
Chapter 4

Inner-Product Spaces,

Euclidean Spaces

As in Chap.2, the term “linear space” will be used as a shorthand for
“finite dimensional linear space over R”. However, the definitions of an
inner-product space and a Euclidean space do not really require finite-
dimensionality. Many of the results, for example the Inner-Product In-
equality and the Theorem on Subadditivity of Magnitude, remain valid
for infinite-dimensional spaces. Other results extend to infinite-dimensional
spaces after suitable modification.

41 Inner-Product Spaces

Definition 1: An inner-product space is a linear space V endowed with
additional structure by the prescription of a non-degenerate quadratic form
sq ∈ Qu(V) (see Sect.27). The form sq is then called the inner square of
V and the corresponding symmetric bilinear form

ip := sq ∈ Sym2(V2, R) ∼= Sym(V,V∗)

the inner product of V.

We say that the inner-product space V is genuine if sq is strictly posi-
tive.

It is customary to use the following simplified notations:

v·2 := sq(v) when v ∈ V, (41.1)

u · v := ip (u,v) = (ip u)v when u,v ∈ V. (41.2)
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The symmetry and bilinearity of ip is then reflected in the following rules,
valid for all u, v, w ∈ V and ξ ∈ R

u · v = v · u, (41.3)

w · (u + v) = w · u + w · v, (41.4)

u · (ξv) = ξ(u · v) = (ξu) · v (41.5)

We say that u ∈ V is orthogonal to v ∈ V if u · v = 0. The assumption
that the inner product is non-degenerate is expressed by the statement that,
given u ∈ V,

(u · v = 0 for all v ∈ V) =⇒ u = 0. (41.6)

In words, the zero of V is the only member of V that is orthogonal to every
member of V.

Since ip ∈ Lin(V,V∗) is injective and since dimV = dimV∗, it follows
from the Pigeonhole Principle for Linear Mappings that ip is a linear iso-
morphism. It induces the linear isomorphism ip⊤ : V∗∗ → V∗. Since
ip is symmetric, we have ip⊤ = ip when V∗∗ is identified with V as ex-
plained in Sect.22. Thus, this identification is the same as the isomorphism
(ip⊤)−1ip : V → V∗∗ induced by ip . Therefore, there is no conflict if we
use ip to identify V with V∗.

From now on we shall identify V ∼= V∗ by means of ip except that, given
v ∈ V, we shall write v· := ip v for the corresponding element in V∗ so as
to be consistent with the notation (41.2).

Every space R
I of families of numbers, indexed on a given finite set I,

carries the natural structure of an inner-product space whose inner square
is given by

sq(λ) = λ·2 :=
∑

λ2 =
∑

i∈I

λ2
i (41.7)

for all λ ∈ R
I . The corresponding inner product is given by

(ip λ)µ = λ · µ =
∑

λµ =
∑

i∈I

λiµi (41.8)

for all λ, µ ∈ R
I . The identification (RI)∗ ∼= R

I resulting from this inner
product is the same as the one described in Sect.23.

Let V and W be inner-product spaces. The identifications V∗ ∼= V and
W∗ ∼= W give rise to the further identifications such as

Lin(V,W) ∼= Lin(V,W∗) ∼= Lin2(V ×W , R),
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Lin(W ,V) ∼= Lin(W∗,V∗).

Thus L ∈ Lin(V,W) becomes identified with the bilinear form
L ∈ Lin2(V ×W , R) whose value at (v,w) ∈ V ×W satisfies

L(v,w) = (Lv) · w, (41.9)

and L⊤ ∈ Lin(W∗,V∗) becomes identified with L⊤ ∈ Lin(W ,V) ∼=
Lin2(W ×V, R) in such a way that

(L⊤w) · v = L⊤(w,v) = L(v,w) = (Lv) · w (41.10)

for all v ∈ V,w ∈ W .
We identify the supplementary subspaces Sym2(V2, R) and Skew2(V2, R)

of Lin2(V2, R) ∼= LinV (see Prop.7 of Sect.24) with the supplementary sub-
spaces

SymV := {S ∈ LinV | S = S⊤}, (41.11)

SkewV := {A ∈ LinV | A⊤ = −A} (41.12)

of LinV. The members of SymV are called symmetric lineons and the
members of SkewV skew lineons.

Given L ∈ Lin(V,W) and hence L⊤ ∈ Lin(W ,V) we have L⊤L ∈ SymV
and LL⊤ ∈ SymW . Clearly, if L⊤L is invertible (and hence injective), then
L must also be injective. Also, if L is invertible, so is L⊤L. Applying these
observations to the linear-combination mapping of a family f := (fi | i ∈ I)
in V and noting the identification

Gf := lnc⊤f lncf = (fi · fk | (i, k) ∈ I2) ∈ R
I2 ∼= Lin(RI) (41.13)

we obtain the following results.
Proposition 1: Let f := (fi | i ∈ I) be a family in V. Then f is linearly

independent if the matrix Gf given by (41.13) is invertible.
Proposition 2: A family b := (bi | i ∈ I) in V is a basis if and only if

the matrix Gb is invertible and ♯I = dimV.
Let b := (bi | i ∈ I) be a basis of V. The identification V∗ ∼= V identifies

the dual of the basis b with another basis b∗ of V in such a way that

b∗
i · bk = δi,k for all i, k ∈ I, (41.14)

where δi,k is defined by (16.2). Using the notation (41.13) we have

bk =
∑

i∈I

(Gb)k,ib
∗
i (41.15)
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and

Gb∗ = G−1
b

. (41.16)

Moreover, for each v ∈ V, we have

lnc−1
b

(v) = b∗ · v := (b∗
i · v | i ∈ I) (41.17)

and hence

v = lncb(b∗ · v) = lncb∗(b · v). (41.18)

For all u,v ∈ V, we have

u · v = (b · u) · (b∗ · v) =
∑

i∈I

(bi · u)(b∗
i · v). (41.19)

We say that a family e := (ei | i ∈ I) in V is orthonormal if

ei · ek =

{

1 or − 1 if i = k

0 if i 6= k

}

for all i, k ∈ I (41.20)

We say that e is genuinely orthonormal if, in addition, e·2i = 1 for all
i ∈ I, which—using the notation (16.2)—means that

ei · ek = δi,k for all i, k ∈ I. (41.21)

To say that e is orthonormal means that the matrix Ge, as defined
by (41.13), is diagonal and each of its diagonal terms is 1 or −1. It is
clear from Prop.1 that every orthonormal family is linearly independent
and from Prop.2 that a given orthonormal family is a basis if and only
if ♯I = dimV. Comparing (41.21) with (41.14), we see that a basis b is
genuinely orthonormal if and only if it coincides with its dual b∗.

The standard basis δI := (δI
i | i ∈ I) (see Sect.16) is a genuinely or-

thonormal basis of R
I .

Let v ∈ V,w ∈ W be given. Then w⊗v ∈ Lin(V∗,W) becomes identified
with the element w ⊗ v of Lin(V,W) whose values are given by

(w ⊗ v)u = (v · u)w for all u ∈ V. (41.22)

We say that a subspace U of a given inner-product space V is regular
if the restriction sq|U of the inner square to U is non-degenerate, i.e., if for
each u ∈ U ,

(u · v = 0 for all v ∈ U) =⇒ u = 0. (41.23)
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If U is regular, then sq|U endows U with the structure of an inner-product
space. If U is not regular, it does not have a natural structure of an inner-
product space.

