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0. Introduction
This paper is intended to serve as a model for the first few chapters of future textbooks on continuum

mechanics and continuum thermomechanics. It may be considered an update of the paper Lectures on the
Foundations of Continuum Mechanics and Thermodynamics [N2] by one of us (W.N.), published in 1973,
and an elaboration of topics treated in Part 3, entitled Updating the Non-Linear Field Theories of Mechanics,
of the booklet [FC] by W.N.. 1

The present paper differs from most existing textbooks on the subject in several important respects:
1) It uses the mathematical infrastructure based on sets, mappings, and families, rather than the in-

frastructure based on variables, constants, and parameters. (For a detailed explanation, see The Conceptual
Infrastructure of Mathematics by W.N. [N1].)

2) It is completely coordinate-free and RI n-free when dealing with basic concepts.
3) It does not use a fixed physical space. Rather, it employs an infinite variety of frames of reference,

each of which is a Euclidean space. The motivation for avoiding physical space can be found in Part 1,
entitled On the Illusion of Physical Space, of the booklet [FC]. Here, the basic laws are formulated without
the use of a physical space or any external frame of reference.

4) It considers inertia as only one of many external forces and does not confine itself to using only inertial
frames of reference. Hence kinetic energy, which is a potential for inertial forces, does not appear separately
in the energy balance equation. In particle mechanics, inertia plays a fundamental role and the subject
would collapse if it is neglected. Not so in continuum mechanics, where it is often appropriate to neglect
inertia, for example when analyzing the motion of toothpaste when it is extruded slowly from a tube.

This paper does not deal with several important issues. For example:
1) It assumes that internal interactions at a distance, both forces and heat transfers, are absent. They

should be included in a more inclusive analysis because they are important, for example, in applications of
continuum thermomechanics to astrophysics.

2) It takes the basic properties of concepts such as force, stress, energy, heat transfer, temperature, and
entropy for granted and it does not deal with the large and important literature that tries to derive them
from more primitive assumptions.

3) It does not deal with the description of phase transitions.
4) It does not deal with the description of diffusion, i.e., the intermingling of different substances.
5) It does not deal with the connection between chemical reactions and continuum thermomechanics.
6) It does not deal with electromagnetic phenomena. These are inherently relativistic and hence are

not based on the existence of an absolute time. We know of no satisfactory reconciliation of relativity and
continuum physics, which needs absolute time. (However, absolute space is present neither in relativity
nor in continuum physics as presented here.) What is needed is some non-relativistic approximation for
electromagnetism.

We hope that, in the future, the issues just described will be treated in the same spirit as the present
paper, in particular by using the mathematical infrastructure based on sets, mappings, and families and
without using a fixed physical space,

1. Physical Systems
The concept of a materially ordered set was first introduced by W.N. in the context of an axiomatic

foundation of physical systems (see [N2])2. The present description is taken from [NS].
1However, the present paper introduces important new ideas due to Brian Seguin.
2In the mid 1950’s W.N. regularly taught courses for engineering students with the titles Statics and Dynamics. In Statics,

the students were asked to consider some system (a building, a bridge, or a machine), draw free-body diagrams, and apply to
each of these the balance of forces and torques. This often gave enough linear equations to determine the stresses in each of the
pieces of the system. In Dynamics, the students were asked to apply the same procedure as in Statics except that inertial forces
are taken into account. This often led to linear differential equations. W.N. then wondered what the underlying conceptual
structure of all this was. The material in this section is what he came up with.
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Here Ω is considered to consist of the whole system and all of its parts. Given a, b ∈ Ω, a ≺ b is read
“a is a part of b”. The maximum ma is the “material all”, i.e. the whole system, and the minimum mn is
the “material nothing”. The inf {a, b} is the overlap of a and b, and arem is the part of the whole system ma
that remains after a has been removed. With this in mind, the two conditions (MO3) and (MO4) below are
very natural.

Definition 1. An ordered set Ω with order ≺ is said to be materially ordered if the following axioms are
satisfied:

(MO1) Ω has a maximum ma and a minimum mn.

(MO2) Every doubleton has an infimum.

(MO3) For every p ∈ Ω there is exactly one member of Ω, denoted by prem, such that inf {p, prem} = mn
and sup {p, prem} = ma.

(MO4) (inf {p, qrem} = mn) =⇒ p ≺ q for all p, q ∈M .

The mapping rem := (p 7→ prem) : Ω −→ Ω is called the remainder mapping in Ω.

Theorem 1: Let Ω be a materially ordered set. Then Ω has the structure of a Boolean algebra with

p ∧ q := inf {p, q} and p ∨ q := sup {p, q} for all p, q ∈ Ω, (1.1)

which means that the following relations are valid:

mn = marem , (1.2)

p ∧ma = p, (1.3)

p ∧ prem = mn , (1.4)

(prem)rem = p , (1.5)

p ∧ q = q ∧ p , (1.6)

(p ∧ q) ∧ r = p ∧ (q ∧ r) , (1.7)

p ∧ (q ∨ r) = (p ∧ q) ∨ (p ∧ r) , (1.8)

(p ∨ q)rem = prem ∧ qrem , (1.9)

valid for all p, q, r ∈M .

The symbol p ∧ q is read as p meet q, and the symbol p ∨ q is read as p join q.
All of the formulas above remain valid if every join and meet as well as ma and mn are interchanged.

We will refer to the new version of an equation obtained in this way as the dual of the original equation. For
example, the dual of (1.4) is p ∨ prem = ma.

All of the formulas (1.2) - (1.7), and also their duals, are intuitively very plausible. The formulas (1.8)
and (1.9) and their duals are less plausible. The proofs are highly non-trivial. The best version of these is
given in [NS].

Theorem 2: Let Ω be a materially ordered set and p ∈ Ω be given. Then Ωp := {q ∈ Ω | q ≺ p} is a
materially ordered set and the remainder mapping in Ωp is given by

remp := (a 7→ arem ∧ p) . (1.10)

The proof is easy.

2. Additive Mappings and Interactions
Let Ω be a materially ordered set and W a linear space. We say that the parts p and q are separate if

p ∧ q = mn. We use the notation

(Ω2)sep := {(p, q) ∈ Ω2 | p ∧ q = mn} . (2.1)

2



Definition 2. A function H : Ω −→W is said to be additive if

H(p ∨ q) = H(p) + H(q) for all (p, q) ∈ (Ω2)sep . (2.2)

A function I : (Ω2)sep −→W is said to be an interaction in Ω if, for all p ∈ Ω, both

I( · , prem) : Ωp −→W and I(prem, · ) : Ωp −→W

are additive.
The resultant ResI : Ω→W of a given interaction I in Ω is defined by

ResI(p) := I(p, prem) for all p ∈ Ω . (2.3)

We say that a given interaction is skew if

I(q, p) = −I(p, q) for all (p, q) ∈ (Ω2)sep . (2.4)

Remark 1: The concept of an interaction is an abstraction. Its values may have the interpretation of forces,
torques, or heat transfers. In most of the past literature these cases were treated separately even though
much of the underlying mathematics is the same for all. Thus, this abstraction, like most others, is a labor
saving device.

Theorem 3: An interaction is skew if and only if its resultant is additive.

Proof: Let (p, q) ∈ (Ω2)sep be given, so that p ∧ q = mn. Using some of the rules (1.2)-(1.9), a simple
calculation shows that

prem = q ∨ (p ∨ q)rem and mn = q ∧ (p ∨ q)rem , (2.5)

so that (q, (p ∨ q)rem) ∈ (Ω2)sep.
Using the additivity of I(p, ·) : Ωprem −→W it follows that

ResI(p) = I(p, prem) = I(p, q) + I(p, (p ∨ q)rem). (2.6)

Interchanging the roles of p and q we find that

ResI(q) = I(q, qrem) = I(q, p) + I(q, (q ∨ p)rem). (2.7)

Adding (2.6) and (2.7), using the additivity of I(·, (p ∨ q)rem), and then (2.3) with p replaced by p ∨ q, we
obtain

ResI(p) + ResI(q)− ResI(p ∨ q) = I(p, q) + I(q, p) , (2.8)

from which the assertion follows.

3. Continuous Bodies
In order to define a continuous body system two classes must be specified. One being the class Fr of

all subsets of three-dimentional Euclidean spaces that are possible regions that a body system can occupy.
Intuitively, the term “body” suggests that the regions it can occupy are connected. We do not assume this
but we will use the term “body” rather than “body system” from now on. The other being the class Tp of
mappings which are possible changes of placement of a body.

