The Conceptual Infrastructure of Mathematics

0. Introduction

By conceptual infrastructure of mathematics I mean the concepts, the ter-
minology, the symbols, and the notations that mathematicians and people who
apply mathematics use in their daily professional activities. This is very differ-
ent from what is often called the conceptual foundation of mathematics, which
deals critically with the deeper meaning of these concepts, an activity which only
some mathematicians, and these only occasionally, worry about. I believe that
the infrastructure of mathematics was and still is being developed in four stages
(all quotations in Sects 1 - 2 are from Mathematical Thought from Ancient to
Modern Times, 1972, by Morris Kline):

1. Axioms, Theorems, and Proofs

“Mathematics as an organized, independent, and reasoned discipline did not
exist before the classical Greeks of the period from 600 to 300 B.C.”. The Greeks
introduced mathematics as a deductive discipline, with axioms, theorems, and
proofs . The Greeks had some knowledge of number theory (e.g. they had the
proof that there is no largest prime number), but most of their contributions
dealt with geometry. Euclids Elements (about 300 B.C.) gave a comprehensive
account of Greek mathematics, and it has been part of the infrastructure of
mathematics ever since.

2. Efficient Notations, Variables

Fundamental additions to the infrastructure were introduced in the 16th
and 17th century “The advance in algebra that proved far more significant than
the technical progress of the 16th century was the introduction of better sym-
bolism.” Familiar notations such as +, —, <, >, =, V and the use of parentheses,
square brackets, and braces were introduced during that time (For example, =
was introduced by Robert Recorde in 1557.) “The most significant change in the
character of algebra was introduced in connection with symbolism by Francois
Vieta (1540 - 1603)... He was the first to use letters purposefully and systemati-
cally, not just to represent an unknown or powers of an unknown but as general
coefficients. Improvements in Vieta’s use of letters are due to Descartes (1596
- 1650). He used first letters of the alphabet for known quantities and last let-
ters for unknowns,... Leibniz (1646 - 1716) must be mentioned in the history
of symbolism,... He made prolonged studies of the various notations, asked the
opinions of his contemporaries, and then chose the best... Thus, by the end of
the 17th century, the deliberate use of symbolism - as opposed to the inciden-
tal and accidental use - and the awareness of the power of generality it confers
entered mathematics.”

The idea of a function was developed in the 17th century and made the the
invention of differential calculus possible. It was Leibniz, in the late 1600’s, who
introduced the concepts as well as the terms variable, constant, and parameter.
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A function was defined to be the relation between an independent variable and
a dependent variable. Newton used the term fluent for such a relation. It was
Leibniz who introduced also the concepts as well as the notations of calculus,
such as g—g and the integral sign [.

Without the infrastructure introduced in the 16th and 17th century the
rapid advances of mathematics in the 18th and 19th century would have been

impossible.
3. Sets, Mapping, and Mathematical Structures

The end of the 19th century saw the beginning of a fundamental shift in
the infrastructure of mathematics, starting with the work on the concept of
a set by Georg Cantor. More and more, mathematics is seen to be dealing
with sets and mappings, rather than with variables. The concepts of domain
and codomain of a mapping are made explicit. Functions are special kinds of
mappings and are considered as objects in themselves and are given names,
generic or specific. Instead of y = f(x) to denote a function, in the language
of sets and mappings one uses just the single letter f by itself and considers
the domain Dom f and codomain Cod f of f to be parts of the specification
of f. So it becomes possible to consider sets (spaces) of functions rather than
only specific functions considered one by one. A functional is a mapping whose
domain is a set of functions. The now standard notations of the language of
sets, such as € for membership, C for inclusion, U for union, and N for
intersection are fairly recent. They were not yet used when I first learned about
set theory while in high school (from the little book by E.Kamke, published first
in the early 1930’s). Even more recent are notations such as f : D — C and
U={zxesS | .z.}

Using the concept of a set as a background, the past 100 years or so saw
the introduction of the idea of an abstract mathematical structure. Examples
of such structures are groups, rings, fields, topological spaces, linear spaces.
The multi-volume work of Bourbaki, Eléments de Mathématique, starting in
1939, explicitly introduced the concept of a mathematical structure and gave a
systematic description of the important structures, using the language of sets
and mappings.

4. Categories and Functors

In 1942 | Eilenberg and Mac Lane introduced the concepts as well as the
terms category, functor and natural transformation, and thereby added very
importantly to the infrastructure of mathematics.

Eilenberg died in January 1998, and the November 1998 issue of the Notices
of the American Mathematical Society contains the following descriptions of his
role and his views, which bear upon the conceptual infrastructure of mathemat-
ics.

Alex Heller: “As I perceived it then, Sammy considered that the highest
value in mathematics was to be found, not in specious depth nor in overcoming of
overwhelming difficulty, but rather in providing the definitive clarity that would
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illuminate its underlying order. This was to be accomplished by elucidating
the true structure of the objects of mathematics. Let me hasten to say that
this was in no sense an ontological quest: the true structure was intrinsic to
mathematics and was to be discerned only by doing more mathematics. Sammy
had no patience for metaphysical argument.. He was not a Platonist: equally,
he was not a non-Platonist. It might be more to the point to make a different
distinction: Sammys mathematical aesthetic was classical rather than romantic.