The identification V∗ ∼= V identifies the annihilator S⊥ of a given subset
S of V with the subspace

S⊥ = {v ∈ V | v · u = 0 for all u ∈ S}

of V. Thus, S⊥ consists of all elements of V that are orthogonal to every
element of S. The following result is very easy to prove with the use of the
Formula for Dimension of Annihilators (Sect.21) and of Prop.5 of Sect.17.

Characterization of Regular Subspaces: Let U be a subspace of V.
Then the following are equivalent:

(i) U is regular,

(ii) U ∩ U⊥ = {0},

(iii) U + U⊥ = V,

(iv) U and U⊥ are supplementary.

Moreover, if U is regular, so is U⊥.

If U is regular, then its annihilator U⊥ is also called the orthogonal
supplement of U . The following two results exhibit a natural one-to-one
correspondence between the regular subspaces of V and the symmetric idem-
potents in LinV, i.e., the lineons E ∈ LinV that satisfy E = E⊤ and E2 = E.

Proposition 3: Let E ∈ LinV be an idempotent. Then E is symmetric
if and only if Null E = (RngE)⊥.

Proof: If E = E⊤, then Null E = (RngE)⊥ follows from (21.13).

Assume that Null E = (Rng E)⊥. It follows from (21.13) that Null E =
Null E⊤ and hence from (22.9) that RngE⊤ = Rng E. Since, by (21.6),
(E⊤)2 = (E2)⊤ = E⊤, it follows that E⊤ is also an idempotent. The
assertion of uniqueness in Prop.4 of Sect.19 shows that E = E⊤.

Proposition 4: If E ∈ LinV is symmetric and idempotent, then Rng E
is a regular subspace of V and Null E is its orthogonal supplement. Con-
versely, if U is a regular subspace of V, then there is exactly one symmetric
idempotent E ∈ LinV such that U = Rng E.

Proof: Assume that E ∈ LinV is symmetric and idempotent. It follows
from Prop.3 that Null E = (RngE)⊥ and hence by the implication (v) ⇒ (i)
of Prop.4 of Sect.19 that RngE and (RngE)⊥ are supplementary. Hence,
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by the implication (iv) ⇒ (i) of the Theorem on the Characterization of
Regular Subspaces, applied to U := RngE, it follows that Rng E is regular.

Assume now that U is a regular subspace of V. By the implication
(i) ⇒ (iv) of the Theorem just mentioned, U⊥ is then a supplement of U .
By Prop.3, an idempotent E with Rng E = U is symmetric if and only if
Null E = U⊥. By Prop.4 of Sect.19 there is exactly one such idempotent.

Notes 41

(1) Most textbooks deal only with what we call “genuine” inner-product spaces and use
the term “inner-product space” only in this restricted sense. The terms “Euclidean
vector space” or even “Euclidean space” are also often used in this sense.

(2) The terms “scalar product” or “dot product” are sometimes used instead of “inner
product”.

(3) Other notations for the value u ·v of the inner product are 〈u,v〉, (u|v), 〈u|v〉, and
(u,v). The last is very common, despite the fact that it clashes with the notation
for the pair with terms u and v.

(4) Some people use simply v
2 instead of v

·2 for an inner square. In fact, I have
done this many times myself. We use v

·2 because omitting the dot would lead
to confusion of the compositional square with the inner square of a lineon (see
Sect.44).

(5) The terms of b
∗ · v are often called the “contravariant components” of v relative

to the basis b and are denoted by v
i. The terms of b · v are called “covariant

components” and are denoted by vi.

(6) In most of the literature, the term “orthonormal” is used for what we call “genuinely
orthonormal”.

(7) Some people use the term “non-isotropic” or “non-singular” when we speak of a
“regular” subspace.

(8) Some authors use the term “perpendicular projection” or the term “orthogonal
projection” to mean the same as our “symmetric idempotent”. See also Note 1 to
Sect.19.

(9) The dual b
∗ of a basis b of an inner-product space V, when regarded as a basis of

V rather than V∗, is often called the “reciprocal” of b.

42 Genuine Inner-Product Spaces

In this section, a genuine inner-product space V is assumed to be given. We
then have

v·2 > 0 for all v ∈ V×. (42.1)

Of course, if U is any subspace of V, then the restriction sq|U of the inner
square of V to U is again strictly positive and hence endows U with the
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natural structure of a genuine inner-product space. Thus every subspace U
of V is regular and hence has an orthogonal supplement U⊥.

Definition 1: For every v ∈ V, the number |v| ∈ P defined by

|v| :=
√

v·2 (42.2)

is called the magnitude of v. We say that u ∈ V is a unit vector if
|u| = 1.

In the case when V is R the magnitude turns out to be the absolute
value; hence the notation (42.2) is consistent with the usual notation for
absolute values.

It follows from (42.1) that for all v ∈ V,

|v| = 0 ⇐⇒ v = 0. (42.3)

The following formula follows directly from (42.2) and (41.5):

|ξv| = |ξ||v| for all v ∈ V, ξ ∈ R. (42.4)

Inner-Product Inequality: Every pair (u,v) in a genuine inner-pro-
duct space V satisfies

|u · v| ≤ |u||v|; (42.5)

equality holds if and only if (u,v) is linearly dependent.
Proof: Assume, first, that (u,v) is linearly independent. Then, by

(42.3), |u| 6= 0, |v| 6= 0. Moreover, if we put w := |v|2u− (u · v)v, then w
cannot be zero because it is a linear combination of (u,v) with at least one
coefficient, namely |v|2, not zero. Hence, by (42.1), we have

0 < w·2 = (|v|2)2u·2 − 2|v|2(u · v)(u · v) + (u · v)2v·2

= |v|2(|v|2|u|2 − (u · v)2),

which is equivalent to (42.5) with equality excluded.
Assume, now, that (u,v) is linearly dependent. Then one of u and v is

a scalar multiple of the other. Without loss we may assume, for example,
that u = ξv for some ξ ∈ R. By (42.4), we then have

|u · v| = |u · (ξu)| = |ξu·2| = |ξ||u||u| = |v||u|,

which shows that (42.5) holds with equality.
Subadditivity of Magnitude: For every u,v ∈ V we have

|u + v| ≤ |u| + |v|. (42.6)
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Proof: Using (42.5) we find

|u + v|2 = (u + v)·2 = u·2 + 2u · v + v·2

≤ |u|2 + 2|u||v| + |v|2 = (|u| + |v|)2,

which is equivalent to (42.6).
Proposition 1: An inner-product space V is genuine if and only if it

has some genuinely orthonormal basis.
Proof: Assume that V has a genuinely orthonormal basis

e := (ei | i ∈ I) and let v ∈ V× be given. Since e = e∗, we infer from
(41.19) that

v·2 = v · v =
∑

i∈I

(ei · v)2,

which is strictly positive. Since v ∈ V× was arbitrary, it follows that V is
genuine.

