19 of Vol.I) be given. Also, let
ωωω ∈ SkewI(V

I , RI ) and g ∈ VJ be given. Assume that U ⊂ Lsp(Rngh). Then

ωωω(h.J)(g) = ω(h.J)(P×Jg) (14.14)

Proof: We proceed by induction over #J . The assertion is trivial when #J = 0.
Assume, then, that #J > 0 and that the assertion becomes valid after J has
been replaced by a subset J ′ having one element less.

Put K := I\J , choose j ∈ J and put J ′ := J\{j} and K ′ := I\J ′ = K∪{j}.
Define h′ ∈ VK′

by

h′
i :=

{

hi if i ∈ K
gj if i = j

for all i ∈ K ′. (14.15)

Then Rngh ⊂ Rngh′ and hence U ⊂ Lsp(Rngh′). By the induction hypothesis,
we have

ωωω(h.J)(g) = ωωω(h′.J ′)(g|J ′) = ωωω(h′.J ′)(P×J ′

g|J ′). (14.16)

We now define f ∈ VI by f |K′ := h′ and f |J ′ := P×J ′

g|J ′ . In view of (14.15) we
then have fj = h′

j = gj and hence

ωωω(h′.J ′)(P×J ′

g|J ′) = ωωω(f) = ωωω(f.j)(gj). (14.17)

Since ωωω(f.j) : V −→ RI is linear we have

ωωω(f.j)(gj) = ωωω(f.j)(Pgj) + ωωω(f .j)(gj − Pgj). (14.18)

Since gj − Pgj ∈ NullP = U and since h = (f |I\{j})|K , we have U ⊂
Lsp(Rngh) ⊂ Lsp(Rng(f |I\{j}) and hence gj − Pgj ∈ Lsp(Rng(f |I\{j}). It fol-

lows from Prop.8 of Sect.15 of Vol.I that (f .j)(gj−Pgj) ∈ VI is a linearly depen-
dent family. By Prop.7 of Sect.11 we conlude that the second term on the right
side of (14.18) is zero and hence, by (14.17) and (14.16), that ωωω(f .j)(Pgj) =

ωωω(h .J)(g). Since f |K = h and (f |J .j)(Pgj) = (P×J ′

g|J ′ .j)(Pgj) = P×Jg, we

have (f .j)(Pgj) = (h.J)(P×Jg) and thus the desired conclusion (14.14).

Proposition 2. Let L ∈ LinV, an L-subspace U of V, and a projection
P : V −→ W to a subspace W of V be given such that NullP = U . (See
Def.1 of Sect.18 and Def.1 of Sect 19 of Vol.I.) Then

detV(L) = detU (L|U )detW(PL|W), (14.19)

Proof: We choose a basis b := (bi | i ∈ I) of V such that b|K is a basis of U
and b|J is a basis of W for suitable subsets J and K of I such that K = I\J .

Let ωωω ∈ SkewI(V
I , RI ) be given. By (14.3) we then have

detV(L)ωωω(b) = ωωω(L×Ib) = ωωω(L×Jb|J .K)(L×Kb|K). (14.20)
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Since U is L-invariant and since b|K ∈ UK , we have L×Kb|K = (L|U )×Kb|K ∈
UK . Since ωωω(L×Jb|J .K)|UK ∈ SkewK(UK , RI ), it follows from (14.3) and
(14.20) that

detV(L)ωωω(b) = detU (L|U )ωωω(L×Jb|J .K)(b|K). (14.21)

It is clear that (L×Jb|J .K)(b|K) = (b|K .J)(L×Jb|J). Therefore, since NullP =
U = LspRngb|K , we can apply the Lemma with h := b|K and g := (L×Jb|J)
and infer from (14.21) that

detV(L)ωωω(b) = detU (L|U )ωωω(b|K .J)(P×JL×Jb|J). (14.22)

Since PL|W ∈ LinW, since b|J ∈ WJ , since P×JL×Jb|J = (PL|W)×Jb|J , and
since ωωω(b|K .J)|WJ ∈ SkewJ(WJ , RI ), we can apply (14.3) again and conclude
from (14.22) that

detV(L)ωωω(b) = detU (L|U )detW(PL|W)ωωω(b|K .J)(b|J). (14.23)

Since ωωω(b) = ωωω(b|K .J)(b|J), the desired result follows from (14.23) when we
put ωωω :=

∧

b∗ and observe (12.6).