It is useful to take Fr to be the class of fit regions introduced in [NV]. Roughly speaking, a fit region
is an open bounded subset of a Euclidean space whose boundary fails to have an exterior normal only at
exceptional points. Let a Euclidean space E , with translation space V, be given. We denote by Fr E the
set of all fit regions in E . Let A ∈ Fr E be given. We denote the set of points in which there is an exterior
normal to A by RbyA and call it the reduced boundary of A. Let

nA : RbyA −→ UsphV (3.1)

be the mapping that assigns to each point of the reduced boundary the exterior unit normal. Let C : A −→
Lin (V,W) be a mapping that assigns to each point x ∈ A a linear mapping from V to some linear space W.
Then the divergence theorem holds, namely
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∫
RdyA

CnA =
∫
A

divC . (3.2)

The class Tp consists of all mappings λ with the following properties:

(T1) λ is an invertible mapping whose domain Domλ and range Rng λ are fit regions in Euclidean spaces
Dspλ and Rspλ, which are called the domain-space and range-space of λ, respectively.

(T2) There is a C2-diffeomorphism φ : Dspλ −→ Rspλ such that λ = φ|Rng λ
Domλ.

The class Tp, whose elements are called transplacements, is stable under composition in the sense that
for any λ, γ ∈ Tp with Domλ = Rng γ we have λ ◦ γ ∈Tp. It is also stable under inversion in the sense that
if λ ∈Tp then λ← ∈Tp.

Assume that a set B is given. We say that a function δ : B×B −→ PI is a fit Euclidean metric on B if
it makes B isometric to some fit region in some Euclidean space. As shown in Section 6 of Part 2 of [FC], it
is then possible to use δ to imbed3 B into a Euclidean space Eδ constructed from B using δ. The imbedding
imbδ is invertible with Dom imbδ = B and Bδ := Rng imbδ ∈ Fr Eδ such that

δ(X,Y ) = dist(imbδ(X), imbδ(Y )) for all X,Y ∈ B , (3.3)

where dist denotes the Euclidean distance in Eδ. We call Eδ the imbedding space for δ and imbδ the
imbedding mapping for δ.

Definition 3. A continuous body B is a set endowed with structure by the specification of a non-empty
set Conf B, whose elements are called configurations of B, satisfying the following requirements:

(B1) Every δ ∈ Conf B is a fit Euclidean metric.

(B2) For all δ, ε ∈ Conf B the mapping λ := imbδ ◦ imb←ε is a transplacement, with Dspλ = Eε and
Rspλ = Eδ.

(B3) For every δ ∈ Conf B and every transplacement λ such that Domλ = Rng imbδ, the function
ε : B × B −→ PI , defined by

ε(X,Y ) := dist(λ(imbδ(X)), λ(imbδ(Y )) for all X,Y ∈ B , (3.4)

is a fit Euclidean metric that belongs to Conf B.

The elements of B are called material points.
For the rest of this paper, we assume that a non-empty continuous body B is given. The imbeddings

of B endow B with the structure of a three-dimensional C2-manifold. Thus B is a topological space and at
each material point X ∈ B there is a tangent space TX which is a three-dimensional linear space. The space
TX is called the (infinitesimal) body element of B at X since it is the precise mathematical representation
of what many engineers refer to as an “infinitesimal element” of the body. Note that the tangent spaces are
not inner-product spaces and hence the dual T ∗X of TX will come up frequently.

Let δ ∈ Conf B be given. Let Eδ denote the corresponding imbedding space, with translation space Vδ,
and let imbδ denote the imbedding mapping for δ. The gradient of imbδ at a material point X ∈ B,

Iδ(X) := ∇X imbδ ∈ Lis (TX ,Vδ) , (3.5)

is a linear isomorphism from the body element TX to the translation space Vδ of the imbedding space. It
can be used to define

Gδ(X) := I>δ (X)Iδ(X) ∈ Pos+(TX , T ∗X) , (3.6)

which we call the configuration of the body element TX since it is the localization of the global config-
uration δ ∈ Conf B.

Remark 2: In the literature on differential geometry the mappings Iδ := (X 7→ Iδ(X)) and Gδ := (X 7→
Iδ(X)) are cross-sections of appropriately defined fiber bundles. A configuration δ gives B the structure

3Only the existence of such an imbedding is important here, not the details of its construction.
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of a Riemannian manifold. The cross-section Gδ is often called the metric tensor field for the Euclidean-
Riemannian structure defined by δ.

Remark 3: The class Tp specified above corresponds to materials without constraints. If one wished to
describe materials with constraints then the class Tp would have to be restricted. For example, if one also
requires that the transplacements are volume preserving then Tp makes the body incompressible.

Consider the set ΩB defined by

ΩB := {P ∈ SubB | imbδ>(P) ∈ Fr for some δ ∈ Conf B} . (3.7)

It follows from (T1) and (B2) that if imbδ>(P) ∈ Fr for some δ ∈ ConfB then imbδ>(P) is a fit region for
every configuration δ. If P is an element of ΩB then the set

ConfP := {δ|P×P | δ ∈ Conf B} (3.8)

endows P with the structure of a continuous body. For this reason we sometimes call such P parts or
sub-bodies of B.

The set ΩB is materially ordered, by inclusion in the sense of Definition 1 and hence, by Theorem 1, it
has the structure of a Boolean algebra. We have

P ∧Q := P ∩Q , (3.9)

P ∨Q := Int Clo(P ∪Q) , (3.10)

Prem := Int(B\P) . (3.11)

The proof of this is highly non-trivial result can be found in [NV]. One should think of P ∧Q as the common
part of P and Q, P ∨ Q as the part obtained by merging P and Q, and Prem as the part of B left when P
is taken away.

4. Frames of Reference and Placements

When dealing with the behavior of a continuous body in an environment it is useful to employ a frame
of reference. Such frames are represented mathematically by three-dimentional Euclidean spaces. We call
Euclidean spaces that represent frames of reference frame-spaces.

Definition 4. Let µ be an invertible mapping with Domµ = B and Bµ := Rng µ ∈ Fr. We say that µ is
a placement of B if imbδ ◦ µ← is a transplacement for every δ ∈ Conf B. The Euclidean space in which
Rngµ is a fit region is called the range-space of µ and will be denoted by Frmµ. We denote the translation
space of Frmµ by Vfrµ. We denote the set of all placements of B by PlB.

The following facts are easy consequences of Definitions 3 and 4:

(P1) For all κ, γ ∈ PlB we have κ ◦ γ← ∈ Tp.

(P2) For every κ ∈ PlB and λ ∈ Tp such that Rng κ = Domλ we have λ ◦ κ ∈ PlB.

Of course, every imbedding imbδ, δ ∈ ConfB, is a placement, but not every placement is an imbedding.
It follows from (P2) that, in Definition 4, “every” can be replaced by “some” without changing the validity.

Let a placement µ : B −→ Bµ ⊂ Frmµ be given. We then define δµ : B × B −→ PI × by

δµ(X,Y ) := dist(µ(X), µ(Y )) for all X,Y ∈ B , (4.1)

where dist is the Euclidean distance in Frmµ. It follows from (B3) and Definition 4 that δµ is Euclidean
metric and, in fact, a configuration of B. We call δµ the configuration induced by the placement µ. 4

Now let a configuration δ ∈ ConfB be given. Let µ and µ′ be two placements that induce the same
configuration δ. Since δ = δµ = δµ′ , it follows from (4.1) that µ′ ◦ µ← is a Euclidean isometry. Since there

4In 1958, W.N. introduced the unfortunate terms “configuration” and “deformation” for what are called “placement” and
“transplacement” here. He apologizes. Since these old terms were used in [NLFT], they were widely accepted, and we are now
in the ironic position to fight against a terminology that W.N. introduced.
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are infinitely many Euclidean isometries with domain Bµ there are infinitely many placements that induce
the given configuration. In particular, in the case when µ′ := imbδ,

α := imbδ ◦ µ← : Bµ −→ Bδ (4.2)

is a Euclidean isometry. Its (constant) gradient

Q := ∇(imbδ ◦ µ←) ∈ Orth(Vfrµ,Vδ) (4.3)

is an inner-product isomorphism.
Define

Mµ(X) := ∇Xµ ∈ Lis (TX ,Vfrµ) for all X ∈ B . (4.4)