Assume, now, that V is genuine. Let e be an orthonormal set in V. We
have seen in the previous section that e is linearly independent. Hence it is
a basis if and only if Lspe = V. Now, if Lspe is a proper subset of V, then its
orthogonal supplement (Lspe)⊥ is not the zero-space. Hence we may choose
u ∈ ((Lspe)⊥)× and put f := 1

|u|u, so that f ·2 = 1. It is clear that e ∪ {f}
is an orthonormal set that has e as a proper subset. It follows that every
maximal orthonormal set in V is a basis. Such sets exist because the empty
set ∅ is orthonormal and because no orthonormal set in V can have more
than dimV members.

Definition 2: The set of all elements of V with magnitude strictly less
than 1 is called the unit ball of V and is denoted by

UblV := {v ∈ V | |v| < 1} = sq<([0, 1[). (42.7)

The set of all element of V with magnitude less than 1 is called the closed
unit ball of V and is denoted by

UblV := {v ∈ V | |v| ≤ 1} = sq<([0, 1]). (42.8)

The set of all unit vectors in V is called the unit sphere of V and is denoted
by

UsphV := {v ∈ V | |v| = 1} = sq<({1}) = UblV \ UblV. (42.9)
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Notes 42

(1) The magnitude |v| is often called “Euclidean norm”, “norm”, or “length”.

(2) Many people use ||v|| instead of |v| for the magnitude. I consider this a waste of a
good symbol that could be employed for something else. In fact, in this book we
reserve the use of double bars for operator-norms only (see Sect.52) and thus have
an easy notational distinction between the magnitude |L| and the operator-norm
||L|| of a lineon L (see Example 3 in Sect.52).

(3) The Inner-Product Inequality is often called “Cauchy’s inequality” (particularly
in France), “Schwarz’s inequality” (particularly in Germany), or “Bunyakovsky’s
inequality” (particularly in Russia). Various combinations of these three names are
also sometimes used.

43 Orthogonal Mappings

Let V and V ′ be inner-product spaces.
Definition 1: A mapping R : V → V ′ is called an orthogonal

mapping if it is linear and preserves inner squares, i.e. if R ∈ Lin(V,V ′)
and

(Rv)·2 = v·2 for all v ∈ V. (43.1)

The set of all orthogonal mappings from V to V ′ will be denoted by
Orth(V,V ′). An orthogonal mapping that has an orthogonal inverse will be
called an orthogonal isomorphism. We say that V and V ′ are orthogo-
nally isomorphic if there exists an orthogonal isomorphism from V to V ′. Of
course, if V and V ′ are orthogonally isomorphic, they are also linearly iso-
morphic; but they may be linearly isomorphic without being orthogonally
isomorphic (see Prop.1 of Sect.47 below). The following is evident from
Def.1 and from Props.1, 2 of Sect.13.

Proposition 1: The identity mapping of an inner-product space is or-
thogonal. The composite of two orthogonal mappings is orthogonal. If an
orthogonal mapping is invertible, its inverse is again orthogonal, and hence
it is an orthogonal isomorphism.

The following is a direct consequence of Def.1 and of Prop.3 of Sect.27,
applied to Q := sq.

Proposition 2: R ∈ Lin(V,V ′) is orthogonal if and only if

R⊤R = 1V , (43.2)

or, equivalently, R preserves inner products.
As an immediate consequence of Prop.2 and the Pigeonhole Principle for

Linear Mappings we obtain the following result.
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Proposition 3: For every orthogonal mapping R ∈ Orth(V,V ′) we
have: R is injective, RngR is a regular subspace of V ′, and R|Rng is an
orthogonal isomorphism from V to Rng R. Moreover, R is an orthogonal
isomorphism if and only if R is surjective or, equivalently,

RR⊤ = 1V′ . (43.3)

This is the case if and only if dimV = dimV ′.

We write OrthV := Orth(V,V) and call its members orthogonal li-
neons. In view of Prop.1 and Prop.3, OrthV is a subgroup of LisV and
consists of all orthogonal automorphisms of V. The group OrthV is called
the orthogonal group of the inner product space V.

Proposition 4: Let b := (bi | i ∈ I) be a basis of the inner-product
space V, let V ′ be an inner-product space and R ∈ Lin(V,V ′). Then R is
orthogonal if and only if

Rbi · Rbk = bi · bk for all i, k ∈ I. (43.4)

In particular, if e := (ei | i ∈ I) is a genuinely orthonormal basis, then R
is orthogonal if and only if Re := (Rei | i ∈ I) is a genuinely orthonormal
family.

Proof: Since Rbi · Rbk = (R⊤Rbi) · bk for all i, k ∈ I, (43.4) states
that for each i ∈ I, (R⊤Rbi)· ∈ V∗ and bi· ∈ V∗ agree on a basis. Hence,
by Prop.2 of Sect.16, (43.4) holds if and only if R⊤Rbi = bi for all i ∈ I,
which, in turn, is the case if and only if R⊤R = 1V . The assertion follows
then from Prop.2.

Proposition 5: Let V,V ′ be genuine inner-product spaces. Then V and
V ′ are orthogonally isomorphic if and only if dimV = dimV ′.

Proof: The “only if” part follows from Cor.2 to the Theorem on Char-
acterization of Dimension of Sect.17.

Assume that dimV = dimV ′ =: n. By Prop.1 of Sect.42 and by Cor.1 to
the Theorem on Characterization of Dimension, we may choose genuinely
orthonormal bases e := (ei | i ∈ n]) and e′ := (e′i | i ∈ n]) of V and V ′,
respectively. By Prop.2 of Sect.16, there is an invertible linear mapping
R : V → V ′ such that Rei = e′i for all i ∈ n]. By Prop.4, R is an
orthogonal isomorphism.

Proposition 6: Let V,V ′ be inner-product spaces. Assume that
R : V → V ′ preserves inner products, i.e., that

R(u) · R(v) = u · v for all u,v ∈ V, (43.5)
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and that LspRngR is a regular subspace of V ′. Then R is linear and hence
orthogonal.

Proof: To show that R preserves sums, let u,v ∈ V be given. It follows
from (43.5) that

R(u + v) · R(w) = (u + v) · w = u · w + v · w
= R(u) · R(w) + R(v) · R(w)

and hence

(R(u + v) − R(u) − R(v)) · R(w) = 0

for all w ∈ V. This means that

R(u + v) − R(u) − R(v) ∈ (Rng R)⊥.

Since LspRng R is regular we have LspRngR ∩ (RngR)⊥ = {0}. It follows
that R(u + v) −R(u) − R(v) = 0. Since u,v ∈ V were arbitrary, we con-
clude that R preserves sums. A similar argument shows that R preserves
scalar multiples and hence is linear.

Pitfall: If R : V → V ′ preserves inner products but LspRng R is not
regular, then R need not be linear. For example, if V = {0} and n ∈ V ′

is such that n·2 = 0 but n 6= 0, then the mapping R : V → V ′ defined by
R(0) = n preserves inner products but is not linear.

In view of Prop.3, Prop.6 has the following corollary.

Proposition 7: A surjective mapping that preserves inner products is
necessarily an orthogonal isomorphism.