Proposition 3. Let L ∈ LinV and an L-decomposition (Ui | i ∈ I) of V, i. e., a
decomposition of V whose terms are L-invariant, be given (see Def.1 of Sect.81
of Vol.I). Then

detV(L) =
∏

i∈I

detUi(L|Ui
). (14.24)

Proof: We proceed by induction over #I. The assertion is trivial when #I = 1.
Assume that #I > 1 and that the assertion becomes valid after I has been
replaced by an index set having one less element.

We choose j ∈ I and put I ′ := I\{j}. By Prop.2 of Sect.81 of Vol.I,
W :=

∑

(Ui | i ∈ I ′) is a supplement of Uj . It is clear that W is L-invariant and
hence that PL|W = L|W when P is the projection of V on W with NullP = Uj .
Using Prop.2, we conclude that

detV(L) = detUj (L|Uj
)detW(L|W).

Applying the induction hypothesis to L|W , we see that (14.24) follows.

Proposition 4. Given v ∈ V and λλλ ∈ V∗, we have

det(1V + v ⊗ λλλ) = 1 + λλλv. (14.25)

Proof: The assertion is trivial if λλλ = 0. Assume that λλλ 6= 0. Then we may
choose w ∈ V such that λλλw = 1. It is clear that P := (w⊗ωωω)|W is a projection
from V on W := RI w with U := NullP = {λλλ}⊥. Putting L := 1V + v ⊗ λλλ, we
see that U is L-invariant and that L|U = 1U . It follows that

PLw = P(w + (λλλw)v) = P(w + v) = w + Pw = w + (λλλv)w = (1 + λλλv)w.
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Since W := RI w we conclude that PL|W = (1+λλλv)1W . Therefore, using Prop.3
and (14.4) we obtain

detV(L) = detU (1U )detW((1 + λλλv)1W) = 1 + λλλv,

which is the desised result.

15. Invariants, characteristic polynomials.

As before, we assume that a linear space V is given and we put n := dimV.
We assume that n ≥ 1.

Definition 1. A function f : LinV −→ RI is called an invariant if

f(ALA−1) = f(L) for all A ∈ LisV, L ∈ LinV. (15.1)

Theorem on Characterization of Principal Invariants. For each k ∈ n]

there is exactly one function invk : LinV −→ RI such that

det(s1V − L) = sn +
∑

j∈n[

(−1)n−jsj invn−j(L) (15.2)

for all L ∈ LinV and all s ∈ RI . The function invk is an invariant; it is called
the k-th principal invariant function. Given L ∈ LinV the value invk(L) is
called the k-th principal invariant of L.

For every list-basis b of V we have

invk(L) =
∑

J∈Fink(n])

(
∧

b∗)(b|n]\J .J)(L×Jb|J). (15.3)

Proof: Let a list-basis b of V be given. Since (
∧

b∗)(b) = 1 (see (12.6)), it
follows from (14.1) that

det(s1V − L) = (
∧

b∗)((s1V − L)×nb) = (
∧

b∗)(sb − L×nb).

Using Prop.10 of Sect.11 with M :=
∧

b∗ and using (
∧

b∗)(b) = 1 again, we
conclude that (15.2) holds when invk(L), for each k ∈ n], is given by (15.3). This
shows that s 7→ det(s1V − L)) : RI −→ RI is a polynomial function. Since this
function determines a unique polynomial (see the Remark in Sect.92 of Vol.I),
it follows that invk(L), for each k ∈ n], is uniquely determined by L and does
not depend on the choice of the basis b.

The fact that invk is an invariant according to Def.1 is an immediate con-
sequence of Prop.1 of Sect.14.

Of course, the principal invariant functions depend on the space V. We
write invV

k instead of invk when we wish to emphasize this fact.
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Proposition 1. For each k ∈ n] we have

invk(sL) = skinvk(L) for all s ∈ RI ,L ∈ LinV. (15.4)

Proof: Let L ∈ LinV and s, t ∈ RI be given. It follws from (14.5) and (15.2)
with s replaced by t that

det(s(t1V − L)) = sndet(t1V − L) = sn(tn +
∑

j∈n[

(−1)n−jtj invn−j(L)). (15.5)

On the other hand, it follows from (15.2) with s replaced by ts and L by sL that

det(s(t1V−L)) = det((ts)1V−sL) = (ts)n+
∑

j∈n[

(−1)n−j(ts)j invn−j(sL) (15.6)

Since t ∈ RI was arbitrary, the desired result follows from (15.5) and (15.6) by
comparing the coefficients of like powers of t.