In view of (3.5), it follows from (4.3) and the chain rule that

Iδ = QMµ, (4.5)

and hence, by (3.6), that the configuration of the body element TX induced by δ is given by

Gδ(X) = Mµ(X)>Mµ(X) ∈ Pos+(TX , T ∗X) for all X ∈ B . (4.6)

For a given placement µ we use the notation

Pµ := µ>(P) for all P ∈ ΩB . (4.7)

Given (P,Q) ∈ (ΩB)2
sep we define the reduced contact of (P,Q) in µ by

Rctµ(P,Q) := RbyPµ ∩ RbyQµ . (4.8)

Let another placement µ′ be given. Let A ∈ Orth(Vfrµ′,Vfrµ) be an inner-product preserving isomor-
phism from Vfrµ′ to Vfrµ. Put

λ := µ ◦ µ′← . (4.9)

Define the local volume change function ρµ′,µ : Bµ′ −→ PI × by

ρµ′,µ(x) := |det(∇xλA)| for all x ∈ Bµ′ . (4.10)

This definition is independent of which inner-product isomorphism from Vfrµ′ to Vfrµ′ is used. To see this
let A′ ∈ Orth(Vfrµ′,Vfrµ) be another such isomorphism from Vfrµ′ to Vfrµ. It is clear that Q := A−1A′ ∈
Orth(Vfrµ′). Hence, since the determinant of an orthogonal lineon is ±1, we have

|det(∇xλA′)| = |det(∇xλAQ)| = |det(∇xλA)||detQ| = |det(∇xλA)| . (4.11)

Since the transplacement λ is of class C2, ρµ′,µ is of class C1.

5. Time-Families

In much of the rest of this paper we assume that a genuine real interval I, called the time-interval, is
given. Any family indexed on I will be called a time-family. In some cases, each of the terms ft of the
family belong to a given set S. In this case, the family can be identified with a mapping f : I −→ S, so that

f(t) := ft for all t ∈ I . (5.1)

If S is a Euclidean space or linear space, it makes sense to consider the case when f is of class C1 or C2 and
then define the time-families (f•t | t ∈ I) or (f••t | t ∈ I) by

f•t := f•(t) or f••t := f••(t) for all t ∈ I . (5.2)
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In some cases, one deals with a time-family (At | t ∈ I) of sets and considers a time-family (gt | t ∈ I)
of mappings gt : At −→ S with values in a set S. Putting M := {(X, t) | X ∈ At and t ∈ I}, we can then
identify the family (gt | t ∈ I) with the mapping g :M−→ S defined by

g(X, t) := gt(X) for all X ∈ At and t ∈ I . (5.3)

Assume now that the terms in the family (At | t ∈ I) are all equal to a fixed set A, so that M = A× I and
that S is a Euclidean space or linear space. Then it makes sense to consider the case when g(X, ·) is of class
C1 for all X ∈ A and consider the time-family (g•t | t ∈ I) of mappings defined by

g•t (X) := g(X, ·)•(t) for all X ∈ A and t ∈ I , (5.4)

which we call the time-derivative of the time-family (gt | t ∈ I). The formula (5.4) can also be applied when
M is a subset of A × I such that, for each (X, t) ∈ M, there is a neighborhood of t such that (X, s) ∈ M
for all s in this neighborhood.

In general, all equations, involving either mappings or families, are understood to hold value-wise or
term-wise.

6. Motions

We assume that a time-interval I and a fixed frame-space F with translation space V are given.

Definition 5. A motion is a C2 mapping µ̄ : B × I −→ F such that for each t ∈ I, µ̄t := µ̄(·, t) ∈ PlB.
Thus, a motion can also be viewed as a time-family of placements in the space F . The trajectory of the
motion µ̄ is the set

M := {(µ̄t(X), t) | (X, t) ∈ B × I} ⊂ F × I . (6.1)

A mapping from B × I to some linear space will be called a material field, and a mapping from the
trajectory M to some linear space will be called a spatial field.5

We assume now that a motion µ̄ as just defined is given. A material field can be used to generate a
spatial field and vice vera in the following way. Let W be a linear space and Φ : B × I −→W be a material
field. We can define the associated spatial field Φs :M−→W by

Φs(x, t) := Φ(µ̄←t (x), t) for all (x, t) ∈M . (6.2)

Given a spatial field Ψ :M−→W we can define the associated material field Ψm : B × I −→W by

Ψm(X, t) := Ψ(µ̄t(X), t) for all (X, t) ∈ B × I . (6.3)

Note that (Φs)m = Φ and (Ψm)s = Ψ.
If a material field is continuous, of class C1, or class C2, so is the associated spatial field and vice versa.

If they are of class C1, we use the notations

Φ•(X, t) := Φ(X, ·)•(t), ∇Φ(X, t) := ∇(Φ(·, t))(X) for all (X, t) ∈ B × I (6.4)

and
Ψ•(x, t) := Ψ(x, ·)•(t), ∇Ψ(x, t) := ∇(Ψ(·, t))(x) for all (x, t) ∈M . (6.5)

Assume that Φ and Ψ are of class C1. Using (5.3) we can then consider the time-families (Φt | t ∈ I)
and (Ψt | t ∈ I) and their time-derivatives (Φ•t | t ∈ I) and (Ψ•t | t ∈ I). Of course, Φ• is a continuous
material field and Ψ• is a continuous spatial field. They are of class C1 if the original fields were of class C2.

The spatial velocity v̄ : B × I −→ V and spatial acceleration ā : B × I −→ V are defined by

v̄ := (µ̄•)s, and ā := (µ̄••)s . (6.6)

5In much of the past literature, the terms “Lagrangian” and “Eulerian” have been used instead of “spatial” and “material”.
This is unfortunate because these terms are non-descripive and historically inaccurate.
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We use the following notation for the velocity gradient and its value-wise symmetric part:

L̄ := ∇v̄ :M :−→ LinV , (6.7)

D̄ :=
1
2

(L̄ + L̄>) :M−→ SymV . (6.8)

Now let a spatial field Ψ :M−→W field be given. The material time-derivateve Ψ◦ of the spatial field
Ψ is the spatial field defined by

Ψ◦ := ((Ψm)•)s . (6.9)

Using (6.3) and the chain rule, it follows that

Ψ◦ = Ψ• +∇Ψv̄. (6.10)

Applying (6.10) to the case when Ψ is the spatial velocity, we obtain the following relation between the
spatial fields associated with the velocity and accelertion:

ā = v̄• + L̄v̄ . (6.11)

We use the notation

M̄(X, t) := M̄t(X) := ∇µ̄t(X) ∈ Lis (TX ,V) for all (X, t) ∈ B × I , (6.12)

and, for each X ∈ B, we call the mapping M̄(X, ·) : I −→ Lis (TX ,V) the motion of the body element
TX induced by the motion µ̄ of the whole body.

It is sometimes useful to specify a fixed reference placement κ : B −→ Bκ in the frame-space F and
characterize all other placements µ in F by their transplacements from κ. Thus, we obtain the transplace-
ment process χ̄ : Bκ × I −→ F given by

χ̄(p, t) := µ̄(κ←(p), t) for all (p, t) ∈ Bκ × I . (6.13)

We use the notation
K(X) := ∇Xκ for all X ∈ B (6.14)

and call, for each X ∈ B , K(X) the reference placement of the body element TX induced by the
reference placement κ of the whole body. The transplacement gradient F̄ : Bκ × I −→ Lis V is given by

F̄(p, t) = ∇χ̄(p, t) = M̄t(κ←(p))K−1(κ←(p)) for all (p, t) ∈ Bκ × I . (6.15)

7. Densities and Contactors

Definition 6. We say that a part P ∈ ΩB is internal if, for every placement µ ∈ PlB, we have CloPµ ⊂ Bµ.
We denote the set of all internal parts by Ωint

B .

It is easily seen, using the properties (B2) and (T2) in Section 3, that in this definition “every” can be
replaced by “some’” without changing the meaning.

We assume now that a linear space W is given.

Definition 7. An additive mapping H : ΩB −→W is said to have densities if, for every µ ∈ PlB, there is
a continuous mapping hµ : Bµ −→W such that

H(P) =
∫
Pµ

hµ for all P ∈ Ωint
B . (7.1)

We call hµ the density of H in the placement µ.