Notes 43

(1) Orthogonal mappings are commonly called “orthogonal transformations”, but the
definition is often restricted to the case in which the domain and codomain coincide
(i.e. when we use “orthogonal lineon”) and the spaces involved are genuine inner-
product spaces.

(2) The notations On, On(R), or O(n, R) are often used for the orthogonal group
Orth R

n.

(3) If the inner-product is double-signed and if its index is 1 (see Sect.47), an orthogonal
lineon is often called a “Lorentz transformation”, especially in the context of the
theory of relativity. The orthogonal group is then called the “Lorentz group”.
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44 Induced Inner Products

Let V1 and V2 be inner-product spaces. Then V1 × V2 carries a natural
induced structure of a linear space, as explained in Sect.14. We endow
V1 ×V2 also with the structure of an inner-product space by prescribing its
inner square by the rule

(v1,v2)
·2 := v·2

1 + v·2
2 for all v1 ∈ V1, v2 ∈ V2. (44.1)

The inner product in V1 × V2 is given by

(u1,u2) · (v1,v2) = u1 · v1 + u2 · v2

for all (u1,u2), (v1,v2) ∈ V1 × V2. More generally, if (Vi | i ∈ I) is a finite

family of inner-product spaces, we endow the product-space×(Vi | i ∈ I)
with the natural structure of an inner-product space by prescribing the inner
square by the rule

v·2 :=
∑

i∈I

v·2
i for all v ∈×i∈IVi. (44.2)

It is clear that×(Vi | i ∈ I) is genuine if all the Vi, i ∈ I, are genuine.
Remark: The inner products on V1 and V2 induce on V1 × V2, in a

natural manner, non-degenerate quadratic forms other than the inner square
given by (44.1). For example, one such quadratic form Q : V1 × V2 → R is
given by

Q(v1,v2) := v·2
1 − v·2

2 (44.3)

This form is double-signed (see Sect.27) when V1 and V2 are genuine inner-
product spaces of dimension greater then zero.

Theorem on the Induced Inner Product: Let V and W be inner-
product spaces. Then Lin(V,W) has the natural structure of an inner prod-
uct space, obtained by prescribing its inner square by the rule

L·2 := trV(L⊤L) for all L ∈ Lin(V,W). (44.4)

The corresponding inner product is given by

L · M := trV(L⊤M) = trW(ML⊤) (44.5)

for all L,M ∈ Lin(V,W).
If V and W are genuine inner-product spaces, so is Lin(V,W).
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Proof: The bilinearity of the mapping

((L,M) 7→ trV(L⊤M)) : (Lin(V,W))2 → R (44.6)

is a consequence of the linearity of transposition, the bilinearity of compo-
sition, and the linearity of the trace (see Chap.2). To prove the symmetry
of the mapping (44.6) we use (26.7), (21.6), and (22.4) to obtain

M · L = trV(M⊤L) = trV((M⊤L)⊤)

= trV(L⊤M⊤⊤) = trV(L⊤M) = L · M

for all L,M ∈ Lin(V,W).
The Representation Theorem for Linear Forms on Lin(V,W) of Sect.26

states that the mapping that associates with H ∈ Lin(W ,V) the linear form
(M 7→ trV(HM)) ∈ (Lin(V,W))∗ is a linear isomorphism. The transposition
(L 7→ L⊤) : Lin(V,W) → Lin(W ,V) is also a linear isomorphism. It follows
that their composite, the linear mapping from Lin(V,W) into (Lin(V,W))∗

associated with the bilinear mapping (44.6), is an isomorphism and hence
injective. This means that (44.4) indeed defines a non-degenerate quadratic
form whose associated bilinear form is given by (44.6).

The last equality of (44.5) is an immediate consequence of (26.6).
The last statement of the Theorem is an immediate consequence of

Prop.1 of Sect.42 and the following Lemma.
Lemma: If e := (ei |i ∈ I) is a genuinely orthonormal basis of V and

L ∈ Lin(V,W), then

L·2 = trW(LL⊤) =
∑

i∈I

(Lei)
·2. (44.7)

Proof: Since e coincides with its dual, we have, by (25.14),

1V =
∑

i∈I

ei ⊗ ei.

Using Prop.3 of Sect.25, we obtain

LL⊤ = L1VL⊤ =
∑

i∈I

L(ei ⊗ ei)L
⊤ =

∑

i∈I

(Lei) ⊗ (Lei).

Since trW((Lei) ⊗ (Lei)) = (Lei) · (Lei) = (Lei)
·2 by (26.3), and since

the trace is linear, the last of the equalities (44.7) follows. The first is a
consequence of (44.5).
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Let I and J be finite sets. As we have seen in Sect.41, the spaces R
I ,

R
J and R

J×I can all be regarded as inner-product spaces. Therefore, the
Theorem on the Induced Inner Product shows that Lin(RI , RJ) carries the
natural structure of an inner product space. We claim that this structure
is compatible with the identification Lin(RI , RJ) ∼= R

J×I (see Sect.16). In-
deed, given M ∈ Lin(RI , RJ) ∼= R

J×I we have, by (16.7) and (23.9)

(M⊤M)i,k =
∑

j∈I

(M⊤)i,jMj,k =
∑

j∈I

Mj,iMj,k for all i, k ∈ I

and hence, by (26.8),

tr(M⊤M) =
∑

i∈I

(M⊤M)i,i =
∑

(j,i)∈J×I

(Mj,i)
2. (44.8)

We now assume that inner-product spaces V and W are given. The
following formulas, valid for all L ∈ Lin(V,W),v ∈ V, and w ∈ W follow
easily from the definitions (44.4) and (44.5):

L · (w ⊗ v) = w · Lv = L(v,w), (44.9)

(w ⊗ v)·2 = (v·2)(w·2). (44.10)

In view of (26.9) we have

1·2
V = dimV. (44.11)

Proposition 1: The transposition
(L 7→ L⊤) : Lin(V,W) → Lin(W ,V) is an orthogonal isomorphism, i.e. we
have

L · M = L⊤ · M⊤ for all L,M ∈ Lin(V,W). (44.12)

Proof: Given L,M ∈ Lin(V,W), we may use (44.5) to obtain L⊤ ·M⊤ =
trW(L⊤⊤M⊤) = trW(LM⊤) = M · L and hence (44.12).

Proposition 2: The subspaces SymV and SkewV of LinV are orthogonal
supplements of each other (and hence both regular).

Proof: By (44.5) we have, for all S ∈ SymV and all A ∈ SkewV,

S · A = tr(S⊤A) = tr(SA) = −tr(SA⊤) = −A · S

and hence S · A = 0. It follows that SymV ⊂ (SkewV)⊥ and SkewV ⊂
(SymV)⊥. We already know (Prop.7 of Sect.24) that SymV and SkewV are
supplementary.
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From now on we assume that both V and W are genuine inner-product
spaces. By the last assertion of the Theorem on the Induced Inner Product,
Lin(V,W) is then genuine, too. Thus, according to the Definition of Sect.42,
every L ∈ Lin(V,W) has a magnitude

|L| :=
√

L·2 =
√

trV(L⊤L) =
√

trW(LL⊤). (44.13)

In addition to the rules concerning magnitudes in general, the magnitude in
Lin(V,W) satifies the following rules.