Proposition 2. We have

det = invn and tr = inv1. (15.7)

For all v ∈ V and λλλ ∈ V∗ we have

invk(v ⊗ λλλ) = 0 when k ∈ n]\{1} (15.8)

Proof: Let L ∈ LinV be given. Putting s = 0 in (15.2) gives det(−L) =
(−1)ninvn(L). Since (14.5) with s := −1 gives det(−L) = (−1)ndet(L), the
first of (15.7) follows.

Now let v ∈ V and λλλ ∈ V∗ be given. It follows from (14.5) and Prop.4 of
Sect.14 that

det(s1V − v ⊗ λλλ) = det(s(1V −
1

s
λλλv)) = sndet(1V −

1

s
v ⊗ λλλ) =

= sn(1 −
1

s
λλλv) = sn − sn−1λλλv (15.9)

for all s ∈ RI ×. In order that (15.9) be compatible with (15.2) when L := v⊗ λλλ
(15.9) must be valid and we must have inv1(v⊗ λλλ) = λλλv. Since inv1 : LinV −→
RI is linear by (15.3) and since v ∈ V and λλλ ∈ V∗ were arbitrary, the second of
(15.7) follows from the Characterization of the Trace in Sect.26 of Vol.I.

We now assume that a lineon L ∈ LinV is given. For the considerations
below, the distinction between polynomial functions and polynomials, which are

members of RI (NI ), is important. (See Sect.92 of Vol.I.)
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Definition 2. The polynomial determined by the polynomial function (s 7→
det(s1V −L)) : RI −→ RI is called the characteristic polynomial of L and is

denoted by chp
L
∈ RI (NI ), so that

chp
L
(s) = det(s1V − L) for all s ∈ RI . (15.10)

This definition and (15.2) give immediately the following result.

Propsition 3. The characteristic polynomial chp
L

is a monic polynomial of
degree n (see Sect.92 of Vol.I), so that (chp

L
)n = 1 and (chp

L
)j = 0 for all

j ∈ NI with j > n. The first n terms of chp
L

are given by

(chp
L
)j = (−1)n−j invn−j(L) for all j ∈ n[. (15.11)

Proposition 4. The spectrum SpecL (as defined in Def.1 of Sect.82 of Vol.I)
consists of the roots of the characteristic polynomial of L, i.e.,

SpecL = {σ ∈ RI | chp
L
(σ) = 0}. (15.11)

Proof: Since Null(σ1V − L) 6= {0} if and only if det(σ1V − L) is invertible
by Prop.1 of Sect.18 of Vol.I, (15.11) follows immediately from (14.7) and Def.2
above.

The purpose of the remainder of this Section is to show that Def.2 is con-
sistent with the definition of characteristic polynomial given by (95.2) in Vol.I.

We say that L is a cyclic lineon if there is a v ∈ V such that V = Lsp
L
{v},

where Lsp
L

denotes the L-span as defined by (92.16) of Vol.I. (see also the
Remark in Sect.93 of Vol.I.)

Proposition 5. Assume that L is cyclic and denote the minimal polynomial of
L (as defined in Prop.2 of Sect.92 of Vol.I) by q. Then

det(L) = (−1)nq0. (15.13)

Proof: We choose v ∈ V such that V = Lsp
L
{v}. It is easily seen that

b := (Li−1)v | i ∈ n]) (15.14)

is a list basis of V. Since the degree of q is n by Prop.3 of Sect.92 of Vol.I and
since q is monic, we have q = ιn +

∑

(qkιk | k ∈ n[). Since q(L) = 0, we conclude
that

Lnv = −
∑

k∈n[

qkL
kv =

∑

k∈n[

qkbk+1. (15.15)

By (15.14) we have

L×nb = (Liv | i ∈ n]) = ((Liv | i ∈ (n − 1)]) .n)(Lbn) =
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= ((bi+1 | i ∈ (n − 1)]) .n)(Lbn). (15.16)