Let µ, µ′ ∈ PlB be two placements such that (7.1) holds for µ. Consider the transplacement α := µ◦µ′← :
Bµ′ −→ Bµ. By the Theorem on Transformation of Volume Integrals (see Section 410 in [FDS], Volume II)
and (4.10) we have

H(P) =
∫
Pµ

hµ =
∫
Pµ′

ρµ′,µ(hµ ◦ α) for all P ∈ Ωint
B . (7.2)
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Therefore, it follows that in Definition 7, “every” can be replaced by “some” without changing the meaning.
Moreover, if hµ in the density of H in the the placement µ, then hµ′ := ρµ′,µ(hµ ◦ α) in the density of H in
the the placement µ′.

Definition 8. We say that an interaction I : (ΩB)2
sep −→W has contactors if, for every placement µ, there

is a C1 mapping Cµ : Bµ −→ Lin (Vfrµ,W) such that

I(P,Q) =
∫

Rctµ(P,Q)

CµnPµ for all (P,Q) ∈ (ΩB)2
sep with P ∈ Ωint

B . (7.3)

We call Cµ the contactor of I in the placement µ.

Let µ, µ′ ∈ PlB be two placements and assume that (7.3) holds for µ. Consider again the transplacement
α := µ ◦ µ′← : Bµ′ −→ Bµ. By the Theorem on Transformation of Surface Integrals (see Chapter 5 [FDS],
Volume II) and (4.10) we have

I(P,Q) =
∫

Rctµ′ (P,Q)

ρµ′,µ(Cµ ◦ α)(∇α)−>nPµ′ for all (P,Q) ∈ (ΩB)2
sep with P ∈ Ωint

B . (7.4)

Since Cµ is of class C1, so is Cµ′ := ρµ′,µ(Cµ◦α)(∇α)−> and hence is the contactor of I in the placement µ′.
We conclude, again, that in Definition 8, “every” can be replaced by “some” without changing the meaning.

In the case when Q := Prem, (7.3) reduces to

ResI(P) =
∫

RbyPµ
CµnPµ for all P ∈ Ωint

B . (7.5)

Theorem 4: Given an interaction I : (ΩB)2
sep −→W with contactors and an additive mapping H : ΩB −→

W with densities, the following three conditions are equivalent:

1)We have
ResI(P) + H(P) = 0 for all P ∈ Ωint

B . (7.6)

2) For every placement µ ∈ PlB, we have

divCµ + hµ = 0 (7.7)

where hµ is the density of H in the placement µ, and Cµ is the contactor of I in the placement µ.

3) Condition 2) holds with “every” replaced by “some”.

Proof: Assume that (7.6) holds, let µ ∈ PlB be given, let hµ be the density of H in the placement µ as
characterized by (7.1), and let Cµ is the contactor of I in the placement µ as characterized by (7.3). In
view of (7.1) and (7.5), (7.6) is equivalent to∫

RbyPµ
CµnPµ +

∫
Pµ

hµ = 0 for all P ∈ Ωint
B . (7.8)

Since Cµ is of class C1 we can use the divergence theorem (3.2) to show that (7.8) is equivalent to∫
Pµ

(divCµ + hµ) = 0 for all P ∈ Ωint
B . (7.9)

Since divCµ and hµ are continuous and (7.9) holds for all interior parts we see that (7.9) is equivalent to

divCµ + hµ = 0 . (7.10)

Since µ ∈ PlB was arbitrary this implies that condition 2 is valid. If (7.7) is valid just for some µ ∈ PlB
then the equivalences mentioned show that (7.6) holds.

The proof of the following result is analogous the the proof just presented.
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Theorem 5: Given a real valued interaction I : (ΩB)2
sep −→ RI with contactors and a real valued additive

mapping H : ΩB −→ RI with densities, then the following three conditions are equivalent:

1)We have
ResI(P) +H(P) ≥ 0 for all P ∈ Ωint

B , (7.11)

2) For every placement µ ∈ PlB, we have

div cµ + hµ ≥ 0 . (7.12)

where hµ is the density of H in the placement µ, and cµ is the contactor of I in the placement µ.

3) Condition 2) hold with “every” replaced by “some”.

Remark 4: One can modify Definition 8 by assuming that the values of Cµ are merely continuous mappings
rather then linear mappings. In this case Cµ should be called a proto-contactor. Then, if the interaction is
equal to a mapping with densities, one can prove that the values of Cµ must be linear and hence that Cµ

is actually a contactor. The first proof was essentially given by Cauchy in 1823. Later, in 1958, Noll proved
that the balance law can even be used to prove the existence of a proto-contactor with a suitable definition
of a surface interaction and suitable regularity assumptions. A detailed discussion of this issue is given in
[N3].

It is often useful to introduce a reference mass, which is an additive function m : ΩB −→ PI × with
densities. Given a placement µ and a sub-body P ∈ ΩB the mass of this sub-body is given by

m(P) =
∫
Pµ
ρµ (7.13)

where ρµ : Bµ −→ PI × is the density of m in the placement µ and is called the mass-density of the body
in the placement µ. It follows from (7.2) that if µ′ is another placement

ρµ ◦ µ = ρµ′ ◦ µ′ when δµ = δµ′ . (7.14)

From now on we assume that a reference mass is given.

Theorem 6: Let H : ΩB −→W be an additive mapping with densities. Then there is a mapping h : B −→
W of H, called the specific density of H, such that

h =
hµ
ρµ
◦ µ for all µ ∈ PlB . (7.15)

Proof: Let µ, µ′ ∈ PlB be given. Using (7.2) we have hµ′ = ρµ′,µ(hµ ◦µ◦µ′←) and ρµ′ = ρµ′,µ(ρµ ◦µ◦µ′←).
It follows that

hµ′
ρµ′
◦ µ′ =

hµ ◦ µ ◦ µ′←

ρµ ◦ µ ◦ µ′←
◦ µ′ =

hµ
ρµ
◦ µ . (7.16)

Since the placements µ and µ′ were arbitrary, this proves the theorem.

In light of Theorem 6 we will use the following notation:∫
P

h dm := H(P) =
∫
Pµ

hµ =
∫
Pµ
ρµ(h ◦ µ←) for all µ ∈ PlB and P ∈ Ωint

B . (7.17)

Let H̄ := (H̄t : ΩB −→ W | t ∈ I) be a time-family of additive mappings. As explained in Section 5,
this time-family can be identified with a mapping H̄ : ΩB × I −→ W. We say that H̄ is of class C1 if the
mapping H̄(P, ·) : I −→W is of class C1 for all P ∈ ΩB. If this is the case, we can form the time-derivative
H̄•t (P) := (H̄(P, ·))•(t) for all P ∈ ΩB and t ∈ I of the given family. It is clear that this time-derivative is
also a time-family of additive mappings.

We now assume that each mapping in the time-family H̄ has densities in the sense of Definition 7. Let
h̄ : B × I −→ W be the mapping such that h̄t := h̄(·, t) is the specific density of H̄t for all t ∈ I. If h̄ is of
class C1 then so is H̄ and we have

H̄•t (P) =
∫
P

h̄•tdm =
∫
Pµ
ρµ(h̄•t ◦ µ←) for all t ∈ I, µ ∈ PlB and P ∈ ΩB . (7.18)
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Remark 5: In practice the reference mass is usually taken to be the inertial-gravitational mass. However,
here we do not assume that this is the case. There could be situations in which it is useful to take the
referential mass to be different from the inertial-gravitational mass. For example, one may wish to fix a
reference configuration δR and define,, m(P) to be the volume of the region imbδR>(P) for every P ∈ ΩB.

In (7.17) the reference mass is, in the language of measure theory, a measure on B. Given an additive
mapping with density H, the mapping h in (7.15) is nothing but the density of H with respect to the measure
m.

8. Balance of Forces and Torques

It is often useful to fix a frame-space F , with translation space V, and confine one’s attention to place-
ments whose range-space is F . It is then useful to consider force systems with values in V, independent of
the choice of a configuration, as follows:

Definition 9. A force system in the space V is a pair (Fi
V ,F

e
V), where Fi

V : (ΩB)2
sep −→ V is an interaction

and Fe
V : ΩB −→ V is additive. The mapping Fi

V is called the internal force system in V and Fe
V is called

the external force system in V.