Proposition 3: For all v ∈ V, w ∈ W, and L ∈ Lin(V,W) we have

|w ⊗ v| = |w||v|, (44.14)

|Lv| ≤ |L||v|. (44.15)

Proof: (44.14) is an immediate consequence of (44.10). To prove
(44.15), we use (44.9), the Inner-Product Inequality of Sect.42 as applied to
Lin(V,W), and (44.14) to show that

|w · Lv| = |L · (w ⊗ v)| ≤ |L||w ⊗ v| = |L||w||v|.

Putting w := Lv we get |Lv|2 ≤ |Lv||L||v|, which is equivalent to (44.15).

In view of (44.11), we have

|1V | =
√

dim(V). (44.16)

Proposition 4: Let V, V ′ and V ′′ be genuine inner-product spaces and
let L ∈ Lin(V,V ′), M ∈ Lin(V ′,V ′′). Then

|ML| ≤ |M||L|. (44.17)

Proof: Choose a genuinely orthonormal basis e := (ei | i ∈ I) of V. By
the Lemma, (44.7), we have

|ML|2 = (ML)·2 =
∑

i∈I

(MLei)
·2 =

∑

i∈I

|M(Lei)|2.

Applying (44.15) to each term, we get

|ML|2 ≤
∑

i∈I

|M|2|Lei|2 = |M|2
∑

i∈I

(Lei)
·2.

Applying the Lemma, (44.7), again, we obtain |ML|2 ≤ |M|2L·2, which is
equivalent to (44.17).
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45 Euclidean Spaces

Definition 1: A Euclidean space is a finite-dimensional flat space E en-
dowed with additional structure by the prescription of a separation function

sep : E × E −→ R

such that

(a) sep is translation invariant, i.e.

sep ◦ (v × v) = sep (45.1)

for all v in the translation space V and E,

(b) For some x ∈ E, the mapping

(v 7→ sep(x, x + v)) : V −→ R (45.2)

is a non-degenerate quadratic form on V.
It follows from (a) that the mapping (45.2) from V to R does not depend

on the choice of x. Hence the translation space V of a Euclidean space E
carries the natural structure of an inner-product space whose inner square
v 7→ v·2 satisfies

sep(x, y) = (y − x)·2 for all x, y ∈ E . (45.3)

Conversely, if E is a finite-dimensional flat space and if its translation
space V is endowed with additional structure as in Def.1 of Sect.41 so as to
make it an inner-product space, then E acquires the natural structure of a
Euclidean space when we use (45.3) to define the separation function.

Every inner-product space V has the natural structure of a Euclidean
space that is its own (external) translation space. Indeed, the natural struc-
ture of V as a flat space is the one described by Prop.3 of Sect.32, and the
inner-product of V then gives V the natural structure of a Euclidean space
as remarked above.

We say that a flat F in a Euclidean space E is regular if its direction
space is a regular subspace of V. If F is regular, then sep|F×F endows F
with the structure of a Euclidean space; but if F is not regular, it does not
have a natural structure of a Euclidean space.

Definition 2: Let E , E ′ be Euclidean spaces. We say that the mapping
α : E → E ′ is Euclidean if it is flat and preserves separation, so that

sep′ ◦ (α × α) = sep, (45.4)



45. EUCLIDEAN SPACES 149

where sep and sep′ are the separation functions of E and E ′, respectively.
A Euclidean mapping that has a Euclidean inverse is called a Euclidean

isomorphism.
The following is evident from Def.2, (45.3), (33.4), and Def.1 in Sect.43.
Proposition 1: The mapping α : E → E ′ is Euclidean if and only if it

is flat and has an orthogonal gradient.
Using this Proposition and Prop.1 of Sect.43, we obtain:
Proposition 2: The identity mapping of a Euclidean space is a Eu-

clidean mapping. The composite of two Euclidean mappings is Euclidean. If
a Euclidean mapping is invertible, then its inverse is again Euclidean, and
hence it is a Euclidean isomorphism.

In view of Prop.3 of Sect.43, we have:
Proposition 3: Every Euclidean mapping α : E → E ′ is injective, its

range Rng α is a regular subspace of E ′, and α|Rng is a Euclidean isomor-
phorism from E onto Rng α. Moreover, α is a Euclidean isomorphism if and
only if α is surjective, and this is the case if and only if dim E = dim E ′.

The set of all Euclidean automorphisms of a Euclidean space E will be
denoted by EisE . It is a subgroup of the group Fis E of all flat automorphisms
of E . The mapping g : EisE → OrthV defined by g(α) := ∇α is a surjective
group-homomorphism whose kernel is the translation group V. In fact, g is
obtained from the homomorphism h : Fis E → LisV described at the end
of Sect.33 by the adjustment g := h|OrthV

EisE .
Proposition 4: Let E, E ′ be Euclidean spaces, let α : E → E ′ be a flat

mapping, and let p := (pi | i ∈ I) be a flat basis of E such that

sep(pi, pj) = sep′(α(pi), α(pj)) for all i, j ∈ I. (45.5)

Then α is a Euclidean mapping.
Proof: Since α is flat we have, by (33.4),

α(pi) − α(pj) = ∇α(pi − pj) for all i, j ∈ I. (45.6)

We now choose k ∈ I and put I ′ := I \ {k} and ui := pi − pk for all i ∈ I ′.
Then (45.6) gives

α(pi) − α(pk) = (∇α)ui for all i ∈ I ′

and
α(pi) − α(pj) = (∇α)(ui − uj) for all i, j ∈ I ′.

In view of (45.3), it follows from (45.5) that

((∇α)ui)
·2 = u·2

i for all i ∈ I ′ (45.7)
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and

((∇α)(ui − uj))
·2 = (ui − uj)

·2 for all i, j ∈ I ′,

which is equivalent to

((∇α)ui)
·2 − 2((∇α)ui) · ((∇α)uj) + ((∇α)uj)

·2 = u·2
i − 2ui · uj + u·2

j .

Using (45.7) this gives

(∇α)ui · (∇α)uj = ui · uj for all i, j ∈ I ′.

Since (ui |i ∈ I ′) is a basis of V by Prop.2 of Sect.35, it follows from Prop.4
of Sect.43 that ∇α is orthogonal. Hence α is Euclidean by Prop.1.

The following result shows that, in Def.2, the requirement that α be flat
can in many cases be omitted.

Proposition 5: Let E , E ′ be Euclidean spaces and let α : E → E ′ be a
mapping that preserves separation, i.e. satisfies (45.4). Then α is flat and
hence Euclidean provided that the flat span of Rng α is regular.

Proof: Let V and V ′ be the translation spaces of E and E ′, respectively.
We choose q ∈ E and define R : V → V ′ by

R(v) := α(q + v) − α(q) for all v ∈ V. (45.8)

We have, for all u,v ∈ V

R(u) − R(v) = α(q + u) − α(q + v).

Since α preserves separation, it follows that

(R(u) − R(v))·2 = (u− v)·2 for all u,v ∈ V.

By an argument similar to one given in the proof of Prop.4, we conclude
that

R(u) · R(v) = u · v for all u,v ∈ V.