Now put ωωω :=
∧

b∗ ∈ Skewn(Vn, RI ). Since ωωω((bi+1 | i ∈ (n−1)]) .n) : V −→ RI
is linear, it follows from (15.15) and (15.16) that

ωωω(L×nb) = −
∑

k∈n]

qkωωω((bi+1 | i ∈ (n − 1)]) .n)bk+1). (15.17)

Since the term bk occurs twice in the list (bi+1 | i ∈ (n − 1)]) .n)bk+1 except
when k = 0, it follows from Prop.8 of Sect.11 that the only non-zero term in the
sum on the right of (15.17) is the one for which k = 0, so that

(L×nb) = −q0ωωω((bi+1 | i ∈ (n − 1)]) .n)b1). (15.18)

Now, it is easily seen that the list (bi+1 | i ∈ (n−1)]) .n)b1, which informally can
be written as (b2,b3, · · · ,bn−1,b1), can be obtained from the list b by (n − 1)
switches. Hence, since ωωω is skew, it follows from (15.18) that

ωωω(L×nb) = (−1)nq0ωωω(b).

Since ωωω(b) = 1 by (12.6), the desired result (15.13) is a direct consequence of
(14.1).

Proposition 6. Assume that L is cyclic. Then the minimal polynomial of L

coincides with its characteristic polynomial.

Proof: Denote the minimal polynomial of L and let s ∈ RI be given. Since
p(s1V −L) = (p ◦ (s− ι))(L) holds for every polynomial p, it is easily seen that
(−1)n(q ◦ (s − ι)) is the minimal polynomial of s1V − L. Also, it is easily seen
that s1V−L is cyclic. Hence we can apply Prop.5 to the case when L is replaced
by s1V − L and conclude that

det(s1V − L) = (−1)n(−1)n(q ◦ (s − ι))0 = q(s)

. Since s ∈ RI was arbitrary, th desired result follows from(14.9).

Proposition 7. Let (Ui | i ∈ I) be an L-decomposition of V (see Prop.2 of
Sect.14) such that L|Ui

is cyclic for every i ∈ I. We then have

chp
L

=
∏

i∈I

qi , (15.19)

where qi is the minimal polynomial of L|Ui
for every i ∈ I.

Proof: Let s ∈ RI be given. It is clear that (Ui | i ∈ I) is also an (s1V − L)-
decomposition of V and that (s1V−L)|Ui

= s1Ui
−L|Ui

for each i ∈ I. Therefore,
Prop.2 of Sect.14 yields

detV(s1V − L) =
∏

i∈I

detUi(s1Ui
− L|Ui

). (15.20)
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Since L|Ui
is cyclic for each i ∈ I, it follows from Prop.6 that qi(s) = chp

L|Ui
(s)

for each i ∈ I. Using (15.10) with L replaced by L|Ui
and observing that s ∈ RI

was arbitrary, we see that (15.20) gives the desired result (15.19).
By the Elementary Decomposition Theorem of Sect.91, Vol.I, the lineon L

has an elementary decomposition (Ei | i ∈ I). By Cor.4 of Sect.93, Vol.I, L|Ei
is

cyclic for each i ∈ I. Therefore Prop.7 can be applied and (15.19) is valid when,
for each i ∈ I, qi is the minimal polynomial of L|Ei

and hence an elementary
divisor of L. (See Sect.95 od Vol.I.) The multiplicity of each elementary divisor
in the family (qi | i ∈ I) is emultL. Thus, (15.19) agrees with (95.2) of Vol.I,
showing that Def.2 of the present section is indeed consistent with (95.2) of
Vol.I. As was pointed out in Sect.95 of Vol.I, we have chp

L
(L) = 0. In the next

section, we shall give a new proof of this fact, a proof that does not make use of
the Elementary Decomposition Theorem of Vol.I.

16. Adjugates, covariants

As in the previous section, we assume that a linear space V is given, we put
n := dimV and assume that n ≥ 1.

Theorem on Characterization of Adjugates. There is exactly one mapping
adj : LinV −→ LinV such that

det(L + v ⊗ λλλ) − det(L) = λλλadj(L)v (16.1)

for all L ∈ LinV, v ∈ V , and λλλ ∈ V∗. We call adj the adjugate-mapping of
V and its value adj(L) at a given L the adjugate of L.