Let a force system (Fi
V ,F

e
V) in V be a given. The first fundamental law of mechanics, called the Balance

of Forces, says:
ResFi

V
(P) + Fe

V(P) = 0 for all P ∈ ΩB . (8.1)

We say that the system (Fi
V ,F

e
V) is force-balanced if (8.1) holds.

Since Fe
V is additive, the following Law of Action and Reaction is an immediate consequence of (8.1)

and Theorem 3: The internal force system is skew, i.e.,

Fi
V(P,Q) = −Fi

V(Q,P) for all (P,Q) ∈ (ΩB)2
sep . (8.2)

Remark 6: The law of action and reaction is often referred to as Newton’s Third Law. Thus, if one assumes
the balance law (8.1), one can prove Newton’s Third Law instead of assuming it a priori, as Newton and
many physics textbooks since Newton have done. The balance of forces has been understood by engineers,
if only implicitly, since antiquity.

We assume now that Fi
V has contactors and Fe

V has densities.
Let µ be a placement of the body in F and put Bµ := µ>(B). Let Tµ : Bµ −→ LinV denote the contactor

for Fi
V and let bµ : Bµ −→ V denote the density of Fe

V in the placement µ. It follows from Theorem 4 that
(8.1), restricted to internal parts P, is equivalent to

divTµ + bµ = 0 . (8.3)

Definition 10. A torque system in the space V is a pair (Mi
V ,M

e
V), where Mi

V : (ΩB)2
sep −→ SkewV

is an interaction and Me
V : ΩB −→ SkewV is additive. The mapping Mi

V is called the internal torque
system and Me

V is called the external torque system.

Let (Mi
V ,M

e
V) be a torque system in V. The second fundamental law of mechanics is the Balance of

Torques, which states that

ResMi
V

(P) + Me
V(P) = 0 for all P ∈ ΩB . (8.4)

Again, an immediate consequence of (8.4) and Theorem 3 is the following: The internal torque system
is skew, i.e.,

Mi
V(P,Q) = −Mi

V(Q,P) for all (P,Q) ∈ (ΩB)2
sep . (8.5)

Remark 7: The balance of torques has also been understood by engineers, if only implicitly, since antiquity.
Archimedes’ work on levers, which essentially dealt with torques, caused him to remark: “Give me a place
to stand on, and I will move the Earth.”
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Here we will assume that all torques come from forces. When (8.4) is considered only in cases when
P is internal, this means the following: Choosing q ∈ E arbitrarily, Mi

V has a contactor Cµ : Bµ −→
Lin (V,SkewV) and Me

V has a density mµ : Bµ −→ V in a given placement µ, and they are given by

Cµ(x)u := (x− q) ∧Tµ(x)u
mµ(x) := (x− q) ∧ bµ(x) for all u ∈ V and x ∈ Bµ . (8.6)

A calculation using the results from Chapter 6 of [FDS], shows that the divergence of Cµ is given by

divxCµ = T>µ (x)−Tµ(x) + (x− q) ∧ divxTµ for all x ∈ B . (8.7)

Using Theorem 4, it follows from the balance law (8.4), restricted to internal parts, that divCµ+mµ = 0.
Combining this result with (8.7) and (8.6), we obtain

T>µ (x)−Tµ(x) + (x− q) ∧ (divxTµ + bµ(x)) = 0 for all x ∈ Bµ . (8.8)

Using (8.3) we find that the condition
Rng Tµ ⊂ Sym V (8.9)

is equivalent to balance of torques for internal parts.
We say that the system (Fi

V ,F
e
V) is torque-balanced if the system of torques derived from it satisfies

(8.4).

Remark 8: When P is not internal, (8.1) and (8.4) must be taken into account when considering what are
often called boundary conditions.

From here on we will assume that (8.3) and (8.9) are valid. We adjust the codomain of Tµ to Sym V
without change of notation and call Tµ : Bµ −→ SymV the Cauchy stress of the force system in the
placement µ and the mapping bµ : Bµ −→ V the external body force in the placement µ.

It is sometimes useful to specify a fixed reference placement κ : B −→ Bκ in the frame space F and
characterize all other placements µ in F by their transplacements

χ := µ ◦ κ← : Bκ −→ Bµ, (8.10)

as in Section 6, from the reference placement. The transplacement gradient F : Bκ −→ LinV, defined by
F := ∇χ, can then be used to represent an internal force interaction whose contactor in the placement µ is
the Cauchy stress Tµ, by a contactor in the reference placement κ. Using (7.4), we see that this contactor
is given by

TR(p) := |detF(p)|Tµ(χ(p))F−>(p) for all p ∈ Bκ . (8.11)

TR : Bκ −→ LinV is usually called the Piola-Kirchhoff stress (see (43 A.3) of [NLFT]). Note that TR

does not have symmetric values. Instead, since Tµ has symmetric values, it follows from (8.11) that TR

must satisfy
TRF> = FT>R . (8.12)

The transplacement gradient can also be used to represent the external force system whose density in
the placement µ is the external body force bµ, by a density in the reference placement κ. Using (7.2), we
see that this density is given by

bR(p) := |detF(p)|bµ(χ(p)) for all p ∈ Bκ . (8.13)

bR : Bκ −→ V may be called the external referential body force for the placement µ.

Remark 9: The description of force systems described so far is equivalent to the one given in the traditional
textbooks, for example in [NLFT] or [G]. It has the disadvantage that it involves an external frame-space
F , often considered to be an absolute space. In Part 1 of [FC], it is shown that such a space is an illusion
and why this illusion is widespread.

The principle of frame-indifference states that constitutive laws should not depend on whatever external
frame of reference is used to describe them. It will be vacuously satisfied if no external frames of reference
are used to state these laws. Therefore, it is useful to describe force systems without using an external
frame-space, which we will do below.
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Let a configuration δ ∈ Conf B be given. As in Section 3, we denote the imbedding space for δ by Eδ
and its translation space by Vδ, and we use the results of Section 7 in the case when µ := imbδ and write,
for simplicity, δ rather than imbδ as a subscript.

Definition 11. A force system in the configuration δ is a pair (Fi
δ,F

e
δ) which is a force system in the

space Vδ in the sense of Definition 9.

Let such a force system (Fi
δ,F

e
δ) in Vδ be given. We assume that the balance of forces and the balance

of torques are valid, that Fi
δ has contactors and that Fe

δ has densities. The results (8.3) and (8.9) remain
valid when the subscript δ is used instead of µ, when Tδ is interpreted to be the contactor of Fi

δ in the
placement imbδ, and when bδ is interpreted to be the density of Fe

δ in the placement imbδ. We may call Tδ

the configurational stress and imbδ the external configurational body force for δ.
Since Iδ(X), defined in (3.5), is a linear isomorphism from TX to Vδ, it can be used to transform the

mappings Tδ and bδ, whose codomains involve Vδ, into mappings whose codomains involve TX . Thus, we
define, for every X ∈ B, the intrinsic stress Sδ and the external intrinsic body force dδ associated
with the configuration δ by

Sδ(X) := I−1
δ (X)Tδ(imbδ(X))I−>δ (X) ∈ Sym(T ∗X , TX) , (8.14)

and
dδ(X) := I−1

δ (X)bδ(imbδ(X)) ∈ TX for all X ∈ B . (8.15)

respectively.

Remark 10: The mappings Sδ := (X 7→ Sδ(X)) and dδ := (X 7→ dδ(X)) are cross-sections of fiber bundles.

Let µ be a placement of the body in a fixed frame-space F as considered in the beginning of this section
and put Bµ := µ>(B). Denote by δ the configuration induced by µ in accord with (4.1). We use Q, as defined
by (4.3) to transport the values of a the force system in the configulation δ to V and obtain a force system
in the sense of Definition 9. Then the balance laws (8.1) and (8.4) hold if and only if corresponding balance
laws hold for the force system in the configuration δ. The corresponding Cauchy stress Tµ : Bµ −→ SymV
and the corresponding external body force bµ : Bµ −→ V are related to Tδ and bδ by

Tδ ◦ imbδ = QTµQ> ◦ µ and bδ ◦ imbδ = Qbµ ◦ µ , (8.16)

respectively. Using (4.4), (4.5), (8.14) and (8.15) we find that the Cauchy stress Tµ : Bµ −→ SymV and the
external body force bµ : Bµ −→ V are related to the intrisic stress and the external intrinsic body force by

Tµ ◦ µ = MµSδM>
µ (8.17)

and
bµ ◦ µ = Mµdδ . (8.18)

9. Deformation Processes and Mechanical Processes

As before, we assume that a time-interval I is given.