Now, (45.8) shows that RngR = (Rng α)−α(q). Hence, by (32.6), LspRngR
is the direction space of FspRng α. If FspRng α is regular, so is LspRng R,
and we can apply Prop.6 of Sect.43 to conclude that R is orthogonal. It
follows from (45.8) that α is flat and that R = ∇α.

The following corollary to Prop.5 shows that the prescription of the sep-
aration function alone is sufficient to determine the structure of a Euclidean
space on a set.
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Proposition 6: Let a set E and a function sep : E × E → R be given.
Then E can be endowed with at most one structure of a Euclidean space
whose separation function is sep.

Proof: Let two such structures be given with V and V ′ as the cor-
responding translation spaces. The identity 1E preserves separation and
hence Prop.5 may be applied to it when E as domain of 1E is considered
as endowed with the first structure and as codomain of 1E with the second.
Let R ∈ Orth(V,V ′) be the gradient of 1E when interpreted in this manner.
In view of (33.1), it follows that 1E ◦ v = (Rv) ◦ 1E and hence v = Rv for
all v ∈ V, which means that V ⊂ V ′ and R = 1V⊂V ′ . Reversing the roles
of V and V ′ we get V ′ ⊂ V and hence V = V ′ and R = 1V . Since R is
an orthogonal isomorphism, it follows that V and V ′ coincide not only as
subgroups of Perm E but also as inner-product spaces.

Proposition 7: Let E be a Euclidean space and p := (pi | i ∈ I) a flatly
spanning family of points in E. Then for all x, y ∈ E

(sep(x, pi) = sep(y, pi) for all i ∈ I) =⇒ x = y.

Proof: Let x, y ∈ E be given and let z be the midpoint of (x, y) (see
Example 1 of Sect.34). This means that x = z + u and y = z − u for a
suitable u ∈ V. The family b := ((pi − z) | i ∈ I) spans V and we have

sep(x, pi) = (pi − x)·2 = (bi − u)·2

sep(y, pi) = (pi − y)·2 = (bi + u)·2

for all i ∈ I. Hence, if sep(x, pi) = sep(y, pi) for all i ∈ I we have

bi · u =
1

4
((bi + u)·2 − (bi − u)·2) = 0

for all i ∈ I. Since b is spanning, it follows that u ∈ (Rngb)⊥ = V⊥ = {0}
and hence u = 0, which means that x = z = y.

Notes 45

(1) What we call a “genuine Euclidean space” (see Def.1 of Sect.46) is usually just
called a “Euclidean space”, and non-genuine Euclidean spaces are often referred to
as “pseudo-Euclidean spaces”. I believe it is more convenient to have a term that
covers both cases.

The term “Euclidean space” is often misused to mean a genuine inner-product space
or even R

n.

(2) In the past, the term “separation” has been used only in the special case when the
space E is a model of the event-world in the theory of relativity.
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46 Genuine Euclidean Spaces, Congruences

Definition 1: We say that a Euclidean space E is genuine if its separation
function sep has only positive values, i.e. if Rng sep ⊂ P. The distance
function

dst : E × E → P

is then defined by

dst(x, y) :=
√

sep(x, y) for all x, y ∈ E . (46.1)

It is clear from (45.3) that a Euclidean space E is genuine if and only
if its translation space V is a genuine inner-product space. Hence all flats
in a genuine Euclidean space are regular and have natural structures of
genuine Eucliden spaces. Comparing (46.1) with (42.2), we see that (45.3)
is equivalent to

dst(x, y) = |y − x| for all x, y ∈ E . (46.2)

Using (42.4) with ξ := −1 and (42.6) and (42.3), we obtain:
Proposition 1: The distance function dst of a genuine Euclidean space

E has the following properties, valid for all x, y, z ∈ E :

dst(x, y) = dst(y, x), (46.3)

dst(x, y) + dst(y, z) ≥ dst(x, z), (46.4)

dst(x, y) = 0 ⇐⇒ x = y. (46.5)

Let q ∈ E and ρ ∈ P
× be given. Then

Ballq,ρ(E) := {x ∈ E | dst(x, q) < ρ} (46.6)

is called the ball of radius ρ centered at q,

Ballq,ρ(E) := {x ∈ E | dst(x, q) ≤ ρ} (46.7)

is called the closed ball of radius ρ centered at q, and

Sphq,ρ(E) := {x ∈ E | dst(x, q) = ρ} (46.8)

= Ballq,ρ(E) \ Ballq,ρ(E)

is called the sphere of radius ρ centered at q. If dim E = 2, the term “disc”
is often used instead of “ball”, and the term “circle” instead of “sphere”.
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In view of Def.2 of Sect.42, we have

Ballq,ρ(E) = q + ρUblV, (46.9)

Ballq,ρ(E) = q + ρUblV, (46.10)

Sphq,ρ(E) = q + ρUsphV. (46.11)

We now assume that a genuine Euclidean space E is given.
Definition 2: We say that the families p := (pi | i ∈ I) and p′ :=

(p′i | i ∈ I) of points in E are congruent in E if there is a Euclidean
automorphism α of E such that α(pi) = p′i for all i ∈ I.

Congruence Theorem: The families p := (pi | i ∈ I) and
p′ := (p′i | i ∈ I) are congruent if and only if

dst(pi, pj) = dst(p′i, p
′
j) for all i, j ∈ I. (46.12)

Proof: The “only if” part follows from the definitions.
Assume that (46.12) holds. Put F := FspRng p and choose a subset K

of I such that p|K = (pk | k ∈ K) is a flat basis of F . Put F ′ := FspRng p′.
By Prop.5 of Sect.35, there is a unique flat mapping β : F → F ′ such that
β(pk) = p′k for all k ∈ K. By Prop.4 of Sect.45, we can conclude from
(46.12) that β must be Euclidean and hence injective (see Prop.3 of Sect.45).
It follows that dimF ≤ dimF ′. Reversing the roles of p and p′, we also
conclude that dimF ′ ≤ dimF . Therefore, we have dimF = dimF ′ and β is
a Euclidean isomorphism. Hence p′|K = β>(p|K) is a flat basis of F ′. Since
β preserves distance, we have for all x ∈ F

dst(x, pk) = dst(β(x), β(pk)) = dst(β(x), p′k)

for all k ∈ K. Thus, using (46.12) we get

dst(β(pi), p
′
k) = dst(pi, pk) = dst(p′i, p

′
k)

for all k ∈ K, i ∈ I. Using Prop.7 of Sect.45, we conclude that

β(pi) = p′i for all i ∈ I. (46.13)

Let U and U ′ be the direction spaces of F and F ′. Since

dimU = dimF = dimF ′ = dimU ′,

it follows that dimU⊥ = dimU ′⊥. Therefore, in view of Prop.5 of Sect.43,
we may choose an orthogonal isomorphism R : U⊥ → U ′⊥. Since E =



154 CHAPTER 4. INNER-PRODUCT SPACES, EUCLIDEAN SPACES

F + U⊥ = F ′ + U ′⊥, there is a unique Euclidean isomorphism α : E → E
such that

α(x + w) = β(x) + Rw for all x ∈ F , w ∈ U⊥.

By (46.13) we have α(pi) = p′i for all i ∈ I, showing that p and p′ are
congruent.