For every list-basis b of V we have

adj(L) =
∑

j∈n]

bj ⊗ (
∧

b∗)(L×∗b .j) . (16.2)

Proof: Let L ∈ LinV, v ∈ V, λλλ ∈ V∗ and a list-basis b of V be given and
put ωωω :=

∧

b∗. Observing (12.6), it follows from the Theorem on Characterisa-
tion of Determinants of Sect.14 that

det(L + v ⊗ λλλ) − det(L) = ω(L×nb + (v ⊗ λλλ)×nb) − ωωω(L×nb). (16.3)

We have ((v ⊗ λλλ)×nb)i = (v ⊗ λλλ)bi = (λλλbi)v for all i ∈ I, i.e., all terms of the
list (v ⊗ λλλ)×nb are multiples of v. Therefore, every restriction of this list to a
subset of n] that has two or more members is linearly dependent. Hence, By
Prop.7 of Sect.11, if we apply (11.6) to the case when M, f , g are replaced by
ωωω, L×nb, (v⊗λλλ)×nb, respectively, we see that only the terms on the right side
of (11.6) corresponding to a singleton J can be non-zero. Thus (11.6) yields

ωωω(L×nb + (v ⊗ λλλ)×nb) = ωωω(L×nb) +
∑

j∈n]

ωωω(L×nb .j)((λλλbi)v).
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Therefore, by (16.3), we have

det(L + v ⊗ λλλ) − det(L) =
∑

j∈n]

(λλλbi)ωωω(L×nb .j)(v), (16.4)

which shows that (16.1) holds when adj(L) is given by (16.2). We also infer from
(16.4) that the mapping

((v, λλλ) 7→ det(L + v ⊗ λλλ) − det(L)) : V × V∗ −→ RI

is bilinear. This mapping is identified with adj(L) by the identifications Lin2(V×
V∗, RI ) ∼= Lin(V,Lin(V∗, RI )) = Lin(V,V∗∗) ∼= LinV and hence adj(L) does not
depend on the choice of the basis b.

Of course, the adjugate mapping depends on V and we write adjV instead
of just adj when we wish to emphasize this fact.

It follows immediately from (16.1) and Prop.4 of Sect.14 that

adj(0) = 0, adj(1V) = 1V . (16.5)

Basic Rules for the Adjugate. Let L ∈ LinV and s ∈ RI be given. We then
have

adj(sL) = sn−1adj(L), (16.6)

adj(L)L = det(L)1V , (16.7)

adj(L) is invertible if and only if L is invertible, (16.8)

adj(L−1) = (adj(L))−1 =
1

det(L)
L if L ∈ LisV, (16.9)

(adjV(L))⊤ = adjV
∗

(L⊤). (16.10)

Proof: Using (16.1) and (14.5) each twice, we obtain

snλλλadj(L)v = det(sL + sv ⊗ λλλ) − det(sL) = λλλ(adj(sL))(sv) = sλλλadj(sL)v

for all v ∈ V and λλλ ∈ V∗ and hence that snadj(L) = sadj(sL), which implies
(16.6) when s 6= 0. For s := 0 (16.6) reduces to (16.5)1.

Using (14.25) twice and also using (14.6) and (16.1) we obtain

det(L)(1+λλλv) = det(L(1V +v⊗λλλ)) = det(L+(Lv)⊗λλλ) = det(L)+λadj(L)Lv

and hence det(L)λλλv = λλλ(adj(L)L))v for all v ∈ V and λλλ ∈ V∗, which is equiva-
lent to (16.7).

The rule (16.8) is an immediate consequence of (14.7) and (16.7).
The rule (16.9) follows from (16.8) by using (16.7) and then (16.7) again

with L replaced by L−1.
The rule (16.10) is an immediate consequence of the rule (14.9), the char-

acterization (16.1), and (25.6) of Vol.I.
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Definition. A mapping F : LinV −→ LinV is called a covariant if

F(ALA
−1

) = AF(L)A
−1

for all A ∈ LisV ,L ∈ LinV. (16.11)

Theorem on Characterization of Principal Covariants. For each k ∈ n]

there is exactly one mapping covk : LinV −→ LinV such that

adj(s1V − L) = −
∑

j∈n[

(−1)n−jsjcovn−j(L) (16.11)

for all L ∈ LinV and all s ∈ RI . The mapping covk is a covariant; it is called
the k-th principal covariant mapping. Given L ∈ LinV the value covk(L) is
called the k-th principal cavariant of L.