Definition 12. We say that a time-family (δ̄t | t ∈ I) of configurations, and the corresponding mapping
δ̄ : B × I −→ ConfB, is a deformation process.

Let a deformation process (δ̄t | t ∈ I), be given. Since δ̄t is a configuration it can be used to construct
an imbedding space Et := Eδ̄t

6, with translation space Vt, in which B is imbedded using the mapping
imbt := imbδ̄(t) : B −→ Bt := Bδ̄(t). We will denote the mappings defined in (3.5) and (3.6) for the
imbedding imbt by Īt and Ḡt, respectively, i.e.,

Īt(X) := ∇X imbt ∈ Lis (TX ,Vt) , Ḡt(X) := Ī>t (X)Īt(X) ∈ Pos+(TX , T ∗X) , (9.1)
6The time-family (Et | t ∈ I) of Euclidean spaces could be interpreted as describing what has been called a neo-classical

event world in [N2].
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The family Ḡ = (Ḡt(X) | t ∈ I) is called the deformation process of the body element TX induced
by the deformation process δ̄ of the whole body. We say that the deformation process δ̄ is of class C1 or of
class C2 if t 7→ Ḡt(X) is of class C1 or of class C2 for all X ∈ B, respectively. In this case, we define the
family (Ḡ•t | t ∈ I) or the family (Ḡ••t | t ∈ I) by

Ḡ•t (X) := (s 7→ Ḡs(X))•(t) or Ḡ••t (X) := (s 7→ Ḡs(X))••(t) for all X ∈ B , (9.2)

respectively.
We now let a motion µ̄ as defined by Definition 5 of Section 6 be given. We consider the deformation

process δ̄ induced by this motion in the sense that, for each t ∈ I, the placement µ̄t induces the configuration
δ̄t as explained in (4.1). Since the placements imbt and µ̄t both induce the same configuration δ̄t, it follows
from (4.6) that

Ḡ = M̄>M̄ . (9.3)

It follows from (4.4), (6.7), (6.3) and the chain rule that

M̄• = L̄mM̄ . (9.4)

Differentiating (9.3) with respect to time, using (9.4), (6.8), and the product rule, we find

Ḡ• = 2M̄>D̄mM̄ . (9.5)

Definition 13. A mechanical process is a time-family ((δ̄t, F̄i
t, F̄

e
t) | t ∈ I) of triples where (δ̄t | t ∈ I) is

a deformation process and, for every t ∈ I, (F̄i
t, F̄

e
t) is a force system in the configuration δ̄t, as defined by

Definition 11, which is both force-balanced and torque-balanced.

Let a mechanical process ((δ̄t, F̄i
t, F̄

e
t) | t ∈ I), be given. We assume that, for each t ∈ I, F̄i

t has
contactors, and F̄e

t has densities. We can then define, using the formulas (8.14) and (8.15), a time-family
S̄ := (S̄t := Sδ̄t | t ∈ I) of intrinsic stresses and a time-family d̄ := (d̄t := dδ̄t | t ∈ I) of external
intrinsic body forces for the family δ̄. These two families, together with the time-family Ḡ, describe the
given mechanical process, apart from boundary conditions, without using an external frame of reference.

Now let a mechanical process be given such that its deformation process is the one induced by a given
motion µ̄ as defined in Section 6. The considerations of Section 8 then apply for every t ∈ I with µ and δ
replaced by µ̄t and δ̄t. The Cauchy stress and the external body force now become time-families and hence
are identified with mappings of the type T̄ : M −→ SymV and b̄ : M −→ V, respectively. By (8.17) and
(8.18) the corresponding intrinsic stress S̄ and external intrinsic body force d̄ are related to T̄ and b̄ by

S̄ = M̄−1T̄mM̄−> (9.6)

and
d̄ = M̄−1b̄m . (9.7)

The balance law (8.3) becomes
divT̄ + b̄ = 0 . (9.8)

Using Proposition 2 in Section 67 of [FDS], (6.7), (6.8) and the fact that T̄ has symmetric values, we find
that

div(T̄v̄) = div(T̄) · v̄ + tr(T̄D̄) . (9.9)

Using (9.9), (9.8) and the divergence theorem (3.2), we conclude that∫
RbyPµ̄t

v̄t · T̄tnRbyPµ̄t
+
∫
Pµ̄t

v̄t · b̄t =
∫
Pµ̄t

tr(T̄tD̄t) for all P ∈ ΩB and t ∈ I . (9.10)

The term on the left hand side is the work per unit time, i.e. the power, of the forces acting on the part P.
It easily follows from (9.6) and (9.5) that

1
2

tr(S̄tḠ•t )(X) = tr(T̄tD̄t)(µ̄t(X)) for all (X, t) ∈ B × I , (9.11)

which mean that the material field associated with tr(T̄D̄), according to (6.3), is

1
2

tr(S̄Ḡ•) = (tr(T̄D̄))m . (9.12)
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Therefore the power of the forces acting on the parts of the body is given by

P̄t(P) :=
∫
Pµ̄t

tr(T̄tD̄t) =
1
2

∫
Pimbt

tr(S̄tḠ•t ) ◦ imb←t for all P ∈ ΩB , (9.13)

and depends only on the mechanical process and not on the motion as seems from the right side of (9.11).
It is clear that the power family (P̄t | t ∈ I) is a time-family of additive mappings determined by the

given mechanical process.

Remark 11: W.N. proved, in 1959, that the balance laws hold if and only if the work done by the forces is
frame-indifferent (see [N4]). In view of this fact it is not surprising that the power does not depend on the
motion.

10. Energy Balance

Definition 14. A heat transfer system is a pair (Qi, Qe), where Qi : (ΩB)2
sep −→ RI is an interaction

and Qe : ΩB −→ RI is additive. The function Qi is called the internal heat transfer and Qe is called the
external heat absorption.

Let (Qi, Qe) be a heat transfer system. We will assume that Qi has contactors and Qe has densities. Let
a placement µ be given. Let us denote the contactor of Qi in this placement by7

−qµ : Bµ −→ Lin (Vfrµ, RI ) ∼= Vfrµ . (10.1)

The mapping qµ is called the heat flux in the placement µ.
Let δ be the configuration induced by µ, as in (4.1), and let −qδ : Bδ −→ Vδ denote the contactor of

Qi in the placement imbδ. Since Iδ(X), defined in (3.5), is a linear isomorphism from TX to Vδ, it can be
used to transform the mapping qδ, whose codomain involves Vδ, into a mapping whose codomain involves
TX . Thus, we define, for every X ∈ B, the intrinsic heat flux hδ associated with the configuration δ by

hδ(X) := I−1
δ (X)qδ(imbδ(X)) ∈ TX for all X ∈ B . (10.2)

Remark 12: The mapping hδ := (X 7→ hδ(X)) is a tangent-vector field on B.

As was pointed out in Section 4,

α := imbδ ◦ µ← : Bµ −→ Bδ (10.3)

is an adjusted Euclidean isomorphism. Its (constant) gradient Q := ∇α ∈ Orth(Vfrµ,Vδ) is an inner-prouct
preserving isomorphism. We use Q to transport the values of a the heat flux qδ in the configulation δ to
Vfrµ. The corresponding heat flux qµ : Bµ −→ Vfrµ is related to qδ by

qδ ◦ α = Qqµ. (10.4)

Using the definition (4.4) of Mµ, it follows from (10.2) and (4.5) that the heat flux qµ is related to the
intrinsic heat flux hδ by

qµ ◦ µ = Mµhδ . (10.5)

Definition 15. An energetical process is a sextuplet ((δ̄t, F̄i
t, F̄

e
t , Q̄

i
t, Q̄

e
t , Ēt) | t ∈ I) of time-families such

that ((δ̄t, F̄i
t, F̄

e
t) | t ∈ I) is a mechanical process, ((Q̄i

t, Q̄
e
t) | t ∈ I) is a time-family of heat transfer systems,

and (Ēt | t ∈ I) is a differentiable time-family of additive mappings, called the internal energy.