The Congruence Theorem shows that two families of points in E are
congruent in E if and only if they are congruent in any flat F that includes
the ranges of both families. It is for this reason that we may simply say
“congruent” rather than “congruent in E”.

Definition 3: Let S and S ′ be two subsets of E. We say that a mapping
γ : S → S ′ is a congruence if (x | x ∈ S) and (γ(x) | x ∈ S) are congruent
families of points. The set of all congruences from a given set S to itself is
called the symmetry-group of S and is denoted by CongS.

The Congruence Theorem has the following immediate consequence:
Corollary: The mapping γ : S → S ′ is a congruence if and only if it

is surjective and preserves distance.
All congruences are invertible mappings and CongS is a subgroup of the

permutation group PermS of S. The group CongS describes the internal
symmetry of S. For example, if ♯S = 3, then S can be viewed as the set of
vertices of a triangle. If the triangle is equilateral, then CongS = PermS.
If the triangle is isoceles but not equilateral, then CongS is a two-element
subgroup of PermS that contains 1S and one switch. If the triangle is
scalene, then CongS is the identity-subgroup {1S} of PermS.

Notes 46

(1) In view of Prop.5 of Sect.45, it turns out that a mapping between genuine Eu-
clidean spaces is a Euclidean isomorphism if and only if it is an isometry, i.e. an
invertible mapping that preserves distances. It is for this reason that many people
say “isometry” in place of “Euclidean isomorphism”.

47 Double-Signed Inner-Product Spaces

We assume that an inner-product space V with inner square sq is given. If
sq is strictly positive, i.e. if the space is a genuine inner-product space, then
the results of Sect.42 apply. If sq is strictly negative, then a change from sq
to −sq converts the space into a genuine inner-product space, and the results
of Sect.42, with suitable adjustments of sign, still apply. In particular, two
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inner-product spaces with strictly negative inner squares are isomorphic if
they have the same dimension.

The results of this section are of interest only if the inner product is
double-signed, i.e. if sq is neither strictly positive nor strictly negative. Recall
that a subspace U of V is called regular if sq|U is non-degenerate (see Sect.41).
We say that U is

singular if it is not regular,

totally singular if sq|U = 0,

positive-regular if sq|U is strictly positive,

negative-regular if sq|U is strictly negative.

Definition 1: Let V be an inner product space. The greatest among the
dimensions of all positive-regular [negative-regular] subspaces of V will be
denoted by sig +V [sig−V]. The pair (sig +V, sig −V) is called the signature
of V.

The structure of double-signed inner-product spaces is described by the
following result.

Inner-Product Signature Theorem: Let V be an inner-product
space. If a positive-regular [negative-regular] subspace U of V satisfies one
of the following conditions, then it satisfies all three:

(a) dimU = sig +V [dimU = sig −V],

(b) U is maximal among the positive-regular [negative-regular] subspaces
of V,

(c) U⊥ is negative-regular [positive-regular].

Proof: It is sufficient to consider the case when U is positive-regular,
because a change from sq to −sq will then take care of the other case.
We choose a positive-regular subspace W such that dimW = sig +V; then
dimU ≤ dimW .

(a) ⇒ (b): This is trivial.

(b) ⇒ (c): Suppose that U⊥ is not negative-regular. Since U⊥ is regular
by the last assertion of the Theorem on the Characterization of Regular
Subspaces of Sect.41, sq|U⊥ cannot be negative by Prop.4 of Sect.27. Hence
we may choose w ∈ U⊥ such that w·2 > 0. Then U + Rw strictly includes
U and is still positive-regular. Hence U is not maximal.

(c) ⇒ (a): Since U is regular, U⊥ is a supplement of U by the Theorem
on the Characterization of Regular Subspaces. Hence, by Prop.4 of Sect.19,
there is a projection P : V → U such that U⊥ = Null P. Let w ∈ W ∩U⊥

be given. Since W is positive-regular and U⊥ is negative regular, we would
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have w·2 > 0 and w·2 < 0 if w were not zero. Since this cannot be, it follows
that

Null P|W = W ∩ U⊥ = {0}
and hence that P|W is injective. By the Pigeonhole Principle for Linear
Mappings, it follows that dimW ≤ dimU and hence dimU = dimW =
sig +V,

Using the eqivalence (a) ⇔ (c) twice, once for U and once when U is
replaced by U⊥, we obtain the following:

Corollary: There exist positive-regular subspaces U such that U⊥ is
negative-regular. If U is such a subspace, then

dimU = sig +V, dimU⊥ = sig −V. (47.1)

We have
sig +V + sig −V = dimV. (47.2)

Of course, spaces that are orthogonally isomorphic have the same signa-
ture. The converse is also true:

Proposition 1: Two inner-product spaces are orthogonally isomorphic
if (and only if) they have the same signature.

Proof: Assume that V and V ′ are inner-product spaces with the same
signature. In view of the Corollary above, we may choose positive-regular
subspaces U and U ′ of V and V ′, respectively, such that U⊥ and U ′⊥ are
negative regular. Since V and V ′ have the same signature, we have, by
(47.1),

dimU = dimU ′, dimU⊥ = dimU ′⊥.

Therefore, we may apply Prop.5 of Sect.43 and choose orthogonal isomor-
phisms R1 : U → U ′ and R2 : U⊥ → U ′⊥. Since U and U⊥ are
supplementary, there is a unique linear mapping R : V → V ′ such that
R|U = R1|V′

and R|U⊥ = R2|V′

(See Prop.5 of Sect.19). It is easily seen
that R is an orthogonal isomoprhism.

Proposition 2: Every inner-product space V has orthonormal bases.
Moreover, if e := (ei | i ∈ I) is an orthonormal basis of V, then the

signature of V is given by

sig +V = ♯{i ∈ I | e·2i = 1}, (47.3)

sig −V = ♯{i ∈ I | e·2i = −1}. (47.4)

Proof: In view of the Corollary above, we may choose a positive-regular
subspace U of V such that U⊥ is negative regular. By Prop.1 of Sect.42, we
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may choose a genuinely orthonormal set basis b of U and an orthonormal set
basis c of U⊥ such that e·2 = −1 for all e ∈ c. Then b∪ c is an orthonormal
set basis of V.

Let an orthonormal basis e := (ei | i ∈ I) of V be given. We put

U1 := Lsp{ei | i ∈ I, e·2i = 1}, U2 := Lsp{ei | i ∈ I, e·2i = −1}.

It is clear that U1 is positive-regular and that U2 is negative regular and
that the right sides of (47.3) and (47.4) are the dimensions of U1 and U2,
respectively. Hence, by Def.1, dimU1 ≤ sig +V, dimU2 ≤ sig −V. On the
other hand, since e is a basis, U1 and U2 are supplementary, in V and hence
by Prop.5 of Sect.17, dimU1 + dimU2 = dimV. This is compatible with
(47.2) only if dimU1 = sig +V and dimU2 = sig −V.

The greatest among the dimensions of all totally singular subspaces of
a given inner product space V is called the index of V and is denoted by
indV.