We have

invk(L + v ⊗ λλλ) − invk(L) = λλλcovk(L)v (16.13)

for all L ∈ LinV, v ∈ V, λλλ ∈ V∗ and k ∈ n].
Proof: Let L ∈ LinV, v ∈ V, λλλ ∈ V∗ and s ∈ RI be given. It follows from
(16.1) with L replaced by s1V − L and v by −v that

det(s1V − L + (−v) ⊗ λλλ) − det(s1V − L) = −λλλadj(s1V − L)v.

Using (15.2) with L replaced by L+v⊗λλλ and then again with L itself we obtain

−
∑

j∈n[

(−1)n−jsj(invn−j(L + v ⊗ λλλ) − invn−j(L)) = λλλadj(s1V − L)v. (16.14)

Since s ∈ RI was arbitrary, we conclude that (s 7→ λλλadj(s1V − L)v) is a poly-
nomial function. Since this function determines a unique polynomial (see the
Remark in Sect.92 of Vol.I), one can easily deduce from (16.14) that, for each
k ∈ n], the mapping

((v, λλλ) 7→ (invk(L + v ⊗ λλλ) − invk(L)) : V × V∗ −→ RI

is bilinear. Hence, in view of the identification Lin2(V × V∗, RI ) ∼= LinV, there
is exactly one covk(L) ∈ LinV such that (16.13) holds for all v ∈ V, λλλ ∈ V∗.
The formula (16.11) is an immediate consequence of the fact that (16.14) and
(16.13) hold for all v ∈ V, λλλ ∈ V∗.

The fact that covk is a covariant is an immediate consequence of Prop.1
of Sect.14 and the characterizations (16.1) and (16.11). It can also be deduced
from (16.13) and the fact that the principal invariants are indeed invariants in
the sense of Def.1 of Sect.15.

Of course, the principal covariant mappings depend on the space V . We
write covV

k instead of covk when we wish to emphasize this fact.
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Formulas for Principal Covariants. Let a lineon L ∈ LinV be given. We
then have

cov1(L) = 1, covn(L) = adj(L), (16.15)

and the principal covariants of L can be expressed explicitly in terms of its
principal invariants by

covk(L) = (−1)k−1Lk−1−
∑

j∈(k−1)]

(−1)j invk−j(L)Lj−1 for all k ∈ n]. (16.16)

Proof: To obtain (16.15)2 it suffices to evaluate (16.11) at s := 0 and to use
(16.6) with s := −1.

Let s ∈ RI be given. If we write (16.7) with L replaced by s1V −L and then
use (16.11) and (15.1) we find

−
∑

j∈n[

(−1)n−jsjcovn−j(L)(s1V − L) = sn1V +
∑

j∈n]

(−1)n−jsj invn−j(L)1V .

A short and easy calculation yields

∑

j∈n]

(−1)n−jsjcovn−j+1(L) =

= sn1V +
∑

j∈n[

(−1)n−jsj(invn−j(L)1V − covn−j(L)L). (16.17)

Since s ∈ RI was arbitrary und since polynomials are determined by the corre-
sponding polynomial functions, the terms corresponding to the same powers of
s on the two sides of (16.17) must agree. We conclude that cov1(L) = 1V ,

covk+1(L) = invk(L)1V − covk(L)L for all k ∈ (n − 1)], (16.18)

and invn(L)1V − covn(L)L = 0. The first of these three conclusions is (16.15)1,
the second, namely (16.18), implies (16.16) by induction, and the third is merely
a restatement of (16.7) when (16.15)2 and (15.7)1 are observed.

Proposition 1. For any given L ∈ LinV we have

chp
L
(L) = 0. (16.19)

Proof: For k := n, (16.16) and (16.15)1 give

Ln−1 −
∑

j∈(n−1)]

(−1)n−j invn−j(L)Lj−1 + (−1)nadj(L) = 0.

After multiplying this equation from the right by L and using (16.7), (15.7)1,
and (15.11), we conclude that (16.19) holds.
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