We say that a given energetical process ((δ̄t, F̄i
t, F̄

e
t , Q̄

i
t, Q̄

e
t , Ēt) | t ∈ I) is energy-balanced if

Ē•t (P) = P̄t(P) + ResQ̄i
t
(P) + Q̄e

t(P) for all P ∈ ΩB and t ∈ I , (10.6)

7Here we use the convention that when qµ is pointing away from the body, the body is losing heat. This is the reason for
the minus sign.
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where (P̄t | t ∈ I), defined in (9.13), is the power-family determined by the mechanical process
((δ̄t, F̄i

t, F̄
e
t) | t ∈ I). The formula (10.6) is also known as the First Law of Thermodynamics,

From now on we assume that, for all t ∈ I, F̄e
t , Q̄

e
t , Ēt have densities and that F̄i

t and Q̄i
t have contactors.

Also, we assume that a reference mass m : ΩB −→ PI × as described in Section 7 is given. We define the
specific internal energy ε̄ : B× I −→ RI by the condition that ε̄t is the specific density of Ēt for all t ∈ I.
We assume that ε̄ is of class C1. The specific external heat absorption r̄ : B × I −→ RI is defined by
the condition that r̄t is the specific density of Q̄e

t for all t ∈ I.
Let a frame-space F , with translation space V, be given. Let µ̄ be a motion in F such that the placement

µ̄t induces the configuration δ̄t for all t ∈ I. We define the mass-density field ρ̄ :M−→ PI × by ρ̄t := ρµ̄t ,
the mass-density of the body at time t as characterized by (7.13). Of course r̄, ε̄ and ε̄• are material fields, as
described in Definition 5. Using the associated spatial fields as defined by (6.2) and also (7.18) and (7.17),
we see that

Ē•t (P) =
∫
P(ε̄•)tdm =

∫
Pµ̄t

((ε̄•)s)tρ̄t , Q̄e
t(P) =

∫
P r̄tdm =

∫
Pµ̄t

(r̄s)tρ̄t

for all t ∈ I and P ∈ ΩB .
(10.7)

Let q̄t denote the heat flux in the placement µ̄t. It can be identified with a spatial field q̄ :M−→ V. Using
(9.13), and (10.7), we can apply Theorem 4 to conclude that (10.6), limited to internal parts, is equivalent
to

ρ̄(ε̄•)s = tr(T̄D̄)− divq̄ + ρ̄r̄s . (10.8)

Remark 13: Since Ē•t , P̄t and Q̄e
t are all additive, it follows from (10.6) that ResQ̄i

t
is additive. Assume that

Ē•t , P̄t and Q̄e
t all have densities. As pointed out in Remark 4, one can then assume that the interactions

Q̄i
t have only proto-contactors and then prove that they must have contactors, which means the time-family

of internal heat transfer is determined by heat flux vector-fields.

11. Temperature and Entropy

Theorem 7: Let a heat transfer system (Qi , Qe), as defined by Definition 14, and a function θ : B −→ PI ×

of class C1, called the (absolute) temperature, be given, and assume that Qi has contactors and Qe has
densities. Then there is a pair (H i, He), where H i : (ΩB)2

sep −→ RI is an interaction and He : ΩB −→ RI is
an additive function such that, for every placement µ, we have

H i(P,Q) = −
∫

Rctµ(P,Q)

qµ
θµ
· nPµ for all (P,Q) ∈ (ΩB)2

sep with P ∈ Ωint
B . (11.1)

and

He(P) =
∫
Pµ

ρµ(r ◦ µ←)
θµ

for all P ∈ Ωint
B , (11.2)

where qµ is the heat flux in the placement µ, r is the specific external heat absorption density and θµ := θ◦µ←.
The pair (H i, He) is called the entropy transfer system generated by the heat transfer system (Qi, Qe)
and the temperature θ. H i is called the internal entropy transfer, and He is called the external entropy
absorption.

Proof: Let µ and µ′ be placements and define a entropy transfer system (H i, He) using the placement µ so
that (11.1) and (11.2) hold. Put α := µ ◦ µ′←. By (7.4) and (11.1) we have

H i(P,Q) = −
∫

Rctµ′ (P,Q)

ρµ′,µ(∇α)−1qµ ◦ α
θµ ◦ α

· nPµ′ for all (P,Q) ∈ (ΩB)2
sep with P ∈ Ωint

B . (11.3)

From the discussion following (7.4) we know that the contactor qµ′ of Qi in the placement µ′ is given by
qµ′ = ρµ′,µ(∇α)−1qµ ◦ α and, since µ = α ◦ µ′, we have θµ ◦ α = θµ′ . Thus (11.3) becomes

H i(P,Q) = −
∫

Rctµ′ (P,Q)

qµ′
θµ′
· nPµ′ for all (P,Q) ∈ (ΩB)2

sep with P ∈ Ωint
B . (11.4)
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Equation (11.4) shows that H i would be the same if it were defined in terms of the placement µ′. Since µ
and µ′ were arbitrary placements, the definition of H i doesn’t depend on the placement.

The proof that the definition of He doesn’t depend on the placement is analogous to the one just given
for H i except the change of placement formula for densities (7.2) is used.

Let a placement µ and a temperature θ be given. By definition, we have θµ ◦µ = θ. Taking the gradient
of this equation at X ∈ B, using the chain rule and (4.4), we obtain

γ(X) := ∇Xθ = (∇µ(X)θµ)∇Xµ = (∇µ(X)θµ)Mµ(X) ∈ T ∗ for all X ∈ B . (11.5)

Let δ denote the configuration associated with µ, as defined in (4.1). Then (11.5) and (10.5) can be used to
obtain

γ(X)hδ(X) = (∇µ(X)θµ) · qµ(µ(X)) for all X ∈ B . (11.6)

Definition 16. Let by a time-famiy ((Q̄i
t , Q̄

e
t) | t ∈ I) of heat transfer systems and a time-family of

temperatures (θ̄t | t ∈ I) be given, and let ((H̄ i
t , H̄

e
t ) | t ∈ I) be the resulting entropy transfer system as

described in Theorem 7. Let (N̄t : ΩB −→ RI | t ∈ I) be a differentiable time-family of additive mappings,
called the internal entropy. We say that the family ((H̄ i

t , H̄
e
t , N̄t) | t ∈ I) is a dissipative entropical

process if
N̄•t (P) ≥ ResH̄i

t
(P) + H̄e

t (P) for all P ∈ Ωint
B and t ∈ I . (11.7)

Note that the time-family of temperatures can be identified with a function θ̄ : B× I −→ PI ×. From now
on we assume that, for each t ∈ I, N̄t has densities. As in the previous section, we assume that a reference
mass m : ΩB −→ PI ×, as described in Section 7, is given. Let η̄ : B × I −→ RI be the mapping defined by
the condition that η̄t is the specific density of N̄t for all t ∈ I. We call this mapping the specific entropy
and we will assume that it is of class C1.

Now let a motion µ̄ in a given frame-space F , with translation space V, be given. Of course, θ̄ is a
material field. The spatial field θ̄s associated with θ̄, according to (6.2), satisfies

(θ̄s)t := θ̄(t)µ̄(t) for all t ∈ I . (11.8)

If we let q̄t denote the heat flux in the placement µ̄t it follows from (11.1) and (11.2) that

H̄ i
t(P,Q) = −

∫
Rctµ̄(t)(P,Q)

q̄t
(θ̄s)t

· nPµ̄(t) for all (P,Q) ∈ (ΩB)2
sep with P ∈ Ωint

B . (11.9)

and

H̄e
t (P) =

∫
Pµ̄(t)

ρ̄t(r̄s)t
(θ̄s)t

for all P ∈ Ωint
B . (11.10)

Using a line of reasoning analogous to the one that led from (10.6) to (10.8) in the previous section and
using Theorem 5 and (11.7) and (11.8), we find that (11.7) is equivalent to

ρ̄(η̄•)s ≥
ρ̄r̄s

θ̄s
− div

(
q̄
θ̄s

)
. (11.11)

Hence, using Proposition 1 in Section 67 of [FDS], we obtain

ρ̄(η̄•)s ≥
ρ̄r̄s

θ̄s
− 1
θ̄s

divq̄ +
1
θ̄2

s

(∇θ̄s) · q̄ . (11.12)

Definition 17. A dynamical process is an octuple

(δ̄, θ̄, F̄i, Q̄i, Ē, N̄ , F̄e, Q̄e) (11.13)

such that ((δ̄t, F̄i
t, F̄

e
t , Q̄

i
t, Q̄

e
t , Ēt) | t ∈ I) is an energetical process as defined by Definition 15, θ̄ is a temper-

ature process and N̄ an internal entropy as used in Definition 16.