Inner-Product Index Theorem: The index of an inner-product space
V is given by

indV = min {sig +V, sig −V} (47.5)

and all maximal totally singular subspaces of V have dimension indV.
Proof: By the Corollary above, we may choose a positive-regular sub-

space U of V such that U⊥ is negative-regular. Let P1 : V → U and
P2 : V → U⊥ be the projections for which Null P1 = U⊥ and Null P2 = U
(see Prop.4 of Sect.19).

Let a totally singular subspace N of V be given. Since U⊥ is negative-
regular, every non-zero element of U⊥ has a strictly negative inner square
and hence cannot belong to N . It follows that

Null P1|N = N ∩ U⊥ = {0}.

and hence that P1|N is injective. By the Pigeonhole Principle for Linear
Mappings, it follows that

dimN = dim(Rng P1|N ) ≤ dimU = sig +V. (47.6)

A similar argument shows that

dimN = dim(Rng P2|N ) ≤ dimU⊥ = sig −V. (47.7)

If the inequalities in (47.6) and (47.7) are both strict, then the orthogonal
supplements of Rng P1|N and Rng P2|N relative to U and U⊥, respectively,
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are both non-zero. Hence we may choose u ∈ U and w ∈ U⊥ such that u·2 =
1, w·2 = −1, and u · P1n = w · P2n = 0 for all n ∈ N . It is easily verified
that N + R(u + w) is a totally singular subspace of V that includes N as a
proper subspace. We conclude that N is maximal among the totally singular
subspaces of V if and only if at least one of the inequalities (47.6) and (47.7)
reduces to an equality, i.e., if and only if dimN = min {sig +V, sig −V}.

Remark: The mathematical model for space-time in the Theory of
Special Relativity has the structure of a (non-genuine) Euclidean space E
whose translation space V has index 1. It is customary, by convention, to
assume

1 = indV = sig −V ≤ sig +V.

(However, many physicists now use the only other possible convention: 1 =
indV = sig +V ≤ sig −V). The elements of V are called world-vectors. A
non-zero world-vector v is said to be time-like, space-like, or signal-like,
depending on whether v·2 < 0, v·2 > 0, or v·2 = 0, respectively.

Notes 47

(1) The terms “isotropic” and “totally isotropic” are sometimes used for our “singular”
and “totally singular”.

(2) Some people use the term “signature” to mean an appropriate list of + signs and
− signs rather than just a pair of numbers in N.

(3) The Inner-Product Signature Theorem, or the closely related Prop.2, is often re-
ferred to as “the Law of Inertia” or “Sylvester’s Law of Inertia”.

48 Problems for Chapter 4

(1) Let V be an inner-product space.

(a) Prove: If e := (ei | i ∈ I) is an orthonormal family in V and if
v ∈ V, then

w := v − ∑

i∈I sgn (e·2i )(ei · v)ei (P4.1)

satisfies w · ej = 0 for all j ∈ I. (For the definition of sgn see
(08.13)).

(b) Assume that V is genuine. Prove: If b := (bi | i ∈ n]) is a list-
basis of V then there is exactly one orthonormal list basis e :=
(ei | i ∈ n]) of V such that bk · ek > 0 and
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Lsp{ei | i ∈ k]} = Lsp{bi | i ∈ k]} (P4.2)

for all k ∈ n]. (Hint: Use induction and Part (a).)

Note: The procedure for obtaining the orthonormal basis e of (b) is often called

“Gram-Schmidt orthogonalization”. I consider it of far less importance than some

mathematicians do.

(2) Let V be a genuine inner-product space of dimension 2.

(a) Show that the set SkewV∩OrthV has exactly two members; more-
over, if J is one of them then −J is the other, and we have
J2 = −1V .

(b) Show that L − L⊤ = −tr(LJ)J for all L ∈ LinV.

(3) Let V be a genuine inner-product space.

(a) Prove: If A is a skew lineon on V, then 1V − A is invertible, so
that we may define Φ : SkewV → LinV by

Φ(A) := (1V + A)(1V − A)−1 for all A ∈ SkewV.

(P4.3)

(b) Show that Φ(A) is orthogonal when A ∈ SkewV.

(c) Show that Φ is injective and that

Rng Φ = {R ∈ OrthV | R + 1V is invertible} (P4.4)

(4) Let V be a genuine inner-product space.

(a) Show that, for each a ∈ V×, there is exactly one orthogonal lineon
R on V such that Ra = −a and Ru = u for all u ∈ {a}⊥. Show
that, for all v ∈ V,

Rv = −v ⇐⇒ v ∈ Ra. (P4.5)

(b) Let L ∈ LinV be given. Show that L commutes with every or-
thogonal lineon on V if and only if L ∈ R1V . (Hint: use Part
(a).)
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(5) Let E be a genuine Euclidean space. Prove that the sum of the
squares of the lengths of the sides of a parallelogram (see Problem 5 of
Chapt. 3) in E equals the sum of the squares of the lengths of its diag-
onals. (Hint: Reduce the problem to an identity involving magnitudes
of vectors in V := E − E .)

Note: This result is often called the “parallelogram law”.

(6) Let E be a genuine Euclidean space with dimE > 0 and let p be a
flat basis of E . Show that there is exactly one sphere that includes
Rng p, i.e. there is exactly one q ∈ E and one ρ ∈ P

× such that
Rng p ⊂ Sphq,ρE (see (46.8)). (Hint: Use induction over dimE .)

(7) Let p := (pi | i ∈ I) and p′ := (p′i | i ∈ I) be families in a genuine
Euclidean space E and assume that there is a k ∈ I such that

(pi − pk) · (pj − pk) = (p′i − p′k) · (p′j − p′k) for all i, j ∈ I. (P4.6)

Show that p and p′ are congruent.

(8) Let V and V ′ be inner-product spaces and consider Lin(V,V ′) with
its natural inner-product space structure characterized by (44.4) and
(44.5). Let (p, n) and (p′, n′) be the signatures of V and V ′, respec-
tively (see Sect.47). Show that the signature of Lin(V,V ′) is given by
(pp′ + nn′, pn′ + np′). (Hint: Use Prop.4 of Sect.25 and Prop.2 of
Sect.47.)

(9) Let V be an inner-product space with sig +V = 1 and dimV > 1. Put

V+ := {v ∈ V | v·2 > 0}. (P4.7)

(a) Prove: For all u,v ∈ V+ we have

(u · v)2 ≥ u·2v·2; (P4.8)

equality holds if and only if (u,v) is linearly dependent. (Hint:
Use a trick similar to the one used in the proof of the Inner-
Product Inequality, Sect.42, and use the Inner-Product Signature
Theorem.)

(b) Prove: For all u,v,w ∈ V+ we have

(u · v)(v · w)(w · u) > 0. (P4.9)
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(Hint: Consider z := (v·w)u−(u·w)v and use the Inner-Product
Signature Theorem).

(c) Define the relation ∼ on V+ by

u ∼ v :⇐⇒ u · v > 0. (P4.10)

Show that ∼ is an equivalence relation on V+ and that the corre-
sponding partition of V+ (see Sect.01) has exactly two members;
moreover, if C is one of them then −C is the other.

Note: In the application to the theory of relativity, one of the two equivalence
classes of Part (b), call it C, is singled out. The elements of C are then called
“future-directed” world-vectors while the members of −C are called “past-directed”
world vectors.