Category theory was one of Sammys principal tools in his search for math-
ematical reality. Category theory also developed into a mathematical subject
with its own honorable history and practitioners, beginning with MacLane and
including, notably, F.W.Lawvere, Sammys most remarkable student, who saw
it as a foundation for all of mathematics and justified this intuition with such
innovations as categorical semantics and topos theory. Sammy did not, I think
want to be reckoned a member of this school. I believe, in fact, that he would
have rejected the idea that mathematics needed a foundation. Category theory
was for him only a tool - in fact, a powerful one - for expanding our understand-
ing.. It was his willingness to search for this understanding at an ever higher
level that really set him apart and that made him, in my estimation, the author
of a revolution in mathematics as notable as that initiated by Cantors inven-
tion of set theory, Like Cantor, Sammy has changed the way we think about
mathematics.”

Hyman Bass: “He fit squarely into the tradition of Hilbert, E.Artin,
E.Noether, and Bourbaki: He was a champion of the axiomatic unification
that so dominated the early postwar mathematics. His philosophy was that
the aims of mathematics are to find and articulate with clarity and economy
the underlying principles that govern mathematical phenomena. Complexity
and opaqueness were, for him, signs of insufficient understanding. He sought
not just theorems, but ways to make the truth transparent, natural, inevitable
for the 'right thinking’ person. It was this ’right thinking’, not just facts, that
Sammy tried to teach and that, in many domains, he succeeded in teaching to
a whole generation of mathematicians.”

Eilenberg was the only non-French member of the Bourbaki-group.

5. The present situation

At the present time, all four stages of the conceptual infrastructure
described above are used to some extent. High school geometry is still
done more or less as described in Euclids Elements. ( I remember being
forced to memorize by rote some of Euclids axioms in an 8th grade geom-
etry course; it almost turned me away from mathematics.) High school al-
gebra and elementary calculus are still done, in most cases, using the lan-
guage of variables and constants as described in stage 2 above. On this
level, a function is still denoted by y = f(z) rather than just f. People
are reluctant to use sin or cos by themselves rather than sinxz or coszx.
The identity function of the real numbers is described by y = .
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The language of sets and mappings as described in stage 3 above provides
for much more precision, clarity, and economy than the language of variables
and constants. In 1972 (?7), I taught an elementary calculus course here at CMU
in which I systematically used the language of sets and mappings. (I introduced
the notation ¢ for the identity function of the reals.) There is still much re-
sistance against the language of sets and mappings. An attempt to introduce
this language into high school mathematics, known as the “New Math”, turned
out to be an utter failure, because teachers cannot teach something that they
do not understand themselves. During my Ph.D. Final in 1954, the examiners
circulated a note with “too much Bourbaki” on it. A review of a volume of
selected papers by me and collaborators downgrades much of my work as merely
“presenting well-known and well-understood concepts in continuum mechanics
or thermodynamics in the idiom of elementary set theory”.

I am convinced that the concepts of sets, mappings, and mathematical
structures will eventually displace the older modes of conceptual mathematics.
But this change requires more and better concepts, terminology, and notation
than the illogical and ambiguous mishmash that is now considered to be stan-
dard. During the past 25 years or so, Juan Schaffer and I have developed such
an infrastructure for the basic parts of mathematics (in connection with our
undergraduate honors program entitled Mathematical Studies). Although we
had no interaction with Eilenberg, our philosophy has been the same as the one
ascribed to him above: “His philosophy was that the aims of mathematics are
to find and articulate with clarity and economy the underlying principles that
govern mathematical phenomena. Complexity and opaqueness were, for him,
signs of insufficient understanding. He sought not just theorems, but ways to
make the truth transparent, natural, inevitable for the ‘right thinking‘ person.”

The language of categories and functors is used extensively in algebraic
topology but not yet very much in other fields of mathematics.

One should carefully distinguish between the language of sets and mappings
and the language of categories and functors on the one hand and set theory and
category theory on the other. The latter have become specialties and have been
pursued by specialists in their fields, but as such have had very little influence
on the rest of mathematics.

6. Isocategories

A mathematical structure is obtained by prescribing a list of ingredients and
postulating a list of azioms. For example, to obtain a topological space, one must
specify a set and a collection of subsets of it (the open sets) and then require
that certain axioms be satisfied. Perhaps the simplest example of an algebraic
structure is that of a pre-monoid : the ingredients are a set M and a mapping
emb : M x M — M, called combination in the abstract or multiplication,
addition, or composition in special cases. The only axiom is the associative
law. Monoids and groups are obtained from pre-monoids by adding ingredients
and axioms.



A species of structure consists of all mathematical structures obtained by a
particular recipe. For example, the species of topological spaces consists of all
topological spaces. For each species, there is a natural definition of isomorphism
between two members of the species. Thus, every species gives rise immediately
to an isocategory: its objects are the members of the species and its morphisms
are the isomorphisms. Most branches of mathematics deal extensively with pro-
cedures that start with a given structure and construct from it a new structure
that may or may not belong to the same species as the given one. For example,
from each set S one can construct the set SubS of all subsets of S and also the
group PermS of all permutatioms of S. Both Sub and Perm may be viewed as
isofunctors. From the point of view of category theory, isocategories may not
be particularly interesting, but I believe that they can provide a powerful con-
ceptual tool for articulating with clarity and economy the underlying principles
that govern many mathematical phenomena. Most other examples of categories
can be obtained from isocategories by extending the class of isomorphism to a
larger class of morphisms. For example, one can use the isocategory of topolog-
ical spaces to construct an enlarged category of topological spaces by taking all
continuous mappings or all open mappings to be the morphisms.

In a paper entitled Isocategories and Tensor Functors, written in 1992,
I have shown how one can gain better insight into many aspects of linear algebra
and differential geometry by using a special type of isofunctor which I call tensor
functor.