We assume that such a dynamical process is given and that all the density assumptions made before are
satisfied, so that both (10.8) and (11.12) are valid.
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By multiplying both sides of the inequality (11.12) by θ̄s and using (10.8) to eliminate ρ̄r̄s − divq̄ we
obtain

ρ̄(θ̄η̄• − ε̄•)s + tr(T̄D̄)− 1
θ̄s
∇θ̄s · q̄ ≥ 0 . (11.14)

Given X ∈ B and t ∈ I, let h̄t(X) ∈ TX denote the intrinsic heat flux at X in the configuration δ̄t and
put γ̄t(X) := ∇X θ̄t ∈ T ∗X . It follows from (11.6) that

(γ̄th̄t)(X) = γ̄t(X)h̄t(X) = ((∇θ̄s)t · q̄t)(µ̄t(X)) ∈ RI for all t ∈ I , X ∈ B . (11.15)

If we replace the left side of (11.14) by its associated material field, using (9.12) and (11.15), we obtain

ρ̄m(θ̄η̄• − ε̄•) +
1
2

tr(S̄Ḡ)− 1
θ̄
γ̄h̄ ≥ 0 . (11.16)

By (7.14), ρ̄m(X, t) = ρµ̄t(µ̄t(X)) = ρimbt(imbt(X)) for all (X, t) ∈ B × I and so ρ̄m only depends on the
deformation process and not the motion. Thus, (11.16) does not involve any external frames of reference.
Also, (11.16) does not depend on the particular choice of a reference mass. If one uses a different reference
mass then the value of ρ̄m(X, t) would change by a strictly positive factor but both η̄•(X, t) and ε̄•(X, t)
would change by the reciprocal of this same factor, for all (X, t) ∈ B× I. Thus, the left side of (11.16) would
remain the same.

12. Constitutive Laws and The Second Law of Thermodynamics

Definition 18. A thermodeformation process is a pair

(δ̄, θ̄) (12.1)

in which δ̄ : B × I −→ Conf B is a deformation process as defined in Definition 12 and θ̄ : B × I −→ PI × is
a temperature process, which can be identified with a time-family of temperatures.

A response process is an quadruple
(F̄i, Q̄i, Ē, N̄) (12.2)

where F̄i is an internal force system process, defined according to Definition 11, Q̄i is a internal heat transfer
process, defined according to Definition 14, Ē is an internal energy as defined in Definition 15, and N̄ is an
internal entropy as defined in Definition 16.

A thermomechanical process is a hextuple

(δ̄, θ̄, F̄i, Q̄i, Ē, N̄) , (12.3)

where (δ̄, θ̄) is a thermodeformation process and (F̄i, Q̄i, Ē, N̄) is a response process.

Note that every thermomechanical process can be used to generate a dynamical process by using the balance
of forces to determine the external force system process and the balance of energy to determine the external
heat transfer process needed to produce the dynamical process.

Constitutive laws are used to describe the internal properties of a system and the internal interactions
between its parts. In the framework presented here this means that given a set of constitutive laws each
deformation process can be used to generate a response process and hence a thermomechanical process. All
thermomechanical processes generated in this way are called admissible with respect to the given set of
constitutive laws. The act of constructing admissible thermomechanical process from a set of constitutive
laws will be carried out systematically by Brian Seguin in his doctoral thesis.

We are now in a position to state the final fundamental law of thermomechanics.

Second Law of Thermodynamics: Given a set of constitutive laws, every admissible thermomechanical
process must satisfy the reduced dissipation inequality (11.15).

This law is a restriction on the set of constitutive laws, not on the class of thermodeformation processes
a body can under go. There is an enormous amount of literature on this subject. See, for example, [CN],
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[C] or [CO] and the references listed above. The restrictions found using this law are more easily expressed
if one introduces the following concept.

Definition 19. The specific free energy is a C1 mapping ψ̄ : B × I −→ RI defined by

ψ̄ := ε̄− θ̄η̄ . (12.4)

The internal free energy process Ēf : Ωint
B × I −→ RI associated with the specific free energy ψ̄ is a

differentiable time-family of additive mappings with densities defined by

Ēf
t(P) :=

∫
P
ψ̄tdm for all t ∈ I and P ∈ Ωint

B . (12.5)

Using the time derivative of (12.4) and (11.16) we obtain the reduced dissipation inequality

−ρ̄m(ψ̄• + θ̄η̄•) +
1
2

tr(S̄Ḡ)− 1
θ̄
γ̄h̄ ≥ 0 . (12.6)

Constitutive laws can change from point to point and are local8 in the sense that at a material point
X they should only involve arbitrary small neighborhoods of X in B. We say that the body B consists of
a simple material if the constitutive laws for every point X ∈ B involve only the body element TX . Most
material properties of real materials are covered by the theory of simple materials.

13. External Influences
External influences specify how the environment influences the behavior of the body. The description of

these external influences depend on the choice of an external frame of reference. Perhaps the most important
of these external influences are boundary conditions. In most cases, an important external influence is
inertia. The total external body force density can be written as a sum

b̄ = b̄ni + b̄i , (13.1)

where b̄ni denotes the external body force density that comes from non-inertial forces, and b̄i is the inertial
body force density.

When an inertial frame of reference is used, then b̄i is given by

b̄i = −ρ̄ā , (13.2)

where ρ̄ gives the inertial mass density at each point of the trajectory. However, if a non-inertial frame of
reference is used, then the inertial body force density is given by the more complicated formula

b̄i = −ρ̄(ū + 2Āū + (Ā• − Ā2)ū) (13.3)

where ū is a mapping whose value gives the position vector of a material point relative to a reference point
which is at rest in some inertial frame. The mapping Ā, whose range consists of skew lineons, describes the
motion of the non-inertial frame relative to the inertial frame. The second and third terms in the above
formula are called the Coriolis force and centrifugal force, respectively. (See Part 2, Section 3, of [FC].)

Remark 14: Substituting (13.1) into the second term on the left of (9.10) one obtains∫
Pµ̄t

v̄t · b̄t =
∫
Pµ̄t

v̄t · (b̄ni)t +
∫
Pµ̄t

v̄t · (b̄i)t . (13.4)

When one is using an inertial frame of reference (13.2) holds and the second term on the right is given by∫
Pµ̄t

v̄t · (b̄i)t = −

(∫
Pµ̄t

ρ̄t|v̄t|2
)•

. (13.5)

8In [NLFT] this was called the principle of local action.
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The term
∫
Pµ̄t

ρ̄t|v̄t|2 is called the kinetic energy. Substituting (13.5) into (9.10) one obtains

∫
RbyPµ̄t

v̄t·T̄tnRbyPµ̄t
+
∫
Pµ̄t

v̄t·(b̄ni)t =
∫
Pµ̄t

tr(T̄tD̄t)+

(∫
Pµ̄t

ρ̄t|v̄t|2
)•

for all P ∈ ΩB and t ∈ I . (13.6)

In the literature on continuum mechanics it is often implicitly assumed that the frame of reference being
used is inertial so the formula (13.6) is valid. However, when the frame of reference is not inertial then (13.6)
is not valid and the concept of kinetic energy is not useful.

Constitutive laws can be specified using an external frame of reference. These laws would give the
Cauchy stress T̄, spatial description of the specific free energy ψ̄s, heat flux q̄ and spatial description of
the specific entropy η̄s in terms of a thermodeformation process. Such constitutive laws would implicitly
depend on the frame being used. Such dependence should be ruled out using the Principle of Material
Frame-Indifference9. It states:

Constitutive laws should not depend on whatever external frame of reference is used to describe
them.

Traditionally one would specify a constitutive law in some frame of reference and then have to go though the
effort of finding what restrictions are placed on this law by the principle of material frame-indifference. For
some constitutive laws this can take a considerable amount of work. The way to eliminate this work is to
formulate constitutive laws without using any external frames of reference. This can be done by specifying
constitutive laws for the intrinsic stress, intrinsic heat flux and the specific free energy and specific entropy
since these don’t depend on the choice of a frame of reference. This superior method was used by W.N. in
[N5] and [N6] and will be used systematically by Brian Seguin in his doctoral thesis.
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